The Acoi Algebra:
A Query Algebra for Image Retrieval Systems

Niels Nes and Martin Kersten

University of Amsterdam
{niels,mk}@wins.uva.nl

Abstract. Content-based image retrieval systems rely on a query-by-
example technique often using a limited set of global image features.
This leads to a rather coarse-grain approach to locate images. The next
step is to concentrate on queries over spatial relations amongst objects
within the images. This calls for a small collection of image retrieval
primitives to form the basis of an image retrieval system. The Acoi alge-
bra is such an extensible framework built on the relational algebra. New
primitives can be added readily, including user-defined metric functions
for searching. We illustrate the expressive power of the query scheme
using a concise functional benchmark for querying image databases.

keywords: Image Retrieval, Query Algebra, Features, and IDB.

1 Introduction

With the advent of large image databases becoming readily available for in-
spection and browsing, it becomes mandatory to improve image database query
support beyond the classical textual annotation and domain specific solutions,
e.g. [21]. An ideal image DBMS would provide a data model to describe the image
domain features, a general technique to segment images into meaningful units
and provide a query language to study domain specific algorithms with respect
to their precision and recall capabilities. However, it is still largely unknown how
to construct such a generic image database system.

Prototype image database systems, such as QBIC [6], WebSeek[18], and Pic-
toSeek [8] have demonstrated some success in supporting domain-independent
queries using global image properties. Their approach to query formulation (af-
ter restricting the search using textual categories) is based on presenting a small
sample of random images taken from the target set and to enable the user to
express the query (Q1) “find me images similar to this one” by clicking one of the
images provided. Subsequently the DBMS locates all images using its built-in
metrics over the global color distribution, texture, or shape sets maintained.

However, this evaluation technique is bound to fail in the long run for several
reasons. First, random sample sets to steer the query process works under the as-
sumption that there is a clear relationship between color, texture and shape and
the semantic meaning. This pre-supposes rather small topical image databases

and fails when the database becomes large or filled from many sources, such as
envisioned for the Acoi image database!.

Second, the global image properties alone are not sufficient to prune false
hits. Image databases are rarely used to answer the query (). Instead, the in-
tended user query (@) is :“find me an image that contains (part of) the one
selected” where the containment relationship is expressed as a (predefined) met-
ric over selected spatial and image features or directly (@Q3) :“ find me an image
that contains specific features or objects using my own metric”. In addition to
color distribution and texture, spatial information about object locality embed-
ded in the image is needed. A prototype system that addresses these issues is
VisualSEEK[18] graphical user interface for the WebSeek image retrieval system.

What are the necessary primitives to express the metric? For example, in a
large image database one could be interested to locate all images that contain
part of the Coca-Cola logo. This query could be formulated by clipping part of
a sample Coca-Cola logo to derive its reddish (R) and white (W) color and to
formulate a query of the form:

select display(i)
from image region rl,r2, image i
where distance(rl.avghue, R) < 0.2
and distance(r2.avghue, W) < 0.2
and rl overlaps r2
andrl,r2ini

sort by distance(rl.avghue, R), distance(r2.avghue, W)

This query uses two primitive parameterized metric functions. The function
distance calculates a distance in the color space and overlaps determines region
containment. The former is defined as part of the color data type and the latter
for the region data type.

A challenge for image database designers is to identify the minimal set of fea-
tures, topological operators, and indexing structures to accommodate such image
retrieval queries. In particular, those (indexed) features where their derivation
from the source image is time consuming, but still can be pre-calculated and
kept at reasonable storage cost. This problem becomes even more acute when
the envisioned database is to contain over a million images.

In [13] we introduced an extensible image indexing algorithm based on rect-
angular segmentation of regions. Regions are formed using similarity measures.
In this paper we extended this approach with a query algebra to express queries
over the image database.

For such an image retrieval algebra we see three global requirements.

1. The algebra should be based on an extensional relational framework.

2. The algebra should support proximity queries and the computational ap-
proach should be configurable by the user.

3. The algebra should be computationally complete to satisfy the wide com-
munity of (none-database) image users.

! Acoi is the experimental base for the national project on multi-media indexing and
search (SION-AMIS project), http://www.cwi.nl/~acoi/Amis

The remainder of this report is organized as follows. In Section 2 we explain
our database model, review available region representations and query primitives
for image retrieval systems. Also we provide a short introduction to our under-
lying database system, called Monet. Section 3 explains the query primitives. In
Section 4 we define the Acoi Image Retrieval Benchmark, which is the basis for
the experimentation reported in section 5. We conclude with an indication of
future research topics.

2 Image Databases

This Section introduces the data model for query formulation. The data model
is based on regions as the abstraction of the image segmentation process. In
section 2.2 we review several region representation methods. In section 2.3 query
language extensions for image retrieval are reviewed to provide the background
information and to identify the requirements imposed on the image DBMS. Since
our image retrieval system is built using the Monet database system we also give
a short introduction to Monet.

2.1 Image Database Model

The Acoi database is described by the ODL specification shown in Figure 1.

interface Img {
relationship set < Pix > data inverse Piz::image;
b

interface Piz {
relationship Img image inverse Img::data;
relationship Reg region inverse Reg::pizels;
b
interface Reg {
relationship set < Pixz > pizels inverse Piz::region;
relationship set < Seg > segments inverse Seg::regions;
}i
interface Seg {
relationship set < Reg > regions inverse Reg::segment;
relationship set < Obj > object inverse Obj::segments;
b
interface Obj {
relationship set < Seg > segments inverse Seg::object;
b

Fig. 1. Data Model

The data relationship relates raw pixel information with an image. This is a
virtual class, because each pixel is accessed from the image representation upon

need. The region relationship expresses that each pixel is part of one region only.
For the time being we use rectangular regions to simplify implementation and to
improve performance. The architecture has been set up to accommandate other
(ir-) regular regions, like hexagons and triangulation, as well.

The segments mapping combines regions into meaningful units. The segments
are typically the result of the image segmentation process, which determines
when regions from a semantic view should be considered together. The model
does not prescribe that regions are uniquely allocated to segments. A region could
be part of several segments and applying different segmentation algorithms may
result in identical region sets. The segmentation algorithm used for the current
study is based on glueing together regions based on their average color similarity
and physical adjacency, details of which can be found in [13].

The relationship object of the segments interface, expresses that segments
can form a semantically meaningful object. An example is a set of segments
together representing a car.

2.2 Segment Representation

The bulk of the storage deals with region representation, for which many different
approaches exist. All have proven to be useful in a specific context, but none is
globally perfect. The chain code as described by Freeman [7] encodes the contour
of a region using the 8-connected neighborhood directions. Chain codes are used
in edge, curve and corner finding algorithms [11]. It is not useful for region
feature extraction, since it only represents part of the boundary of an area, no
interior. The complexity is O(p) for both storage and performance, where p is
the perimeter of the region.

Many boundary representations exist [10], e.g. polygons and functional shape
descriptors. Functional shape descriptors use a function to approximate the re-
gion boundary. Fourier, fractal and wavelet analysis have been proposed for this
[3,12,17]. Although these representations have very low storage requirements,
i.e. each boundary is represented using a few parameters, they are of limited
use aside from shape representation. Recalculation of the regions interior from
polygons is very hard and from functional descriptions generally impossible.

Another representation to describe the interior of the region is run length
encoding using (position, length) pairs in the scan direction [9]. Diagonal shaped
regions are handled poorly by this coding schema.

The pyramid structures [20,19] represent an region using multiple levels of
detail. They are used in image segmentation and object recognition [20,15].
These structures are very similar to the quad tree [16]. The quad tree is a hi-
erarchical representation, which divides regions recursively into four equal sized
elements. The complexity of this structure per region is O(p + n), where the
region is located in a 2™ x 2™ image and p is again the perimeter of the region.
Quad trees can be stored efficiently using a pointerless representation. The quad
tree has been used to represent binary images efficiently. The tree needs only to
store those regions which have a different color than its parent nodes.

Since none of the structures above solve the regions representation problem,
there is a strong need for an extensible framework. It would permit domain
specific representations to be integrated into a database kernel, such that scalable
image databases and their querying becomes feasible.

To explore this route we use a minimalistic approach, i.e. regions are de-
scribed by rectangular grids. The underlying DBMS can deal with them in an
efficient manner. The domain specific rules and heuristics are initially handled
by the query language and its optimizer.

2.3 Image Retrieval Algebra

The image retrieval problem is a special case of the general problem of object
recognition. When objects can be automatically recognized and condensed into
semantic object descriptors, the image retrieval problem becomes trivial. Unfor-
tunately, object recognition is only solved for limited domains. This calls for an
image feature database and a query algebra in which a user can express domain
specific knowledge to recognize the objects of interest.

Research on image retrieval algebras has so far been rather limited. The
running image retrieval systems support query by example[6] or by sketch [18],
only. For example, the interface of the QBIC system lets the user choose for
retrieval based on keywords or image features. These systems have a canned
query for which only a few parameters can be adjusted. It does not provide
a functional or algebraic abstraction to enable the user to formulate a specific
request. In the WebSeek Internet demo the user can adjust a color histogram
of a sample image to specify the more important colors. However, this interface
allows no user defined metric on colors.

Only Photobook [14] allows for user defined similarity metric functions through
dynamically loadable C-libraries. Although this approach is a step forward, it is
still far from a concise algebraic framework that has boosted database systems
in the administrative domain. In section 3 we introduce the components of such
an algebra.

2.4 Extensible Database Systems

Our implementation efforts to realize an image database system are focussed
on Monet. Monet has been designed as a next generation system, anticipating
market trends in database server technology. It relies on a network of work-
stations with affordable large main memories (> 128 MB) per processor and
high-performance processors (> 50 MIPS). These hardware trends pose new
rules to computer software — and to database systems — as to what algorithms
are efficient. Another trend has been the evolution of operating system function-
ality towards micro-kernels, i.e. those that make part of the Operating System
functionality accessible to customized applications.
Given this background, Monet was designed along the following ideas:

— Binary relation storage model. Monet vertically partitions all multi-
attribute relationships in Binary Association Tables (BATSs), consisting of
[0ID,attribute] pairs. This Decomposed Storage Model (DSM) [5] facili-
tates table evolution. And it provides a canonical representation for a variety
of data models, including an object-oriented model [1]. Moreover, it leads to
a simplified database kernel implementation, which enables readily inclusion
of additional data types, storage representations, and search accelerators.

— Main memory algorithms. Monet makes aggressive use of main memory by
assuming that the database hot-set fits into its main memory. For large data-
bases, Monet relies on virtual memory management by mapping files into it.
This way Monet avoids introducing code to ’improve’ or ’replace’ the op-
erating system facilities for memory/buffer management. Instead, it gives
advice to the lower level OS-primitives on the intended behavior? and lets
the MMU do the job in hardware. Experiments in the area of Geograph-
ical Information Systems[2] and large object-oriented applications [1] have
confirmed that this approach is performance-wise justified.

— Monet’s extensible algebra. Monet’s Interface Language (MIL) is an inter-
preted algebraic language to manipulate the BATs. In line with extensible
database systems, such as Postgres, Jasmine and Starburst, Monet provides
a Monet Extension Language (MEL). MEL allows you to specify extension
modules to contain specifications of new atomic types, new instance- or set-
primitives and new search accelerators. Implementations have to be supplied
in C/C++ compliant object code.

3 Algebraic Primitives

Analysis of the requirements encountered in image retrieval and the techniques
applied in prototype image systems, such as [6, 18, 8], indicate the need for alge-
braic operators listed in Table 1. The parameter ¢ denotes an image, p a pixel, r
aregion, s a segment and o an object. Most functions are overloaded as indicated
by a combination of iprso.

The first group provides access to the basic features of images, pixels, regions,
segments and objects. Their value is either stored or calculated upon need. The
Point, Color, Vector and Histogram datatypes are sufficient extensions to the
base types supported by the database management system to accommodate the
features encountered in practice so far.

The second group defines topological relationships. This set is taken from
[4], because there is no fundamental difference between spatial information de-
rived from images and spatial information derived from geographic information
systems.

The third group addresses the prime algorithmic steps encountered in algo-
rithms developed in the Image processing community. They have been general-
ized from the instance-at-a-time behavior to the more convenient set-at-a-time

% This functionality is achieved with e.g. mmap (), madvise () ,and mlock() Unix system
calls.

Properties

area(iprso) — float
perimeter(iprso) — float
center(iprso) — point
avg_color(iprso) — color
color_hist(iprso) — Histogram
texture(iprso) — vector
moment(iprso) — float
Topological operations

touch(prso, prso) — boolean
inside(prso, prso) — boolean
cross(prso, prso) — boolean
overlap(prso, prso) — boolean
disjoint(prso, prso) — boolean
Join operations

F_joing(prso,prso)({prso}, {prso}) — {prso}
M _joing(prso,prso),m ({Prso}, {prso}) — {prso}
P _join,(prso,prso) ({PTso}, {prso}) — {prso}

Selection operations

F_findg(iprso,iprso) ({iprso}, iprso) — iprso
M_selectd(,-prso,iprso),m({iprso},iprso) — {iprso}
P_select y(iprso,iprso)({iprso}, iprso) — {iprso}

Ranking and Sample operations

P_sort({iprso}) — {iprso}
M _s0rt4(iprso,iprso)({iprso}, iprso) — {iprso}
N _sort({iprso}) — {iprso}
Top({iprso},int) — {iprso}
Slice({iprso},int,int) — {iprso}
Sample({iprso},int) — {iprso}

Table 1. The Image Retrieval Algebra

behavior in the database context. This group differs from traditional relational
algebra in stressing the need for §-like joins and predicates described by complex
mathematical formulae.

A fitness join (F_join) combines region pairs maximizing a fitness function,
f(rs,rs) = float. The pairs found merge into a single segment. The metric join
(M _join) finds all pairs for which the distance is less than the given maximum
m. The distance is calculated using a given metric function, d(rs,rs) — float.
The last function in this group, called predicate join (P_join), is a normal join
which merges regions for which the predicate p holds. An example of such an
expression is the predicate ”similar”, which holds if regions r; and rs touch and
the average colors are no more than 0.1 apart in the domain of the color space.
A functional description is:

similar(r ry,7 r9) :=
touch(rq,r2) and
distance(ry.avg_color,ry.avg_color) < 0.1

The next group of primitives is needed for selection. The fitness find (F_find)
returns the region which fits best to the given region, according to fitness function
f(rs,rs). The metric select (M _select) returns a set of regions at most at distance
m, using the given metric d(rs,rs) function. The predicate select (P_select)
selects all regions from the input set for which the predicate is valid.

Join operations result

F_joing(L, R) —{prso} {lr|lr € LR, AU'v" e LRA f(U',7") > f(I,7)}
M _joing (L, R) ={prso} |{lr|lr € LRAd(l,7) < m}

P_join, (L, R) —{prso} {lr|llr e LR Ap(l,7)}

Selection operations result

F_finds(L,r) —iprso leL, Al eLAf,r)> f(l,r)

M _selectq m (L,) —{iprso}|{l|l € LAd(l,T) < m}

P_selecty,(L,r) —{iprso} |{l|l € LAp(l,7)}

Table 2. Signatures of the Join and Selection operations

The last group can be used to sort region sets. We have encountered many
algorithms with a need for a partial order. P_sort derives a partial order amongst
objects. Each entry may come with a weight which can be used by the metric
sort (M _sort). This sort operation is based on a distance metric between all
regions in the set and a given region. The N_sort uses a function to map regions
onto the domain N

After the partial order the Top returns the top n objects of the ordered table.
The Slice primitive will slice a part out of such an ordered table. The Sample
primitive returns a random sample from the input set.

4 Acoi Image Retrieval Benchmark

The next step taken was to formulate a functional benchmark of image retrieval
problems. Many such performance benchmarks exist for DBMS for a variety of
application areas. Examples in transaction processing are the TP series (TPC-C
and TPC-D) and in geographic information systems the SEQUOIA 2000 storage
benchmark. We are not aware of similar benchmarks for image retrieval. The
construction of such a benchmark is one of the goals of Amis. Both the database
and image processing community would benefit from such a public accessible
benchmark.?

Its function is to demonstrate and support research in image processing and
analysis in a database context. Therefore, we derived the following characteristics
from the algorithms used in the image processing domain.

— Large Data Objects The algorithms use large data objects. Both in terms of
base storage (pixels), but also the derived data incurs large space overhead.

— Compler Data Types The algorithms use specialized complex data types.
Derived data is often stored in special data structures.

— Fuzzy data The computational model used is based on heuristics and fuzzy
data. This fuzzy data should be accompanied by some form of fuzzy logic.

The Acoi Benchmark Data The data for the benchmark consists of two Image
sets, one of 1K images and one of 1M images. The images are retrieved randomly
from the Internet using a Web robot. The set contains all kinds of images, i.e.
binary and gray scale, small and large but mostly color images.

The Acoi Benchmark Queries Based on the characteristics encountered in the
image processing community a set of 6 distinctive queries for the benchmark was
identified, which are shown in Table 3.

Query 1 loads the database DB from external storage. This means storing
images in database format and calculation of derived data. Since the benchmark
involves both global and local image features this query may also segment the
images and pre-calculate local image features.

Query 2 is an example of global feature extraction as used in QBIC. This
query extracts a normalized color histogram. We only use the Hue component of
the Hue, Saturation, Intensity color model. The histogram has a fixed number
of 64 bins. In query 3 these histograms are used to retrieve histograms within a
given distance and the related images. The histogram h should have 16 none-zero
bins and 48 zero. The none-zero bins should be distributed homogeneous over
the histogram. The query Q3a sorts the resulting set for inspection.

Query 4 finds the nearest neighboring regions in an image. Near is defined
here using a user-defined function, f. This function should be chosen so that
neighbors touch and that the colors are as close as possible.

Query 5 segments an input image. Segmentation can also be done with spe-
cialized image processing functions, but to show the expressive power of the

3 Readers can contact authors for a copy of the Acoi Benchmark.

algebra we also include it here in its bare form. Finally Q6 searches for all im-
ages in the database which have similar segments as the example image. The
resulting list of images is sorted in query 6a.

[nr [query |
Q1 |DB-load

Q2 [{h|i € Ims A h = normalized_color_histogram(z)}

Q3 |{i|i € I'ms A L?distance(normalized_color_histogram(i),h) < 0.1}
Q3alsort Q3

Q4 |{ninz|nins € Regs(im)A An3 € Regsf(ni,ns) > f(ni,n2)}

Q5 |{rs|rs C Regs(i) AVrirs € RS :

L?distance(avg_color(r1), avg_color(rs)) < 0.1
Adso...sn €rs:

r touch soA

8; touch s;4+1A

Sn touch s}

Q6 |{i|Vs; € Q6(i)Tse € Segs(e)

d(si, se) < min_dist}

Q6balsort Q6

Table 3. Benchmark Queries

The Benchmark FEvaluation To compare the results of various implementations
of the benchmark we used the following simple overall evaluation scheme. The
performance of the Acoi Benchmark against different implementation strategies
can be compared using the sum of all query execution times. This way moving a
lot of pre-calculation to the DB-load query will not improve performance unless
the information stored has low storage overhead and is expensive to recalculate
on the fly.

5 Performance Assessment

The benchmark has been implemented in Monet using its extensible features. De-
tails about Monet can be found at {http://www.cwi.nl/~monet}. The DB-load
query loads the images using the image import statement into the Acoi_Images
set. We only load the images in the system. No pre-calculation has been per-
formed.

The color histogram query (Q2) can be expressed in the Acoi algebra as
follows:

var Q2 := [normalized_color_histogram] (Acoi_Images) ;

The brackets will perform the operation normalized_color_histogram on all
images int the AcoiImages set. It returns a set of a histograms. Q3 uses a

M select with the L2 metric. The sorting of Q3a can be done using the M sort
primitive. Query Q4 is implemented in the Acoi algebra using a F_join with the
function f(ry,r2) defined as follows:

f(rl7 RZ) =

dist(ry.color(), ra.color()) if ri.touch(rs)
max_dist

The queries 5 and 6 are implemented by longer pieces of Monet code. The
segmentation of query Q5 use an iterative process. This process can make use of
the F_join primitive to find the best touching regions based on the color distance,
see [13] for full details.

Query Q6 can be solved using a series of M_select calls. For each segment
in the example image we should select all Images with similar segments, where
similar is defined using the metric given. The intersection of the selected images
is the result of query 6. This can be sorted using the M_sort primitive.

The Benchmark Results We run these queries using the small Acoi database
of 1K images. The small benchmark fits in main memory of a large workstation.
The database size is approximately 1G. We used a sparc ultra IT with 128 MB of
main memory running the Solaris operating system, to perform the benchmark
on. Using the Acoi algebra we could implement the benchmark with very little
effort.

The initial results can be found in Table 5. Overall the benchmark took
3468.8 seconds.

In the result we can see that the DB-load query takes more than 80 percent of
the overall benchmark result. This unexpected result stems from heavy swapping
of the virtual memory management system. Main memory runs out quickly, so
swapping will influence the performance. Based on our early experimentation
with multi-giga-byte databases this problem can be resolved with some careful
loading scripts.

We found that the results of queries Q4 and Q5 were low. The none-optimized
current implementation of F_join was responsible for the low performance. To
improve it we moved the spatial constrains out of the F_join. This allows us to
find candidate pairs based on the spatial relation between regions quickly. This
way we improved the performance of the queries Q4 from 5 to 1 second and Q5
from 21 to 1.2 seconds using a few minutes of programming. A similar step in a
traditional image programming environment would have meant partly re-coding
several pages of c¢/c++ code.

Query|Time(s)||Query|Time(s)
Q1 2865 Q4 1.0
Q2 598 Q5 1.2
Q3 1.5 Q6 1.5
Q3a 0.3 Q6a 0.3
Table 4. The Acoi Benchmark Results

6 Conclusions

In this paper we introduced an algebraic framework to express queries on images,
pixels, regions, segments and objects. We showed the expressive power of the Acoi
algebra using a representative set of queries in the image retrieval domain. The
algebra allows for user defined metric functions and similarity functions, which
can be used to join, select and sort regions. The algebra is extensible with new
region properties to accommodate end user driven image analysis in a database
context.

We have implemented the algebra within an extensible DBMS and developed
a functional benchmark to assess its performance. In the near future we expect
further improvement using extensibility in search methods and index structures
to improve the performance of the algebra. As soon as the full Acoi database is
ready we will perform the benchmark on the set of 1M images.

References

1. P.A. Boncz and M.L. Kwakkel, F. Kersten. High Performance support for OO
traversals in Monet. In BNCOD proceedings, 1996.

2. Peter A. Boncz, Wilko Quak, and Martin L. Kersten. Monet and its Geographic
Extensions: a novel Approach to High Performance GIS Processing. In EDBT
proceedings, 1996.

3. R. Chellappa and R. Bagdazian. Fourier Coding of Image Boundaries. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6:102-105, 1984.

4. E. Clementini, P. Felice Di, and P. Oosterom van. A Small Set of Formal Topolog-
ical Relationships Suitable for End-user Interaction. In SSD: Advances in Spatial
Databases. LNCS, Springer-Verlag, 1993.

5. G. Copeland and S. Khoshafian. A Decomposed Storage Model. In Proc. ACM
SIGMOD Conf., page 268, Austin, TX, May 1985.

6. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
W. Equitz. Efficient and Effective Querying by Image Content. Intelligent Infor-
mation Systems 8, pages 231-262, 1994.

7. H. Freeman. On the encoding of arbitrary geometric configurations. Transactions
on electronic computers, 10:260-268, jun 1961.

8. T. Gevers and A. W. M. Smeulders. Evaluating Color and Shape Invariant Image
Indexing for Consumer Photography. In Proc. of the First International Conference
on Visual Information Systems, pages 293-302, 1996.

9. S W Golomb. Run-Length Encodings. IEEE Transactions on Information Theory
12(8), pages 399-401, july 1966.

10. Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

11. Hong-Chih Liu and M. D Srinath. Corner Detection from Chain-Code. Pattern
Recognition(1-2), 1990, 23:51-68, 1990.

12. B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and Co., New
York, rev 1983.

13. N.J. Nes and M.L. Kersten. Region-based indexing in an image database. In
proceedings of The International Conference on Imaging Science, Systems, and
Technology, Las Vegas, pages 207-215, June 1997.

14

15.

16.

17.

18.

19.

20.

21.

. A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipu-
lation of image databases. In SPIE Storage and Retrieval for Image and Video
Databases II, No. 2185, pages 34-47, 1994.

E. M. Riseman and M. A. Arbib. Computational Techniques in the Visual Segmen-
tation of Static Scenes. Computer Graphics and Image Processing, 6(3):221-276,
June 1977.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley,
1990.

J. Segman and Y. Y. Zeevi. Spherical wavelets and their applications to im-
age representation. Journal of Visual Communication and Image Representation,
4(3):263-70, 1993.

John R. Smith and Shih-Fu Chang. Tools and Techniques for Color Image Re-
trieval. In SPIE Storage and Retrieval for Image and Video Databases IV, No
2670, 1996.

S. L. Tanimoto and T. Pavlidis. A Hierarchical Data Structure for Picture Pro-
cessing. Computer Graphics and Image Processing, 4(2):104-119, June 1975.

L. Uhr. Layered recognition cone networks that preprocess, classify, and describe.
IEEE Transactions on Computers, 21:758-768, 1972.

Aref. W.G., Barbara D., and D. Lopresti. Ink as a First-Class Datatype in Multi-
media Databases. Multimedia Database Systems, pages 113-160, 1996.

