High Performance support for OO traversals in Monet

P. A. Boncz, F. Kwakkel, M. L. Kersten
CWI, University of Amsterdam
{ boncz, kwakkel, mk}@cwi.nl *

Abstract

In this paper we discuss how Monet, a novel multi-
model database system, can be used to efficiently sup-
port OODB applications. We show how Monet’s off-
beat view on key issues in database architecture pro-
vided both challenges and opportunities in building a
high-performance ODMG-93 compliant Runtime Sys-
tem on top of it.

We describe how an OO data-model can be mapped
onto Monet’s decomposed storage scheme while main-
taining physical data independence, and how OO
queries are translated into an algebraic language. A
generic model for specifying OO class-attribute traver-
sals is presented, that permits the OODB to algebraicly
optimize and parallelize their execution.

To demonstrate the success of our approach, we give
OO7 benchmark results of our Runtime System for
both the standard pointer-based object navigation, and
our declarative model that uses a path-operator traver-
sal library.

Keywords: Object oriented databases, Perfor-
mance, Benchmarking, Database programming lan-
guages Database architectures, Database Techniques,
Parallel Systems.

1 Introduction

Engineering design and CASE are the prototypical
database applications that require the database sys-
tem to support complex and evolving data structures.
Queries often involve -hierarchical- traversals and have
to be executed with high performance to satisfy the
requirements posed by an interactive application.

OODBs have been identified as the prime vehicle
to fulfill these tough demands. It is in these appli-
cation domains that traditional RDBMSs suffer most

*Part of this work was supported by SION grant no. 612-
23-431

from the impedance mismatch, and fail to deliver flex-
ibility and performance [7]. In recent years several —
commercial - OODBs have entered the marketplace.
Since "performance” in CAD/CAM or CASE appli-
cations has many faces, the OO7 benchmark was in-
troduced as a yardstick for their success. It measures
traversal-, update- and query evaluation performance
for databases of differing sizes and object connectiv-
ity. The results published [5] indicate room for further
improvement and a need for more effective implemen-
tation techniques.

This article describes how we tackled the OO7 func-
tionality with our ODMG-93 compliant Runtime Sys-
tem called MO, [17] that was developed on top of
Monet [4]. Monet is a novel database kernel that
uses the Decomposed Storage Model (DSM [6]) be-
cause of its effectiveness in main-memory environ-
ments. Through its use of virtual-memory techniques
and operating system facilities for buffer management,
Monet has been proven capable of handling both small
and huge data-volumes efficiently [3].

Monet is a multimodel system; this means that its
data can be viewed simultaneously in a relational, bi-
nary set-algebraic, or object-oriented manner. The
MOs system is put at the task of translating between
Monet’s DSM- and the object-oriented data-model.
This translation provides opportunity for optimiza-
tion. The lazy attribute fetching technique employed
in MO> is an example of this (see Section 3.1).

From the viewpoint of an OODBS, traversals spec-
ified in a persistent programming language like C++,
result in a waterfall of individual object-fetches which
is hard to optimize. Helped by the physical data inde-
pendence present in the MO, system, we managed to
improve on this by offering a generic model for speci-
fying complex traversals at a high level, in the form of
a template class-library. Traversals specified with this
model can seamlessly be integrated with set-oriented
query optimization and parallelization, for efficient ex-
ecution on Monet.

2 Monet Overview

Monet is a novel database server under development
at the CWI and University of Amsterdam since 1992.
It is designed as a backend for different data models
and programming paradigms without sacrificing per-
formance. Its development is based on our experience
gained in building PRISMA [1], a full-fledged parallel
main-memory RDBMS running on a 100-node multi-
processor, and current market trends.

Developments in personal workstation hardware are
at a high and continuing pace. Main memories of 128
MB are now affordable and custom CPUs currently
perform over 50 MIPS. They rely on efficient use of
registers and cache to tackle the disparity between pro-
cessor and main-memory cycle time, which increases
every year with 40% [13]. These hardware trends pose
new rules to computer software — and to database sys-
tems — as to what algorithms are efficient.

Another trend has been the evolution of operating
system functionality towards micro-kernels, i.e. those
that make part of the Operating System functionality
accessible to customized applications. Prominent pro-
totypes are Mach, Chorus and Amoeba, but also con-
ventional systems like Silicon Graphics’ Irix and Sun’s
Solaris increasingly provide hooks for better memory
and process management.

2.1 Design Principles

Given the motivation and design philosophy out-
lined above, we applied the following ideas in the de-
sign of Monet:

o perform all operations in main — virtual — mem-
ory. Monet makes aggressive use of main-memory
by assuming that the database hot-set fits into
main-memory. All its primitive database oper-
ations work on this assumption, no hybrid al-
gorithms are used. For large databases, Monet
relies on virtual memory by mapping large files
into memory. In this way, Monet avoids intro-
ducing code to ’'improve’ or ’replace’ the oper-
ating system facilities for memory/buffer man-
agement. Instead, it gives advice to the lower
level OS-primitives on the intended behavior !.
As Monet’s tables take the same form on disk as
in memory (no pointer swizzling), this memory
mapping technique is completely transparent to
its main-memory oriented algorithms.

1This functionality is achieved with the mmap(), madvise(),
and mlock() Unix system calls.

e binary relation model. Monet stores all informa-

tion in Binary Association Tables (BATs, see Fig-
ure 1). Search accelerators are automatically in-
troduced as soon as an operator would benefit
from their existence. They exists as long as the
table is kept in memory; they are not stored on

disk.
This Decomposed Storage Model (DSM) [6] facil-

itates object evolution, and saves IO on queries
that do not use all the relation’s attributes. Sav-
ing on data movements is especially beneficial
in main-memory environments, and easily out-
wheighs the extra cost for re-assembling complex
objects, before they are given to an application.

class Person {
string name;
dat e bi rt hday;
string sex;

DSM decomposition
into Binary Associatio|
Tables (BATSs)

Person_name Person_birthday Person_se;
OID _string oID date OID string

101] Lopez 101 [01-09-1946 101 [mae
147| Cheng 147 | 27-03-1952 147 | female
169 | Finzi 169 | 13-06-1966 169 | femalg
324| Ssdito 324 08-01-1952 324 | male
333 Jacob 333|10-12-1971 333| male
BAT
Person_sex] BAT memory layout
OID _ string
BUN Heap
ash Table previous
idx ne: transaction
il 101} it
Iy himaky uni
T %UN))
il £169 String Heap
il f 324 P——
i [333]] - male

"female"

Figure 1: Monet’s decomposed storage scheme

e employ inter-operation parallelism. Monet ex-

ploits shared-store and all-cache architectures.
Unlike mainstream parallel database servers, like
PRISMA [1] and Volcano [10], Monet does not
use tuple- or segment-pipelining. Instead, the al-
gebraic operators are the units for parallel execu-
tion. Their result is completely materialized be-
fore being used in the next phase of the query
plan. This approach benefits throughput at a
slight expense of response time and memory re-
sources.

A version of Monet designed to exploit effi-
ciently distributed shared-nothing architectures
is described in [15, 16]. A prototype runs on
IBM/SP1.

e allow users to customize the database server.
Monet provides extensibility much like in
Gral [11], where a command can be added to its
algebra, and its implementation linked into the
kernel at any time. The Monet grammar struc-
ture is fixed, but parsing is purely table-driven
on a per-user basis. Users can change the pars-
ing tables at runtime by loading and unloading
modules.

2.2 Algebraic Interface

Monet has a textual interface that accepts a set-
oriented programming language called MIL (Monet
Interface Language). MIL provides basic set opera-
tions, and a collection of orthogonal control structures
that also serve to execute tasks in parallel. The — in-
terpretive — MIL interface is especially apt as target
language for high-level language interpreters (SQL or
OQL), allowing for modular algebra translation [11],
in which parallel task generation is easy. Algorithms
that translate relational calculus queries to BAT alge-
bras can be found in [12, 15]

We show in an example what the BAT algebra
looks like. Consider the following SQL query on rela-
tions company [comp#,name,telephone] and supply
[supply#,comp, part, pricel:

SELECT company.name,
company.telephone,
supply.quantity

FROM company, supply

WHERE supply.comp = company.comp# AND
supply.part = part_no AND
supply.price < 0.50)

In Monet’s SQL frontend, the relational database
scheme will be vertically decomposed into five tables
named comp name, comp_telephone, supply-comp,
supply_part and supply_price, where in each table
the head contains an OID, and the tail contains the
attribute value. The SQL query gets translated to the
following MIL block:

VAR m_supply, m_comp;
VAR m_name, m_telephone, m_quantity;

m_supply := SEMIJOIN(supply_part.SELECT(part_no),
supply_price.SELECT(0.0, 0.50));

m_supply := MARK(m_supply) ;

m_comp := JOIN(m_supply, supply_comp);

[

m_name := JOIN(m_comp, comp_name);
m_telephone := JOIN(m_comp, comp_telephone);
m_quantity := JOIN(m_supply, supply_quantity);

]
PRINT (m_name, m_telephone, m_quantity);

In all, the original double-select, single-join, three-
wide projection SQL query is transformed in a se-
quence of 8 BAT algebra commands. The three last
joins are placed in a parallel block ([]).

The dot notation “a.oper(b)” is equivalent to
function call notation “oper(a,b)”. Note that JOIN
projects out the join columns. The MARK operation in-
troduces a column of unique new OIDs for a certain
BAT. It is used in the example query to create the new
— temporary — result relation. The below table de-
scribes in short the semantics of the BAT commands

used:
BAT command result
<AB>.mark {o;alab € AB A unique_oid(o;)}
<AB>.semijoin(CB) {ablab € AB,3cd € CD ANa =c}
<AB>.join(CD) {ad|ab € ABAcd € CDAb=c}

<AB>.select(T1,Th)
<AB> .select(T)
<AB> find(T)

{ablab € ABAb > TIAb < Th}
{ablab € AB Ab =TI}
{a|aT € AB}

3 MOQZ
Monet

ODMG programming on

When one would integrate a C++ application with
a MIL (or even SQL) speaking Monet server, there is
an impedance mismatch. To remedy this, in the MAG-
NUM project (underway since 1994) at the University
of Amsterdam and CWI we have developed a ODMG-
93 compliant database system nicknamed MO,, that
will (amongst others) be used as a tool to build a high-
end GIS application.

The ODMG system consists of two parts: an ODL
parser and an ODMG runtime library to be bound
with the C++ application [8].

3.1 ODL Parser

An ODL definition defines both persistent and tran-
sient classes managed by the database system. ODL
offers the usual OO features like inheritance, meth-
ods, objects and values, constructors (Set, Array,List,
Struct etc) and binary relationships between objects.
Note that ODL only defines the signature of object
methods, the implementation must be done in the ap-
plication language for which an ODL language binding
exists. In our case we support both a C++ - and Java
language binding.

The ODL parser accepts the data definitions, in-
serts those in the OODB data dictionary, and gen-
erates C++ header files with the corresponding class
definitions.

: Attribute
: Relationship
......... = Inheritance

@ : Class
(I

(el muidoag

"t oot Part LN -~
[v | AtomlcPartJ parts CompostePan
]
mm 1 m
priv
to from doc \shar
n
1 1 1 n
E:onnection] Document Base Complex Manual
Assembly Assembly
type [length title | id | text id
!eleen

Figure 2: OODB schema: the OO7 database

In the C++ language binding, object references are
implemented in a template class Ref<T> following a
“smart pointer” approach.

The mapping of the ODMG object model to the
Monet data-model is influenced by three considera-
tions:

e The mapping must allow translation of OQL to an
efficient MIL program. In particular this means
that object reconstruction from the decomposed
tables — which is costly — must be avoided, set op-
erations are performed on object identifiers only,
and indexes can be used for the execution of selec-
tions and join operations on arbitrary attributes.

e The mapping must offer a large degree of data
independence. Both C++ and Java applications
must be able to share the data stored in the
database. Furthermore, the addition of attributes
to existing classes must have a low impact on the
stored objects.

e In object hierarchy traversals such as OO7 a large
number of objects are visited but only a small
fraction of the attributes of the intermediate ob-
jects is used. “Lazy attribute fetching” is there-
fore a good technique to reduce disk I/0.

Objects are therefore fully decomposed in our de-
sign. Each attribute is stored as binary relation be-
tween the object identifier and the attribute value in
class_attribute BATs. Each relationship is repre-
sented by a binary relation between the object identi-
fiers of the two related objects.

In the case of the OO7 data-model (see Figure 2)
the complete mapping of the 10 classes, 33 attributes,
and 11 relationships of the OO7 database leads to 54
BATSs in the Monet database.

3.2 ODMG Runtime

The ODMG runtime library deals with runtime
object management. ODMG unites two paradigms,
namely C++ persistent programming, where pointer
traversals seamlessly permits browsing through the
database tables, and the OQL part — a high level query
language for bulk data retrieval.

Moving from a non-standardized OODB — as there
exist many — to an ODMG compliant one, calls for a
tight integration of the high-level OQL into the exist-
ing persistent programming system. Since OQL favors
function-shipping solutions, preferably using complex
query optimization and parallelization of tasks, there
is a conflict of data allocation strategies, because
the pointer traversal part of ODMG requires a data-
shipping strategy to achieve efficiency.

The architecture of the Monet ODMG runtime sys-
tem therefore incorporates a dual design. The client
and server are peer-to-peer systems with different
roles. The server system(s) are masters of their data:
they are responsible for transaction management. The
client, however, contains a functional complete copy of
the server code to manage transient databases. This
way, it can choose at runtime to cache tables and to
execute operations locally or remotely.

SQL fromend
C++/Java Application
SOMe | |5 date MO, ODMG
modulel | | mine sidib |_ runtime system
|
vionet Queue [¢ MI 4—pD|(MI Vionet Queue
Goblin Database Kerne| Goblin Database Kern
= M <o
1 - %

ODMG client

Monet Server

Figure 3: The Monet Server and its Clients

Hiding the object implementation through the use
of accessor functions get_attr() and put_attr()
eliminates the need for object reconstruction at the
client for navigational access. In other words, the data
representation is the same at the client and server, so
that query processing can be performed at either side.
For this purpose the accessor functions and method
code for new classes can be dynamically linked to the
database server program.

At the moment of this writing, navigational access
is supported and work is well underway to support full

OQL. Section 5 presents the performance results for
the traversal queries of the OO7 benchmark. In the
future we will further optimize the Runtime System
and reduce the granularity of locking it applies.

4 Efficient Object Traversals

Though OODBs provide for a seamless integra-
tion of application and database, they have also been
criticized on the grounds that what effectively hap-
pens in OO class-attribute traversals is CODASYL-
like “pointer chasing” [9]. Apart from the data inde-
pendence issue, a piece of C++ code — say a complex
loop — with object-referencing operations inside can-
not be easily analyzed by the OODB to optimize com-
plex traversals, let alone parallelize them. Such tasks
are left to the programmer.

We think that this aspect of OODB:s is a step back-
wards. For this reason, we felt there is a need for a
way to specify OODB class-attribute traversals at a
higher-level level of abstraction, such that they be-
come amendable for optimization and efficient pro-
cessing using a parallel platform.

Such high level constructs — generic as they may
be — will never posses the expressive power as an ar-
bitrary piece of C++ program. However, the model
presented here captures a wide spectrum of traversals
encountered in practice, at least those specified in the
OOQO7 traversal queries.

4.1 Some Definitions

Our class traversal primitives require a few in-
troductory definitions. We assume a class-attribute
graph G, which is a directed graph, where the nodes
are classes, and the vertices the relation attributes
in them.?2 These attribute-vertices start at the class
of which the attribute is a member, and point to the
class of the attribute. The class-attribute graph G
also captures a second set of vertices representing in-
heritance relations, forming a forest of DAGs. Unless
stated otherwise, when we use the term “reachable”
we mean “reachable by attribute-vertices”.

We define the following functions:

classes(G) = {C | C is a node in G}
subclasses(P,G) = {C | P,C € classes(G),

C reachable from P via inheritance-vertices}

The class-attribute graph can have objects as in-
stantiations associated with it, which are captured by
the extent &:

2We only describe relation attributes here, since value-
attributes are not important in path definitions.

& = {obj|obj instantiation of C € classes(G)}
E(P) = {obj|obj instantiation of C € subclasses(P, G)}

The complex paths we want to use are broader than
the definition given in [2], in the sense that we want to
be able to specify paths containing cycles and multiple
subpaths from one class to the other.

Below we inductively define all possible paths c:150»
as specified by a path ezpression :

Ci € classes(G) A

Cy € subclasses(C1.a) <& Clcl —C>2 (1)
Clp—lCz A CzP—2C'3 = ClﬁCQ (2)

ClP_IC2 JANTIVAN CIECZ < ClmCQ (3)

The notion of reachability of two objects o, € £(Cy),
on € £(Cy), by a path ¢,5C, can similarly defined over
path expressions 5 as:

015,20 & 01.00 = 0n (4)

o155 = —Pn—10" & Vil<i<n: 0ip 0i+1 (5)
T Pn—l]o" < F1<i<n: olP_,-O" (6)

A concrete instantiation o;.a; — 02.a2 — .. — 0, Of a path

C15C2between objects o, € £(C1) and o, € £(C») is called
a link. The fact that two objects are reachable by a
path implies that there is a (set of distinct) link(s)
between them, following that path, and vice versa.
With this in mind, we can finally define the function
reachable(2) as the bag of objects o,, corresponding
1-1 to all distinct links o;.a; — .. — 0, that are instanti-
ations of path C15C2, where o1 € £(C1) A Voo : 0, € £(Ca).
We refer to the order in which the objects are put into
the bag (which is arbitrary), as the traversal order.

4.2 Path Operators

Path expressions provide a handle to define the con-
cept of path operators, which specify complex traversal
patterns. Because the order in which a traversal algo-
rithm visits the objects in a class-attribute hierarchy
is important, we will define our path operators using
pseudocode. Also, a traversal algorithm can visit a
node more than once. It is for these reasons, that the
path operators defined here work on ordered sets and
ordered bags.

The traverse() traverses a path 5, starting from
one object o1, producing the reachable(%) bag of
objects as a result:

FUNCTION traverse(src: OBJECT; p: PATHEXP;
f: FUNCTION) : BAG;
VAR obj: OBJECT, dst : BAG;

FORALL obj IN reachable(src, p) DO
IF (f) THEN f(src,obj) FI;
append(dst, obj);

RETURN dst;

END;

This trivial piece of pseudocode implies that some
ordering criterion exist in visiting the destination ob-
jects reachable from the source object. The definition
also allows some function to be executed on all nodes
when they are visited.?

The second operator computes the closure set over
a cyclic path starting at an input bag;:

FUNCTION closure(src: OBJECT; dst: INOUT SET;
p: PATHEXP; f1, £2: FUNCTION);
VAR obj: OBJECT, dst SET;
FORALL obj IN reachable(src, p) DO
IF (f1) THEN fl(src,obj) FI;
IF (NOT obj IN dst) THEN
append(dst, obj);
closure(obj, dst, path, f1, £2);
IF (£2) THEN f2(src,obj) FI;
FI;
0D;
RETURN dst;
END;

This version of the closure operation uses a depth-
first algorithm. Likewise, a breadth-first closure and
other variants can be defined. Again, user-defined
functions can be executed on the nodes when they are
visited, or just when they are included in the closure.

4.3 Executing Path Operators

Path operators can be nested to specify complex
traversal patterns. For example, the expression
traverse(closure(input,A.b—B.a),[A.c—C.e,A.d—D.e])
starts traversal at the bag input and computes the
closure over the loop A——A (see Figure 5) and uses
this set as input to traverse the two-branched path
Arree o P between A and E (see Figure 4).

Efficient execution our path operators by Monet is
relatively easy. As illustrated by the pseudo-code, the
traverse() operator is equivalent to the join opera-
tor in Monet (see Section 2.2). Since the Monet’s de-
composition model vertically fragments all classes in
binary relations named ”class_attribute”, travers-
ing a path P= A.a; — ... — A.a, means joining the input
bag with relation A_a;, then joining its result with
A_a,, and again, until the last join with A_a,, which

3further on, we will use a traverse() on an ordered source
bag rather than a single source object, which executes a traverse
on all its elements in order, returning the concatenation of all
resulting bags.

0D _Ol Dol

100 100(120 oD 0l
101 101|107 107|121
102 104/ 111 111]123
103 mms@ 120] 125
INPUT @b Ac
102] 112
103|109
105/ 113 D) 0D ol QD _0l
112[122] 125
Ad 109|124 121
113]126 122
124
D_e
- OUTPUT

traverse (input,[A.c-C.e,A.d-D.e]) ==
union (input. join(A_c).join(C_e),input.join (A_d) join (D_e))

Figure 4: Executing a traverse() operator

forms the result of the operator. If the path has mul-
tiple branches P = [P, ..., P,], all branches are traversed
first, and the results united (see Figure 4).

QoD 0D
100{200
101|201
102| 202

OID_ 0l
100

oD _0ID /‘11’)3’203
101
100 Al 102
103 103
0D 0ID
INPUT 200 101 OUTPUT
201]102

202|103
203|100

B_a

closure (input,A.b-B.a) == input.subgraph (A_b.join(B_a))
Figure 5: Executing a closure() operator

The closure() is implemented in Monet using the
MIL operation subgraph(), which expects a single
[0oid,o0id] BAT as the path relation. In contrast to
traverse(), the closure() does not start joining the
input bag with the ”class_attribute” tables. In-
stead, it starts reducing the relations along the path
internally using joins and unions until only a singu-
lar [0ID,0ID] path relation remains. Only then, it
is fed as parameter with the input bag into Monet’s
subgraph () command.

4.4 Traversal Optimization

As opposed to a C++ pointer-based traversal, our
nested path traversal operators give the OODB the
whole view, such that it can work set-at-a-time and
can optimize and parallelize traversal execution.

The relation attributes that connect the classes
are essentially join indices [14], or OODB nested in-
dices [2]. The closure operator first transforms a com-
plex path to a singular one. In fact, it constructs a
join index between the starting class and the ending

class (which for closure() are one and the same). Al-
though the construction cost for a join index maybe
high, this investment can be turned into profit by re-
using it in later traversals.

For the traversal operators, the join index technique
may also be applied. A complete path or (multiple)
subpaths in the path can be collapsed into a join in-
dex. It is clear, that the OODB optimizer has many
options, of which some will, and others will not, be
beneficial. The OODB should therefore use cost mod-
els incorporating parameters like mean fanout from
objects along the classes-attribute path, the number
of tuples in the input bag, the likelihood that a certain
traversal will be executed again and others [14].

Path operators provide possibilities for parallel exe-
cution of traversals. Since both the traverse() as the
closure() execute independent algorithms for the el-
ements on their input bag, this bag can be fragmented,
and given to different processing nodes for execution.
The only communication required between nodes is at
the end, when the results are united.

This article does not seek to investigate join index
or traversal optimization cost-models; we just want to
point out that high-level traversals provide opportuni-
ties for optimization and parallelization. The bench-
mark numbers in Section 5 have been obtained with-
out attempting any optimization or parallelization.

4.5 ODMG Traversal Library

The high-level traversals discussed in this section
are incorporated in Monet’s ODMG system by means
of a C++ template library. The library allows the
programmer to construct nested path operators on his
own classes.

// Path Class
template <class A, class B>
class Path {
Path(char *attr);
~“Path();

// outgoing attribute
}

// Path construction: &k and || operators
template<class A, class B, class C>
Path<A,C> Path::operator&&
(const Path<A,B>& left,const Path<B,C>%& right);

template<class A, class B>
Path<A,B> Path::operator| |
(const Path<A,B>%& left,const Path<A,B>& right);

// Path Operators: Traverse, Closure and Nest
template <class A, class B>
class PathOperator {
Bag collect(Collection<A> root);
int visit(Collection<A> root);
}

template <class A, class B>
class Traverse : public PathOperator<A,B> {

Traverse(Path<A,B> path, void (fcn*) (Ref<A>,Ref);
“Traverse() ;

}

template <class A>
class Closure : public PathOperator<A,A> {
Closure (Path<A> path, void (prex)(Ref<A>,Ref<A>),
void (post*) (Ref<A>,Ref<A>));
~Closure();

}

template <class A, class C>
class Nested : public PathOperator<A,C> {
template <class B>
Nested(Operator<A,B> opl; Operator<B,C> op2);
“Nested();

The template classes are a direct translation of the
model previously defined. They allow for all type
checking to be done at runtime.*

The library user should first build a path expres-
sion, using instances of the Path class. Using the
&& (and) and || (or) operators, complex paths of
resp. equation (2) and (3) can be assembled. With
such paths as parameters, the operators Closure and
Traverse can be constructed on them. Path opera-
tors can be nested using the Nested operator. Ma-
terialization of a path operator is done by either the
collect () method (which returns all visited objects),
or the visit() method, which just returns a visit
count.

4.6 Example

We now give an example of the use of these classes
in a ODMG C++ binding, by showing how the OO7

Traversal 1 can be expressed:

void o0o7_t1(char *dbname) {
Set<BaseAssembly> baseassbly, assbly;
Ref<Assembly> root;
Database database;

1
2
3
4
5
6 database—>open(dbname);

7 lookup(&root, "root");

8 lookup(&baseassbly, "BaseAssembly.extent");

10 Path <ComplexAssembly, Assembly> *pl = Path("subAss");
11 Closure <Assembly> *ol = Closure(pl);

12 assbly = pO->collect(root)->intersection(baseassbly);

14 Path <CompositePart,AtomicPart> *p2 = Path("rootPart");
15 Path <BaseAssembly,CompositePart> *p3 = Path("priv");
17 Traverse <BaseAssembly,AtomicPart>*02 = Traverse(p2 && p3)

19 Path <Connection,AtomicPart> *p4 = Path("to");
20 Path <AtomicPart,Connection> *p5 = Path("to");
21 Closure <AtomicPart> *03 = Closure(p4 && p5);

23 Nested<BaseAssembly, AtomicPart> *o04 = Nested(o2, 03);
24 printf("T1 #visited objects: %d.\n", o4->visit(assbly));
25 database->close();

26 }

4except for attribute names: to do that, the C++ syntax

would have to be extended in some way.

We will now — step by step — show how the ODMG
Runtime translates the above code to MIL: after some
initialization, we fetch the root of the assembly hierar-
chy, and the extent of all BaseAssemblies (lines 7-8).
This translates in the following MIL operations:

root := designRoot.find("root");
baseassbly := BaseAssembly;

Lines 10-12 specify the path expression:
closure(root,Complex Assembly.subass) of which the result
is intersected with the previously fetched BaseAssem-
blies. Monet constructs a BAT named closure_root
with the previously fetched root as only element.
Since the closure is to be computed on the sin-
gle cyclic path ComplexAssembly.subAss, already
represented in Monet by the binary association
ComplexAssembly subass, it doesn’t have to be re-
duced to one with joins and unions. We just call the
subgraph() with it, and the closure_root as source
BAT, and semijoin the result with the BaseAssem-
blies.

closure_root := new(oid,oid);
closure_root.insert (root,root);
leaves := subgraph(closure_root,
ComplexAssembly_subAss) .semijoin(baseAssembly)

To retrieve all private root parts that are reachable
from the selected base assemblies, we have to do a
traverse(leaves,Base Assembly.priv—Composite Part.rootPart).

This traversal is executed in MIL with two joins:

rootparts := leaves.join(BaseAssembly_priv)
.join(CompositePart_rootPart) ;

The traverse() operator above can in fact be nested
in the closure(leaves,AtomicPart.to—Connection.to), by sub-
stituting it in for ”leaves” to obtain the nested path
operator, as specified in lines 14-23. To execute the
closure, two steps have to be taken. First, the closure
path has to be reduced to a single relation, as follows:

connections := join(AtomicPart_to.reverse,
Connection_to);

(Note that joining two class-attribute relations
might be an expensive operation, so an optimizing
OODB might decide to save the connections BAT as
a join-index for later re-use).

As a second step, the closure has to be executed
on all elements in the leaves BAT, which contains all
starting positions. Since we materialized the operator
with visit (), we only have to return a visit count:

visited := O; tmp := new(oid,oid);
rootparts@batloop() {
tmp.clear;
tmp.insert ($2,$2);
visited := visited +
tmp . subgraph (connections) .count;

The above piece of script, in which visited con-
tains the final result, is the most expensive part of the
T1 traversal. The ”@batloop()” is a cursor-like Monet
iterator, that iterates through all elements of a BAT,
executing a MIL statement-block on all of them. Iter-
ators in MIL can also be invoked in parallel: putting
”@[NJbatloop()” would have executed the block on at
most N elements from the BAT in parallel, providing
an easy way to parallelize traversals.

5 OO7 Experiments

Our client platform was a Sun SPARCstation
20/50Mhz running Solaris, with 96 MB main-memory,
16KB data-, 20KB instruction and 1MB secondary
cache, 1 Gb local disk (raw throughput: 10 MB/s)
and 0.5 GB swap space. It was connected with a sim-
ilar Monet server via non-exclusive NFS over 10Mbit
non-isolated ethernet. In this section we present re-
sults for three systems:

e MO, with C++4 pointer-based navigational ac-
cess. The implementation is a 95% match with
the standard implementation available with the
OO7 benchmark (see ftp.cs.wisc.edu/oo7).

e MO, with the Path Operator primitives. This
implementation has only been done on the real
traversal queries: T1 and T6 (full and sparse
traversal), T2a,b,c (sparse,full and 3-fold at-
tribute swap), and T3a,b,c (sparse,full and 3-fold
indexed attribute update).

e A competitor from [5] as a reference. Since
E/Exodus was the overall winner, we used these
numbers. They have been hardware corrected
with a factor 5.

All numbers mentioned with the experiments are in
seconds of elapsed time.

5.1 Traversal Queries

In the below table, we observe that for naviga-
tional MO, the numbers for the small database are
slightly worse than the competition. Here Monet’s ap-
proach with hash-lookups instead of pointer swizzling

proves to bear slightly more overhead. For the medium
database, the performance is very similar. We expect
to improve the performance on sparse traversals (T6)
by optimizations in the ODMG Runtime. The T1 is
clearly faster, because of Monet’s use of DSM: only
the starting and ending points of the traversal must
be materialized completely. This means that all at-
tributes of intermediate classes, that are not relational
attributes or not involved in the traversal, need not be
accessed.

Competitor MO, MO-
(E/Exodus)

(navigational access) | (path operators)

/o] 3 | 6 | 9]| 3] 6 [9 [[3] 6 | 9

Small Database, Cold

T1 7.0 8.5 10.1 10.6 | 17.0 23.4 3.6 | 15.1 8.6
T6 3.8 3.8 3.8 3.2 4.8 6.4 1.5 1.5 1.3
T2a 7.3 8.8 10.3 11.4 | 17.6 23.8 2.8 2.9 2.9
T2b 7.9 9.3 12.0 12.2 | 18.6 25.0 12.3| 13.7 | 18.0
T2c 8.1 9.5 12.2 13.4 | 20.0 26.8 18.5| 26.3 | 30.9
T3a 8.0 9.8 12.3 11.0 | 17.2 23.6 1.3 1.5 3.2
T3b || 17.5 | 20.2 | 28.0 11.6 | 18.2 24.8 14.4| 10.1 | 17.8
T3c || 43.8 | 48.9 | 70.5 12.4 | 19.0 25.6 16.5| 18.6 | 32.0

Small Database, Hot

T1 2.1 2.6 3.0 6.6 12.0 17.8 3.3 | 8.8 7.8
T6 0.2 0.2 0.2 0.3 0.3 0.3 1.0 | 1.6 1.0

Medium Database, Cold

T1 146.9 | 193.1 | 238.7 || 104.5 | 176.3 | 240.0 ([23.9| 66.2 | 84.4
T6 5.9 5.9 5.9 12.6 | 14.0 17.0 1.5 4.1 1.6
T2a |[151.9 | 200.2 | 246.8 || 116.2 | 201.9 | 314.9 7.2 8.2 9.3
T2b || 193.7 | 245.6 | 290.0 || 138.3 [205.1 | 320.3 || 52.1 [103.5 | 135.7
T2c || 192.7 [242.4 | 291.8 || 152.1 | 244.0 | 352.0 || 94.1 [151.8 [192.5
T3a |[166.5 | 216.8 | 266.0 || 113.2 | 200.0 | 313.3 1.4 1.6 1.8

T3b 119.9|212.9| 318.8 || 47.4|103.6 | 152.1

T3c 134.4|229.8| 330.8 (| 92.4|143.1|237.3
Medium Database, Hot

T1 90.7 |159.5| 220.3 |[25.5| 62.7 | 94.3

T6 0.3 0.4 0.5 1.1 2.2 2.1

Note that for MO, T2 (swap-update) is in general
more expensive than update T3 (toggle on single — in-
dexed — attribute), whereas all competitors have T2
cheaper than T3. This is because the decomposed
storage model implies that T2 accesses two tables,
whereas T3 only one. This outweighs the extra cost
of adapting the index in T3.

As for the MO2 numbers obtained with the path-
operator class-library: with a factor 1-4 of difference
this approach is the clear all-out winner. Algebraic
MIL operations work set-at-a-time and are more effi-
cient than doing many single object-traversals.> These
results show crisp and clear that in order to achieve
greater efficiency in complex OO traversals, one should

5The reason that T3a and T2a seem even two orders of mag-
nitude faster, is that the path-operator implementation only
visits the to-be-updated objects. If all objects would have been
visited, times would have been more similar to T1

use higher-level operations — whether it be path op-
erators like we use, or some traversal-extension to a
OQL-like language — such that the OODB can exe-
cute them efficiently, using standard query processing
techniques (optimization, parallelization).

5.2 Queries T8-T9

Traversal T8 and T9 are operations on a large text
block: Manual_text (1 MB). T8 counts all occurrences
of the character ’i’. T9 compares the first and last
character. The following performance figures are ob-
tained for a medium database size (1MB of Man-
ual_text).

Query Memory map | Non Memory map
cold |hot cold |hot

T8 (count) 0.654|0.602 |0.999|0.558

T9 (compare) |1.343|0.955 |1.898|1.123

Monet allows you to specify for all BATs one of
two different memory managements strategies: loaded
in memory, or mapped into virtual memory. For all
measurements we used the latter strategy. This en-
sures BAT pages are swapped in memory only when
required, and are therefore more efficient on low cache
hit ratios. The performance data shows a faster re-
sponse in the mapped version of T9 because here the
first and last page are retrieved only.

5.3 Queries Q1-Q7

The performance results of the queries for the
medium/9 database are shown below. We first dis-
cuss the results of Q1, in two different versions: in
Q1 Monet only returns a set of OIDs, thereby taking
advantage of its vertical decomposition strategy. The
Q1la reconstructs tuples, by performing joins on the
attributes. The difference in cold situations is due to
BAT loading and building of index structures. The
hot times clearly show the tuple reconstruction cost
stays small (0.4 s).

Query | Cold time | Hot time | Memory Size
Q1 0.77s 0.56s 2.0-2.8 Mb
Qla |[1.82 0.94s 6.0-6.9 Mb

The other query results are as follows:

Query Cold time | Hot time | Competitor
Q2 (1%) 0.62s 0.61s > 4s
Q3 (10%) |0.67s 0.64s > Ts

Q4 0.85s 0.64s > 0.4s
Q5 0.84s 0.82s > 3s
QT7A (100%) | 1.94 178 |>7s
Q7B (100%) | 2.5 2.2s > Ts

6 Conclusion

It was discussed how OO applications can be sup-
ported with Monet, a novel DBS with an unusual ar-
chitecture. Firstly, our ODMG compliant MOjy sys-
tem maps an OO persistent programming interface
onto decomposed tables in Monet. This mapping pro-
vides physical data independence, often hard sought
for in OODBs. It also optimizes object-navigation by
“lazy attribute fetching”. Secondly, we introduced a
derivate of the well-known concept of path-expressions
to define path-operators. These provide an alternative
— higher level — interface for specifying class-attribute
traversals. We implemented the OO7 benchmark us-
ing MO, with and without this path-operator library.
The comparison of results between the two and other
OODBs shows that though bare MO4 performs well,
results superior to any competitor were achieved by
the path operators, proving the importance of high-
level query processing to performance in OODBs.

References

[1] P. M. G. Apers, C. A. van den Berg, J. Flokstra,
P. W. P. J. Grefen, M. L. Kersten, and A. N.
Wilschut. PRISMA/DB: A parallel main mem-
ory relational DBMS. IEEFE Trans. on Knowledge
and Data Eng., 4(6):541, December 1992.

[2] E. Bertino and W. Kim. Indexing techniques
for queries on nested objects. IEEE Transac-
tions on Knowledge and Data Engineering, 1(2),
June 1989. Also published in/as: Mathematisch
Centrum (Amsterdam), now CMCSC, TR-ACT-
00DS,132-89, Mar.1989.

[3] P. A. Boncz, , W. C. Quak, and M. L. Kersten.
Monet and its Geographical Extensions: A novel
approach to high performance GIS processing. In
Proc. EDBT’96 Conference, Avignon (France),
March 1996.

[4] P. A. Boncz and M. L. Kersten. Monet: An im-
pressionist sketch of an advanced database sys-
tem. In Proc. IEEE BIWIT workshop, San Se-
bastian (Spain), July 1995.

[5] M. Carey, D. J. DeWitt, and J. F. Naughton. The
DEC OO7 benchmark. In Proc. ACM SIGMOD
Conf., page 12, Washington, DC, May 1993.

[6] G. Copeland and S. Khoshafian. A decomposition
storage model. In Proc. ACM SIGMOD Conf.,
page 268, Austin, TX, May 1985.

[7] J. Duhl and C. Damon. A performance compar-
ison of object and relational databases using the
Sun benchmark. In Proc. ACM Conf. on Object-
Oriented Programming Systems, Languages and
Applications, ACM SIGPLAN Notices, page 153,
November 1988.

[8] R.G.G. Catell et al. The Object Database Stan-
dard. Morgan Kaufman, 1993.

[9] et al. Neuhold,E. and Stonebraker,M. Future
directions in DBMS research. ACM SIGMOD
RECORD, 18(1), March 1989. Also published
in/as: ICCS, Berkeley, TR-88-1, Sep.1988.

[10] G. Graefe. Encapsulation of parallelism in the
volcano query processing system. In 19 ACM
SIGMOD Conf. on the Management of Data, At-
lantic City, May 1990.

[11] R. H. Guting. Gral: An extensible relational
database system for geometric applications”. In
Proceedings of the 15th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos
CA), Amsterdam, August 1989.

[12] S. Khoshafian, G. Copeland, T. Jagodits, H. Bo-
ral, and P. Valduriez. A query processing strat-
egy for the decomposed storage model. In Proc.
IEEE CS Intl. Conf. No. 8 on Data Engineering,
Los Angeles, February 1987.

[13] A.R. Lebeck and D.A. Wood. Cache profiling and
the spec benchmarks: A case study. IEEE Com-
puter, 27(10):15-26, October 1994.

[14] P. Valduriez. Join indices. ACM Trans. on
Database Sys., 12(2):218, June 1987.

[15] C. A. van den Berg. Dynamic Query Optimiza-
tion. PhD thesis, CWI (Center for Mathematics
and Computer Science), February 1994.

[16] C. A. van den Berg and M. L. Kersten. An
analysis of a dynamic query optimisation scheme
for different data distributions. In J. Frey-
tag, D. Maier, and G.Vossen, editors, Advances
in Query Processing, pages 449-470. Morgan-
Kaufmann, San Mateo, CA, 1994.

[17] C. A. van den Berg and A. van den Hoeven.
Monet meets OO7. In OO Database Systems
Symposium of the Engineering Systems Design
and Analysis Conference, Montpellier (France),
July 1996.

