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Abstract

The methodology of the solution to the inverse fractal problem with wavelet
transform’? is extended to two-dimensional self-affine functions. Similarly to the
one-dimensional case, the two-dimensional wavelet maxima bifurcation representa-
tion used is derived from the continuous wavelet decomposition. It possesses the
translational and scale invariance necessary to reveal the invariance of the self-affine
fractal. As many fractals are naturally defined on two-dimensions this extension
constitutes an important step towards solving the related inverse fractal problem
for a variety of fractal types.

1. INTRODUCTION

The initial definition referred to the Hausdorff dimension as the principal feature of a fractal.
Soon it became obvious that the world of fractals would be unnecessarily restricted if such
a definition were maintained. It is the notion of some sort of similarity in scale which has
loosely defined the fractal ever since. We adopted this point of view, and with help of
the wavelet transform in providing the amazing ability to unfold objects in scale, we were
able to reveal the scale position similarity of self-affine fractals. A properly chosen wavelet
transform of a fractal exhibits a characteristic regularity, consistent with the renormalisation
properties of the fractal. By unfolding a fractal in the scale domain, it becomes possible to
investigate its invariance properties.



Indeed, fractals (in particular self-affine attractors) possess by definition invariance which
must be identifiable in the form of some elementary transformations (for example those
used to create the fractal object). The problem of recovering these transformations from
the fractal object is known as the inverse fractal problem (IFP). The wavelet transform
therefore provides the necessary means to make the IFP tractable. The crucial step in this
approach consists of the possibility of verification of such a scale-space similarity in terms
of invariance with respect to some iterative functions (maps). Contrary to the methods for
solving the inverse fractal problem, which use a predefined class of Iterated Function System
(IFS) functions® to approximate the invariance discussed, the approach we present aims at
revealing the renormalisation involved in the creation of the fractal, possibly bearing high
relevance to the underlying physical phenomena.

We, therefore, propose the hypothesis' that an object can be classified as a pre-fractal
if there exists a solution to the related inverse fractal problem; in other words, if a set of
construction rules can be found which, ultimately, would fully define the object within the
scales where it is observed and which allows arbitrary extrapolation in the scale domain.

The goal of this paper is to extend the scope of the methodology developed in Refs.!? to
fractals on two-dimensional support using the example of self-affine multiplicative fractal
measures. These can be created with R? — R3 iterated functions (maps). Like computer
generated fractals, natural fractals have the property that they are created by the same phe-
nomena acting at different scales. These phenomena may however show behaviour ranging
from purely stochastic to completely deterministic. Although the focus of this paper is on
the deterministic limit, a more general application of the techniques is possible.

2. FRACTAL IFS FUNCTIONS IN TWO DIMENSIONS

In this section we will address relevant facts about self-affine functions over two-dimensional
(or fractal 1 < D < 2) support. Self-affinity is a concept inherent to fractal functions
including self-similar sets of functions support as a special case. An affine transformation
S:R"” — R" is of the form:

S(z)=T(z)+b, (1)
where T is a linear transformation on R" (often represented by an n x n matrix) and b is a
vector in R™. Therefore, an affine transformation is in general a combination of translation,
rotation, dilation and possibly reflection.
Of special relevance to creation of fractal attractors is a contraction transformation S:

S:R"™ - R™ isa contraction if there is a number cand 0 < c < 1
such that  |S(z) — S(y)| <c|z —y| forall z,y € R".

Affine transformations, having different contraction ratios in different directions, are to
be distinguished from similarities which contract isotropically:

if |S(z) — S(y)| =clx —y| forall z,y € R" then S is a similarity.

For S, ..., Sy affine contractions on R™, by the standard result, see e.g. Ref., the unique
compact set F' invariant with respect to S, is guaranteed to exist and is termed a self-affine
set or an attractor of Sp,,n =1,..., N. Thus for the self-affine set F' obtained by
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F, = lU Sn] (B) for any B € R" ; F = limp_ooFy , (2)
n=1



where o denotes the composition of transformations, so that
(PioPyo...oPy)(z) = P (Pa(...(Px(x))-..)),
the following relation is satisfied:
F=5,(F) VSn,n=1,...,,N. (3)

The subsequent approximations F}, of the set F' are called pre-fractals.

We will consider continuous contraction transformations S, : R® — R?, in short to be
called maps, chosen in such a way that the self-affine set they define is a functional mapping
f:R?2 > R.

F(xi,x2)

Figure 1: The test case: Sierpinski triangle with non-uniformly distributed measure.

Let Sy (1 <n < N) be an affine transformation represented in matrix notation with respect
to the coordinates {z1,z2,y} by
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For the sub-transformation on the coordinates {z1,z2}:

b T e
S, T _ ap Op 1 + n ’ 5
n<$2> <Cndn Z2 In ()
which describes an arbitrary affine transformation in R?, we will require

71:

which ensures that S,,, is a similitude and the transformed surface does not vanish or flip
over. We will also restrict S, to be a set of non-overlapping transformations:

ﬂ Sn(A) =0, VA, where A is an arbitrary compact set.

Additional constraints can be specified for the purpose of generating a fractal interpola-
tion surface ensuring joining up of the transformed surfaces at the interpolated points?*

*These conditions are however irrelevant to this work. In fact, for the sake of simplicity, we will limit
ourselves to examples without additional components in the function value which translates to v, = 0 and
an, =0.



3. TWO-DIMENSIONAL WAVELET TRANSFORM ON FRACTAL
FUNCTIONS

3.1 The two-dimensional continuous wavelet transform

The (real-valued) wavelet transform W decomposes the function f(z) € L2(R?) in the base
of elementary wavelets created by the action of the affine group on a single function v(z) !

(W5)(5,b) = /d:z; f(®) U,b)$(Z) where U(3,b)¢(2) =¢((3)7(z-1b). (6)

In practice, the wavelet ¥(Z) is chosen to be well localised both in scale and space, and if no
directional sensitivity is required uniform scaling in all directions is a natural choice. The
matrix 5 can be than reduced to two equal scaling factors s on the diagonal and |5| = s?

Further, the choice of the analysing wavelet 1 (z) is dependent on the application. For
our purpose, we will need the wavelet with m vanishing moments, that is orthogonal to
polynomials of order [ < m:

/+ooa‘clzp(a‘c)da‘c:0 VI, 0 <1< m. (7)

—0o0
Arguments for the choice of m will be given in part 4 of the paper.

In this work we use continuous parametrization of the affine operator U(5,b) known
as continuous wavelet transform (CWT). However, restricting 5, b to discrete values gives
the discrete wavelet transform which, for the particular choice of a wavelet satisfying the
orthogonality criteria, constitutes an important class of orthogonal wavelet transforms.

3.2 The multi-resolution scheme

Since the self-affine attractor is by definition invariant with respect to some affine operator
T(u,v):
f=T(u,0)f; T(u,v)(z) = uz + v, (8)

we expect this to be reflected in the invariance of the wavelet transform. Indeed,

WHEH = 5 [ i@ UEHIE)

which, using an easily verifiable relation T (u,7) = ﬁ T (a,v) = ﬁ U(a, o), where Tt

denotes an operator adjoint to 7', can be written as:

(W£)(5,b) = ] | El /dwf U(u,) U(3,b)) (4(2))- (10)

tFormally, the choice of the wavelet ¥(&) is subject to one restriction: (%) must be admissible, i.e. of zero
mean, if the function is to be reconstructed from its wavelet transform. Since we investigate only invariance
properties of the functions’ wavelet transform, we lift this requirement.

#The normalising factor s? is taken per default if working in two dimensions. This may need ‘correcting’ in
Eq. (15) using the fractal dimension of the support of the attractor recovered from the solution to the IFP.



One can easily show that the action of [U(u,®)]¥ U(s,b) is equivalent to applying the
operator U(5%), b(*)) where k indexes the action of the operator U (i, )
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Therefore, the invariance relation for the wavelet transform of the self-affine function 8 is
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(11)
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(W£)(5,0) = (W§)EH,60). (12)

The action of the new operator U(E(k),é(k)) with respect to index k defines a “multi-
resolution representation” of the function f where all the nested subspaces are translated
and scaled versions of each other. The construction of such a multi-resolution scheme for an
arbitrary self-affine attractor as defined in section 3.2 is possible and is equivalent to finding
the operator T'(u,v). A demonstration of this construction is given in section 4, where the
wavelet maxima bifurcation representation is introduced to accomplish this.

4. RECOVERY OF THE SCALING PARAMETERS FROM THE
WAVELET TRANSFORM BIFURCATION REPRESENTATION

We will use wavelets with m vanishing moments$ see Eq. (7). This will allow us to perform
filtering off of the polynomial behaviour of the m — 1 order according to

(W)(D™ f(2)) = |s]7™ (W™)(f (2)), (13)

where the operator D(™) = d™ /dz™ and W™ f the wavelet transform using a wavelet with
m vanishing moments.

The self-affine function can generally be described by a finite set of n affine transforma-
tions (compare section 2, Eq. (4)) of the generic form:

z = Swn(j:) (14)
Y(@) = any(Z) + Yoy 1+ Yo T2+ 0 -

If by taking the wavelet transform of y with the wavelet with the appropriate number (in
this case at least 2) of vanishing moments, additional components in Eq. (14) are removed,
the following invariance relation holds with respect to the affine operator S,,,:

D™ y(z') = D™ y(Spn(Z)) = 0, D™ y(z, m>=2. (15)

As already shown in the previous section, Eq. (12), for T'(uy,,v,) = Sy, this invariance
reflects (up to the multiplicative factor) in the wavelet transform coefficients:

wp (o) (W) (T (ln, Ta) (,)) = 0, e (WMy)(,), m>=2. (16)

2=D corrects for the possibly fractional support of the attractor,

The factor wp(oy,) = oy
the fractal dimension D of the support can be estimated in the usual way: 3, o,” = 1.
It is therefore the second (or higher) derivative of the wavelet transform W ®)(y), which,

for the generic self-affine attractor defined by Eq. (4), involves the invariance with respect

$In this communication we used an example with no is equivalent to both 4, = 0 and §, = 0. Therefore,
orthogonality of the wavelet to polynomials would not be essential and the wavelet with m = 0 could be
used. Nevertheless, in the formal considerations we will, however, retain generality.



to the transformation S;,, on the coordinates 1 and x5, and the multiplicative dependence
on the parameters oy, and will allow the recovery of the parameters of S,,, and the a,,’s.

What is needed for this purpose is the representation capturing the invariance present
in the wavelet transform of the function and allowing the solution of the Eq. (15) through
the comparison of related points in W™ (y(,)), Eq. (16). This is achieved in the wavelet
transform maxima, bifurcation representation.

Once the invariant representation is established the remaining parameters can be recov-
ered from W (y(,)) and W (y(,)) sampled with the invariant grid of bifurcations’.

4.1 Wavelet transform local maxima bifurcation representation

We will not go beyond being very brief on the arguments for the construction of the bifur-
cation representation, referring the reader to earlier publications'? for more details.

Indeed, neither the continuous wavelet transform nor the orthogonal discrete version can
achieve the kind of multi-resolution analysis we require. While the continuous version maps
all the scale-space relationship originally present in the analysed function onto the scale-
space domain in the most redundant way, leaving the invariance which has been sought
un-discriminated, the discrete one represents it in an orthogonal fashion on an ‘a priori’
defined grid, which in general is not ‘compatible’ with the invariance of the function.

The wavelet transform maxima bifurcation representation was, therefore, derived from
the (modulus) maxima representation of Mallat®. The particularly convenient feature of
Mallat’s maxima representation is its translation invariance, which is of great importance in
pattern recognition problems. Since fractal functions are a special class of functions where
the translation invariance is accompanied by scale invariance, we used unique ‘landmarks’
in the form of bifurcations of maxima lines to derive scale invariant representation from the
maxima lines.

The necessary condition for the local extrema of the wavelet transform W f(s, z1,z2) of
the function of two variables f(x1,z2) is zero of the partial derivatives:

dw £ m) (17)

AW f)(s,21,72)
{ .

dxzo

which points are further classified according to the sufficient condition for local extrema:

d2(Wf)(§2,w1,I2) < 0 (>0) (18)

o in the case of a local maximum (minimum)
1

{ H(s,z1,22) > 0

2
where #(,,) is the Hessian #(,,) = D5 (W f)(,,) DA (W F)(,,) = (D (W ()
The bifurcation case is defined by:

Eq. (17)
{H(S7x17$2) = 0. (19)

The tree structure apparent in the maxima representation serves as basis for the param-
eter recovery algorithm utilised in the solution to the IFP. The tree construction is similar
to that described in our communication on the one-dimensional case!. The expansion of the
attractor in scale thus achieved, gives direct insight into the action of the transformation,
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Figure 2: Local maxima of the wavelet transform with associated bifurcations for the ex-
ample from figure 1. The wavelet used is the Gaussian, m = 0.

in this case IFS, used to create the attractor. The ‘stages of construction’ are therefore
revealed and linked with one another in the bifurcation representation.

The next crucial step comprises the finding of the invariance of the bifurcation represen-
tation. This can be done by means of tree matching, see Ref.!. where the invariance of the
representation is sought in the optimal match of the tree to its branches. From the match
of pairs of bifurcations found invariant, the parameters of Eq. (16) are estimated.

Space limits prevent elaboration on the procedure and we will restrict ourselves to pre-
senting and interpreting the results for the given example. The affine maps z; oy = f (1, 25)
representing scaling and translation parameters of S;, as shown in figure 3. As expected
from the diagonal character of S;, for the Sierpinski triangle the linear dependence with
consistent slope 1/0,, = 1/0.5 shows in only one of the coordinates. The translation com-
ponents are directly visible in the histogram in the figure 4 and the repartition of measure
can be verified from the modes of parameter «a,, in the upper right of this figure.
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Figure 3: The maps recovered from matching the bifurcations in the representation in
figure 2. Of the total of six two-dimensional maps three maps zo = f(z},z)) are shown in
the figure on the leftmost. The Sierpinski triangle was rotated in order to disconnect the
maps. The projection along z) in the upper right shows consistent slope of 1/0, = 1/0.5
rate with respect to x5 for all three maps displayed. As expected from the diagonal S, for
the Sierpinski triangle, the linear dependence shows in only one of the coordinates, which
is confirmed in the projection in the bottom right figure.
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Figure 4: The histogram of the parameters e, and f, shows the location of the peaks on
a triangle corresponding with the translation vectors of the Sierpinski triangle (left). The
modes of the parameter «,, responsible for the distribution of the measure on the triangle
(right) show remarkable agreement with the true values.



