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Abstract 

We consider a fluid queue fed by the superposition of n homogeneous on-off sources 
with generally distributed on and off periods. The buffer space B and link rate C are 
scaled by n, so that we get nb and nc, respectively. Then we let n grow large. In this 
regime, the overflow probability decays exponentially in the number of sources n. We 
specifically examine the scenario where b is also large. We obtain explicit asymptotics for 
the case where the on periods have a subexponential distribution, e.g., Pareto, Lognormal, 
or Weibull. 
The results show a sharp dichotomy in the qualitative behavior, depending on the shape 
of the function v(t) := -log P(A* > t) for large t, A* representing the residual on 
period. If v(·) is regularly varying of index 0 (e.g., Pareto, Lognormal), then, during the 
path to overflow, the input rate will only slightly exceed the link rate. Consequently, the 
buffer will fill 'slowly', and the typical time to overflow will be 'more than linear' in 
the buffer size. In contrast, if v(-) is regularly varying of index strictly between 0 and 1 
(e.g., Weibull), then the input rate will significantly exceed the link rate, and the time to 
overflow is roughly proportional to the buffer size. 
In both cases there is a substantial fraction of the sources that remain in the on state 
during the entire path to overflow, while the others contribute at their mean rates. These 
observations lead to approximations for the overflow probability. The approximations 
may be extended to the case of heterogeneous sources. The results provide further insight 
into the so-called reduced-load approximation. 
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1. Introduction 

Measurements have indicated that network traffic exhibits burstiness on a wide range of 
time scales [27]. This conclusion was drawn after thorough examination of traffic streams in 
a variety of packet-based networks, see for instance [6], [38]. The discovery of the presence 
of long-range dependence had a major impact on traffic modeling. Where one used to rely 
on short-range dependent models, recent work has witnessed an increasing interest in traffic 
models which exhibit burstiness on a wider range of time scales. 

Received 15November1999; revision received 17 May 2000. 
*Postal address: Bell Laboratories, 600 Mountain Avenue, P.O. Box 636, Murray Hill, NJ 07974, USA. 
**Postal address: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email address: sem@cwi.nl 

1150 



I 

Queues with many long-tailed inputs 1151 

The crucial characteristic oflong-range dependent traffic is that it does not obey a Markovian 
correlation structure, as such a structure is inherently short-range dependent. Several models 
have been proposed to capture the essential features. As described in the survey by Boxma and 
Dumas (11], three major approaches may be distinguished. (i) Erramilli et al. (19] advocate 
the application of chaotic maps. (ii) Norros (34], [35] proposes the use of fractional Brownian 
motion. (iii) Willinger et al. [ 46] use the superposition of on-off sources with long-tailed 
activity periods. In the present paper, we follow the third approach. 

An on-off source alternates between activity periods (commonly referred to as bursts) and 
silence periods. On-off models have appeared to be extremely versatile. Specific choices for 
the distributions of the on and off periods enable us to capture the relevant characteristics of 
network traffic. In the basic model, a superposition of these sources feeds into a buffer which 
is emptied at constant rate C. One then often focuses on the probability of the buffer content 
exceeding some level B. 

Kosten (25], [26], Anick et al. [3], Elwalid and Mitra (18] and Stem and Elwalid [44] 
examine the case where the on and off periods are mixtures of exponential distributions. They 
explicitly find both the steady-state buffer content distribution and large-buffer asymptotics. In 
these models, the overflow probability decays essentially exponentially in the buffer level B. 

In the present paper, we depart from the assumption that the on and off periods have 
exponentially bounded tails. Instead, we assume 'long-tailed' distributions, such as Pareto, 
Lognormal, and Weibull. Based on results in the literature discussed below, we expect that long­
tailed activity periods should cause the overflow probability to decay slower than exponentially 
in the buffer level B. 

1.1. Literature 

The early literature on long-tailed queues goes back to the 1970s. Important contributions 
were made by Cohen [12] andPakes [36]. They consider G I /G/l queues in which the residual 
service time has a subexponential distribution. The class of subexponential distributions is an 
important subclass of the class of long-tailed distributions, see Section 2. Remarkably, the 
waiting-time distribution has a similar shape to the residual service time. 

During the 1990s the focus shifted to on-off sources. Boxma [9] and Jelenkovic and 
Lazar [23] consider a queue fed by a single source. Applying the result for the G I/ G / 1 queue, 
they obtain the large-buffer asymptotics. It turns out the tail behavior is mainly determined by 
the distribution of the residual on period- provided this random variable has a subexponential 
distribution. This result will play a crucial role in our analysis. 

The analysis in the case of multiple on-off sources is fundamentally more complicated. 
Dumas and Simonian [ 17] derive asymptotic upper and lower bounds for the buffer content 
distribution. Agrawal et al. [l] consider the special case of two on-off sources. Under 
certain conditions, the buffer content is proved to be asymptotically equivalent to that in a 
reduced system. The reduced system consists of a queue fed by only the 'heavier-tailed' 
one of the two sources, emptied at the link rate C subtracted by the mean rate of the other 
source. This reduced-load equivalence had also been found by Boxma (10] and Jelenkovic 
and Lazar [23] in the case of one regularly varying source and several exponential sources. 
The result requires the assumption that the peak rate of the heavy-tailed source, increased 
by the mean rates of the other sources, exceeds the link rate C. In a recent paper, Zwart 
et al. [48] extend the reduced-load equivalence, and obtain the exact large-buffer asymp­
totics for the general case of multiple heterogeneous on-off sources with regularly varying 
on periods. 
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A related class of models is that of M / G / oo input. Sessions arrive as a Poisson process, and 
remain in the system for a generally distributed time, during which they generate traffic at a fixed 
rate. Resnick and Samorodnitsky [39] derive large-buffer asymptotics for regularly varying 
holding times. Parulekar and Makowski [37] and Duffield [15] obtain large-buffer asymptotics 
for subexponential holding times. In [15] the Poisson arrival rate, link rate, and buffer size 
are scaled as A = nA., C = nc and B = nb, respectively, with n growing large. This regime 
allows explicit asymptotic analysis, as results from large-deviations theory become applicable. 
Related results may be found in [30] and [31]. Likhanov and Mazumdar [29] generalize the 
large-buffer asymptotics for regularly varying holding times to the case of heterogeneous session 
characteristics. 

A relevant performance measure is also the expected time until overflow of a given large 
buffer level. Heath et al. [21] show that this quantity is strongly affected by the values of 
the system load and the rate of individual sessions relative to the link rate. Resnick and 
Samorodnitsky [ 40] give the exact asymptotics of this quantity for the case where a single long 
active session is sufficient to cause a positive drift in the buffer content. 

1.2. Contributions 

Following Duffield [15], we scale buffer and link rate, in our case with the number of 
sources n. We focus on the case where the exponentiality assumptions on bursts and silence 
periods are removed. Applying large-deviations techniques, we show that the overflow proba­
bility decays exponentially in the scaling parameter n, with decay rate I (b) as a function of the 
scaled buffer size b. Within this regime, we are interested in large-buffer asymptotics. In other 
words, we examine I (b) for large b. In this setting the present paper makes the following two 
contributions. 

• We find a function v(-) such that I (b)/v(b) tends to a positive constant, for large b. This 
is done by characterizing the moment generating function of the traffic generated by a 
single source in an interval of length t, under a specific scaling. The scaling was first 
proposed by Parulekar and Makowski [37] for the M / G / oo case, but also applies in our 
model. Then we exploit this characterization to establish the asymptotics of I (b) for 
large b. As mentioned above, all large-buffer asymptotics obtained previously require 
specific model assumptions; ours do not. The trade-off is that the results are asymptotic 
in the number of sources as well as the buffer size. 
In particular, we show that if the residual on period is subexponential, then so is the 
buffer content distribution (i.e., the growth of I (b) is slower than linear). The practical 
implication is that buffer dimensioning based on Markovian models (for which /(b) is 
essentially a straight line) would be overly optimistic in the case of large buffers. This 
result may be seen as complementary to that in [32]. There it is shown that, in the case 
of small buffers, long-range dependence does not have a substantial effect on the loss 
probability. We refer the reader to [20], [22] and [42] for related results indicating the 
significant influence of the buffer size on the impact of long-range dependence. 

• We contribute to the understanding of the way oveiflow occurs. Clearly, to fill a large 
buffer, there is a trade-off between the intensity of the deviant behavior (to what extent 
does the input rate exceed the link rate?) and the duration of the deviant behavior. For 
on-off sources with exponentially bounded on periods, it is known that sources alternate 
between on and off during the path to overflow, but with longer on periods and shorter 
off periods; all sources behave in essentially the same way [2], [33], [45]. In contrast, 
if the on periods are subexponential, then sources contribute either at their mean rate or 
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their peak rate. ~t differently, some sources remain in the on state during the entire path 
to ov~rflow, while the others alternate between on and off (thus effectively contributing 
at their mean rates). We can explicitly calculate the number of sources that transmit at 
peak rate all the time. 
This understanding is exploited to derive a number of approximations for the overflow 
pro?ability_ an? also for the case of heterogeneous sources. For regularly varying on 
penods, this yields a reduced-load equivalence, which is in agreement with the bounds 
of Dumas and Simonian [17]. 

1.3. Organization 

The remainder of the paper is organized as follows. Section 2 describes the model, introduces 
notation, and gives some basic definitions and assumptions. Section 3 presents the analysis. 
We establish the structure of the cumulant function of the traffic generated by a single source. 
under a critical scaling. Section 4 concentrates on the intuition behind the results and provides 
qualitative insights. Section 5 concludes. 

2. Model and preliminaries 

In the first subsection, we introduce the model and the required assumptions. The second 
subsection briefly reviews the class of subexponential distributions and states the asymptotic 
result for a queue fed by a single source with subexponential on periods. 

2.1. Model description 
We consider traffic from n on--off sources arriving at a buffered resource. The resource is 

modeled as a queue with constant depletion rate C. The traffic rate of each source alternates 
between a peak rate r and 0. The activity periods form an i.i.d. sequence of random variables. 
each of them distributed as random variable A. We assume that A has unbounded support. The 
silence periods are also an i.i.d. sequence, distributed as random variable S. Both sequences 
are mutually independent. We also define A (t) to be the traffic generated by a single source in 
steady state in the time interval [0, t]. Later in our analysis we need the following assumption. 

Assumption 2.1. The random variables A and Sare such that EA IH < oo !for some posi­
tive t;) and ES < oo. The distribution of A + S is non-lattice. 

The above assumption has two major implications - for details we refer the reader to 
Section 2.1 of [ 17]. In the first place, the fact that both EA and ES are finite ensures that the 
long-run fraction of time that the source spends in the on state is 

EA 
p :=EA +Es· 

and the fraction of time spent in the off state is the complement, 1 - p. Also, the residual 
activity period A* is well defined: conditioned on the process being in the on state, A* has 
distribution 

1 {co 
FA•(x) := P(A* > x) =EA Jx P(A > y) dy. 

We are interested in the probability of the buffer content exceeding some level B, denoted ~y 
p(B, C). We rescale the resources by the number of sources: C = nc and B = ~b. This 
scaling was first introduced by Weiss [ 45] and has proved to be very powerful (see. for mstance. 
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3. Analysis 

We focus on the situation with a large number of sources feeding into a large buffer. As 
mentioned in the introduction, we investigate the asymptotics of the exponential decay rate I ( b) 
for large values of the buffer level b. 

In the first subsection, we review the relevant large-deviations results, which enable us to 
calculate I (b) for general b. This expression remains somewhat implicit: it turns out to be the 
solution to a variational problem. In particular, we concentrate on the conditions under which 
this result applies. We also stress the role of the so-called 'scaling function'. 

In the second subsection, we study the logarithm of the moment generating function of the 
random variable A(t), also called the eumulantfunetion. The cumulant function is needed ir 
the variational problem mentioned above. We show that, under a specific scaling, the cumulanl 
function is piecewise linear for on-off sources with subexponential on periods. The choice of 
the particular scaling is due to Duffield [15] and Parulekar and Makowski [37]. 

The third subsection contains the main result: the asymptotics (for large b) of the decay 
rate. We combine the variational problem of Subsection 3.1 and the cumulant function of 
Subsection 3.2. Here, we follow the approach of Duffield [15] for the M/G/oo case. 

3.1. Decay rate for general buffer level 

In this subsection, we focus on the evaluation of the decay rate for general buffer level b. 
The theorem which we will use in Subsection 3.3 is a variant of the key theorem of [28], which 
is stated in Theorem 3.2 below. In [28], this result is phrased in the setting of slotted time; in 
[32] it is extended to continuous time. The latter version is formulated in Theorem 3.2 below, 
and requires the following assumption. 

Assumption 3.1. Define 

and assume that: 

lr(x) := sup( ex - log E e8A(t)) 
e 

(i) for any b ~ 0, lim infHoo 11(b +et) (log t)- 1 > O; 

(ii) J(b) := infr>O 11(b +et) is a continuousfunetion of b. 

Theorem 3.2. (Loss curve for general b.) Under Assumption 3.1, 

I(b) := - lim ~ logpn(b, e) = J(b) = inf sup(e(b +et) - logBeeA<r>). (1) 
n-+oo n t>O e 

For the proof of Theorem 3.2, we refer the reader to [32]. Assumption 3.l(ii) is of a 
technical nature, and will be satisfied in all cases of practical interest. Assumption 3. l(i) is due 
to Likhanov and Mazumdar [28]. In earlier versions of Theorem 3.2, e.g., the one in [8], the 
conditions imposed on the input process were usually more restrictive. In [8] it is required that 
there is a e such that fort large enough log E e8A(t) < cet. 

It is not hard to show that this condition is not fulfilled for on-off sources with heavy-tailed 
on periods (see [32)). The (weaker) requirement Assumption 3.l(i) is satisfied under the non­
restrictive condition that EA 1 +~ is finite for some positive;, as we postulated in Assumption 2.1. 
We prove this in the next proposition. 
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[8], [13] and [43]). We assume the system is stable and non-trivial: 

p := pr < c < r. 

In the scaled model we define Pn (b, c) to be the steady-state probability that the buffer content 
exceeds level nb. In particular, we will analyze the exponential decay rate (as a function of b, 
for fixed c): 

given that the limit exists. 

2.2. Subexponentiality 

1 
I (b) := - lim - log Pn (b, c), 

n->00 n 

In this subsection, we give the definition of subexponential distributions and state the 
asymptotic result for a queue fed by a single source with subexponential on periods. More 
details may be found in the appendices of [ 11]. Throughout, we denote by F x (-) the distribution 
function of the random variable X, with FA* ( ·) specifically indicating the distribution function 
of the residual activity period. 

Definition 2.2. (Subexponential distribution.) Suppose that 

P(X + X' > t) 2 
--+ ' P(X > t) 

t--+ 00, 

where X and X' are i.i.d. random variables. Then we say that X has a subexponential 
distribution, or FxO E -8. 

Besides -8, we introduce a second class of distribution functions. In this class, a crucial role 
is played by the function vx(t) := -log P(X > t). In Section 3 we will show that the shape of 
this function determines the large-buffer asymptotics, with X = A*. 

Definition 2.3. (Subexponentially varying distribution.) Suppose that the function vxO is 
regularly varying of index h (at infinity), that is, 

vx(yt) h 

vx(t) --+ Y ' t--+ 00, 

for all y > 0. If vxO is regularly varying of index h E [0, 1), then we say that X has a 
subexponentially varying distribution, or Fx(-) E V. 

In the last definition we used the concept of regular variation (see, for instance, Section 1.4 
of [7]). The exact relationship between the classes -8 and V is not clear. However, the most 
important long-tailed distributions (such as Pareto, Lognormal, or Weibull) are in both of them. 

The following theorem is an extension of the results for the GJ / G /1 queue in [12] and [36], 
and may be found in [9] and [23]. This result for a queue fed by a single source will be one of 
the main building blocks in the analysis of the queue fed by n sources. 

Theorem 2.4. (Single source.) Denote by Q the steady-state buffer content in a queue with 
service rate c fed by a single source with p < c < r. If FA•O E -8, then 

P(Q > b)"' (1 - p)-p-P (A*> _b_), 
c-p r-c 

where '"''means that the ratio of both sides tends to 1 as b --+ oo. 
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Proposition 3.3. Consider an on-off source with on periods A. 

(i) Assumption 3.l(i) is satisfied ifEA 1H < oofor some positive;;. 

(ii) If FA•(-) E .S, then for any positives < r - p, there is a positive constant K8s such that 
fort large enough 

( A(t) ) * (1 - 8)s 
P -t- > p + s :S K8 8 P(A* > 8*t) where 8 := , 8 E (0, 1). 

r - (p + 8s) 

Proof We start with the second statement. 

(ii) We may write 

p ( A;t) > p + s) = P(A(t) - (p + os)t > (1 - o)st) 

:S P(3s : A(s) - (p + os)s > (1 - o)st) 

= P(Q > (1 - o)st), 

where Q is defined to be the steady-state buffer content when the source feeds into a queue 

with service rate p + os. Using Theorem 2.4, we see that there is a K8s such that fort large 

enough the statement holds. 

(i) Proposition 3.1 of [28] states that Assumption 3. l(i) is satisfied if for all s E (0, r - p) there 

are positive K and a such that for t large enough 

( A(t) ) P -t- > p + s :::; K t-cx. 

As above, 

P(A;t) > p+s) :SP(Q >!Et), 

where Q denotes the steady-state buffer content when the source feeds into a queue with service 

rate p + !s. If FA·O E .S (which we will assume in most of the sequel anyway), then the 

desired statement follows as above, since EA 1+1 < oo implies that P(A * > 8*t) :::; t-s fort 

large enough. 
To see that the statement also holds when FA* ( ·) 'f- .S (in which case Theorem 2.4 cannot be 

used), we may invoke a result of [24] to relate the buffer content in a fluid queue to the waiting 

time W in a corresponding G I/ G / 1 queue with service times proportional to A. Theorem 2.1 

of Chapter 8 of [4] states that EWS" < oo if EA 1+1 < oo. Using Markov's inequality, the 

desired statement then follows directly with a = ~. 

Corollary 3.4. An alternative variational problem to compute the decay rate is given by 

/(b):=- lim -logpn(b,c)=infw(t)J1 -+c , 1 - (b ) 
n-+oo n t>O t 

where 
_ ( logEefiA(t)w(t)/r) 

J1(x) :=sup fJx - , 
e w(t) 

(2) 

for an increasing positive function w(-). Compared to the variational problem of ( 1), the 

optimum is attained at the same t* and a value of fJ* that is t* /w(t*) times as large. 
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The function w (-) in Corollary 3.4 is usually called a scaling function. It was introduced 
in [14], [16] to enable large-deviations analysis in situations where there is no exponential 
decay. For the case of M/ G /oo input, the use of the scaling w(t) = -log P(D* > t). with D* 
representing the residual session length was proposed in [37]. In the sequel, we use the scaling 

w(t) = v(t) := VA•(t) = -logP(A* > t). 

3.2. The cumulant function 

As observed in Subsection 3.1, the moment generating function of A(t) plays a crucial role 
in determining the decay rate I (b). In view of Corollary 3.4, we are interested in the asymptotic 
behavior of 

log E el3A(t)v(t)/t 

v(t) 
(3) 

In this subsection, we prove that, for t large, this cumulant function is piecewise linear in e. 
The exact statement is given in Theorem 3.6, but we provide an intuitive explanation for the 
result first. 

The intuition for queues with heavy-tailed activity periods is that - during the path to over­
flow -with overwhelming probability, a source sends either at mean rate, or sends essentially 
the entire time interval at peak rate. This behavior is reflected by the following asymptotics: 
in Theorem 3.6 we will prove that 

Eexp(8A(t)v(t)/t) ~ (1-P(A* > t))eGpv(t) +P(A* > t)el3rv(t) 

~ exp[v(t) max{8p, er - l}], 

as t ~ oo. In order to prove (the formal version of) this statement, we first establish an auxiliary 
lemma. 

Lemma 3.5. For all 8, with h E [O, 1), 

max fx(8) = max{8p, 8r - l}, where fx(B) := 8(p +x) -(-x-)h 
xEfO,r-p] · r - P 

Here, xh with h = 0 is defined to be I for x > 0, and to be Ofor x = 0. 

Proof The proof follows directly from the convexity of ft ( e) in x. However, we give an 
alternative proof to provide additional insight. First note that, if x = 0, we get curve ep; for 
x = r - p we get er - l. . 

Now take an x in the interior of the interval: x E (0, r - p). The lines (Ip and er - l mtersect 
at e0 : = (r - p )- 1 • Suppose that we can prove that 

fx ceo) = 8(p + x) - (-x-)h I < max{Bop, Bor - I}= r ~ p, (4) 
r - P il=llo 

then we are done. This is because the slope of ft (8) (as a function of 8) is in the interval (p, r ). 
So, if (4) holds, then fx (8o) is smaller than or equal to 8p fore ::: Bo. and smaller than or equal 

to fJr - l for fJ ::::: Bo. 
Statement (4) follows directly from the standard algebraic inequality 

( x)h (x) p 
Bo(p+x)- r-p <8o(p+x)- r-p =r-p' 

recalling that h E [0, 1) andx E (0, r - p). 



1158 M. MANDJES AND S. BORST 

Theorem 3.6. (Cumulant function.) For on-off sources with FA·O E -8 n v and e '.'.'.: 0, 

lim (logEexp(BA(t)v(t)/t))jv(t) = max{ep, er - l}, 
t-+oo 

with v(-) regularly varying of index h E [O, 1). 

Proof The proof consists of (i) a lower bound and (ii) a matching upper bound. 

(5) 

(i) Lower bound. The limit in the left-hand side of (5) is larger than ep due to Jensen's inequality. 

This bound holds for all e ::: 0. 
A second lower bound can be found by considering the event that the source remains in the 

on state during the entire interval [O, t]. For all e '.'.'.: 0, t > 0: 

Eexp(8A(t)v(t)/t) '.'.'.: pP(A* > t)eerv(t) = pe(er-l)v(t)' (6) 

with p denoting the probability of the on state. 

Combining both lower bounds yields the desired result: 

lim inf(log E exp(& A(t)v(t)/ t)) / v(t) '.'.'.: max{8p, er - 1 }. 
1-+00 

(ii) Upper bound. First take e '.'.'.: 0. Choose a k EN and e := ek = (r - p)/ k. Then 

k-1 (A(t) ) E eeA(tlv(rl/r :::::: ee(p+slv(tl + L eB(p+Ci+l)e)v(t)p _t _ E [p +is, p + (i + 1)£] . 

l=l 

Now use Proposition 3.3(ii). For any 8 E (0, 1) 

P - E [p +ii;, p + (i + l)s] :S Kiae exp -v . t . ( A(tl ) [ ( (l-8)is )] 
t r-(p+ozs) 

Using the fact that v(·) is regularly varying of index h, we obtain 

I. logEexp(8A(t)v(t)/t) { . ( (1 - 8)i£ )h} 
1msup :::::: max 8(p + (z + l)i;) - . . 
HOO V(t) i=O,. . .,k-1 r - (p + oze) 

Optimizing over a continuous, rather than a discrete, domain gives the upper bound 

max {ecp+x+s)-( (I-o)x )h}· 
XE[O,r-p] r - (p +OX) 

Now let 8 .J, 0, k ~ oo (and hence ck .J, 0) and use Lemma 3.5. The upper bound then follows. 

3.3. Large-buffer asymptotics of the decay rate 

In this subsection, we combine the large-deviations results for general buffer level b, as were 

obtained in Subsection 3.1, and the specific structure of the cumulant function, as derived in 

Subsection 3 .2. The proof is similar to that of Duffield [ 15] for the M / G / oo case. We first 
prove the analogue of Duffield's Lemma 6. 

Lemma 3.7. The following statements hold for fx(x), t ~ oo: 

(i) For all x E (p, r), limr-+oo J1(x) = (x - p)/(r - p). 

(ii) The convergence in (i) is uniform on compact subsets of (p, r). 
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Proof (i) Notice that it (x) is the Legendre-Fenchel transform of the cumulant function (3). 
The following result is established in the proof of Theorem 2 of [14]. Let ft be a sequence 
of convex functions that converge pointwise to f on the interior of the effective domain of f. 
Then the Legendre-Fenchel transforms ft(x) := supe (ex - ft(e)) also converge to j*(x) := 
sup11 (ex - f (e)) on the interior of the effective domain off*. Therefore, for x E (p, r), 

lim ft(x) =sup ex - lim . 
_ ( log E eeA(t)v(t)/t) 

t-+oo 11 t-+oo v(t) 

From the facts thatEA(t) =pt andx E (p, r), it easily follows that the above supremum needs 
to be taken over positive e only. Using Theorem 3.6 and observing that 

x-p 
sup(ex - max{Bp, er - 1}) = --
11>0 r - p 

if x E (p, r), we are done. 

(ii) As may be found in Theorem 10.8 of [41], the following property holds: if finite convex 
functions ft converge pointwise to a finite convex function f on a certain domain, then the 
convergence is uniform on compact subsets of the domain. 

So it remains to prove that J1 (x) is finite for x E (p, r). Take an x in this interval; as above, 
the supremum in (2) needs to be taken over positive e only. We arrive at 

( 
log E eeA(t)v(t)/t) ( log(pP(A * > t) eerv(t>)) 

sup Bx - < sup ex - --------
e>o v(t) - e>O v(t) 

= sup (ex - _lo_g_p - er+ 1) < oo, 
1!>0 v(t) 

for x E (p, r), where the first inequality follows from (6). 

We are now in a position to prove the main theorem. It states that for on-off sources 
with FA•O E V n -8, the loss curve I(b) is, up to a multiplicative constant, asymptotically 
equal to v(b). In other words, we come to the remarkable conclusion that the residual on period 
completely determines the large-buffer asymptotics; the off-period distribution contributes only 
by its mean, via p. 

Theorem 3.8. (Large-buffer asymptotics.) The following large-buffer asymptotics of the decay 
rate hold for on-off sources with FA·O E -8 n V: 

lim I(b) = 
b-+oo v(b) 

c-p 

r-p 

c - p _l_ (-h-(c _ p))-h 
r-pl-h l-h 

if h = 0, 

c-p 1 
ifh E (0, 1) and---1 h ~ 1, 

r-p -

c-p 1 
ifh E (0, 1) and ----h > 1. 

r-pl-
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Proof. The proof consists of (i) an upper bound and (ii) a matching lower bound. 

(i) Upper bound. The proofofthe upper bound is parallel to that in [15] for the M/ G /oo case. 
By Corollary 3.4, 

. l(b) . inft>O v(t)l1(b/t + c) 
bmsup- = hmsup (b) · 

b-+OO V(b) b-+OO V 

Note that we in fact minimize overt ?: b (r - c)-1, as the rate function is infinite for smaller t. 
A formal proof of this statement is not difficult; the intuition is that t represents the time to 
overflow starting in an empty system; this must obviously be later than b (r - c )- 1• 

Substituting s := b/t, we have for alls E (0, r - c) 

. l(b) . v(b/s)Jb/s(s + c) -h s + c - p 
hm sup - .5 bm sup b = s , 

b-'>oo v(b) b-+oo v( ) r - p 

where the last equality follows from Lemma 3.7(i). As this holds for alls E (0, r - c), 

. l(b) . -hs+c-p 
hmsup- < mf s . 

b-+oo v(b) - se(O,r-c) r - p 

Evaluation of this last term shows that: 

• If h = 0, then clearly s* = 0 is the minimizing value. 

• If h > 0, then it is easily seen that the infimum over (0, r - c) is attained for 

s* = min {r - c, 1 ~ h (c - p) }· 

Substituting into the objective function gives the desired result. 

(ii) Lower bound. We distinguish between the cases that (A) h = 0 and (B) h > 0. 

(A) Take an e > 0, a S E (0, 1) and let S* be defined as in Proposition 3.3(ii). The fact that 
h = 0 implies that for arbitrary e' > 0, v(S*t) ::: v(t)(l -e') fort large enough. By arguments 
similar to those in the upper bound of Theorem 3.6, 

E e9A(t)v(r)/r .5 ee(p+e)v(t) +Ke eerv(t)-v(~*t) 

5 2 max{el:l(p+e)v(t), Ke eerv(t)-v(t)(l-e')} 

5 2(1 +Ke) max{eli<p+e)v(t)' eerv<t>-vU>O-e'l}. 

This implies that 

I (b) ::::: inf v(t) sup (e (~ + c) + _s_ - max{8(p + e), 8r - I + e'}) , 
t?;b(r-c)-1 e t v(t) 

with s := -log 2- log(l +Ke). The supremum over e can be explicitly calculated; we obtain 
the lower bound 

/(b)?:s+ inf v(t)(b/t+c-p-e(l-e')). 
t>b(r-c)-1 r - p - e 
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Since v(b) -+ oo as b-+ oo, 

1 . . fl(b) 1 .. f .f (v(t))(b/t+c-p- 8 ') imm -- > imm m -- (l -e) 
b-+oo v(b) - b--+oo t>b(r-c)-1 v(b) r - p - 8 · 

Now let 8 .} 0 and e' .} 0. Since t > b(r - c)- 1, v(t)/v(b) :::: l - r/ for arbitrary positiver/ 
and b large enough. Consequently, (c - p)(r - p)-1 is a lower bound, as desired. 

(B) The proof of the lower bound for h > 0 is analogous to that in [15]. Assume that 
infsE(O,r-c) v(b/s)Jb/s(s + c) is attained for s =Sb. (Otherwise, let Sb be such that it reaches 
a value within e of the infimum; then let e .} 0.) Clearly, 

1. . f l(b) 1. v(b/sb)Jb/sb(sb + c) 
imm -- = 1m 
b--+oo v(b) b--+oo v(b) ' 

where the latter limit is along a subsequence. We will denote the subsequence simply by (sb )b. 

Then Duffield [15] distinguishes between three cases: (I) there is a closed interval in (0, r - c) 
in which the (sb)b eventually lie, (II) the (sb)b converge to 0, and (III) the (sb)b converge to oo. 
In our setting, the third possibility can clearly be excluded: we have Sb E [O, r - c] due to 
peak-rate limitations. 

In case (I), we have to use Lemma 3.7(ii): ]1(-) converges uniformly on compact subsets of 
(p, r). Also, the regular varying property of v(·) says that v(b/s)/v(b) converges uniformly 
on closed intervals. Analogously to the proof in [15], this enables us to prove the lower bound 
immediately. 

In case (II), the following reasoning applies. As in [15], it may be shown that fr(x + c) is 
bounded away from zero as t -+ oo, and consequently also Jb/sb(sh + c). Ash is positive, 
v(b) /v(b /Sb) goes to zero. This means that l (b) /v(b) tends to oo, which contradicts the upper 
bound. Therefore, a sequence (sb)b with limit 0 cannot exist for h > 0. 

Remark. The proof in [15], for the lower bound in the corresponding M/G/oo case, does 
not distinguish between the cases h = 0 and h E (0, 1). In fact, also for the case h = 0 it is 
claimed that there cannot be a subsequence such that (sb)b goes to zero. This conclusion relies 
on the supposition that Sb -+ 0 implies that v(b)/v(b/sh) -+ 0. The latter statement is valid 
for h > 0, but not for h = 0. Take, for example, v(b) = log b and Sb = (log b)-1. It is easily 
verified that v(·) is slowly varying so that h = 0. However, 

v(b) logb 
lim --- = lim = 1. 

b--+oo v(b/sb) h--+oo log(b log b) 

In the case of n homogeneous sources, we could circumvent this problem by distinguishing 
between the cases h = 0 and h E (0, l). 

Nevertheless, we expect the key result (Theorem 4) of [15] to be valid, given the similarity 
between the model with a fixed number of on-off sources and the one with M / G / oo input. 
The proof probably requires more detailed information on the speed of convergence towards 
the limiting cumulant function found in [37], as in part (A) of our lower bound. 

This touches on a crucial distinction between the cases h = 0 and h E (0, 1). Let fb be the 
optimizing t for buffer size b, and let us consider b / tb for b large. When h = 0, the proof of 
the upper bound indicated that s = 0 is optimal; in other words, b/th approaches 0 for large b, 
corresponding to tb being 'superlinear' in b. A similar statement may be derived from the lower 
bound: this such that liminfb--+oo v(tb)/v(b) ::=: 1. For fb = ab (where a> (r - c)-1) the 
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Jim inf would give a- 1, which is clearly minimized for a= oo. This supports the observation 
that tb is superlinear in b. 

When h E (0, 1), the fact that (sb)b cannot converge to zero tells us that tb is approximately 
linear in b: the time to overflow is proportional to the buffer size. We return to this issue in 
more detail in the next section. 

4. Qualitative insights - reduced load 

The results of the previous section may be used to obtain a better understanding of the most 
likely way for buffer overflow to occur. For Markovian-type sources, very detailed analyses 
are available. When the on and off periods are mixtures of exponential distributions, it is well 
understood that the sources must behave according to a different statistical law in order to fill 
a large buffer. The on and off periods are 'exponentially twisted', such that the on periods are 
longer and the off periods are shorter than average. References here are the seminal paper of 
Weiss [45) and recent papers by Mandjes and Ridder [33) and Wischik [47). 

For sources with subexponential on periods, the results of the previous section provide the 
following intuition. During the path to overflow, a source either sends at peak rate for the 
entire period, or constantly alternates between on and off, and effectively contributes at mean 
rate. This behavior is nicely reflected in the shape of the cumulant function. Note that this 
contrasts with the behavior exhibited by Markovian-type sources (as described above), where 
all sources behave in the same way. A related dichotomy was identified by Anantharam [2], 
who considered G I/ G / 1 queues. He showed that for exponentially bounded service times, it is 
multiple long service times and short interarrival times which typically cause overflow, whereas 
for heavy-tailed service times this is most likely due to just a single extremely long service time. 

4.1. Homogeneous sources 

In the next two subsections, we develop approximations for the overflow probability 
p(B, C) based only on knowledge of the distribution of the residual activity period. We consider 
both the case of homogeneous sources as before, as well as heterogeneous sources. 

Conjecture 4.1. (Homogeneous subexponential sources.) Consider a queue with service 
rate C fed by n homogeneous on-off sources with FA•(-) E -8n1i. Then the overflow probability 
may be approximated as 

( B )K p(B,C)~ max PA*> , 
K:Kr+cn-K)p>C Kr + (n - K)p - C 

where K E {O, ... , n}, and f(B) ~ g(B) denotes that the ratio oflog f (B) and log g(B) tends 
to I for large B. The maximizing value K* provides an estimate for the number of sources that 
send at peak rate during the entire path to overflow. 

The approximation may be motivated as follows. Put K = nk, and use the scaling B = nb 
and C = nc. Then the conjecture gives 

- logpn(b, c) ~ - min kv 1 ( b ) 
n k:kr+(I-k)p>c kr + (1 - k)p - c 

~ - min k(kr + (1 - k)p - c)-hv(b). 
k:kr+(l-k)p>c 
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The minimum is attained for 

(7) 

Notice that the ?Ptimization is equivalent to that in Subsection 3.3 (in the upper bound of 
Theorem3.8), with s = kr+(l-k)p-c; it directly yields the decay rate derived in Theorem 3.8. 
Thus, the approximation is exact for large n. 

For h = 0 the fraction of sources that send at peak rate during the path to overflow is 
(c - p)(r - p)- 1, while the remaining fraction (r - c)(r - p)- 1 contribute at mean rate p. 
This gives the aggregate input rate 

c-p r-c 
--r+--p=c. 
r-p r-p 

In other words, if h = 0, then the net input rate will only be slightly larger than O, in agreement 
with the superlinear time to overflow identified in Subsection 3.3. If h > 0, however, then it 
is easily seen that the net input rate will be strictly positive, thus leading to a time to overflow 
which is roughly linear in the buffer size. If his close to l, then all sources will have long on 
periods (ask*= 1). We now illustrate these phenomena through some examples. 

Example 1. (Pareto distribution.) It is easily verified that if the on periods are Pareto dis­
tributed, then FA*(-) E V with h = 0; we assume that v(t) ~ (a - 1) log t for some a > I. 
In other words, the number of sources sending at peak rate will be such that their peak rates 
increased by the mean rates of the other sources, just exceed the link rate. 

Some calculations show that the decay rate looks like 

. ( (b ) logEeilA(t)v(tl/t) 
mf v(t) sup e - + c - . 
t>O e t v(t) 

With the prior knowledge that t will be large, and Theorem 3.6, the above quantity will 
approximately be equal to 

( (b ) ) (b/t+c-p) inf v(t) sup e - + c - max{ep, er - l} = inf v(t) . 
t>O e t t>O r - p 

Taking the derivative with respect to t yields the first-order condition b = ( c - p )t I (log t -

solved (for large b) by tb = bf(b), with JO such that log(bf(b))/f(b) ~ c - p. Note I 

f (b) is clearly smaller than polynomial, but larger than a constant. 

Example 2. (lognormal distribution.) It is easily verified that ifthe on periods are Lognorm< 
then FA•C-) E V with h = 0, as v(t) ~ 2(8logt)2 fora positiveparametero. In fact, the sam 
line of reasoning applies as for Pareto on periods. Again, we see that the input rate only slight!) 
exceeds the link rate during the path to overflow, and that the time to overflow is superlinear. 

Example 3. (Weibull distribution.) A Weibull distribution exp[-ttl] has a vO function which 
is regularly varying of index fJ. The number of sources that send at peak rate during the path to 
overflow is given by (7), with h = fJ. Notice that, in particular for fJ close to I, it may be the 
case that all sources contribute at peak rate. In any case, the time to overflow will be roughly 
proportional to the buffer size (as opposed to the case of Pareto distributed or Lognormal on 

periods), with tbk*(r - c) ~b. 
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4.2. Heterogeneous sources 

In this subsection, we consider the case of heterogeneous sources. First, we focus on a 
scenario with na sources of type 1 and n(l - a) of type 2, a E (0, 1). Their characteristics 
(mean, peak, ... ) are denoted as usual, but with a subscript to indicate the type of source. 
Suppose that the type-2 sources are 'smoother' than the type-1 sources, i.e., assume that the 
type-2 sources have exponential on periods, whereas the type-1 sources have subexponential 
on periods. Also, assume that ar1 + (1 - a) P2 > c. In view of the results of Subsection 4.1, it 
would seem natural to replace the type-2 sources by their mean rates. We now discuss conditions 
under which this 'reduced-load approximation' may be justified. 

For heterogeneous sources, the analogue of (1) reads: 

infsup(&(b+ct)-alogEe8A 1<1l -(1-a)logEe8A2<1l). 
t>O e 

Applying the scaling e -+ Bv1 (t)/t, we obtain 

( (
b ) logEexp(eA1(t)v1(t)/t) 

inf V) (t) sup 8 - + (c - (1 - a)p2) - a ( ) 
t>O e t V\ t 

-(1-a) . 
logEexp(&(A2(t) - (1 - a)p2t)v1 (t)/t)) 

V\ (t) 

For the reduced-load approximation to apply, the last term in the above expression should vanish 

forlarge b. It may be expected thatthis will be the case if v1 (t) / Jt -+ 0, because of the central 
limit theorem. However, for A1 Weibull with shape parameter f3 larger than i this is not the 
case, and the reduced-load approximation will not hold. 

This is in agreement with results of Agrawal et al. [ l ], who consider the case of two sources. 
They also find that the reduced-load equivalence does not apply for Weibull on periods with 
f3 :;::: ~, on the basis of a different line of reasoning. However, also in their arguments, a 
crucial role is played by the fact that the central limit theorem does not apply. Recent results 
by Asmussen et al. [5] also confirm - in a different context - the critical value of f3 = ! . 

The above observations allow Conjecture 4.1 to be extended to the case of heterogeneous 
sources. 

Conjecture 4.2. (Heterogeneous sources.) Solve the optimization problem 

H(B)=maxTIP A7> , ( B ) 
s iES Li ES r; + Lijl'S Pi - C 

(8) 

with S ~ { 1, ... , n) such that 

.L>+LP;>C. 
iES i~S 

Assume that the optimizing set S*(B) converges to some set S* as B -+ oo. If S* only consists 
of sources i for which v; O is regularly varying of index smaller than !, then p(B, C) ~ H (B), 
where f (B) ~ g(B) denotes that the ratio of log f (B) and log g(B) tends to I for large B. 

The fact that some of the sources show 'peak-rate behavior', while others show 'mean-rate 
behavior' gives rise to the following conjecture. Denote by Q~ the steady-state buffer content 
in a queue with service rate D fed by the sources S s; { 1, ... , n}. 
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Conjecture 4.3. If S* as defined in Conjecture 4.2 only consists of sources i for which Vi ( ·) is 
regularly varying of index smaller than !. then 

where 

P(Q > B),.., P(Q~: > B), 

C*:=C- LPi. 
i~S* 

and'""' denotes that the ratio of both sides tends to I for large B. 

The above conjecture extends the reduced-load equivalence which has been established 
in [1] in the special case of two sources. The conjecture has recently been proved in [48] for 
the general case of multiple heterogeneous sources with regularly varying on periods. 

5. Practical implications and conclusions 

As mentioned in the introduction, the results of this study may be seen as complementary to 
those of [32]. There it is shown that in the case of small buffers, the tail of the activity period 
does not have a major effect. The decay rate of the loss probability is completely detennined 
by the mean of the on and off periods. It is proved that this insensitivity property still holds 
when the activity periods are subexponential. Put differently, long-range dependence hardly 
plays a role in the case of small buffers; we can use a simple exponential on-off model to obtain 
accurate results. We refer the reader to [20), [22) and [42) for related results illustrating the 
significant influence of the buffer size on the impact of long-range dependence. 

The present paper shows that the opposite holds in case of large buffers. In fact, the shape of 
the residual on-period distribution determines the loss probability. Assuming that the activity 
periods are exponentially distributed would lead to buffer dimensioning or admission policies 
which are overly optimistic. As proved in [8), the 'loss curve' I (b} is essentially linear for 
exponential on periods and large b. The present paper shows that for subexponential on periods 
the loss curve could well look like, say, ./b or log b. In other words, under subexponentiality 
the tail of the buffer content inherits the essential properties of the tail of the residual activity 
period. 

From a practical perspective, the most relevant scenario is probably the intermediate regime 
between the two extreme cases discussed above. Unfortunately, we have not been able to obtain 
results for this regime of moderate buffers. In principle, numerical results may be obtained 
through simulation. The problem is that Monte Carlo techniques are usually slow when a small 
probability is to be estimated. However, due to the exponentiality in the number of sources n, 
importance sampling with exponential twisting might be a viable approach. 

An interesting topic for further research is also the extension to the case of heterogeneous 
sources. As indicated in Section 4, this scenario is fundamentally more complicated. The 
discrepancy between the tails of the on periods of the various types determines whether or not 
the time to overflow of the 'peak-rate sources' is long enough for the central limit theorem to 
kick in for the 'mean-rate sources'. A large-deviations analysis of this phenomenon might be 
possible. 
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