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Abstract 

We consider a polling model of two M / G / 1 queues, served by a single server. The service policy for this polling model 
is of threshold type. Service at queue I is exhaustive: Service at queue 2 is exhaustive unless the size of queue 1 reaches 
some level T during a service at queue 2; in the latter case the server switches to queue 1 at the end of that service. Both 
zero- and nonzero switchover times are considered. We derive exact expressions for the joint queue length distribution at 
customer departure epochs, and for the steady-state queue-length and sojourn time distributions. In addition, we supply a 
simple and very accurate approximation for the mean queue lengths, which is suitable for optimization purposes. © 1997 
Elsevier Science B.V. 
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1. Introduction 

In this paper we consider a model of two M / G / 1 queues, which are served by a single server. The service 
policy for this polling model is of threshold type. When the server is at queue 1, it serves its customers until 
the queue is empty (exhaustive service). When it has emptied queue l, it switches to queue 2. While it visits 
queue 2, one of two events occurs first: queue 2 becomes empty or the size of queue 1 reaches some level T. 
In the latter case, the server switches to queue 1 immediately after having completed the service in which it is 
involved. Both zero- and nonzero switchover times will be considered. It is assumed that the server does not 
idle if there are customers present at either queue. 

The Poisson arrival processes have rates .A1, .A2, and the service time distribution at queue i is B;( ·) with 
mean f3i. second moment p?> and Laplace-Stieltjes Transform (LST) Bi ( ·), i = 1, 2. The traffic load at queue 
i is Pi := ,\ifJ;, i = 1, 2. All interanival times, service times and switchover times are assumed to be independent. 
The ergodicity condition is assumed to hold, as we restrict ourselves to steady-state behaviour. In the case of 
zero switchover times, the ergodicity condition is obviously satisfied iff the traffic load p := Pt + p2 < 1. 
The ergodicity condition is more complicated-and has some interesting features-when switchover times are 
nonzero; see Section 5. We are interested in the queue length and sojourn time distributions of this model, 
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our ultimate goal being to obtain insight into the influence of thresholds on system perfonnance, and into the 
quality of threshold policies for polling models. 

In Section 2 we consider the case of zero switchover times. We use an analytic approach to obtain the joint 
steady-state queue length distribution at customer departure epochs. These results also lead to exact results for 
the marginal steady-state queue length and sojourn time distributions at both queues. The relative intricacy of 
the obtained exact results has led us to investigate a simple approximation of the mean queue lengths. Such an 
approximation is discussed in Section 3; it is sufficiently simple to be suitable for optimization purposes. Its 
accuracy is investigated in Section 4, where also exact numerical results are presented to indicate the effect of 
the threshold level on the mean queue lengths. In Section 5 we discuss the ergodicity condition for the case of 
nonzero switchover times, and we outline how the analysis of Section 2 can be adapted to handle this case. In 
the remainder of the present section we survey the related literature, and give our motivation for this study. 

Some threshold-based polling systems have recently been proposed and analysed by Lee and Sengupta 
[ 18,19), Haverkort et al. [ 15), and Boxma et al. [ 4,5]. In [ 18] Lee considers a single-server two-queue model 
where the high priority queue is served exhaustively; the low priority queue receives k-limited service. In [19] 
a customer of each queue is served alternately unless the queue length of the high priority queue exceeds a 
certain threshold level; then only customers from that queue are served until its queue length is back to the 
threshold level. Haverkort et al. [ 15] analyze that same model using stochastic Petri nets; they also suggest 
and analyze a variant in which, once the threshold is exceeded, the server serves the high priority queue until it 
is empty (thus reducing the number of switches). The latter model is similar to the model of [ 4,5] and of the 
present paper, in which queues are served exhaustively unless a threshold level is reached. In [ 4] service times 
are exponentially distributed, and services at queue 2 are preemptively interrupted as soon as the threshold at 
queue I is reached. In [5] service times are again exponentially distributed, but the service process at queue 2 
is nonpreemptively interrupted when the threshold at queue 1 is reached. The present study considers the model 
of [5] with nonpreemptive interruptions of the service process at the low priority queue, and with general 
service times at both queues. A preliminary version of the present paper, with a restriction to zero switchover 
times, has been presented in the conference paper [ I 0 J . 

The motivation for this work is two-fold. The first one is application-oriented. In modern telecommunication 
networks employing ATM (Asynchronous Transfer Mode) switching technology, a key problem is to be able 
to meet the quality-of-service requirements for different types of traffic. One way of accomplishing this is to 
assign different priorities to real-time traffic (voice, video) and nonreal-time traffic (data). The stringent delay 
requirements for real-time traffic dictate the assignment of a higher priority to it, but one would like to be able 
to meet those delay requirements while simultaneously giving the best possible service to nonreal-time traffic. 
Threshold-type service disciplines seem appropriate for this purpose; thus one would like to obtain insight into 
their performance. 

A second motivation for the present study is the interesting feature that the server behaviour is, in a non­
trivial way, not only determined by the situation at the queue that is presently being visited, but also by 
the situation at the other queue. The rich polling literature contains only a few papers (see in particular 
[4,5,11,16,17,19,24,26]) that take this possibility into consideration. Koole [17] considers a two-queue model 
with exponential service times. For all queue length combinations in a truncated state space he determines via 
dynamic programming whether the server should stay or switch to the other queue. The optimal switching 
curve appears not to have a simple form, but it is closely approximated by a threshold policy: the queue with 
the highest µc-value should be served exhaustively, and if the number of customers in that queue exceeds a 
certain threshold level, then it pays to switch to it when serving the other queue (note that this leads to our 
model, with exponential service times). More limited results, but for general service times, were obtained by 
Duenyas and Van Oyen [ 11]. For the same model, Reiman and Wein (24] arrive at a similar policy using 
heavy traffic analysis. Yadin [26] presents an exact analysis of several threshold policies, including the present 
one. However, he limits his discussion to the behaviour of the queue length process during one visit to a queue. 
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2. Zero switchover times 

In this section we consider the case of zero switchover times. Let tn denote the epoch of the nth service 
completion after t = 0, n = 1, 2, . . .. Let X 1,n and X 2,11 be the numbers of customers (jobs) in queue 1 and 
queue 2, respectively, immediately after t 11 • Let K,, be a random variable which is equal to k if the server is at 
queue k immediately before tn, k = l, 2. Clearly, the stochastic process { (X1,11 , X2,n. K,,), n = I, 2, ... } fonns 
an embedded Markov chain. For n = 1, 2, ... , define its stationary probabilities (we assume that p < I): 

PI (i,j) := lim Pr{X1.11 = i, X2.n = j, K,, = l }, i ~ 0, j ~ 0, 
ll-->00 

P2(i,j) := lim Pr{X1,n = i, X2.n = j, K11 = 2}, i ~ 0, j ~ 0, 
n-.oo 

and the generating functions ( GF) 

00 00 

Il1(z1.z2) :='l:::l:zfzd P1(i,j), lz1I ~ 1, lz2! ~ 1, 
i..,() j=O 

00 00 

Il2(z1. z2) :=LI: zf zi Pi(i,j), lz1I ~ 1, lz2I ~ l, 
b=T j-=i) 

00 

P2,;( z2) := L, z4P2 (i,j), 0 ~ i ~ T - 1, lz2I ~ 1. 
j=!J 

We shall consecutively derive the equilibrium equations for these GF's (Section 2.1 ), solve those equations 
(Section 2.2), and derive the steady-state marginal queue length distributions and the sojourn time distributions 
at both queues (Section 2.3). 

2.1. Equilibrium equations 

Introduce the following short-hand notation, for i = 1,2, lz1I:::;; 1, lz2I ~ I: 

r; := .A1 + .A2. 

By expressing the Markov chain (X1.n,X2.11 .K11) into (X1.n-1,X2.n-l•Kn-d, letting n--+ oo, and taking 
generating functions, one obtains the following relations, with !z1 I :::;; 1, lz2I :::;; 1: 

T-1 

+(Il1(0,0) +P2.o(O))r1z1 +Il2(z1,z2) + L P2.j(O)zf]. 
j=l 

T-1 

+(Il1(0,0) + P2.o(O) )r2z2 + L:<P2,j( z2) - P2.j(O)) zf), 
j.,O 

(1) 

(2) 
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and for 0 ~ i:::; T - 1: 

Furthermore, all probabilities should sum up to one: 

T-l 

n, < I, i) + n2 o. i > + I: P2.j o) = 1. 
j;LJ 

(3) 

(4) 

To assist the reader, let us interpret (1 ) ; Eqs. ( 2) and ( 3) can be interpreted similarly. The factor Bi ( z1. z2) 
is the GF of the joint distribution of the numbers of arrivals at queues l and 2 during one service at queue I; 
division by z1 accounts for the departure of the customer that received that service. Now consider the expression 
between the large brackets in ( 1 ). There are four possibilities that result in serving queue l between 111 _ 1 and 

(i) At t 11 -1 a service at queue I was completed, and queue l was not yet empty. Il1(z1.z2) -Il1(0,z2) 
is the GF of the joint distribution of the numbers of customers at queues I and 2 left behind after the 
previous service completion, restricting oneself to those cases in which queue l is not empty. 

(ii) Both queues were empty at t 11-i. and the first new arrival took place at queue I. The corresponding 
term is (Il1 (0,0) + P2,o(O) )r1z1. 

(iii) At t n-I a service at queue 2 was completed, and in queue 1 the threshold had been reached: Il2 ( z1 , z2). 
(iv) At tn-I a service at queue 2 was completed. The threshold in queue I had not been reached, but queue 

T I . 
1 was not empty whereas queue 2 was: :Ej=~ Pi,j(O)zf. 

2.2. Solution 

From (1): 

n ( )Z1 -Bi(zi.z2) Bj(z1.z2) [ Il (O ) +Il ( ) I Zt, Z2 = - I , Z2 2 Zi. Z2 
ZI ZI 

+(n, ( o. O) + f'>.o(O) )riz1 + ~ f'>J(OJz{] · (5) 

Observe that z1 - Bj(z1,z2) has exactly one zero z1 = µ(z2) in lz1I ~ I, for every lz2I :::; 1. Here 
µ(z2) = E[e-•li(t-zi)G1}. with G1 a stochastic variable with distribution the busy period distribution of queue 
l in isolation. This is a well known fact in queueing theory: see for example Ch. Il.4 of [7]. Since the GF 
Il 1 ( z1 , z2 ) is analytic in I zi! ~ 1, I z2 I ~ 1, the right-hand side of ( 5) should be zero for z1 = µ( z2) : 

T-1 

-Il1(0,z2) + (Il1(0,0) +P2.o(O))r1µ.(z2) +Il2(µ(z2),z2) + L Pi..1(0)µ1(zi) :::0. 
j=I 

Substituting (2) into (6), with z1 =µ(z2). gives a relation between II1(0,z2) and all P2J(Z2): 

(6) 
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T-1 

II1 (0, z2) = (I11(0,0) + P2,o(O) )r1µ(z2) - 1)P2,j(Z2) - P2,j(O) )µi ( z2) 
pi 

Bringing the II1 (0, z2) terms to the left-hand side and dividing both sides by 1 - Bi (µ(z2), z2) /z2 gives: 

T-1 

II1 (0, z2) = - I:< P2,j(Z2) - P2,j(O) )µi (z2) 
j=IJ 

(II1 (0,0) + Pi,o(O) )r1z2µ(z2) - z2P2,o(O) 
+ z2 - Bi (µ(z2). z2) 

+Bi(µ( z2), z2)( (II1(0,0) + P2.o(O) )r2z2 - II1 (0,0)]. 
z2 - Bi(µ(z2),z2) 

(7) 

If we put the right-hand side of (7) over the common denominator z2 - Bi(µ(z2), z2), then as z2 = 1 is a zero 
of this denominator, the analyticity of Il1 (0, z2) in \z2\ :( 1 implies that the numerator is also zero for z2 = 1, 
which yields: 

Il1 (0,0) + P2.o(O) = 1 - p. 

This result is consistent with the observation that the whole system is empty with probability I - p. 
Introducing, for 0 ~ i ~ T- I, lzl ~I, 

00 . ·( ) ·-f -A.1t(A1t)' -A2(1-z)1 dB (t) c, z .- e .1 e 2 , 
I. 

0 

we can rewrite (3) as follows: for lz2\ ~ l, 0 ~ i ~ T - 1, 

j 

+[II1(0,z2) -I11(0,0)]ci(Z2) + L[P2,k(Z2) - P2,k(O)]c;-k(Z2). 
k=IJ 

( &) 

(9) 

Express I11(0,z2) into the P2,i(Z2). using (7), and II1(0,0) into P2,i(O), using(&); then (9) gives us T 
equations for the T unknown functions P2.i ( z2), 0 ~ i ~ T - I. The structure of the equations shows that one 
can write: 

A(z)P(z) = F(z), (10) 

with P(z) denoting the column vector with elements (P2,o(z), .. ., Pz,r- 1 ( z)); the matrix A(z) has elements 

{ 
z -co<_z) +ci(z)µi(z). J=i, 

Aij(Z) = C;(z)µ1(z). j > i, 

C;(z)µi(z) - C;-j(Z). j < i, 
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for i,j = 0, I, ... , T - l, and F( z) is a column vector with elements 

C;(Z) { 2 
F;(z)= B'"( ( ) ) (l-p)r2z +z(I-p)r1µ(z)-z(l-p)} z- 2/LZ.Z 

i T-1 

-L P2,dOki-.t{z) + c;(z) L P2,k(O)µk(z), 
k=O lc..o 

for i = 0, l, ... , T - I. 
In solving (10) we have to pay special attention to the zeros of det(A(z)) inside the unit circle /zl =I. 

Suppose that there are K such zeros, C1 •... 'ex (in fact the first column of A ( z) immediately reveals that 
?1 =0). 

Call A;( z) the matrix obtained from A ( z) by replacing the ith column by the column vector F( z). According 
to Cramer's rule, P2,;(Z) = det(A;(z))/det(A(z)), i = O, ... ,T-1. The analyticity of P2,;(z) in lzl :r;; l 
implies that 

( 11) 

for j = l , ... , K. Using ( 11), each zero ( 1 yields one equation relating the T unknown P2.i ( 0). (For the equation 
due to ?1. an application of l'Hospital's rule is required.) We shall argue that when p < 1, a set of T independent 
equations results, yielding the unique solution for the constants P2.1(0). Indeed, the Kolmogorov equations for 
the equilibrium distribution of the Markov chain { (X1,11 , X2.11 , K11 ). n = l, 2, ... }, along with the normalizing 
equation ( 4), have a unique absolutely convergent solution when p < I; and using generating functions, we 
have transformed those Kolmogorov equations plus the normalizing equation into the T -dimensional matrix 
equation ( 10), plus the relations (7) and (8). If K = T, then as there exists a unique solution, the equations 
generated by (I I) must be independent. Now suppose that K < T. Then we would obtain too few equations 
to determine all T unknown constants uniquely, and we would find multiple solutions for them-which is 
impossible. Finally, if K > T, then we would find too many equations for the T unknowns. Once again, as it 
is known that there is a unique solution, there must be exactly T independent equations amongst those derived 
using (11). 

Remark I. It is in principle possible that there are more than T zeros, but that the ensuing linear equations for 
the Pv(O) are dependent; we expect that one can prove that this is not possible, but we have not yet done so. 
It is suspected that the proof of this may follow using techniques similar to those in Cohen and Down [ 8]. For 
related approaches to a similar problem, the reader is referred to Mitrani and Mitra [21], Neuts [22} and Gail 
et al. [ 13]. Regardless, this poses no difficulties for numerical analysis; in fact, in our numerical experiments 
we have yet to encounter a case with other than exactly T zeros of det( A ( z)) in J z I < I. 

Remark 2. When T = l, this model is equivalent to the well-known MIG/ I queue with two customer classes 
and nonpreemptive priority for class 1. Indeed, our results for that case can be shown to agree with those in 
the literature ( cf. [7], Section ill.3.8)). When T = oo, the model reduces to the classical two-queue model 
with exhaustive service at both queues, cf. Takacs [25]. 

2.3. The steady-state queue length and sojourn time distributions 

Clearly G1 (z) := Il 1(z,1)/r1 is the GF of the queue length distribution at queue 1 at customer departure 
epochs from that queue; similarly, G2 ( z) := [I:~ 1 P2.;( z) + Il2 (1, z) ] / r1 is the GF of the queue length 
distribution at queue 2 at customer departure epochs from that queue. An up-and-downcrossing argument 
implies that these are also the queue length distributions at customer arrival epochs at these queues; and 
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PASTA finally implies that they are also the marginal steady-state queue length distributions (but note that, 
unlike [ 4,5] which consider exponential service times, we have not obtained the joint steady-state queue length 
distribution). The mean steady-state queue length at queue i, to be denoted by EX;, is easily obtained from 
G;( z) by differentiation at z = 1. In order to extract numerical results for queue length moments, or even for 
the distributions themselves, from the obtained GF's, one may also take recourse to algorithms such as recently 
have been developed in (6] and [I]. 

Having obtained G;(z), one can subsequently argue-as in the standard M/G/l FCFS queue-that the 
number of customers left behind at queue i by a departing customer is exactly the number of arrivals at that 
queue during the sojourn time of this customer; hence, with Ti a stochastic variable with distribution the sojourn 
time distribution at queue i, 

3. An approximation for the mean waiting times 

In the previous section the two-queue threshold model has been analysed exactly, but this has not led to 
simple expressions for performance measures like the mean queue lengths and mean waiting times; they are 
expressed in T zeros that have to be determined numerically. For optimization purposes (e.g., choose T such 
that a weighted sum of the mean waiting times is minimized) it is important to have a simple, yet accurate, 
approximation for such performance measures. The goal of this section is to derive such an approximation for 
the mean waiting time EW~T), the superscript indicating the dependence on T. The conservation law 

.A a(2) ' 13<2> EW(T} + ew<T) - 1,....1 + 1\2 2 
PI 1 P2 2 -p 2(1-p} ' (12) 

(cf. Gelenbe and Mitrani [ 14], Ch. 6) then immediately yields Ewy>, and the mean queue lengths follow 
using Little's formula. 

In two special cases a detailed solution of the two-queue threshold model is known: T = 1 and T = oo. For 
T = l, the model reduces to a single server with two customer types and nonpreemptive priority for type l. It 
is well-known (see e.g. Cohen [7], p. 458) that 

EW} I l = :L:~1 A;/3?> 
2(1 - pi) 

For T = oo, a model with exhaustive service at both queues results. The mean waiting time at queue 1 is now 
given by (cf. Takacs [25]) 

,\ 13<2> ,\ p2/3<2l + A2( 1 - PI ) 2/3< 2> EW~oo) = I I + I 2 I 2 
2(1- pi) 2( 1 - p1}(l - p)(l - p + 2p1p2) 

(13) 

Our numerical experiments (cf. Section 4) suggest that Ewf> is monotonically decreasing in T. We have 
not been able to prove this intuitively obvious result. The experiments also suggest that EW~T) approaches 
Ew; 00> in exponential fashion. The geometric tail behaviour of the queue length distribution in the ordinary 
M/G/ 1 queue makes it likely lhat the probability of the queue length at queue I exceeding T - I decreases 
exponentially in T, which in its turn suggests an exponential behaviour of EW}Tl in T. Hence we propose the 
following approximation for EW}7 l: 

(14) 
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Here the constant c still has to be specified. This is done by approximating EW/ 1 l for T = 2. Hereto we reasoo 

as follows. Consider the arrival of an arbitrary customer C at queue I. \Vith probabilities 1 - p, p1 and P2 it 

finds the server idle, at queue l and at queue 2, respectively. We can write 

Here EZ is the mean time from C's arrival until the server returns to queue 1, in the case that the server wa.s 

at queue 2. The last term of the formula takes into account that all Xjait customers that are waiting at queue l 

will be served before C. Applying Little's formula to that last tenn, and splitting Z into the residual time of 

the service in queue 2 during which C arrived and the time U until the server subsequently switches to queue 

I, we can write (compare with the expression for Ewf 1> above): 

<2> 2::~1 Ad:Jf2l + 2PiEU 
EWI = --------

2(1- P1) 

Now observe that U = 0 unless all the following three events occur ( B2 denotes the service at queue 2 during 

which C arrived) 

• E1: at the start of f:Ji, queue 1 is empty; 

• E2: during !Ji, apart from C nobody arrives at queue l; 

• £3: after 132, queue 2 is not yet empty. 

We can write: 

where /e3 denotes the indicator function of the event £3. From renewal theory, 

(15) 

Reasoning that, for T = 2, queue 1 behaves quite similarly to an M/G/l queue in isolation, we approximate 

Pr{Ei} by the probability that queue I in isolation is empty, given that it has at most one customer. M/G/1 

theory then yields: 

(16) 

We apply a more bold approximation for the conditional expectation of Ule3 • We interpolate between the case 

of light traffic at queue 2 (in which case this conditional expectation is almost zero) and the case of heavy 

traffic at queue 2 (in which case this conditional expectation equals 1/...\1 + !Ji2> /2/32): 

1 /3~2) 
E[Ule3 I £1.£2) ~pz[Ti+ 2/3i ]. 

Combination of the above formulas leads to the following approximation: 

"'"'~I A.;{3~ 2 ) - 2/)2A2Bi' (.Ai)Bj(A1Hl/.A1 + /:J~2 )/2/3i] 
Ew<2l ~ ::L,..,:::::.:i=!.-.:.:..;' __ ...:......::-=.-=-_::-:-::-_:_.~-------

1 2(1 - PI) 
(17) 

Substitution in (14) yields C, and hence an approximation for ew[n. The conservation law (12) then gives 

ewy>. 
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Table I 
Mean numbers of cust-0mers for exponential service times. A1 = A2 = I: /31 = fh = I /3 

T EX1 EX2 EX~ 

I .6667 1.3333 
2 .7522 1.2478 .7604 
3 .8254 1.1746 .8278 
4 .8795 l.l205 .8762 
5 .9176 1.0824 .9110 

IO 1.0000 1.0000 .9829 

Table 2 
Mean numbers of customers for deterministic service times. Ai =A;== l;.81 = fh = 1/3 

T EX1 EX2 ~· I 

.5000 .8333 
2 .5757 .7577 .5820 
3 .6214 .7119 .6237 
4 .6447 .6887 .6448 
5 .6561 .6773 .6555 

10 .6667 .6667 .66!0 

4. Numerical results 

To illustrate the procedure presented in Section 2, and to test the simple approximation that was proposed in 
the previous section, we examine some particular models for varying threshold values. We remark beforehand 
that the calculation of the numerical values for the actual system may be handled in a relatively straightforward 
manner. The main difficulty is in efficiently finding the zeros of det( A ( z)) inside iz I = l, to a sufficiently 
high degree of accuracy, particularly for large values of T. It was found that Muller's algorithm [23] worked 
satisfactorily for the models in this section. 

In our first case both service time distributions are exponential. The parameter values are ..\1 = A.2 = 1 and 
{31 = /32 = 1/3. The expected number of customers at each queue is given in columns 2 and 3 of Table l. This 
case is also studied in [ 41; the results for the same case there are seen to agree with the results in Table I. 
The numerical analysis in our case is somewhat more involved; in [ 4,5] all zeros can be determined explicitly, 
from T separate equations. The fourth column gives the approximate values for the mean number of customers 
at queue l using the results of the previous section (of course we have applied Little's formula to obtain mean 
queue lengths from mean waiting times). The entry for T = 1 is not given, as it was calculated exactly and 
then used in the approximation. 

The second case differs from the first one only in the choice of service time distributions; these are degenerate 
(constant service times at both queues). The expected number of customers at each queue is given in Table 
2, along with values obtained using the approximation of the previous section. The result for T = l has been 
checked against formulas given in Section IIl.3.8 of [7] for the MID/ 1 queue with non-preemptive priority. 

The extremely close agreement between the approximate and actual expected number of customers is re­
markable. It indicates the usefulness of this simple approximation for examining the effects of varying T on 
system behaviour. 

Tables 3 and 4 present results for variants of the case of Table I: exponential service times but a higher 
mean service time at queue 1 or queue 2, leading to a heavily loaded system. Larger values of T had to be 
considered, and the approximation was somewhat less accurate. Furthermore, the effect of T on the mean queue 
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Table 3 
Mean numbers of customers for exponential service times . .A 1 = .A2 = l;J91 = 1/2 and 131 =1/3 

T EX1 EX2 E~pprox 

I 1.2222 4.6667 
2 1.3999 4.4001 1.3333 
3 1.5669 4.1497 1.4333 
4 1.7084 3.9374 1.5233 
5 1.8252 3.7622 1.6043 

10 2.1543 3.2351 1.9028 
15 2.2759 3.0873 2.0791 
20 2.3328 3.0004 2.1832 
30 2.3333 3.0000 2.2810 

Table 4 
Mean numbers of customers for exponential service times . .A1 = .A2 = I;,81 = 1/3 and 132 = 1/2 

T EX1 EX2 EX~pprox 

I 0.8750 3.7500 
2 1.0801 3.6133 l.0625 
3 1.2971 3.4686 1.2335 
4 1.4994 3.3337 1.3893 
5 1.6815 3.2124 1.5314 

10 2.3188 2.7912 2.0747 
15 2.6671 2.5679 2.4169 
20 2.8114 2.4669 2.6326 
30 3.0000 2.3333 2.8541 

Table 5 
Mean numbers of customers for exponential service times . .A 1 = I and A.2 :::: .5; f31 = /32 = I/ 4 

T EX1 EX2 E~pprox 

I .3750 .4500 

2 .3824 .4351 .3883 
3 .3871 .4258 .3905 

4 .3893 .4214 .3908 

5 .3903 .4194 .3909 
10 .3909 .4182 .3909 

length was considerable. 
Tables 5-7 present results for cases with exponential service times and varying A2. Again the approximation 

is good, the worst results occurring for the highest load ( p = 5 /8 in Table 7). 
We have also experimented with different choices of service time distributions (results available from the 

authors upon request). For example, we have considered the case of Tables 1 and 2, but with exponential 
service times at queue I and an £2, D or H2 distribution at queue 2. The approximation is of comparable 
quality as in Tables 1 and 2; furthermore, as one might expect, all mean queue lengths appear to increase with 
increasing coefficient of variation of the service time distribution. As the exact results for T = I and T = oo ( cf. 
( 13) ) suggest, the dependence on that coefficient of variation is rather weak for most parameter combinations. 

In all cases that we have investigated, the expected number of customers at the high priority queue is 
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Table 6 
Mean numbers of customers for exponential service times. A1 = A2 = 1:,81 = /h = 1/4 

T EX1 EX2 EX~pprox 

.4167 .5833 
2 .4494 .5506 .4700 

3 .4722 .5278 .4892 
4 .4853 .5147 .4961 

5 .4924 .5076 .4986 

10 .4979 .5003 .5000 
15 .5000 .5000 .5000 

Table 7 
Mean numbers of customers for exponential service times. A1 = I and A2 = 1.5; Pt = /J2 = I /4 

T EX1 EX2 EXf"°' 

I .4583 .8056 
2 .5396 .7514 .5783 

3 .6027 .7093 .6437 

4 .6455 .6808 .6794 

5 .6734 .6622 .6988 

10 .7173 .6329 .7210 

15 .7217 .6299 .7221 

20 .7222 .6297 .7222 

30 .7222 .6296 .7222 

increasing in T, as one would expect. At a sufficiently large value of T (which is larger when the load is 
larger), both systems are essentially behaving as one in which exhaustive service occurs at both queues. This 
indicates that in considering the design of threshold policies it is probably in most cases sufficient to consider 
"small" values of T. 

Remark 3. The results in the tables satisfy the conservation law as expressed in Formula (12). 

5. Nonzero switchover times 

In this section we consider the same model as in Section 2, but with nonzero switchover times between the 
queues. The SWitchover times from queue 1 tO queue 2 are denoted by S~ 1 ); their distribution is denoted by 
S1 ( ·). with Laplace-Stieltjes transfonn Sj ( ·), and the mean switchover time by qi. Similarly for the switchover 
times from queue 2 to queue l, with the index 1 replaced by 2. We make all the usual independence assumptions 
for the switchover times. We also assume the following. When the server is switching to queue 2, but the queue 
length at queue 1 reaches T before the server has arrived at queue 2, then the server will do one service in 
queue 2 before going back. 

We must also specify the server behaviour in a completely empty system. For the moment we adopt the 
common assumption in the polling literature, i.e., the server keeps cycling in an empty system (but see the 
interesting recent studies [ 2.12]). The ergodicity conditions, which will be studied first, are obviously not 
affected by the server behaviour in an empty system. 
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5. J. Ergodicity conditions 

In comparison to the model without switchover times, the conditions on the system parameters that imply 

ergodicity of the system are nontrivial when switchover times can occur. The reason for this is demonstrated 

in the outline of the proof of Theorem 4 below, which provides the ergodicity condition for the 2-queue model 
with threshold switching and switchover times. Let 

(18) 

where sk 1) is a generic switchover time from queue I to queue 2, A k 1) and Bi 2> are, for each k, generic 
interarrival times and service times for queue I and queue 2, respectively. 

Theorem 4. The system under consideration is ergodic if 

( 19) 

P~"OOf. (Outline) 
An outline is given that essentially demonstrates the physical meaning of the condition ( 19). Consider the case 

where there is a 'large' number of customers at queue 2. Trivially, if p1 ~ I the system is not stable. If p1 < I, 

it is not difficult to see that queue l empties infinitely often. Thus, we may define a cycle as the length of time 

elapsed between two successive times at which queue l empties. The expected value of the cycle time is given 

by the following elementary calculation: 

(20) 

As the rate at which work arrives at queue 2 is A2fh over the entire cycle, and work is depleted at rate I over 

a period with expected length E[ T J,82, ergodicity is thus ensured if 

E[] a ...1.au1+E["T]/3z+u2 
T 1-'2 > 21-'2 l _ Atf3l • 

(21) 

Rearrangement of (21) yields the required ergodicity condition. 0 

Remark 5. The above argument may be made precise using tools developed in Dai [9]. In fact, using results 

of Meyn [ 20] , we may also state that if E [ T] ( 1 - p) < ,.\z ( u1 + u2) then the system is transient. 

Remark 6. Note that E [ r], and hence the ergodicity condition, may depend on other than first moments of 

the underlying random variables. It is also interesting to observe that, for fixed PI, a relatively large value of 
,.\ 1 will give rise to relatively many switchovers and to a relatively small value of E [ T]. 

Remark 7. Note that the ergodicity condition (19) can also be written as A2(0-1 +u2)/(l - p) < Efr]. 

In the ergodic case, and with a server that keeps cycling in an empty system, ( u1 + <r2) / (1 - p) denotes 

the mean time between two successive visits to, say, queue 2. Hence ( 19) for this case states that the mean 

number of arrivals at queue 2 between two such visits should be less than E[ r]. This makes sense, as E [ r) 

has the following interpretation: if queue 2 always has customers available, then E[r] of them can be served 

on average before the server is forced to switch back to queue I. 
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5.2. The steady-state queue length distribution 

It turns out that the analysis of the model with switchover times presents no new difficulties, once ergodicity 
has been deduced. In this section, the problem will be simply set up for T = 1 (the counterparts of equations 
(l) and (2) will be given), with equations for Il1(0,z2) and P2.o(z2) being stated. These will be combined 
to give an expression for P2.o(z2). Finally, a matrix equation equivalent to ( 10) will be given for general T. 
The details for the model in full generality have been developed, but we have decided not to present them; the 
work is conceptually simple, albeit algebraically complex. 

Consider the situation in which in an empty system the server idles at the most recently served queue (note 
that other situations are also easily handled). In this case, we may write: 

Bj(z1. z2) Il 
Il1(z1.z2)= [Il1(z1.z2)- 1(0,z2) 

ZI 

+Il1 (O,O)r1z1 + Si(z1. z2)Il2(Zi. z2) + Si(z1. z2)P2.o(O)r1z1J. (22) 

Bi(z1> z2) 
I12(zi. z2) + P2,o(z2) = [P2.o(z2) - P2.o(O) + P2.o(O)r2z2 

z2 
+Si ( Zi. z2)[Il l (0, z2) - Il1(0,0)] +Si ( Zi, Z2 )Il I (0, 0) r1z2], (23) 

where 

S7(z1,z2) := Sj"(A1(1- zi) + A1(1- Z2)). 

Following the same argument as in Section 2.2 (in particular, the function µ(z2) is unchanged), we may 
write: 

and 

Il1 (0, z2) = Il1(0,0) r1µ(z2) +Si (µ(z2), z2)P2,o(O)r1µ( z2) - Si(µ(z2L z2)P2.o(z2) 

+ Si(µ(z2), z2)Bi(µ(z2), z2) [P2.o(z2) - P2.o(O) + P2.o(O)r2z2 
Z2 

+Si(µ( z2), z2) 111(0,0) r1z2 +Si'(µ.( z2), z2) (Il1 (0, z2) - Il1(0,0))], 

1 
P2,o(z2) == -[P2.o(O)r2z2c;(z2) + (P2.0Cz2) - P2,o(O) )co(z2) 

Z2 

+(Il1 (0, z2) - Il 1(0.0) )do(z2)co(z2) + Il1 (0, O)r2z2do(z2)co(z2) J, 

where 
00 . 

d,·(z2) := je-A1r (A.~t)l e-A2(1-zi)r dS1 (t). 
. j! 

0 

So, combining (24) and (25), we find 

z-co(z)+do(z)co(z)Si(µ(z),z)[z-Bi(µ(z),z))]p ( )-r() 
2,0 Z - ro Z , 

z -Si'(µ(z),z)Si(µ(z),z)Bi(µ(z),z) 

where Fo ( z) is a known function of z. 

(24) 

(25) 

(26) 

The above calculations may be performed for general T, where the following system of equations results (cf. 
(10) ): 

A(z)P(z) = F(z), 
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where 

{

z-co(z)+G;j(Z), J=i, 

Aij(z)= c;-j(z)+Gu(z), J<i, 

Gij(Z), j > i, 

with 

G <E;"° d1(z )c;-1(z) )Si(µ(z ), z) I z - Bi(µ(z), z)) ]µi( z) 
ij ( z) := -----~:--:-----------------

z - S~(µ(z), z)Si(µ(z), z)Bi(µ(z ), z) 
(27) 

and F ( z) a vector containing known functions of z. Given that the system is ergodic (i.e., (I 9) holds). the 
matrix A ( z ) once again has T zeros inside I z I ~ 1 and the elements P2,; ( z ) may be determined by solving the 
T equations that result. 

5.3. Pseudoconservation laws 

When there are no switchover times in a polling system, there is conservation of work which leads to 
conservation laws (cf. Formula ( 12) ). In a polling model with switchover times, the principle of work 
conservation is replaced by the principle of work decomposition [ 3]: the amount of work in the system is 
in distribution equal to the sum of two independent quantities, viz. the amount of work in the corresponding 
system without switchover times and the amount of work at an arbitrary moment during a switchover. In its 
turn, this work decomposition result leads to a so-called pseudoconservation law-an exact expression for a 
weighted sum of the mean waiting times. When the server stops at some queue in the case of an empty system, 
this pseudoconservation law can be adapted, as is done in full generality in (2]. We restrict ourselves here to 
the somewhat easier case in which the server keeps cycling in an empty system. The pseudoconservation law 
then takes the following fonn [ 3 J: 

Ew<T> + EW(T) = A1.Bi2) + A2f3~2) + s(2) + P1P2(<T1 + <T2) + EZ + EZ 
PI I P2 2 p 2(1-p) P2(u1+cr2) 1-p I 2. 

(28) 

where sC 2l denotes the second moment of S! 1) + s!2>, and where Z; denotes the amount of work left behind at 

queue i at the end of a server visit to that queue; this is the only quantity that depends on the service discipline 
at the queues. In the present system, with exhaustive service at queue I, we have Z1 = O; the only unknown in 
the right-hand side of (28), EZ2 , can either be directly determined from the results in Section 5.2 for Il2 (1, z2 ), 

or from (28) and the results for the mean queue lengths cq. waiting times. 
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