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Abstract

Spatial data storage stresses the capability of con�

ventional DBMSs� We present a scalable dis�

tributed data structure� hQT�� which o�ers support

for e�cient spatial point and range queries using

order preserving hashing� It is designed to deal with

skewed data and extends results obtained with scal�

able distributed hash �les� LH�� and other hash�

ing schemas� Performance analysis shows that an

hQT� �le is a viable schema for distributed data

access� and in contrast to traditional quad�trees it

avoids long traversals of hierarchical structures�

Furthermore� the novel data structure is a com�
plete design addressing both scalable data storage

and local server storage management as well as

management clients addressing� We investigate

several di�erent client updating schemes� enabling

better access load distribution for many 	slow


clients�

Keywords Scalable Distributed Data Structure�
Spatial Point Index� Ordered Files� Multicomputers

� Introduction

Research is increasingly focusing on using multi�
computers ��� ���� ��	�
 Multicomputers are built
from mass�produced PCs and Workstations� often
having special high bandwidth networks
 Such in�
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frastructures have emerged and many organizations
have typically thousands of machines with an im�
pressive large total amount of RAM� CPU and disk�
storage resources

Multicomputers provided a challenge and

promises to cope with the ever�increasing amount
of information using new distributed data struc�
tures
 Scalable Distributed Data Structures
�SDDSs� form a class of data structures� 
rst pro�
posed in ����� that allows for scalable distributed

les that are e�cient in searching and insertion

The approach gives virtually no upper limit on the
number of nodes �computers� that participate in
the e�ort
 Multiple autonomous clients access data
on the server�nodes using their image to calculate
where the data is stored
 Their images might be
outdated� but clients are updated when addressing
errors occur

SDDSs are especially designed for avoiding hot�

spots� typically a central directory
 Clients are au�
tonomous and their directory information is incom�
plete
 When a server receives a mal�addressed re�
quest from a client� the request is forwarded to the
correct server� and an Image Adjust Message �IAM�
is sent to correct the client� improving its address�
ing information

So far several SDDSs have been proposed
 Many

of them are hash�based� such as LH����� followed by
DDH���� and ���� and LH�lh ���
 A number of B�
tree style distributed data structures were also de�
signed� e
g
� RP� ��	�� DRT��������� and k�RP� ����

k�RP� allows for multi�attribute distributed index�
ing

Increased storage demands of larger amounts

of spatial data gave birth to many di�erent data



structures
 They can be divided into the follow�
ing classes� Grid�style 
les� �quad�tree�structured

les� directory�based� hash�based
 Combinations of
hash�based structures and search�trees are called
hybrid�structures
 Grid�
les ���� experience prob�
lems with non�uniformly distributed data
 So
do many multidimensional order�preserving hash�
ing structures� for example MOLPHE���� PLOP�
Hashing ��� and ���
 The basic principle of these
structures it that they map keys of several dimen�
sions into one dimension 
rst� using for example
z�ordering or similar algorithms�������� and apply�
ing an order preserving hashing algorithm ��������
afterwards

Balanced quad�tree�like structures �overview in

����� were developed to solve this problem
 How�
ever� much of the real�world data is clustered in
a few spatial areas
 The dense regions� data will�
when inserted� be pushed down deep in the tree
structure by inserting empty nodes
 This leads to
excessive navigation to reach data
 The BANG�
le
��� and BD�tree���� were designed to create more
�compact� trees

We present hQT� which is a novel spatial ���

dimensional� scalable distributed data structure�
that can be viewed as a hybrid hierarchical struc�
ture� with mostly hash�access performance
 It im�
poses a successive more dense grid on square parts
�regions� of the data domain
 In hQT�� we ac�
cess the buckets bottom�up instead of � the nor�
mally used method� top�down� avoiding long path
traversals for data access
 Furthermore� empty
buckets need not be stored� they are created when
data is 
rst inserted
 hQT� adapts to skewed and
clustered data� typical for spatial data
 Uniform
distributions should achieve similar performance as
DDH ���� but allowing for ��dimensional data also

hQT� is based on lessons learned from many data

structures� it combines features from hB�tree ����
in that the splits are not restricted to a horizontal
partitioning� and LSD�trees �	� in that subtree ex�
tractions are made
 Finally� it has some similarities
with the SDDS LH� ���� using hashing to enable as
e�cient performance for clustered data

This is achieved through our bucket number�

ing schema
 Each bucket� at any level in the im�
posed hierarchical grid� is given a unique number

These numbers are used for identifying the correct
bucket
 Distribution is managed similarly
 The
data structure is distributed by moving subtrees

to new nodes
 The bucket numbers identifying the
subtrees are then marked as ForwardBuckets� and
these make up the image of a server� clients have a
subset of these entries in their image

The rest of the paper is organized as follows
 In

Section � we give an overview of hQT�� followed
by hQT� distribution� in Section �
 Section 	 de�
scribes the splitting algorithm
 Measurements are
presented in Section � and Section � concludes the
paper


� hQT� Overview

General principles for SDDSs as de
ned in ���� ap�
ply to the hQT� data structure as well
 The hQT�

le is stored on server nodes �computers�� and the
applications access the data from client nodes
 A
server is assumed to be continuously available for
the clients� but the clients are autonomous
 Clients
are not continuously available for access� may be
o��line for longer periods

The clients use an image for addressing data on

the servers
 This image can be outdated� causing
the client to make addressing errors
 Servers re�
ceiving such a request forward the query towards
the correct server using its own image

A 
le consists of records that reside in buck�

ets
 For the algorithm the relevant part is the key�
which identi
es a record and is used to locate the
record
 Buckets reside in main�memory �RAM� at
servers
 Each bucket has a 
xed capacity of records

Similarly� servers have limited capacity� too
 Each
server keeps data for a number of di�erent spatial
areas �regions�
 For each area several local buckets
are kept in main memory� virtually arranged in a
�quad� tree hierarchy� using a numbering schema

The subtrees of hQT� stored at one server are there
seen as root�trees
 Each such tree can be uniquely
identi
ed by the number of the root�node�s corre�
sponding bucket
 Each server keeps a mapping for
the subtrees �buckets� it moved to another server
giving the network address


��� Records

The records in hQT� store the spatial coordinate
x� y and the associated attributes a�� ���an
 The lay�
out of the record is shown in Figure �
 For e�ciency
the calculated pseudokey p is stored as well� avoid�

�
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ing unnecessary recalculations
 during reorganiza�
tion
 Additionally� a pointer n is used to group
records together into a link list to create buckets

The application data is kept in the tail of the hQT�
record for e�cient application access
 Typically the
capacity of such a bucket is set � �� elements


��� Pseudokey Construction

We map the ��dimensional keys into a pseudokey�
a bitstring of 
xed length
 For the current imple�
mentation of hQT� we construct the pseudokey as
follows
 The ��dimensional coordinate is mapped
to one bitstring by interleaving the bits of the bit�
representation of the coordinate data �x� y�
 For
example let X and Y be bit vectors of length 	
forming the pseudokey P of length �
 If X �
�x�� x�� x�� x��� Y � �y�� y�� y�� y�� the pseudokey is
then P � �x�� y�� x�� y�� x�� y�� x�� y��� As can be
noted P is the reversed interleaved bitstring
 This
is to simplify low�level bit�programming� most al�
gorithms like LH 
rst consider the lowest ordered
bits� and so do we


��� Bucket Numbering

Buckets are numbered uniquely using the pseu�
dokey and the level
 Brie�y� the idea is to impose
a grid on each level of a quad�tree� using regular
decomposition� such that all grids align with each
other when superimposed
 For hQT� any �space�

lling curve� can be used� z�ordering of the buckets
is shown in Figure �
 Our pseudokey use a reversed
bitstring yielding a slightly more visually compli�
cated numbering� but the principle is the same

Each layer is o�setted with the total number of
preceding layers buckets
 All buckets at all levels
have a unique number
 A bucket�s number is calcu�
lated by 
rst extracting the appropriate number of
bits from the pseudokey� and then adding the o�set
stored in a table
 As can be seen from the 
rst �
grid layers� in Figure �� for level��� the o�set is ��
level��� o�set��� level��� o�set��
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Navigation in the virtual tree is supported
by functions that calculates parent � and children

bucket number
 In�expensive table lookups are
used to make the mappings e�cient


��� Addressing

In many SDDSs �LH�� RP�� there are usually two
di�erent types of addressing algorithms� one for
clients� and one for servers
 The client calculates
the address where it believes the information re�
sides� and the server that receives a request checks
whether the data is local or has moved due to a
split
 These calculations are� of course� similar
 In
hQT� we use the same algorithm and data struc�
ture for both client and server address calculation�
the di�erence being that the client� conceptually
does not store any data�

We start with point queries to address local buck�

ets
 This then easily generalizes to distributed
bucket �server�nodes� accesses


����� Local Point Queries

Given a point in ��dimensional space� one way to

nd its associated data is to follow a path from
the top�node� shown schematically in Figure �a for
two cases� A and B
 A lies close to the root� and
B is found further down the tree
 However� this
has been identi
ed as an expensive operation� be�
cause clustered data will be pushed down down in
the quad�tree
 In a distributed setting� this is even
worse due to communication resulting in hot�spots

In hQT� we start from the bottom �highest num�

bered existing level� � of the tree style structure� as
shown in Figure �b
 Here we see that we get a direct

�In hQT�� caching of data could be realized through let�
ting the client store data� too�

�Another level could be used as a starting point� but then
distributed addressing would be a bit more complicated�

�
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Figure �� Navigation in a� Quad�Tree b� hQT�

hit for B from our calculations� but for A we have
to walk up using the parent function � towards the
root � through nonexisting buckets �dotted in the

gure�� until an existing bucket is found
 Probing is
done locally� using hash�table lookups
 This allows
for hash access to highly dense areas on the low�
est levels� giving direct hits with minimal overhead�
while less populated areas require local probes


����� Local Region Queries

Rectangular region queries in hQT� use the implicit
tree�structure among the buckets
 Initially� the al�
gorithm search for a local bucket that fully con�
tains the queried region� in worst case giving the
top�node� i
e
 the bucket numbered �
 The sub�
tree below is investigated� using the implicit tree�
structure in hQT�
 Each subtree� is 
rst tested if
it is contained� or overlaps with the region in ques�
tion
 All the appropriate local buckets are visited
by traversing the implicit tree


��� File Growth

Initially� when the hQT� 
le is created� only one
server is used
 Later� then this server�s capac�
ity is exceeded� i
e
 the server is overloaded and
split
 Figure 	� left� shows a sequence of splits
starting with the 
rst split in Figure 	a
 Succes�
sive splits� each moving data into a new server is
shown through Figure 	b to Figure 	c
 The 
rst
time � subtrees are moved� then second time only
one� third �c� �� and last �d� again � subtrees
 The
squares do not overlap� other by recursive decom�
position

Generally� a split is chosen in such a way that

we minimize the number of squares �subtrees� to
move� they have as large coverage as possible� and

b)

d)

a)

c)

Figure 	� Left� hQT� 
le key space partitioning
by 	 successive splits
 Right� The equivalent quad�
tree


it should move half of the records �load�
 For now
we just assume the existence of such a splitting al�
gorithm� in the next chapter we will describe our
splitting algorithm in detail


� Distribution in hQT�

In hQT� both the clients and the servers use an im�

age
 The image stores the mapping from a bucket
number to the actual bucket� or a ForwardBucket

that stores forwarding information
 Using an array
for the mapping would fail for skewed data
 Instead
we store the buckets in a has�based structure
 To
test the existence� or to retrieve a bucket an in�
expensive hash table lookup su�ces


��� Distribution �ForwardBuckets	

To handle distribution in hQT�� we introduce the
ForwardBucket
 A ForwardBucket is a replacement
for a subtree that has been moved from a server�
it replaces the removed subtree at its root
 The
spatial coverage of the ForwardBucket is identical
to that of the moved tree
 The ForwardBucket is
associated with the address of the server where the
data was moved


��� Distributed Point queries

In a distributed setting� the client is 
rst locally
searched using the local hQT� addressing schema�
resulting in one ForwardBucket instead of a leaf
bucket
 The operation is then forwarded to the
node associated with the ForwardBucket
 That
�server� node is then searched� resulting in either

	



a local bucket if the data is stored at that server
or another ForwardBucket� in which case the re�
quest is again forwarded
 Eventually� the correct
server�node is found that stores the data in a local
bucket

Noticeable is that clients and servers use iden�

tical addressing operations� the only di�erence is
that only servers stores buckets with data
 In prac�
tice� hQT� client addressing can be seen as a single
forwarding operation


��� Distributed Region Queries

Distributed region search is 
rst performed locally
in the client� as earlier described
 Whenever a For�
wardBucket is found by the client� it is noted in a
list
 This list serves to forward our query to the as�
sociated servers� these servers are also given the list

These servers then repeat the same search as the
initial server� processing their locally found records

Discovered ForwardBuckets are again noted
 When
all appropriate local records have been processed�
the server sends a �nished�message to the origi�
nal server with the list of ForwardBuckets�servers
where to it then will forward the query� exclud�
ing servers already identi
ed at the original server

These servers in turn� perform the same operations
till there are no more servers to forward to
 The
initial server keeps track of all servers it awaits
responses from
 Whenever� a 
nished�message is
received� the corresponding ForwardBucket is re�
moved from the list� and discovered ForwardBuck�
ets on the remote server are added
 The query is

nished when this list is empty
 This algorithm can
be varied by requiring the forwarding�servers to col�
lect the results themselves and then send the results
back
 In RP���	�� broadcast and multicast mes�
sages are considered
 When broadcasts and mul�
ticast are available they can be used with similar
performance

Clients perform the query in exactly the same

way as the servers� with the only di�erence that
clients do not store records


����� Forwarding� Image Adjust Messages

A client operation forwarded by a server incurs an
overhead of extra messages
 This is inevitable

However� it is crucial that an SDDS inhibits
the client to repeat the same addressing mistake


Clients are therefore updated using Image Adjust�

ment Messages �IAMs�����
 An IAM contains in�
formation that improves the image of the mal�
addressing client
 In LH�� this is an extremely ef�

�cient procedure� at most � forward messages are
needed����
 This is achieved through its strict lin�
earization of buckets� which indirectly inform the
client of the existence of other servers

In a tree data structure this is less so� but instead

they cope with non�uniform distributed data bet�
ter
 In Section �
� we will see that di�erent client
�and server� image updating schemas can improve
the performance substantially at the cost of more
update messages


��� IAM Policies

As explained earlier� a forwarded request yields an
Image Adjust Message �IAM�� this makes sure that
the client does not repeat the same addressing er�
ror
 Naively� only the client needs to be updated

However� as noted in RP�� DDH� and others� this
puts a large load on the 
rst server� that repeatedly
has to update the same client for di�erent mis�
takes
 The ultimate solution is to let the servers
be updated by IAMs too when their forwarded re�
quest is again forwarded by another server
 Below
we present di�erent strategies used to investigate
di�erent aspects of image updating policies
 The
di�erent strategies investigated are�

� OnlyClient� only clients are updated

� Forwarders� all clients � forwarders are updated

� Brothers� as Forwarders� but the IAM also include
all existing sibling� ForwardBuckets�

� Update�Forwarders� �update	 walks up the tree at
each server that forwards� registering all ForwardBuck�
ets unknown to the client� This is intended to give bet�
ter load balance� by making servers share the relevant
information to clients earlier�

� Update�Brothers� as the previous one but with
Brothers instead�

Naively� every server could send updates to all

servers that participate in the current operation
 In
practice� the 
nal server sends the IAM to the client
directly� possible piggybacked on the reply message

Then it would back�trace the path the client�s re�
quest was forwarded� updating these servers
 The
bene
t of updating these servers is their decreased
load by fewer mal�addressed client�requests


�A sibling of a bucket is another bucket with the same
parent�

�



� Server Splitting

Unlike LH� ����� LH�lh ��� ���� and other hash�
based data structures� our server splitting performs
well also for splitting skewed data
 LH� decides the
split by a linearization of which buckets to create�
which easily creates problems with unskewed data

Among the non�hashed based SDDSs� RP� ��	�� for
instance� uses a simple interval division at the me�
dian value� but the e�ciency of splitting and how
to manage the locally stored records as such is not
addressed


��� hQT
 Splitting

In hQT� a server is split by a simplistic� but yet ef�
fective algorithm that we call Dissection Splitting

In most cases we achieve a near �� split
 The best
split is characterized by three properties
 First� it
should be as close to �� as possible
 Second� it
should have as large a coverage as possible
 Third�
the number of identi
ed squares should be as low as
possible
 Even if these properties seem to contra�
dict� in most cases the expected number of selected
subtrees is below �� and seldom over �� which means
that every split mostly generates two new Forward�
Buckets� and two subtrees are moved respectively

These subtrees may be rooted on di�erent levels in
the tree� but are not overlapping


��� Dissection Splitting Algorithm

A server splits when it is overloaded� by dissecting
the forest of root�trees stored at that server
 The

rst server contains only one root�tree� covering the
whole spatial domain of the data structure
 A split
of a server is the process of selecting a subset of
�sub�trees to move
 The subset selected will con�
tain roughly half of the records �load�
 The weight
of a tree is de
ned as the ratio between the num�
ber of records contained in the tree compared to the
number of records at the server� usually expressed
in percent� �
 Dissecting a server involves �open�
ing up� the quad�tree by decomposing it into its
subtrees

The algorithm� shown in Figure �� works as fol�

lows
 Insert all roots of the server to be split into
the current working set� prune all below a certain
threshold
 Try all combinations� store the best com�
bination
 If there is a subset that is inside our al�

proc Dissection Splitting
server� �
L �� froot�trees stored in serverg

S �� nil

while 
�GoodEnough
S�� do

if 
S �� nil�
B �� remove heaviest from L

L �� children
B� � L
 �

L �� fr � weight
r� � Thresholdg

for �P � L do

if 
BetterThan
P� S��
S �� P 
 � od od


proc GoodEnough
s� �
abs
Weight
S�� ���� 	 maxdi� 
 


proc BetterThan
a� b� �
GoodEnough
a� 
 kak � kbk
 


Figure �� Split Dissection Algorithm

lowed split range� ��� � maxdi� � �� ! maxdi� � �
then the algorithm terminates
 If the solution is
not GoodEnough� we replace the heaviest tree in
the working set with its children� and start over in
the loop� till the algorithm terminates

There are mainly two parameters that control

the algorithm
 First� the Threshold which tells us
what sizes of trees to remove from the working
set
 Second� the maxdi� " the maximum deviation
from �� that we 
nd GoodEnough
 A solution is
considered BetterThan than another solution if the
number of subtrees �S� identi
ed to move is fewer

Experiments show that at most 	 trees are cho�

sen� the mean value of number of trees is �
�

Further on� we observe that setting maxdi� �
Threshold performs well


� Measurements

Our measurements show the performance of hQT�
in di�erent settings
 Scalability is shown using 	��
servers in one experiment� and ���� servers in an�
other
 We investigate the e�ciency of di�erent
IAM policies� since this is a major concern for tree
structured SDDSs
 An e�cient policy is vital for
good load balancing among the servers
 Another
concern is how hQT� is a�ected by the data input
order
 For example loading data in the �wrong� or�
der can cause many structures to degenerated����

We display results showing that hQT� automati�
cally redistributes the load in case of ordered in�
serts


�



��� E�ciency of IAM Policies

In line with other SDDS evaluations ������� we
present performance 
gures measuring the over�
head of forwarding
 We show the performance of
di�erent IAM policies� in the end choosing the most
optimal and load�balancing policy for hQT�

The experiments randomly generate �����		

data points �coordinates� in the spatial domain

They are evenly distributed over the key domain
���� �������
 The mean number of messages over a
series of clients is measured
 One client is used at
a time in these tests
 The activeness of a client de�
termines the overhead� which is tested by restarting
the client� with a probability P after every insert�
we show the value ��P � roughly indicating the life�
time of a client

During the experiments the 
le grows from one

server to several by splitting when the servers are
overloaded� reaching ���� servers in the 
rst exper�
iment� and 	�� in the second

The acceptance interval for a satisfactory server

split is set to a weight of �	�� ��� � and the lightest
subtree considered is set to � accordingly

Update messages for clients and servers are not

counted directly� instead the forwarding overhead
is shown
 There are several reasons for this

There are several di�erently e�cient ways to imple�
ment each strategy� delayed update of servers from
servers� etc
 For example� in the OnlyClient op�
tion� there is either a single message per forwarding�
in which case the displayed values can be recalcu�
lated as new � �old� �� � � ! �� or the 
nal server
sends back an update message to the client� yield�
ing considerable fewer messages
 Other strategies�
trace the updates back to the client from the 
nal
server through all the servers that did forward the
request� in the end incurring the double overhead
�new�


����� �	

 Servers

First we investigate� in a scenario where each
server can hold at most ��� elements
 This gives
approximately ���� servers�
 The values pre�
sented in the Table �below� are the average num�
ber of messages totally used for inserting data


�Obviously� ���� servers is a very high and unlikely num�
ber� full data availability will not be feasible� but it shows
the good characteristics of the data structure going in an
extreme�
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��� ��� ���� ���� ���� ���� ����

When a client inserts ��� elements in a 
le dis�
tributed over ���� servers� it is likely to access
around ��� servers
 In the table the best strategy
Update�Bro� gives only ���� � � � ���� extra
messages at an average� indicating the e�ciency of
SDDSs addressing and updating schemas

At a 
rst glance� one would expect the Only�

Client strategy to give the worst overhead� fur�
thermore that Brothers does not seem to give
much improvement over Forwarders
 However�
this is an illusion
 In Figure �� we show the number
of forwardings that each of the servers numbered ��
�� �� and �� had to perform
 In this run the prob�
ability �P� of a new client is ������ and the same
amount of data is entered

For OnlyClients� server � needs to perform

nearly ������ inserts
 But worse are For�
warders and Brothers that need nearly �������
and �	����� forwards for the same data
 Now�
three candidates remain� depicted in Figure ��
OnlyClient� Update�Forwarders and Up�
date�Brothers
 The 
rst two candidates both
incur quite a few forwards for the 
rst server�
but Update�Forwarders wins for the remaining
servers� in total reducing the number of forwards

However� Update�Brothers is the clear overall
winner� since the work of forwarding is further re�
duced to less than half for the 
rst server� shar�
ing the load with the rest of the servers
 This is
achieved through its faster client and server image
updating schema


����� ��� Servers

In the second scenario� each server can at most hold
���� elements
 This results in 	�� servers for simi�
larly generated data


�
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Apparently fewer servers incur less messaging� com�
paring with the ���� servers in the previous sce�
nario
 AgainUpdate�Brother is clearly the win�
ner


��� Server Load Distribution

One major problem for many data structures�
is that they assume that data is inserted un�
ordered �random�
 Ordered input leaves these
structures unbalanced with substantially reduced
performance
 To assess the performance of hQT� in
very skewed distribution we use regional point data
of the SEQUOIA�benchmark ���� �
le ca� 
 The 
le
contains �����	 California place names
 The data
is skewed with several dense regions �cities� with
many points� leaving other areas almost empty

In the 
rst experiment� we insert the data in the

order it occurs in the 
le� sorted on the names of the
places
 In the second experiment we insert the data
sorted 
rst on the X and then on the Y coordinate
values� resulting in a totally di�erent input order

By 
rst studying how the server � splits for dif�

ferent distributions� we can assess that the load bal�
ancing is e�cient through observing the number of

regions server � forwards queries to
 Second� a com�
mon goal for data structures is to linearize the split�
ting so that the splits are evenly distributed over
the time that data is inserted� e�ectively spread�
ing the cost of redistribution to occur evenly dis�
tributed over time

�� servers were created for the unordered inserts�

and ��� servers using ordered inserts
 Servers were
split when their local capacity of ���� records is
reached

For the unordered set server � was split � times

giving �� regions �ForwardBuckets�� and for the
ordered set �� times giving �� regions�
 How�
ever� in the ordered case� most of these areas were
moved when the structure evolved� in the end giv�
ing it the responsibility of only �� regions� e�ec�
tively restructuring and balancing the distribution
tree�forwarding structure�
 This is explained by
viewing the number of ForwardBuckets that are
contained in the subtrees which is to be moved

During a split� when a subtree is moved� con�
tained ForwardBuckets from previous splits are also
moved
 In e�ect� the responsibility of these regions
is given away to a new server with larger spatial
coverage

Viewed at a distance� one notices that hQT�

splits top�down for unordered inserts� in a hier�
archical manner� but for ordered inserts the splits
partly occurs bottom�up� due to their clustered oc�
currence in the input stream
 However� since splits

�The number of non�overlapping regions a server holds is
an indication of how much forwarding it has to perform�

�



near the root occur later� they include already dis�
tributed domains� yielding a balanced tree in the
end anyway
 In the plots in Figure �� we study the
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Figure �� Split distribution over �time�


number of splits in respect to the number of inserts

The two curves show the ordered and unordered in�
serts� respectively
 The server splits are shown on
the X�axis� and the global number of inserts on the
Y�axis
 Even if the �Random Input Order� grows
slightly faster� being more eager to split� both of
them show quite a nice spread of the server splits
over time


��� Discussion

We have investigated several strategies for IAM
updating of the clients �and servers�� measur�
ing the forwarding cost
 One strategy� Up�
date�Brothers shows excellent performance
compared to the others
 The extensive measure�
ments show the messaging overhead to be low� us�
ing a client to insert ������ records on 	�� servers�
incur a message overhead of � and � for �����
records
 Further on� it allows for faster client image
adjustments� distributing the access load evenly on
the servers

We show that the 
le can be scaled up to ����

servers with reasonable added messaging cost
 For
example� a client inserting ������ records� incurs
an overhead of �� while being updated knowledge
of ���� additional servers
 Comparing to a naive
solution where only the client is updated� which
gives an overhead of 	� 
 For more active clients
��������� the overhead is down to � 

hQT� automatically adjusts the tree structure

when ordered data �clustered in spatial areas�
are inserted
 This is achieved by our Dissection
Splitting algorithm that 
rst considers distributing
larger spatial areas
 So� for a skewed server split�
ting order the responsibilities of spatial areas are
reassigned to di�erent nodes

Studying how server splits occur over the time�

one can observe a near linear function� even for
ordered data inserts� achieving results comparable
to linearizing hashing structures


� Conclusions

We have shown that hQT� is a well�behaving Scal�
able Distributed Data Structure
 It allows for spa�
tial point data insertions and point and region re�
trieval
 hQT� is a ��dimensional order preserving
hashing structure
 It is a complete solution� in that
it also stores and manages the local storage
 Inserts
can be performed in near � message� and point data
access in near � messages
 Using a tenfold more
servers� the same client still achieves similar perfor�
mance �the added cost is � for a client inserting
���� ��� records�

We have investigated di�erent IAM updating

strategies� choosing a strategy that updates the im�
ages on both the servers and clients
 The chosen
strategy allows for a very low messaging overhead
for active clients� � overhead for a reasonable ac�
tive client� and moderate overhead for less active
clients

We have shown that an hQT� 
le can scale to

thousands of servers� still giving acceptable perfor�
mance
 Increasing the number of servers from a few
hundred to ten times as many does not impose an
increase in the overhead by ten� but substantially
less� depending on how active the clients are

In our experiments� the server splits occur evenly

distributed in time� even for ordered inserts of data

Furthermore� it is shown that the tree�structure au�
tomatically restructures on spatially clustered in�
serts in time

In the future we plan to extend hQT� to allow for

n�dimensional data allowing for Data mining stor�
age and queries
 Extended objects are also a chal�
lenge for SDDSs
 Further on� database query pro�
cessing over SDDSs� a currently progressing project
is underway to incorporate the hQT� data struc�
ture


�
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