Determining Local Singularity Strength and its Spectrum with the Wavelet Transform

OR

What Has Your Heartbeat Rate Got To Do
With Your Financial Stock Record

Zbigniew R. Struzik

Centre for Mathematics and Computer Science (CWI)
Amsterdam
The Netherlands

Heart MRI scan courtesy Philips Medical Systems, Best, The Netherlands
Contents

• The Problem - Global (Legendre) MF formalism
• The Proposition - Local MF formalism
• The Tool - Wavelet Transform (WTMM)
• The Idea - Local Effective Hölder Exponent
• Examples
• Conclusions
The Problem

- The Multifractal Formalism (MF) has a well established place in research and engineering,

BUT the Multifractal Spectra are:

1. difficult to obtain
2. difficult to interpret.

- Why?

1. Because the methodology is sensitive to spikes, boundary effects and other noise.
2. Because the methodology is intrinsically statistical and global, thus lacking any local information.
• So what is it we get from multifractal formalism?

- Is there more MF-related information out there?
The Proposition:

- Show the *local* contributions to the Multifractal Spectra!

- We all know that within state of the art MF formalism technology this is *impossible*!

- So in the following I will show how to do it...
What is the State of the Art Technology in Multifractal Formalism?

- It is the Wavelet Transform Modulus Maxima based multifractal formalism introduced by Arneodo, Muzy and Bacry.

- This multifractal methodology is intrinsically statistical and global.

- It is also a very robust methodology which has proved to be effective in many fields.

- Largely, this is due to the use of the Wavelet Transform Modulus Maxima decomposition.
Why Wavelets?

- Reveal the hierarchy of (singular) features including the scaling behaviour.
- Provide means of local analysis.
- In particular in the presence of non-stationarities like global or local trends or biases.
The wavelet transform is a convolution product of the signal with the scaled and translated kernel - the wavelet $\psi(x)$.

$$(Wf)(s,b) = \frac{1}{s} \int dx \ f(x) \ \psi\left(\frac{x - b}{s}\right).$$

The scale parameter s ‘adapts’ the width of the wavelet kernel to the \textit{microscopic resolution} required, thus changing its frequency contents; the location of the analysing wavelet is determined by the parameter b.
The Wavelet ψ

- The only requirement for the wavelet ψ is orthogonality to polynomial of some degree n.

- This corresponds to the requirement that the wavelet has zero mean - it is a wave function, hence the name wavelet.

$$\int_{-\infty}^{\infty} x^n \psi(x) \, dx = 0$$

- This admissibility requirement also results in filtering polynomials of degree P_n.

![Graphs of scaling function, wavelet m=1, wavelet m=2](image-url)
The Hölder Exponent

- The ability of Wavelet Transform to filter polynomials of degree P_n is particularly useful for us since it allows the assessment of local scaling behaviour.

- This scaling behaviour is represented by the so-called Hölder exponent $h(x_0)$ of the function $f(x)$:

 $$|f(x) - P_n(x - x_0)| \leq C|x - x_0|^{h(x_0)}.$$

- We can be tempted to extract $h(x_0)$ from the scaling of the wavelet transform $Wf(x_0, s)$.
Extracting the local scaling behaviour seems possible following the *modulus maxima* lines of the WT:

1. The maxima converge towards the singularities.
2. For *isolated* singularities of the *cusp* type, the Hölder exponent can be easily extracted.
• However, for densely packed singularities as in the case of fractal signals this is not possible!

\[
\text{log}(Wf(s)) \quad \text{vs.} \quad \text{log}(s)
\]

• This is why in the Legendre MF formalism of Arneodo et al, the global quantity - the partition function is used:

\[
Z(s, q) = \sum_{\Omega(s)} (Wf \omega_i(s))^q.
\]
The Multiplicative Cascade

- We can assume that the singularities are generated in some collective process of a generic class.

- Suppose that we denote the density of the cascade at the generation level F_i (i running from 0 to max) by $\kappa(F_i)$, we then have

\[
\kappa(F_{\text{max}}) = p_{s_1} \cdots p_{s_n}, \quad \kappa(F_0) = P_{F_{0}}^{F_{\text{max}}} \kappa(F_0)
\]

- and the local exponent is related to the product $P_{F_{0}}^{F_{\text{max}}}$ of these weights:

\[
h_{F_{\text{max}}}^{F_{0}} = \frac{\log(P_{F_{0}}^{F_{\text{max}}})}{\log((1/2)^{\text{max}}) - \log((1/2)^{0})}.
\]
• In any experimental situation, the weights p_i are not known and have to be estimated.

• The densities along the process branch can be estimated with the wavelet transform, using its remarkable ability to reveal the entire process tree of a multiplicative process.
• The estimate of the effective Hölder exponent becomes:

\[
\hat{h}_{s_{lo}}^{s_{hi}} = \frac{\log(W f \omega_{pb}(s_{lo})) - \log(W f \omega_{pb}(s_{hi}))}{\log(s_{lo}) - \log(s_{hi})},
\]

• where \(W f \omega_{pb}(s) \) is the value of the wavelet transform at the scale \(s \), along the maximum line \(\omega_{pb} \) corresponding to the given process branch.

• Scale \(s_{lo} \) corresponds with generation \(F_{max} \), while \(s_{hi} \) corresponds with generation \(F_0 \).
• Unfortunately, the wavelet transform coefficients at the largest scale are heavily distorted by finite size effects.

• This is why we estimate the value of $W f\omega_{pb}(s_{hi})$ using the mean h exponent.
Finally we can plot the local effective Hölder exponent:

with all its monochromatic i.e mono-fractal components separable!
- Log-histograms of the exponent \hat{h} at different scales for three example time series.

- Compare them to the $D_m(h)$ spectrum obtained by the partition functions method.
Scale-wise Evolution of the Effective Hölder Exponent

- The number of locations that fall within the band range visibly grows with scale, and this growth determines the dimension $D(h)$ which can be associated with the particular \hat{h}, at the band resolution ϵ.

- Such $D(h)$ can be estimated for the entire range of h, resulting in the so-called spectrum of singularities.

$$D(h) \sim \lim_{\epsilon \to 0} \lim_{s_{lo} \to 0} \frac{\log(\mu_{\epsilon}(\hat{h}(s_{lo})))}{\log(s_{lo})},$$

where μ_{ϵ} is the measure of the total number of locations (selected maxima) that fall within the band of size ϵ at a particular scale location s_{lo}.
Direct Singularity Spectra from the WTMM Tree

- The evaluation of direct spectra from the ϵ bands of the Hölder exponent simply requires covering the entire range of the local effective Hölder exponents detected on the maxima tree.

- The width of the spectrum of white noise is non-zero, as is inevitable for the finite length sample.

- Still, the heartbeat sample clearly shows a considerably wider spectrum, confirming the recently reported finding.
• Due to the fact that it relies on selecting a very narrow band of exponents, this procedure is, however, inherently sensitive to the choice of parameters such as the band width.

• The experiments indicate that the spectrum obtained remains stable for a wide choice of ϵ without loss of quality.

• At the cost of a slightly lower stability, we obtain the advantages of the direct spectrum calculation.

• The spectrum better captures local variations in the scaling of the h bands, where the partition function method provides only rough, ‘outline’ information about the $D(h)$ spectrum.
Direct Singularity Spectra from the Entire CWT

- Making use of the redundant information contained in the original CWT (as opposed to the WTMM used thus far).

- The comparison of the direct spectra obtained with both WTMM and the CWT suggest that the CWT may contain some information lacking in the WTMM.

- The CWT direct spectra show excellent stability with respect to the ϵ band width variation. We went down to the spectacular $\epsilon = 0.0015$ resolution.
Conclusions

- From: ”H. E. Stanley” <hes@argentobu.edu>
 Date: Wed, 28 Apr 1999 08:11:42 -0400
 [...] his panels showing diff color for each hurst expt
 are the CLEAREST exposition i know of what is a mf.

- Due to the local character of our effective Hölder exponent panels, additional information can be perceived such as non-stationarity.

- Large deviations from consistent statistical behaviour (e.g. boundary effects) can be directly assessed, in the panels or in the histogram.

- (All the above are hidden in the Legendre Transform, global approach.)

- (Stable) direct evaluation of the MF spectrum seems possible.