EFFICIENT RESOURCE UTILIZATION IN
SHARED-EVERYTHING ENVIRONMENTS'?

Stefan Manegold
CWI
P.O.Box 94079

Johann K. Obermaier

ABB Corporate Research Ltd
Computer Engineering Dept.

Information Technology CHCRC.C2

1090 GB Amsterdam
The Netherlands
Stefan.Manegold@cwi.nl

ABSTRACT

Efficient resource usage is a key to achieve better
performance in parallel database systems. Up to now,
most research has focussed on balancing the load on
several resources of the same type, i.e. balancing either
CPU load or I/0 load. In this paper, we present float-
ing probe, a strategy for parallel evaluation of pipelining
segments in a shared-everything environment that pro-
vides dynamic load balancing between CPU- and I/0O-
resources. The key idea of floating probe is to overlap—
as much as possible with respect to data dependencies—
I/0-bound build phase and CPU-bound probe phase
of pipelining segments to improve resource utilization.
Simulation results show, that floating probe achieves
shorter execution times while consuming less memory
than conventional pipelining strategies.

1 INTRODUCTION

Parallel processing in database systems is a key
to the required performance improvements of modern
database applications.

Pipelining parallelism is of particular interest as it is
much easier to control than independent parallelism and
as no intermediate results need to be materialized. Ad-
ditionally, for linear query trees, only pipelining is fea-
sible to exploit inter-operator parallelism (Hasan and
Motwani, 1994). Schneider and DeWitt (1990) study
the effect of pipelining on a right-deep tree of hash
join operators in detail. The evaluation of queries is
split into two distinct phases. First, the inner relations

TThis work was partly supported by the German Research
Council under contract DFG Fr 1142/1-1.

tAn extended version of this paper is available as (Manegold
and Obermaier, 1997).

5405 Baden-Dattwil
Switzerland

Johann.Obermaier@chcrc.abb.ch

are read from disk, and hash tables are built in paral-
lel (build phase). Second, the outer relation is piped
bottom-up through all operators (probe phase).

To avoid I/0O, the right-deep tree is decomposed into
segments, which fit in main memory (Chen et al., 1992).
Segments are evaluated one at a time with maximal
computing resources. Processors are assigned to the
operators of a segment based on work estimations. This
approach achieves pipelining parallelism between intra-
parallel operators.

Shekita et al. expand this idea to bushy operator
trees (Shekita et al., 1993). The bushy tree is disjointed
in right-deep pipelining segments. Each pipelining seg-
ment consists of a sequence of non-blocking operators,
which produce output on-the-fly, like selection, projec-
tion (without duplicate elimination), or the probe phase
of either a hash join (for equi-joins) or a general in-
dex join (for 6-joins). Only the last operator in the
sequence might be a blocking operator which has to col-
lect all input before it produces any output, e.g. sort
or aggregation. For each segment pipelining parallelism
can be exploited. This combines the flexibility of bushy
operator tree with pipelining execution.

Finally, in (Manegold et al., 1997), we presented
DTE, a new strategy to execute the probe phase
of pipelining segments in shared-everything environ-
ments. DTE avoids the major problems that conven-
tional pipelining suffers from: discretization error and
startup/shutdown delay (Ganguly et al., 1992; Srivas-
tava and Elsesser, 1993; Wilschut and Apers, 1991;
Wilschut et al., 1995). Further, DTE is resistant
against execution skew and provides optimal execution
by switching from operator parallelism to data paral-
lelism.

But still one problem with the execution of pipelin-
ing segments remains open: In typical database envi-
ronments, the build phase is I/O-bound (i.e. building a

hash table takes less time than reading the base rela-
tion from disk) while the probe phase is CPU-bound (as
no intermediate results are materialized on disk due to
pipelining). Thus, execution cannot be optimal due to
inefficient resource utilization: During the build phase
the CPUs are idle, while during the probe phase the
I/0 system is idle.

Hong presents a scheduling algorithm that executes
one CPU-bound and one I/O-bound task concurrently,
to achieve a CPU-I/0O-balanced workload (Hong, 1992).
This algorithm is restricted to scheduling distinct data-
independent task (i.e. distinct operators or pipelining
segments), whereas we focus on executing the two data-
dependent phases of one segment.

The contribution of this paper is floating probe, a
new strategy to combine I/O-bound build phase and
CPU-bound probe phase. Floating probe improves re-
source utilization by letting both phases overlap as
much as possible, and thus automatically balancing
CPU- and I/O-workload during evaluation. The ben-
efits of our new strategy are twofold: First, floating
probe provides shorter execution times than executing
build and probe phase one after another. Additionally,
floating probe requires less memory during execution
than the traditional strategy.

The remainder of the paper is organized as follows.
In Section 2, we define the problem we focus on. Our
strategy to evaluate the build phase is described in Sec-
tion 3. In Section 4, we present DTE, a strategy for ef-
ficient evaluation of the probe phase. Section 5 studies
the problems that occur when combining both phases
and presents our solution floating probe. A simula-
tion model and a comparative performance evaluation
is given in Section 6. Section 7 contains our conclusion.

2 THE PROBLEM

In this paper, we focus on the issue of load balanced
execution of pipelining segments in shared-everything
environments. We suppose that an optimizer has al-
ready generated a tree-shaped query plan and parti-
tioned the plan in pipelining segments with the follow-
ing characteristics: (1) Only the last operator of each
segment might be a blocking operator, all other oper-
ators are non-blocking operators. The optimizer tuned
the size of each segment that (2) all necessary tables fit
into in main memory and (3) the probing then can be
done without intermediate I/O (cf. (Chen et al., 1992;
Schneider and DeWitt, 1990; Shekita et al., 1993)).

Figure 1a depicts a sample pipelining segment con-
sisting of three joins. R; and I; denote the inner input
relations and the intermediate results, respectively. I
denotes the outer input relation of the segment. Each

pipelining
segment

Fig. 1 Pipelining segment; build & probe phase

input relation is either a base relation or the result of
an other pipelining segment. All R; are materialized on
disk. I is either materialized on disk, or received on
the fly from the network.

All segments are evaluated one after the other ac-
cording to the producer/consumer data dependencies
between them. We do not consider parallel evalua-
tion of data independent pipelining segments, as this
obtains no performance improvements (Shekita et al.,
1993). Evaluation of a segment proceeds in two phases:
The first phase loads all inner relations of the segment
and builds the (hash) indices (build phase). The second
phase pipes all tuples of the outer relation through the
probe phases of the joins (probe phase).

Figure 1b depicts the build phase and the probe
phase of the sample segment. B; denotes the opera-
tion to build the hash table H;, while P; denotes the
operation to probe I; against H;.

3 TABLE BUILDING PHASE

Shared-everything systems provide uniform and par-
allel access to all disks. We assume that each base rela-
tion is partitioned and full declustered across all disks.
Thus, full I/O parallelism—i.e. full I/O bandwidth—
can be used even when accessing only a single rela-
tion. Further, double buffering and asynchronous I/0
are used, so that CPU and I/O can overlap.

In the reminder of this paper, we use Build(R;) to
denote the parallel building of the hash table that be-
longs to the i-th join within the pipeline. This includes
reading R; from disk using parallel I/0O.

There are two strategies to build all the hash tables
of a pipelining segment. The first is to start building
all hash tables simultaneously and execute Build(R;)

through Build(Ry) concurrently. The second strategy
is to execute only one single Build(R;) at a time, i.e.
to execute Build(R;) through Build(Ry) one after the
other. Due to full declustering of each base relation,
both strategies can exploit the full I/O bandwidth. But
the first strategy would lead to additional seek time
due to random I/0, as partitions of different relations
(located on the same disk) are accessed concurrently.
The second strategy outperforms the first one under
these assumptions. Thus, we prefer the second strategy.

4 TUPLE PROBING PHASE

Our strategy to evaluate the probe phase of pipelin-
ing segments is Data Threaded FEzecution (DTE)
(Manegold et al., 1997). In the reminder of this sec-
tion, we give an short overview of DTE.

DTE uses one thread per processor. Each thread is
able to perform all operations within the active pipelin-
ing segment. The input tuples for the pipelining seg-
ment are provided in a global queue that all threads
can access. Each thread takes one tuple at a time from
the global input queue and guides it the way through all
the operators of the pipelining segment by subsequently
calling the procedures that implement the operators. A
tuple does not leave the thread (and thus the processor)
during its way through the pipelining segment, until it
has been processed by the last operator or it failed to
satisfy a selection or join predicate. As soon as one
tuple has left a thread, the thread takes the next in-
put tuple from the queue. In the case that one tuple
finds more than one partner in a join (i.e. the operator
produces more than one output tuple from one input
tuple), the thread has to process all these tuples first,
before it can proceed with the next input tuple from
the queue.

DTE provides automatic and dynamic load bal-
ancing, and thus achieves efficient resource utiliza-
tion. DTE outperforms conventional pipelining strate-
gies significantly (Manegold et al., 1997).

5 BUILDING AND PROBING

Before we discuss the different strategies how to
combine build phase and probe phase, we introduce
further notation we use in the remainder of this paper.
Alloc(H;) (short A;) denotes the allocation of memory
for H;. Releasing the respective memory is denoted
by Free(H;) (F;). Probe(I;) (P;) denotes the probing
of I; through the i-th join within the pipeline using
DTE. Probe(I;..I;) (P;..;) denotes the parallel probing
of the joins ¢ through j (1 < i < j < N) using DTE.

Table 1 Notation

name | description value
N number of joins

P number of CPUs

d number of disks

Ty time to access one tuple in memory 10.0 us
Tp time per tuple to build a hash table 5.5 us
Tp time to probe one tuple against a hash table | 4.0 us
Ta time to generate one result tuple 30.0 us
T time to invoke I/O for one block 7.4 us
Tw time to setup I/O-system 1.0 ms
Ts average I/O seek time 1.2 ms
bw I/0 bandwidth per disk 3 MB/s
bs size of one I/O block in bytes 8 kB
Tr = ﬁ, I/0 time to read one block

tsp size 1gf tuples of relation R in bytes 100-200
[|R|| | size of relation R in tuples

R | = [HRHb#1 size of R in blocks

I/0 time without disk arm contention (sequential I/0):

0u(r) = Ts + [B] (7w + 1)

I/0 time with disk arm contention (random I/O):

O-(R;) = [%-‘ (Ts + Tw + Tr)

CPU time to init I/O and to access a relation in memory:

4] 7 [48]

CPU time to build a hash table (incl. init. of I/O):

Cp(Ri) = IV‘%'-‘ Tr + [W;+H-‘ Tg

CPU time to probe a join:

Cp(l;) = [H£+H-‘ Tp + [%%” Te

CPU time to probe joins (incl. fetching the input, storing the
output and initialization of I/Os):

CPZ(IZ'..IJ') = Co(I;) + Cp(Ii..IJ') + Cz(Ij_H)
convenient abbreviation (® € {Os,0;,Cy,Cp,Cp}):

Co(l;) =

®(R;..Rj) = ZJ:<I>(Rk)
k=i

Fig. 2 Cost Functions

Thus, both Probe(Z;) and Probe(I;. ;) represent the exe-
cution of the respective subset of operators of the whole
pipeline (Probe(I;..Ix)). Table 1 gives further notation
and some basic cost values taken from literature. In
Figure 2, we present the cost functions for single op-
erations as we will use them in the remainder of this
paper.

5.1 DEFERRED PROBE

The naive way to combine build and probe phase
is to execute them one after the other as follows:
Alloc(H;); Build(Ry); ...; Alloc(Hy); Build(Ryn);
Probe(I;..In); Free(H,); ... ; Free(Hy). We call this
deferred probe. The total execution time is (cf. Fig. 2
and Tab. 1 for details):

N
Tc;efer = Zjl ma'X{OS (Rl)a Cp (Rl)} +
max {07«(.[1) + OT(IN+1) s Cpy (IlIN)} .
Suppose that either both phases are I/O-bound

ViE{l,...,N}: Os(Rz') > CB(RZ)
N OT(11)+OT(IN+1) > CPE(Il..IN)

or both phases are CPU-bound

ViE{l,...,N}: Os(Rz) < CB(RZ)
A OT(11)+OT(IN+1) < sz(Il..IN),

then deferred probe provides minimal execution time:

Tieis = max{Os(Ri..RN) + Or(I1) + O (IN+1),
CB(Rl..RN) + Cpm(Il..IN)}.

However, in most environments the build phase is I/O-
bound while the probe phase is CPU-bound, i.e.

ViE{].,...,N}: OS(RI) > CB(RZ)
A 0,-(]1)+07-(IN+1) < sz(Il..IN). (1)

In this case, deferred probe has one shortcoming: Re-
sources are not used as efficiently as (theoretically) pos-
sible. During the build phase, CPU capacities are left
free, while during the probe phase, I/O capacities are
left free. Thus, the execution time is not optimal:

Taeter = Os(Rl--RN)+ OPI(Il--IN) > Tégfienn"

Figures 3 and 4 depict CPU and I/O load of deferred
probe evaluating a pipelining segment with four joins.

Multi-user and multi-query environments may bal-
ance the utilization of CPU and I/O. But these envi-
ronments suffer form the exhaustive use of memory of
deferred probe. The memory for the hash tables is al-
located (long time) before the hash tables are used in
the probe phase and all memory is released only after
the whole pipeline is executed (cf. Fig. 5).

5.2 FLOATING PROBE

To overcome the shortcomings of deferred probe, our
approach is to let the build phase and the probe phase
overlap. As opposed to deferred probe, this results in

By

10 20 30 40 50 60 70

Fig. 3 Sample CPU load (deferred probe)

1/O

Py

B 1 82 B3 EMNW\W
} T 0 T T t

10 20 30 40 50 60 70

Fig. 4 Sample I/0 load (deferred probe)

A MEM
4071 _
Mgefer =2000 Hy

10 20 30 40 50 60 70

Fig. 5 Sample memory usage (deferred probe)

a single phase that integrates build and probe phase.
Thus, resource utilization can be balanced by combin-
ing I/O-bound build and CPU-bound probe. We call
our new strategy floating probe.

The point is, that Probe(I;) can be started as soon as
Build(R;) has finished, i.e. Probe(Z;) can be executed in
parallel with Build(R;+1). Thus, compared to deferred
probe, some of the probe work is done before the build

AL A, Ay A,

E [LY A

||
° (PP Ps]
Fi Fa

Y

F; Fy
Fig. 6 Sample schedule floating probe

of the last hash table has finished. As building the
hash tables is I/ O-bound, the elapsed time until all hash
tables are build cannot be reduced. But the probe work
that has to be done after the last build is reduced, and
thus, the overall execution time is reduced.

Two cases have to be distinguished first: Either
Probe(I;) is CPU-bound (I; already resides in mem-
ory, is received via a fast network, or even reading from
disk is faster than performing the probing), or Probe(;)
is I/O-bound (reading I from disk is slower than per-
forming the probing).

Probe(l;) is CPU-bound. In this case, floating
probe proceeds as follows (cf. Fig. 6 for a sample sched-
ule): At the beginning, H; is built (Build(R;)). There-
after, Probe(I;) and Build(R2) are started simultane-
ously and executed concurrently. As the output tu-
ples produced by Probe(l;) cannot yet be processed by
Probe(I), they have to be buffered. To avoid interme-
diate I/O, this is done in memory. If Probe(I;) ends
before Build(R2), H; is deleted. Otherwise, as soon
as Build(R3) has finished, Build(R3) is started and the
probe is extended, so that the remaining tuples of I; are
piped through both probes (Probe(I;..I5)). As before,
the output of Probe([;..I5) is buffered in memory. If
then Probe([;..I5) ends before Build(R3), H; is deleted
and the part of I, buffered in memory during Build(Rz)
is processed through Probe(Iy). Otherwise, the probe
is extended to Probe(I..I3), as soon as Build(R3) is
done. This proceeds until Hy is built. After that, only
probing is done until all tuples are processed: For each
I; that is (partly) buffered in memory Probe(I;..Ix) is
executed.

In floating probe, the pipelining segment is dynam-
ically extended to the next join, as soon as its hash
table is built. Thus, allocated memory is used as soon
as possible. On the other hand, hash tables are deleted
as soon as the respective probe is done. Thus, allocated
memory is released as soon as it is no longer needed.

Figures 7 and 8 depict CPU and I/0 load of floating
probe evaluating a pipelining segment with four joins
(I is receive via the network and I is written to disk)
and Figure 9shows the respective memory usage.

Fig. 7 Sample CPU load (floating probe)

/0
NN
NN
NN
P,
NN
NN
N Nt
50 60 70

Fig. 8 Sample I/0 load (floating probe)

MEM _
4015 Mfloat =1219

=

I3

10 20

Fig. 9 Sample memory usage (floating probe)

Probe(;) is I/O-bound. Now, we consider the case,
that reading I; from disk is slower than performing the
probe. As I; is also full declustered across all disks,
there is no sense in running Probe(l;) and Build(R2)
in parallel due to disk access contention. We examined
two strategies, how to proceed in this case.

The first is to defer Probe(I;) until enough (g)
hash tables are built, such that executing Build(Rg41)

and Probe(l;..I;) concurrently is (approximately)
CPU-I/O-balanced, or at least such that executing
Probe([;..1;) is CPU-bound. Thus, running Probe(l;)
I/0-bound is avoided. But on the other hand, the start
of probing is deferred and Build(Rz) through Build(R,)
are run I/O-bound. As soon as Probe([;..1,) is started,
execution continues as usual. We call this strategy late
probing.

The second strategy is to execute Probe(l;) right af-
ter Build(R;), materializing I, completely in memory,
and to defer Build(Rz) until Probe(I;) is done. As soon
as Build(R») has finished, processing proceeds as usual
starting Build(R3) and Probe(i2) simultaneously. Thus,
Probe(I;) is run I/O-bound as well as Build(Rz) there-
after. But on the other hand, probing is started as soon
as possible. We call this strategy early probing.

The case, that the result relation of the pipelining
segment is not kept in memory, but rather written to
disk, does not need any special treatment. Probe(Iy)
can only be processed after Build(Ry) is done. Hence,
there is no I/O interference.

The first advantage of floating probe is that the over-
all execution time is reduced as some of the probe work
is done before Build(Ry) has finished. In our example,
deferred probe needs 70 units, whereas floating probe
needs only 52 units (cf. Figs. 3,4,7,8). Of course, there
is a lower bound, as the execution time cannot be less
than needed to do the total work without any overhead
or synchronization. This bound is

Thost = max{Os(R1..Rn) + Os(I1) + O5(In+1),
Cp(Ry..Ry) + Cpe(I1..IN)}

)
< O4(R1..RN) + Cpy(I1..IN) = Taefer-

Further, the execution time of floating probe cannot be
less than half the execution time of deferred probe:

. Toeter
T > max{ Oy (Ry..Rx), Cps(I1..IN)} > d—; ()

The second advantage of floating probe is reduced
memory consumption. If any probe finishes before
Build(Ry) is done, the corresponding hash table is re-
leased, and thus, the memory usage area (i.e. amount
of memory used x time for that it is occupied) is
smaller than that of deferred probe. In our example, the
memory usage area of deferred probe amounts to 2000
units, whereas floating probe needs only 1219 units (cf.
Figs. 5 & 9).

A drawback of floating probe is, that (parts of) in-
termediate results have to be materialized in memory.

This causes additional CPU costs and additional mem-
ory is needed. But the results of our simulation ex-
periments show, that floating probe outperforms de-
ferred probe, despite these overheads. Neglecting these
overheads—and most of the synchronization that arises
due to data dependencies—for the moment, the mini-
mal execution time of floating probe is:

Thoat = Os(Rl) +
max{ OS(RQ..RN) + Os (Il),
CB(Rz..RN) + Cw(Il) + Cp([l..IN,I)} +
max{Os(In+1) , Cp(IN) + Co(IN41)}-

6 ANALYSIS

According to the presentation of floating probe in
the previous section, it seems to be rather complicated
do implement this strategy, as a lot of explicit schedul-
ing overhead is necessary. In the following, we dis-
cuss a rather simple but effective method to avoid this
scheduling overhead and describe our simulation model.
Thereafter, we present the results of our experiments
comparing deferred probe and floating probe.

6.1 SIMULATION MODEL

Although both phases are no longer executed one af-
ter the other, they are still in some sense independent
of each other. The only dependency between the two
phases is that a hash table has to be built before the
respective intermediate result can be probed against it.
Thus, our solution is to implement the build phase and
the probe phase in distinct threads. The only commu-
nication between build thread and probe thread is that
the build thread has to inform the probe thread as soon
as it has built a hash table. Using this information, the
probe thread can decide, whether it can probe the cur-
rent tuple through the next join or whether it has to
materialize it as the next hash table is not yet built.
Both threads are started concurrently. To guarantee,
that the probe thread only uses the CPU resources that
are not used by the build thread, the probe thread is
run with lower priority than the build thread. Using
this implementation technique, scheduling is done by
the operation system.

In order to compare floating probe to deferred probe,
we designed and implemented an event driven simulator
using the Sim++ package (Fishwick, 1995). The simu-
lator is very detailed, i.e. it simulates each single page-
I/O-operation as well as each single tuple-operation us-
ing the execution times from Table 1. According to the
aforementioned strategy, the simulator assumes distinct
build and probe threads, one of each per processor.

6.2 EXPERIMENTS

We randomly generated pipelining segments of sev-
eral classes. Each class is characterized by the length
N € {4,8,16} of the pipelining segment and the loca-
tion L of I) and Iny;. Due to space limits, we restrict
our discussion here to the two cases that either (1) I
is initially stored on disk and Iy4; finally has to be
stored on disk (L = disk), or that (2) I; is received via
network and In41 is sent to the network (L = net).
In the second case, no I/O is needed to evaluate the
probe phase. The results for the remaining two cases
are similar to those presented.

We randomly generated 360 different segments for
each class, with tuple sizes between 100 and 200 bytes
and relation sizes between 10° and 2 - 10° tuples. All
segments fulfilled condition (1).

For each segment SZ-L N we simulated the execution
with both deferred probe and floating probe! for differ-
ent degrees of parallelism (p € {1,2,4,8}, d = p). To
compare the performance of deferred probe and float-
ing probe, we calculated the relative execution time
I}.oat(SiL’N,p)/Tdefe,(SiL’N,p). Within each class we cal-
culated the average relative execution time over all the
n = 360 queries:
= _ 1 & Tfloat(SiL’Nap)

Tf/d(L;N;p) n Zl Tdefer(SiL’N,p) .

=

Figures 10 and 11 show the average relative exe-
cution times with (L = disk) and without probe-I/O
(L = net), respectively. Floating probe outperforms
deferred probe in any case (T /d(L, N,p) < 1), and the
improvement increases with the length of the pipelin-
ing segment. Further, the results show that the per-
formance gain of floating probe over deferred probe is
bigger if no probe-I/0O is needed. This is obvious, as
without probe-I/O, more probe work can be done con-
currently with the build.

Using floating probe instead of deferred probe saves
up to 27% for L = disk and up to 31% of execution
time for L = net. Remember, that at most 50% can be
saved (cf. (2)). The average saving amounts to approx-
imately 16% for L = disk and 24% for L = net.

In addition to the execution times, we also exam-
ined the memory usage of floating probe and deferred
probe. During the simulation, we calculated the total
memory usage M (SZL ’N,p). Analogous to the average
relative execution time, we calculated the average rel-
ative memory usage My,4(L, N,p). Figures 12 and 13
show the results with (L = disk) and without probe-
I/O (L = net), respectively. Again, floating probe per-

ITf I; and In41 were located on disk, we simulated the exe-
cution for both variants of floating probe, early probing and late
probing. The differences between both variants were not signifi-
cant, thus, we present only those for late probing here.

forms better—i.e. needs less memory—than deferred
probe. Here, the differences between L = disk and
L = net are negligible. Floating probe saves up to 80%
(55% on average) of memory allocation compared to
deferred probe.

7 CONCLUSION

This paper addresses the topic of efficient resource
utilization during query execution in parallel database
systems. We presented floating probe, a new technique
to evaluate pipelining segments in shared-everything
environments. Floating probe balances the CPU- and
I/O-workload between the I/O-bound build phase and
the CPU-bound probe phase of pipelining segments as
good as possible with respect to the data dependencies
between both phases. Thus, floating probe achieves
better resource utilization than conventional deferred
probe. This in turn leads to further advantages of
floating probe compared to deferred probe: (1) Float-
ing probe provides shorter execution times while (2)
consuming less memory than deferred probe. Float-
ing probe achieves these improvements without explicit
scheduling, thus, floating probe neither needs any pre-
liminary cost estimations nor does it cause any schedul-
ing overhead.

We used various simulation experiments to compare
floating probe and deferred probe in detail. The results
show, that floating probe outperforms deferred probe in
any case in terms of execution time and memory usage.

REFERENCES

Chen, M.-S., Lo, M., Yu, P. S., and Young, H. C.
(1992). Using Segmented Right-Deep Trees for
the Execution of Pipelined Hash Joins. In Proc.
Int’l. Conf. on Very Large Data Bases, pages 15—
26, Vancouver, BC, Canada.

Fishwick, P. A. (1995). Simulation Model Design and
Ezxecution. Prentice Hall, Englewood Cliffs, NJ,
USA.

Ganguly, S., Hasan, W., and Krishnamurthy, R. (1992).
Query Optimization for Parallel Execution. In
Proc. ACM SIGMOD Int’l. Conf., pages 9-18, San
Diego, CA, USA.

Hasan, W. and Motwani, R. (1994). Optimiza-
tion Algorithms for Exploiting the Parallelism-
Communication Tradeoff in Pipelining Parallelism.
In Proc. Int’l. Conf. on Very Large Data Bases,
pages 36—47, Santiago, Chile.

0.95 | o

NSO
o6

TTTTO

0.90 | ™
0.85 -

0.80 |- i

relative execution time

<

075 | e o

/i
xa

0.70 - —

4 6 8 10 12 14 16

#Joins (N)

Tf/d (diSk: Na p)

=N A
0

07 F 4

T
p=
p=
p=
p=

0.6

0.5

0.4

relative memory usage

0.2

4 6 8 10 12 14 16

#Joins (N)

Fig. 12 M;/4(disk, N, p)

Hong, W. (1992). Exploiting Inter-Operation Paral-
lelism in XPRS. In Proc. ACM SIGMOD Int’l
Conf., pages 19-28, San Diego, CA, USA.

Manegold, S. and Obermaier, J. K. (1997). Efficient Re-
source Utilization in Shared-Everything Environ-
ments. Technical Report INS-R9711, CWI, Ams-
terdam, The Netherlands.

Manegold, S., Obermaier, J. K., and Waas, F.
(1997). Load Balanced Query Evaluation in
Shared-Everything Environments. In Proc. Fu-
ropean Conf. on Parallel Processing, pages 1117-

1124, Passau, Germany.

Schneider, D. A. and DeWitt, D. J. (1990). Tradeoffs
in Processing Complex Join Queries via Hashing in
Multiprocessor Database Machines. In Proc. Int’l.
Conf. on Very Large Data Bases, pages 469-480,
Brisbane, Australia.

T T T T T T T
0.95 | p=1 —— A
p=8 ---o---
p=4 -8
0.90 | p=2 e
(]
£
§ o085 | E
5
(5]
(7]
x
® 0.80 | —
[
2
€ o7t A -
Qe
o
0.70 g]
1 1 1 1 1 1 1
4 6 8 10 12 14 16
#Joins (N)
Fig. 11 Ty/4(net, N,p)
T T T T T T T
p=8 ---v---
=4 B
07 F « B=2 e
p=1 ——
206 N\ .
1%}
S
>
S 05 .
£
[]
£
2 041 E
s
]
03 —
0.2 —
1 1 1 1 1 1 1
4 6 8 10 12 14 16
#Joins (N)
Fig. 13 M;/4(net, N,p)

Shekita, E. J., Young, H. C., and Tan, K.-L. (1993).
Multi-Join Optimization for Symmetric Multipro-
cessors. In Proc. Int’l. Conf. on Very Large Data
Bases, pages 479492, Dublin, Ireland.

Srivastava, J. and Elsesser, G. (1993). Optimiz-
ing Multi-Join Queries in Parallel Relational
Databases. In Proc. Int’l. Conf. on Parallel and
Distr. Inf. Sys., pages 84-92, San Diego, CA, USA.

Wilschut, A. N. and Apers, P. M. G. (1991). Dataflow
Query Execution in a Parallel Main-Memory En-
vironment. In Proc. Int’l. Conf. on Parallel and
Distr. Inf. Sys., pages 68-77, Miami Beach, FL,
USA.

Wilschut, A. N., Flokstra, J., and Apers, P. M. G.
(1995). Parallel Evaluation of Multi-Join Queries.
In Proc. ACM SIGMOD Int’l. Conf., pages 115—
126, San Jose, CA, USA.

