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Abstract. The paper deals with a mathematical model which describes how the collection of key 
phrases (and key words) evolves as a field of science develops. The experimental material is based on 
statistical observations on the sets of key phrases which have been assigned to papers in representative 
major journals in the field in question. Asymptotic properties of the model are considered, as well as 
estimators for the parameters of the model with particular emphasis on estimators that can indicate 
at what stage a collection of key phrases can be assumed as complete for the field in question at a 
given moment in time. 
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1. Introduction 

Let :F be a field of science. Let K 1 denote the set of key phrases that have been used 
in the field up to and including time t. The time t is thought of as a discrete time 
variable (though that is not necessary). At a time t 1 we start observing. Up to a time­
scaling equivalence we can assume t1 = 1. Denote the set of key phrases that has 
been observed up to (and including) time t by S,, S, C Kr. An important problem 
for practical aplications is to try to estimate Kr by the observations S1, S2, ... , S,. 
This paper is concerned with this problem. 

Here we introduce a definite probabilistic model for how the set of key phrases 
of a given field should develop; how the observation of key phrases takes place, 
and we consider the asymptotic properties of this model and ways to estimate its 
(asymptotic and other) parameters. 

Let X 1 = card K,, Y1 = card S,. In the model presented below, we give solu­
tions to the following problems: 

(1) Description of the asymptotic behaviour of the ratio Y, / X, as t -+ oo; 
(2) Necessary and sufficient conditions for the probability lP{Ko C S,} to converge 

to 1; 
(3) Constructive determination or consistent estimates of the parameters that con­

trol the growth of K,. 
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A very primitive version of the model was outlined in [5]. If in this model 
one replaces the stochastic variables by their averages, one obtains a differential 
equation that is actually explicitly solvable. This is, of course, an extremely crude 
and usually unjustifiable procedure. In this case, it turns out that it is asymptotically 
justified (even though the model is not linear). 

The stochastic model seems to be of a new type and may have applications 
in other fields where one is dealing with an evolving population and/or evolving 
genera (the natural interpretation of a key phrase being a trait (as understood in 
biology and archeology)). 

2. Mathematical Model 

The basic assumptions of the model are as follows: 

2.1. Assume that X1, t = 1, 2, ... , is a random Poisson process, i.e., its in­
crements t::..X1 = X1 - X1_ 1 are independent random variables (i.r.v.) distributed 
by the Poisson law. We use the notation: P,. ( ·) for the Poisson distribution with 
the parameter Ii., N1 = lEXr. li.1 = !::..N1• Thus, the distribution of !::i..Xt is P,.,. For 
simplicity of notation, we assume X0 to be a determinate quantity, Xo =No > 0. 

2.2. Let keywords be numbered according to their appearance time in increasing 
order, and let a keyword wk E K1 and a nonnegative quantity Wk - the 'weight' 
of word Wk at the moment of its emergence (that reflects the scope of a denoted 
notion) - one-to-one correspondend to each natural number k ~ Xt. Suppose 
W1, W2, ••• , are i.i.d. positive random variables with the distribution function F, 
independent of the sequence Xt-» lEWk = 1. 

2.3. Let Q1 stand for the set of keywords that were observed at a time moment t 
(Sr= LJ~=l Qr). Ak,t = {wk E Q1}. The probabilities of the random events Ak,t 
depend on 'weights' W0 and the development of the system considered, i.e., on 
11 := {K1, ... , K1. Q1, ... , Q1-d· Assume that, for fixed W(-) and / 1, the events 
Ak.r. k = 1, ... , Xr, are conditionally independent and the equalities 

• { U1 Wk } def lP{Ak,1 I 11; Wo} =mm T; 1 = rrk,r. k=l, ... ,Xr. (1) 

hold. (In fact, we assume that the keywords get into the observation samples in­
dependently with probabilities rrk,t• provided the history and weights for keywords 
are fixed. This is a quite weak assumption practically dictated by the actual way in 
which thesauri grow.) Here and in what follows, u1 is some deterministic function 
(that features the summary quantity of the journals observed at the time moment t) 
and the inequality u1 < N1 holds. Note that IE card Q1 ~ u1• 

In order to achieve greater modeling power, one could consider a more general 
model, where the quantities Wk (which are independent of time in formula (1)) 
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are replaced by time functions Wk,1. For example, Wu could be defined as certain 

functions of quantities Wb k/ Xr and Yiu:= min{r: wk E Q,_r, r > O} (Yk.r = 0, 
if wk ~ Sr-d- Proximity of k / X r to I shows the novelty of word wb and a low 

value of Yk.r points to the fact that a small time period has elapsed since the last 

observation of wk which increases the probability of a repeated observation of wk 

in the nearest future relative to comments, references and the like that accompany 

scientific publications. 
We restrict ourselves to model ( 1) in this paper. In addition, particular attention 

is paid to the special case where all weights are equal, 

(2) 

At the first sight, model (2) does not reflect reality, since in scientific literature the 

frequency of observations of various keywords apparently differs. However, if Kr 
denotes not the whole totality of keywords of the considered field :F of science 

but only the part which remains after eliminating the subset of the most popular 

words, then model (2) may be a sufficiently adequate approximation of reality. Its 

obvious advantage over the more general case ( 1) is that it enables us to use simpler 

statistical procedures for estimating the rate of development of the field :F. 

3. Properties of the Model 

3.1. ASYMPTOTIC PROPERTIES OF THE MODEL 

Here and in what follows we denote in various places different positive finite 

constants by the letter C. To formulate results, we need the following concept. 

DEFINITION 1. We call positive time series ar and f3r asymptotically equivalent 

(in symbols a 1 ,....., f3r), if there exists a function f(x) such that limx--->oo f(x) = 0 

and 

lElar - f3r I ~ lE[f (f3r) f3r]. 

Since E(Xr - N()'2 = N1 - No, we have 

Xr,....., Nr. 

(3) 

(4) 

In order to formulate similar statements and propositions for the sequence Yr, we 

introduce additional constraints: 

0 < C1 ~ W ~ C2 

Vt = I. 2. . . . . 1 :s:; u, ~ C3N1(j for some a < l. 

Here and below W = W 1 • Let 

M, = N, - td,Eexp(-w t ~I l 
where d1 + · · · + dr = Nr for r = 1. 2, ... 

(5) 
(6) 
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THEOREM 1. Let condition (5) be fu(filled. Then 

Yr "' IEY1 '""' Mr 

and under condition (6) 

Yr""' M,. 

(7) 

(8) 

Note that conditions (5) and (6) are not necessary for relations (8), but they 
make it possible to simplify the proof. 

Also note that the precise expressions of all the approximations, presented in 
Theorem 1, through the model characteristics u0 , N(·l and the distribution function 
F of W are rather complicated (especially of the mean E Y1 ). In the special case 
>..1 = canst and u1 = canst, however, there exists a very simple approximation. 
Write 

Wu>. 
a =IE--­

Wu+>. 

THEOREM 2. Let >.1 = >., u1 = u and suppose that condition (5) holds. Then 

Jim h1 =a, 
f-+00 

Y1 "'at, 

and 

I Yi a I lim IE - - - = 0. 
1-00 X, >.. 

In the special case W< J = 1, for Y,/ X1, we have the limit u/(u + >.). 

(9) 

(10) 

(11) 

Theorem 2 indicates that, if we know u and the distribution function F, then 
we can calculate the rate >. of development of :F by the limit behaviour of the 
increments .6. Y1• Another urgent problem apart from the estimation of the rate of 
development is: can we state that, when observing the selected journals, all the 
keywords of field :F which existed at the initial time moment will come into view 
sooner or later, i.e., whether IP'{ Ko C Sr} --+ l as t --+ oo 

THEOREM 3. There is the following equivalence 
00 . L Ur hm lP'{Ko C S1 } =I{:} - = oo. 

t-+oo Nr 
l=l 

(12) 

3.2. MARKOV PROPERTY 

Let W<-> = 1. In this case, the two-dimensional sequence (Xr. Y1 ) forms a Markov 
chain. Write 

Pr(x, y) = lP'{ X1 = x, Yr= y }. 
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Then, for all integer x ~ N0 , x ~ y ~ 0, we have 

x min(y:i) 

Pr(X, Y) = L L Pr-1 (i, j)i/Jr(i, j, X, y), 
i=No j=O 

where the transition probabilities 1/J satisfy the equalities 

1/lr(i, j, X, y) = IfD{t.Xr = X - i} · IfD{t.Yr = y - j I X1 = x, Yr-1 = j} 

= P1.1 (x - i) · Bx-j,urfxCY - j). 

Here and in the sequel B denotes a binomial distribution, i.e., 

Bn,q(k) = (~)qk(l -q)n-k, 
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and P1., as above, is the Poisson distribution. In case u1 = u, Ar= J.., we obtain a 
homogeneous Markov chain. Since at low values of u / x the binomial distribution 
is well approximated by the Poisson distribution law, in this case, 

1/l(i, j, X, y) "' P1.(X - i)Pu-uj/x(Y - j). 

4. Statistical Estimation of the Parameters of the Model 

The model presented is completely defined by the sequences Nr = lEXr. Ur ~ 
E card Qr and by the distribution function F of the weights Wk. Applying this 
model in practical investigations, one can determine the sequence u, a-priori by 
the volume of journals observed, while the sequence Nr and the function F should 
be estimated statistically. Let us discuss a parametric approach. Let Nr = N, ( e) 
and F(x) = F(x, B) be functions given a-priori, and e be an unknown one- or 
multi-dimensional parameter to be estimated statistically, e is the set of possible 
values of e. First we discuss the maximum likelihood estimate. We observe sets of 
words Q 1 , ••• , Qr, s T = u;= 1 Qt. Let us number the elements of Sr by their first 
observation moment in increasing order, for each s E Sr let h(s) be the number 
of the word s. Write Hr = {h(s), s E Qr}. We have Hr C {1, ... , Yr}, t = 
1, ... , T. Obviously, the collection of sets (H1, ••• , Hr) is a sufficient statistic for 
evaluating e. For arbitrary sets of natural numbers D1, ••• , Dr, denote 

where J¥11 stands for the probabilistic measure in case the value of an unknown 
parameter is e. Then the likelihood function 

L(&) = G1!(H1, ... , Hr) 

and the maximum likelihood estimate is defined by the equality 

eML = arg max L(e). 
lle<·l 

(13) 

(14) 
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Regrettably, in case (13), it is very difficult to calculate the estimate eML· We will 
consider more in detail the special case Wk = 1, where this problem becomes 
simpler. The sufficient statistic with respect to e is, in this case, the random vector 

def 
(Y1 •... 'h. S2· ... ' ST)= r, where Sr== card Qr n St-1· 

Go(Y) = lP'o(f == y). 

In this case, the likelihood function L(e) = G8 (r). For all nonnegative integers n; 
and m1 satisfying the conditions 

mr :(; llr-1 :(; n 1 , t = 2, ... , T, 

because of the above-mentioned Markov property, we obtain 

T 

G11(y) = lEe [llP{Y1 = n 1 , St= m1 I Yr-!= llr-1• Xr} 
t=l 

(15) 

where Yo = no = s1 = m 1 = 0, and lE8 is the mathematical expectation operator 
if value of the parameter under estimation is e. 

Next, 

lP'{Y1 n1 I Xi} == Bx1 ,u 1;x 1(n1), 

JP'{Yr = nr. Sr= !1lr I Yr-1 = f1r-). Xr) 

= B,,r-1,11 1/X,(mr) · Bx,-nr-1.ui1x,(nr - '11-1) if Xr ;::::: fir. 

We get the expression 

T 

W(y, X(.j) = n Bx,-m,_1,ut/x,(flnr)B,,,_1,ur/x,Cmr), 
r=l 

where Bo .. (0) = 1, Bs.(r) = 0 if r > s. 

(16) 

As we can see from ( 16), the calculation of the maximum likelihood estimate 
eML is rather complicated even in the case of equal weights. We can modify this 
estimate by replacing L(8) with a simpler function. When approximating binomial 
distributions in expression ( 19) by Poisson distributions, and ignoring the first r - I 
observations we obtain the following approximation of the function w: 

T 

~(y, X(-)) = n Pu,--u,n,_i/x,(fln1)Pu,n,_1/x,(m1). (17) 
t=r 

where Po(O) = 1, P1c(·) = 0 for A.< 0. 



PROBABILISTIC MODEL FOR THE GROWTH OF THESAURI 243 

Based on the assumption IE11\il(y, X 1 l);;:: \il(y, N1i(8)), we define a modifica­

tion of the maximum likelihood estimate 

eML = arg max L(8), L(8) ~f W(r, N( )(8)). (18) 
€! 

We take the maximum here over all e E 0), for which 

N1(fJ) > Yr-1, t = T, ... , T. ( 19) 

In order that the estimate eML be consistent, the condition T = r(T) ~ 00, as 

T ~ oo is necessary. Indeed, P{Y1_ 1 > Nr} > 0. Therefore, in case r(T) :( C, 

and Nr (8) is a continuous function of 8, by (19) we have the inequality 

inf lim P{ 1eML - e I > s} > O for some E: > O. 
T-..oo 

Striving for consistency of §ML, it is natural to select r such that r (T) ;::=:: Tel, as 

T ~ oo, a E (0, 1). 

In practical use, another modification, presented below, of the estimate (]ML 

would be more convenient than eML· Estimate (18) usually satisfies the equation 

d ~ 
d8 log L(8) = 0. 

It is equivalent to the equation 

T 
~ .6.Y, ·Yr-I - (1(N1(8) - Y1-d 1 

Lt---------- . NI (fJ) = 0, 
Nr(8) · (N1(8) - Y1-1) 

t=r 

where N; (8) = (d/d8)Nr (8). By rejecting Y1_ 1 in the denominator on the left-hand 

side of this equation (this can be substantiated using Theorems l and 2), we obtain 

the equation 

T 
~ .6.Yr · Yr-1 - {r(Nr(8) - Yr-1) . N'(fJ) = O. 
f;;: N?(fJ) r 

(20) 

Choosing r = 2, define e~L as the solution to Equation (20) that belongs to a-priori 

given set e. In this case, the condition r ~ oo, as T ~ oo, is unnecessary. Let 

us consider the consistency of this estimate in the simplest case as Ar = Ao. Then 

Nr(8) = n +At, () = (n, A). Let it be known a-priori that A :( Amax• n :( nmax· 

In the case where Equation (20) has no solution (for example, l:r = 0, t = l, T) 

we assume that e~L = (nmax· Amax). If there exist some solutions of Equation (20) 

that satisfy a-priori constraints, ()ML denotes the solution which corresponds to the 

highest value of A. 

THEOREM 4. Let At = Ao E (0, Amaxl. Ur = u < No, wk = 1. Then AML is a 

consistent estimate of A and has an optimal convergence rate 

* 2 ( 1) !E(A - AML) = 0 T ' T ~ 00. (21) 
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Equality (21) also holds under constraints weaker than the conditions of The< 
rem 4, however, these conditions simplify the proof a great deal. 

We can get an even simpler consistent statistical estimate of the parameter 
than »~1 1. under the conditions of Theorem 4, by making use of Theorems I and '. 
Write 

, Yr - Y1. 
a= , 

T-L 
(2~ 

where L = L ( T) satisfies the condition 

C2T~L~C1T, 

for some constants 0 < C2 < C1 < l. If the conditions of Theorems 1 and 
are fulfilled, then (22) is a consistent estimate of the parameter. In the case wher 
Wk = L if we know u we get the estimate of»: ~ = izu/(u - a). If the weights c 
wk are not equal. then we can use the estimates of a for the comparison of rates 0 
development. If in different fields or at different periods of time we have differen 
unknown rates >- 1 and >-2 but the same distribution of weights Wb then 

a1 a2 >-1 >-2 - < - :=:}- < -. 
U1 U2 llJ U2 

Let us recall the general case: the weights Wk are random variables, and thi 
model is completely defined by a parameter e, i.e., Nt = Nr (fJ), F(x) = F(x, fJ) 
How can we statistically estimate e in practice if, as mentioned, it is very difficul 
to calculate the estimate eML defined by equalities (13) and (14)? Applying th( 
maximum likelihood principle but using incomplete statistical information, we cm 
obtain simpler (though less exact) statistical estimates. We present here a concret( 
modification of the maximum likelihood function, the calculation of which is rathe: 
simple. As above (Q 1, ••• , Qr) is a sample. Let L be the integer part of the numbe1 
T / c, where c > I is a selected constant, q; = card SL n Q;. In order to get a simple1 
estimation procedure, we shall use only the data vector (q L+ 1, ••• , {/T) =ctef q tc 
estimate the parameter e. Evidently, q is not a sufficient statistic, therefore, in thi~ 
case, we lose part of the statistical information on e. Since the distribution of q i1 
completely defined by parameter e, we can apply the maximum likelihood method. 
Having fixed W1.1 and Xc·), the random variables q, are relatively independent, 
therefore 

T 

JPl{q, =lilt, L < t ~ T) = lE TI JID{qr = m, I x(·)• W1.1}. 
t=L+I 

(23) 

Applying the Poisson approximation to the conditional distribution of the random 
variable qt and denoting YI*= Lk:wkES, wb x: = LZ~1 Wk, we have 

JPl{qr = m1 I X1·l, We.ii~ Py:,ur1x7(rnt)· (24) 

With a view to motivate further simplification, we need the following theorem. 
Denote M1* = Nr - L~=I drIE[W exp{-W L;=r u1 / N1 }J. 
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THEOREM 5. Let (5) and (6) hold. Then 

(25) 

If we compare Theorems 1 and 5, by the results of Theorem 1 we can draw 
conclusions about the asymptotic behaviour of Y1 / X 1 that determines which part 
of the set of keywords becomes known, while the results of Theorem 5 allow us to 
draw conclusions on the part of 'weight' of the observed words. 

Making use of approximations (25), from (23) and (24) we obtain 

T 

lP'e{qr = mr. L < t ~ T} = n Pu,M'£.(8)/N,(8)(m1) 
t=L+I 

def 
= <f>e(mL+l·····mr), (26) 

where M;(e) and N1 (()) are defined analogously as Mt and N1 , by replacing the 
mathematical expectation operator lE by !Ee. We define the proposed estimate by 
the equality 

()* = arg max <Pe(q). 
eeE-> 

Put 

T 

l(f3) = L [-r1(e)+qrlogr1(e)], 
t=L+l 

Definitions (28) and (27) yield the equality 

e* = arg max l (()). 
liec.;i 

(27) 

where (28) 

(29) 

It is desirable to investigate the accuracy of the estimates presented by means of 
simulation. The results of these investigations are to be presented in a following 
paper in the near future. 

5. Proofs 

For an arbitrary set D let IDI =card D. 

Proof of Theorem 1. Let (5) hold. We denote by symbols vk,1 i.i.d. random 
variables such that do not depend on X<-l and Wc·J• have a uniform distribution 
in the interval (0, 1 ), and satisfy the equality Ak,t = { vk,1 < 1l°kJ} (see (1)). Let us 

fix t and denote ~k.r = l -J.!Llvk.l~irk.i.L=T.tl• 

Zr = L ~k.r• Dr= {l, ... , Xr} \Dr-I• Do= </J. 
keD, 
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~ ~ ~ Then Y1 = Lr=l Zr· Let iru = Wkuif N, and the quantities y(·)• z(·)• ~(-) be 
defined analogously as Y(·l· Zci· ~(·l• replacing :rr(.J by ir(.J· Note that 

(30) 

In order to prove (30), denote <fJr(X(-j) = lE n;=r(l - Wut1x1)+, where X(·) is any 
determined positive sequence, x+ means max(x, 0). Then 

I 

lE(Y1 I Xu)= LIDrlCl-<pr(X(·J)). 
r=l 

Since lE~k. r = 1 - <fJr (N( ·l), we obtain (30). We show that 

(31) 

Denoting ~r = ~ 1. r and dr = lE I Dr I, due to the independence of sequence Zr we 
get 

r=l r=l 
In order to prove (7), it remains to estimate lEI Y1 - Y1 I· Denote f1 r = :L;=r u, / N1. 
First, let us consider the case f1r > Clog Nr. The equality 

is true. By virtue of (5) we have 

11'{<, = 0 I x,.,, w, 1} = [! (1 - rr1,1) <;;exp!-t ;,~I· 
Analogously, IP!€r = O I X(·l· W(.i}:::; exp{-f1r/C}, therefore, 

IEIZ, - Z,I <;; d,(exp{-0,/C) + p), p = 11'1 t ;, .;; ~·I· 
Due to the Chebyshev inequality and the condition X1 ~ 1 we have 
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Thus, 

lEIZr - Zrl ~ Cdr(e-nr1c + N; 112). 

If n r > 1, then lE z r ~ d.,:/ c' therefore 

lEIZr - Zr I ~ ClEZr(e-nr1c + N; 112). (32) 

In the case nr < Clog Nr, are make use of the inequality 

t 

lEIZr - Zrl ~ lE L L 11l"k,[ - nk,11. 

kEDr i=r 

By virtue of (5), 

I - I Cu1IX1 - Nil 
nk.l - nk.l ~ N1 X1 . 

Since 

we get 

lEIZr - Zrl ~ CdrCTrf/N:. (33) 

As Dr < ClogNr, we have the estimate 1Efr ~ CTr/(ClogNr), therefore from 
(32) and (33) yield the inequality 

- ~ ~ ~ dr log Nr -
IEIYr - Yrl ~ ~IEIZr - Zrl ~ c ~ .[N; lE.;r. 

Since M, = L~=I d1 1Efr and 1Efr ~ 1, from (34) we obtain that 

IEI Y, - Yr I ~ C Mf for some constant f3 < 1. 

(34) 

(35) 

(7) follows from (30), (31 ), and (35). Let (5) and (6) be valid. Without loss of 
generality, we can consider the case C2 W<·l < N<·l· Then 

def 1~ ( Wu1)) <p1 (N(·)) = lEexp f;;; Jog I - M 

= lEexp{-WCT 1 }exp{-rN~- 1 nr} 

for some r = r(r, t, u<-l• N<·i) E [O, C]. Consequently, 

1 - <fJr (N(·)) l C Jog Nr 
l~ ~ - . 

l - lEexp{-WCTr} Ni-a 
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(36) 

(7) and (36) yield (8). D 

To prove Theorem 2 we need (25), therefore, first let us discuss the proof of 
Theorem 5. We have 

By virtue of (5) 

- , c c 
lE(W - I)~ S:: JE- ~ -

-....::: X1-....::: N1' 

therefore lE[XrlW - 11]::::; CJ!'[;. Since lEIX1 - N1I ::::; C ,JN;, we obtain 

IE1x; - Nrl ~ c /Nr =? x; ,--., Nt. 

The proof of the proposition Y/ ,...., Mi* is analogous to that of (8). 

Proqf of Theorem 2. Trivially 

Next, 

x, 
lEIQ1I = lEL;rk.t = u - Pt, 

k=I 

where by virtue of (5) and the Chebyshev inequality 

x, ( ) uWk Cu 
Pt= lE L X - I ::::; CulP{X1 < Cu} ::::; -. 

k=l t + At 

We obtain 

where 

(37) 

(38) 

(39) 

(40) 

(41) 
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It follows from (25) and (37)-(41) that as t --7 oo 

uM,* 1 
h, = u - ---- + o(l). 

N, 
(42) 

Under the conditions of the theorem 

M,' ~ No+ At - ~rn[ Wexp\-w t No :Al )J 
t t Wu 

M1* At - A L 18{ W exp {- : u log ~ } ] "' At - AE L W ( 7) ' 
r=l r=l 

M;"-'Al-AtlE Ww =At(l-lE WA). 
I+ -f Wu+ A 

(43) 

We have N, "' At and from (42) and ( 43) we get that 

. w 
hmh,=uAlE =a. 

r-+oo Wu+ A 

Relation (10) follows from (9) and (4) while equality (11) is obtained from the 
equivalences Y, ,...., at, N, "' At and the inequality 

I Y1 Yr I I X1 I ~ lE x t - Nt ~ lE 1 - N1 ~ c I y' N,. D 

Proof qf' Theorem 3. Denote n = No ::;;: I. 

Vk = l, ... , n IP{ Wk E S,} 1 - IP{vk.r > rrk,r• T = 1, t} 

r=I 

(44) 

It is not difficult to prove that 

def { X t } 
p(q) =IP 1:1~f ... N1 > q --7 O as q --7 oo. 

To this end, define the natural numbers t0 , t1, ..• , tr by the equalities tk = min{t: 
N 1 > n·2k}. Here r = oo if lim,_, 00 N, = oo. Due to monotonicity of the sequences 
X 1 and N1, 

p(q) ~ LIP{2X1k > qN1k}. 
k=O 
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Since X1 are Poisson random variables, lEX1 = N1 and N1k > 2k, we have p(q) ~ 
C e-". Thus, if 

then 

CX) 

def ~Ur 
floo = L - = oo, NT 

r=I 

as t ~ oo. 

Since Wk are positive random variables independent of X<·l, from (44) we get the 
implication 

f1 00 = oo::::? Jim JPl{Ko C Sr} = I. 
f-"J.-00 

Let f1 00 < oo. Then for each positive number c: there exists a finite number T = 
T(c:), such that f1 00 - flr-1 < c:. Set B = {W ~ I, X 1 ~ Nr 'Vt < T} we get 

JPl(B) > 0. (45) 
Denote 

r 

iJr = L(l::,,.Xr - 1::,,.Nr). 
r=T 

Because of the independencies of t:,,.Xr we get the estimate of conditional proba­
bility 

I - JP(D I B) ~ J!Dl2c: f N u1 ~ f ~ l 
t=T t + 1]1 r=T t 

2c: "'"00. JE~ 
Lt=T N1 +111 ~ oo ~Cc:, 

Lr=T Ur/Nr 
(46) 

where C does not depend on T. Since 

00( ) 00 Ur W Ur 1 Il 1-- >-1-~->--x y L X y 2' 
t=T I t=T t 

if the events B and D occur, 

for a sufficiently low value of c: (44)-(46) yield the inequalities 

T 

lim {w1 tf. Sr}~ J!D(B) n(1 - ~)(l -Cc:)/2 > 0. r-+oo N 
r=I r 

Consequently, 

floo < 00::::? Jim JID{Ko C Sr}> 0. D 1-+00 
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Proof of Theorem 4. We restrict ourselves to a separate case, where the value 
of No is known, No = n. Thus, e = A., N1(A.) = n +At, N1 = n +A.at. The 
proof of Theorem 4 in the general case is analogous to that given below, only more 
cumbersome. 

Denoting St = (D..Y, + s1)Y1-l - (1N1, /3(A.) = L Sr. t/(n + At) 2, we obtain 
from (20) the equation 

(47) 

Here and in what follows, L denotes summation over t 2, ... , T. Let A = 
(A.o/2, Amaxl, z = maxAEA /3(.A.), Z* = min;,.EA L srt 2 /(n + A.t) 2. Since AML is a 
bounded random variable and the inequality IA.ML - Aol ~ Z/Z* holds, to prove 
(21) it suffices to show that 

JEZ2 = O(T) (48) 

and for a certain positive constant C = C(n, Ao, Amax) 

IP{Z* :'S; T/C} = 0(1/T). (49) 

First we prove (48). Let Sr* := lE(s1 I /1) = uYr-1 (1 - N,/ X,), ~I =St - st. 
We define random functions /3* and f3 analogously as /3, by replacing Sr by ~1* and 
~1 , respectively. We get 

maxf3*(A.) :'S; C '°' IX1 - N1l/t; 
AEA f....J 

and 

Since lE(X1 - N,) 2 :.:;; CN,:.:;; Ct, we have 

lE max ,8*2 (A.) :.:;; CT. 
I.EA 

Next, 

and 

JE~l~.I = 0, f # S. 

Therefore, 

JE,82 (A.) :'S; CT, A. E A. 

Denoting the derivative of function f3 by f3', we have 
- ? 
t: r-

,8' (A.) = -2 '°' _c;r_ 
i....J (n + A.t)3 

(50) 

(51) 

(52) 

(53) 
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and making use of (51) and (52) we obtain the inequality 

JE!,8'(A.) 12 ~ CT, A.EA. 

By virtue of (53) and (54), we get 

lE Tea; ,82() .. ) ~ 2JE,82(A.o/2) + 2JE(i lfi'(A.)I dA. r 
~ 2JE,82(A.0/2) + C max lEl.8' (A.) 12 ~ CT. 

J.eA 

Since Z 2 = max;.e11 Lf3*(A.) + ,8(A.)], from (50) and (55) we obtain (48). 

(54) 

(55) 

It remains to prove ( 49). Let L be the integral part of number T /2, G = IQ 1 I+ 
· · · + IQLI. G* = tz + · · · + ~L· Then 

G _,,. Y + G* Z* ~ G*/C. ~ L , 9 (56) 
For simplicity, let u ~ 1. Since after fixing X<·J the random variables IQ;! are conditionally independent, lP {IQ ii ~ 1} ~ 1 /2, we have 

lP{G < T/4} = o(~). (57) 

By (56) the implication 

G ~ T/4, YL ~ T/8 =? Z* ~ T/C 
holds, therefore, using (57) we obtain the inequality 

lP'{ Z* ~ T /C} ~ JP{ G* ~ T /C I YL ~ ~} + o( ~). (58) 

Choosing a sufficiently large number C and approximating the binomial distribu­tion by Poisson law, we have 

lfD{G* ~ T \YL ~ T, Xr ~ 2A.oT} ~ 2 " P uT (k) = o(.!..). (59) C 8 ~ ~ T k,,;J/C 
Since lP'{Xr ~ 2A.0 T} = 0(1/T), (58) and (59) yield (49). 0 
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