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Abstract

Graphical model selection from data embodies several difficulties.
Among them, it is specially challenging the size of the sample space
of models on which one should carry out model selection, even consid-
ering only a modest amount of variables. This becomes more severe
when one works on those graphical models where some variables may
be responses to other. This is the case of Bayesian Networks that are

modeled by acyclic digraphs.



In this paper we try to reduce the amount of models taken into
consideration during model selection. The less amount of models con-
sidered, the less amount of steps performed to end the model selection
process, and therefore, the less computational effort required to fit
data and models, We propose a simple idea: to select models from
sample spaces of lower dimension and use them as starting models for
sample spaces of an upper dimension.

Plots on experimental results are provided on four different syn-
thetic datasets. They show that the main idea reduces substantially
the steps taken during model selection, in comparison to a greedy

model selection procedure.

1 Introduction

Bayesian Networks are a class of recursive graphical models based on acyclic
digraphs (aka directed acyclic graphs — DAGs). The expressiveness of these
models goes beyond decomposable graphical models, and they establish an
order among variables where some are response to others. This turns into
a severe problem when one tries to select a good set of models, since the
dimension of the sample space is more than exponential in the number of
variables considered [7].

It has been adopted as standard practice by many authors (e.g. Cooper
and Herskovits [3] were one of the formers) to establish a complete order
among the variables, that bans connections pointing to variables that appear
before their source in the given order.

If we take a greedy bottom-up selection strategy, starting from an empty
graph, and one considers all possible additions of arcs at every step of the

selection strategy, the set of candidates has size n? (slightly less to avoid



directed cycles). Using the order we drop this quantity to n(1+n)/2. It has
been proved empirically that this constraint leads the selection process to
an end in a reasonable time. In our paper we raise the question whether we
can do better without introducing any further constraint. More concretely,
we look at the amount of models, among the considered candidates, that
improve the fit at every step of a bottom-up selection strategy. This quantity
is accumulated and it gives us at the end the amount of models that have
been taken into consideration throughout the whole model selection process.
Further, by plotting this quantity along the time line one gets a rough idea of
the shape of the sample space of models given the selection criteria currently
used.

We show that this total amount of models that have been taken into
consideration, can be significantly reduced by selecting models from sam-
ple spaces of lower dimension, and using these models as starting models
for sample spaces of an upper dimension. We provide plots of experiments
on the Alarm dataset [2] which consists of 37 variables, and on three syn-
thetic datasets we constructed ourselves, sampled from a common Bayesian
Network of 48 nodes, that show reduction ratios of 7.38,8.56,10.87 and 8.93
respectively. This means, in the case of the Alarm dataset for example, that
while the normal selection process needs to examine 2879 models, the pro-
posed incremental selection strategy needs only 390, to select at the end the
same model. A remaining issue of this approach, is how do we choose the
successive subspaces of lower dimension, and in which order do we proceed
to increase the dimension and reuse the selected models. A naive approach
is to do this at random, and surprisingly it provides some gain. We give a
solution that outperforms the naive approach by doing a hierarchical clus-

tering of variables [1]. This is a procedure of polynomial cost, in concrete



O(n?), that outputs a tree which contains in its leaves single variables, and
aggregates at each higher level, variables into clusters.

We propose to traverse in depth-first the tree, and pick up those clusters
of variables that suit a predefined size. Two successive nodes picked up in
this way are likely to have a close relationship according to the tree, therefore
the order in which we are picking up the clusters will determine also the order
in which we increase the dimension of the sample space of models. Detailed
algorithms for the complete procedure are provided.

In section 2 we will give a precise notion of what we call the set of models
taken into consideration. In section 3 we will describe our main idea about
optimizing the size of this set, giving a first naive approach to the imple-
mentation of this idea. In section 4 we will talk about hierarchical clustering
of variables, and how this methodology is used to improve the approach
described in section 3. In section 5 we will report experimentation on four d-
ifferent datasets, that supports our conjecture about reducing the amount of
steps in model selection. Finally, in section 6 we will draw some conclusions

and research questions.

2 Models taken into consideration

Let d = (V, E) be an acyclic digraph, where V' is the set of vertices (variables,
nodes) with n elements and E the set of edges, in this case arcs, such that
E does not induce any directed cycle.

Let Q™ be the sample space of models defined by V. Let ¢ be a traversal
operator that, given a Bayesian Network w creates a set W = t(w) of net-
works that contain all possible additions of arcs over w. The cardinality [W|

of this set of candidates is close to n? (directed cycles are not allowed).



Using a complete order among the members of V: vy < v1 < «++ < vy,
the cardinality |W)| drops to n(1 + n)/2. The model selection is then leaded
towards certain class of models, and the process ends in a reasonable time.

Let’s assume we are at the step ¢ of the model selection procedure where
W; = t(w;) is the current set of candidates given the model w;. Let Wi C W,
be the subset that contains those models that improve the fit of w; at step ¢
given a certain selection criteria. When W} = () we assume that the model
selection process is finished.

The entire set of models that improve the fit at every step during model

selection is then

uw;

This is the set of models taken into consideration and we will note it as
W*. The amount of models taken into consideration is then the cardinality

of this set
q =W

By plotting ¢ along the time line at each step ¢ of the model selection
process, we obtain a rough idea of the shape of the sample space of models

given the current selection criteria.

3 Optimizing |[W*|

The core idea about how to optimize the size of W* relies in splitting up
the initial set of variables V, in subsets V'* that define sample subspaces of
models . These Q have then lower dimension than the original one Q”, and
therefore one can expect to face less work than carrying out model selection

on the whole Q.



Of course, the ultimate goal is to select models in 2", but one needs
not to start from scratch if we already select models from 2* from a lower
dimension. Those models selected in Q may serve as good starting models
for ¥ such that j > 4, until we reach the last dimension in Q".

More formally, given sample spaces of models 2", ..., Q" of dimension
n;, from which we select good models w™, ..., w™", we define a combining
function g(w™,w") i # j that takes two models as input and combines them
in a single model w™*" as output.

The model w™i*" = g(w™, w") is then used as starting model for the
selection process in a sample space of models %17

A naive implementation of this idea is to split up V' at random given
some arbitrary split size ¢. In section 5 we will see that we already achieved
some gain with this approach. By gain, we mean that |[W*| is reduced.
The reason for this gain, even using a random approach, is that by starting
model selection from a model that has more fit than the one that contains
all restrictions (the empty graph), one has to discard less models to end the
process.

Logically, if the set of variables V' is splitted in a more sensible way than
at random, one can expect to increase the gain, and this is the subject in

which we are going to elaborate on the following section.

4 Splitting ()" by means of a hierarchical clus-
tering of variables

A sensible way of splitting the original sample space 2" should be, by finding
out which subspaces 2" n; < n contain a Bayesian Network with as many

edges as possible as the underlying model.



Carrying out model selection in such subspaces is the minimum require-
ment in order to expect that, afterwards, the selection process will take as
less steps as possible. Therefore, a good splitting of (2" is in fact a good
clustering of the set of variables V', according to a proper criteria.

Of course, if the model underlying the original sample space of models
Q™ is close to saturation, we will not find any way of splitting (2" that leads
to a significant reduction of the amount of models taken into consideration.
On the other hand, such underlying models are not as interesting as those
more sparse, provide that the important graphical information (i-mapness
[6]) relies on the missing edges.

A clustering process for variables is based on a pairwise measure of as-
sociation as criteria to decide the boundaries of the clusters. In hierarchical
clustering of variables, the clusters are organized as a tree where the root
node contains the whole set of variables and the leaves contain one single
variable each. The structure of the tree from the leaves to the root node
aggregates at each level variables into clusters. Let the radius of each cluster
be the minimum degree of association among the pairs contained within the
cluster. It is clear that this radius will decrease as long as one considers
higher clusters in the hierarchy.

Typically, operational criteria (e.g. power of prediction or entropy) are
recommended [1], as measure of association provide their ability of describing
the strength of an association.

However, an operational interpretation that renders a relationship com-
pletely disassociated, does not imply lack of significance of that relationship
(i.e. marginal independence). We are not interested in the latter situation.

In Bayesian Networks, missing edges, introduce (conditional) indepen-

dencies. Thus, variables interact by means of (marginal) dependencies. This



situation suggests that we should cluster together those variables that show a
significant relationship among them. The x? statistic is rather accurate char-
acterizing the significance of a relationship, when enough data is available.
Therefore we are going to use a x? based measure of association introduced
by Cramér [4] that maps the x? value into the interval [0, 1], where 0 mean-
s independence and 1 means perfect association. It has been claimed that
such measures still lack of an operational interpretation ([5], p. 740), but
that poses no problem for us, given the situation we have described.

More concisely, let N be the sample size and i, 7 the cardinalities of the

variables, then the measure of association given by Cramér [4] is defined as:

i
Nmin(i — 1,57 —1)

In order to perform the hierarchical clustering of variables one should
compute the above measure of association for every pair of variables, obtain-
ing in that way a triangular similarity matrix. The clustering process uses
this matrix and a complete linkage strategy [1], that guarantees that all the
variables lie within a certain maximum radius, in order to output the tree
describing the hierarchy of variables.

Anderberg [1] proves that this procedure has a polynomial algorithmic
cost of O(2n? — 9n/2). Given that his process is only performed once, this
cost puts no effective limit on the number of variables. For further details
about cluster analysis in general, and this procedure in particular, the reader
may consult [1].

So far, we have discussed how the variables are clustered. Now we will
show how do we extract the necessary clusters from the hierarchy, providing
at the same time the ordered sequence of subspaces Q' in which the incre-

mental model selection will be carried out.



Figure 1 contains the procedure in pseudocode. It requires from us to
specify a cluster-size (cs), which determines size of the extracted clusters,

which will be in the range [cs — 1, ¢s,cs + 1].

algorithm incr_strategy(tree ¢, node top_root, int cs, list small) return list
node r, s, w
list inc_strat, children, sub_inc_strat

r := root_node(t)
children = t.children(r)
children.gotop()
while —children.end() do
s := children.next()
if |s| > ¢s — 1 and |s| < ¢s + 1 then inc_strat.add(s)
else if |s| < cs — 1 then small.add(s)
else
ts := t.sub_tree(s)
sub_inc_strat := incr_strategy(ts, top_root, cs, small)
inc_strat.concatenate(sub_inc_strat)
if r = top_root then
small.gotop()
while —small.end() do
s := small.next()
w.add_content(s)
if jw| > ¢s — 1 then
inc_strat.add(w)
w.empty_content()
if ~w.isempty() then inc_strat.add(w)
return inc_strat

Figure 1: Algorithm to flatten a hierarchy of variables.

The algorithm explores recursively a tree t of a hierarchical clustering of
variables in depth-first. At the moment it finds a node with a number of
variables of, plus/minus one cluster size (cs), it does not go further in that
branch. It stores that set of variables in an ordered list (inc_strat), and
continues the exploration.

If a node contains less variables than the given cluster size minus one, then
the algorithm stores these variables in a temporal ordered' list (small) This

list containing the small sets of variables is used globally by the successive

'note, this order simply follows the depth-first exploration order



calls of the algorithm by passing it by reference. When the top call of the
algorithm has explored all its branches, it creates sets of the proper size out
of the small list, by joining its elements. Every set created in this way is
then added to the inc_strat list, which it will contain finally the whole set
of variables in clusters of a certain size. The ordered list inc_strat returned
by the algorithm, indicates which subnetworks must be recovered first, and
in which order the incremental algorithm, that discovers the whole Bayesian
Network, should operate. On figure 2 we may see an example of a hierarchy
describing a clustering for a set of eight variables.
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Figure 2: Hierarchical clustering on the variables of the root node of the tree.

The radius of each cluster is specified between parenthesis

Let’s set a cluster size (cs) of n; = 4 Vi, then the incremental strategy
obtained by applying the algorithm of figure 1 on the tree of figure 2 will pick
up first a subspace Q® defined over the variables on the first (at top) child
node of the root. The second subspace will be ©° defined over the variables
on the second (at bottom) child node of the root. Finally the third subspace
will be the entire space Q" (in this case n = 8, formed by the previous two

subspaces.
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5 Experiments

In this section we are going to show that the split of the sample space of
models of n variables Q" in subspaces Q' of i < n variables reduces the set
of models taken into consideration along the model selection process. We
defined this set on section 2, and noted it as W*.

To show clearly this reduction along this section, we plot the cardinality
g = |W*| along the time line. Steep lines mean fast convergence of the model
selection process. In all the experiments a topological order that matches the
underlying model has been used, therefore we are always selecting the same
model at the end, which will be in fact the model underlying the data.

The time line is normalized with respect a greedy model selection strategy,
that picks up at each step the model that best fits the data. The traversal
operator t(w) in this strategy creates all feasible models (acyclic digraphs
matching the topological order used) with one extra arc, one less arc and one
arc reversed.

The combining function g(w™,w") that we will use here is a simple one,
which outputs the union of the two input set of edges as set of edges of the
combined Bayesian Network to be used as starting model in the subspace
Qritn;

In first place we will report plots on the naive implementation described
in section 3. That is to split up the initial set of variables V' at random, given
some arbitrary split size i. We have used the Alarm dataset [2]|, which among
others has been used by Cooper and Herskovits [3], that has 37 variables and
ten thousand records. This dataset is a synthetic dataset sampled from the
Bayesian Network of figure 3.

As we said, variables are picked up at random in the naive implementa-

tion. In order to have a reasonable picture of the behavior of this implemen-
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Figure 3: Bayesian Network underlying the Alarm dataset

tation, we have sampled twice the random groups of variables, providing two
times the plots, one for each sample of the groups. Further we have exper-
imented with three different split sizes, they are 4,5 and 6. In total we can
see on figure 4 12 plots that compare an incremental model selection strategy
using a naive implementation (grouping at random), with the greedy model
selection carried out on the whole sample space of models Q™. The first block
of six plots correspond to the first sample of random groups of variables, and
the second block of six plots correspond to the second sample. Within each
block the second row shows the total amount of models taken into considera-
tion ¢ = |[W*| at every step of the model selection process, which is obtained
by summing over the plot of the incremental strategy of the first row.
Along these experiments we see that ¢ is reduced. At the bottom of each
block of plots we have the ratio of ¢ on the greedy model selection (2879)
respect to ¢ on the incremental strategy. For instance, the plots for the
experiment using * as starting subspaces and the first of the two random
sample of groups of variables, show that 625 models sufficed to select the
same model as in the greedy strategy which took into consideration 2879,

and that is about 4 times less models.
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Figure 4: Greedy model selection compared with incremental model selection

using a naive implementation
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Next, we are going to experiment with the approach described in section

4. In order to show that a hierarchical clustering of variables is able to

capture clusters containing variables which are more likely to interact among

each other, than with others, we have designed a Bayesian Network with

a honeycombed structure that will help to see clearly how the groups of

interacting variables are observed, see figure 5.a.
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Figure 5: Honeycombed structures: (a) original network, (b) (c¢) (d) clusters

of networks obtained from the three samples

From this honeycombed Bayesian Network we sample three datasets, each

of ten thousand records. For each sample the set of probabilities of the

network is newly generated. Thus the three datasets reflect different amounts

of evidence in the model. By doing this we can check empirically that the

approach works as we expected.

Using the algorithm described in section 4 to flatten the hierarchy of

clusters, with an input cluster size of four, we obtain the clusters of variables

and the order in which subspaces of models must be explored, that is the

incremental model selection strategy.

Every initial Bayesian Network resembles a connected part of the original

network. Figures 5.b, 5.c and 5.d outline the clusters and networks found for
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each dataset.

On figure 6 we may see the first four steps of the incremental model selec-
tion strategy over the first sampled dataset (clusters specified in figure 5.b),

that show how the successive subspaces € of models are joined incrementally.
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Figure 6: First four steps, from left to right, of the incremental strategy for

the first sample of the honeycombed Bayesian Network. A dot line encloses

the part of the network that at each step is being discovered.

Finally, it is only left to show the plots of ¢ along the time line, and realize
that a more sensible split of the initial sample space of models Q™ improves
the naive implementation of the incremental model selection strategy. In
figure 7 each row corresponds to the first, second and third random sample
of the honeycombed Bayesian Networks. As before, ¢ appears in every plot for
the greedy model selection strategy. The first column outlines the evolution
of ¢ in every subspace €)' and the second column accumulates this quantity
giving the total ¢. We have performed this experiment only for starting
subspaces Q*.

In figure 8 we may see the previous experimentation on the Alarm dataset.
In this case this dataset is a unique sample, but we have carried out the exper-
iments for three different starting subspaces Q% Q% Q¢ in order to compare

it clearly with the naive approach. This comparison may be summarized
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using an implementation based on a hierarchical clustering of variables
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Figure 8: Greedy model selection compared with incremental model selection

using an implementation based on a hierarchical clustering of variables
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n; Naive HC

4 |3.78,4.61 | 6.70
5 | 4.28,5.85 | 6.89
6 | 3.46,4.56 | 7.38

Table 1: Comparison of reduction rations between the naive approach and

using a hierarchical clustering of variables (HC).

in the table 1. In this table it is immediate that splitting by means of a
hierarchical clustering improves the naive approach (randomization).
Throughout this section we have been using a topological order that
matches the underlying Bayesian Network. This leads the selection strate-
gies that we compare to the same end. We have experimented drooping this
order out of the incremental strategy and the amount of models taken into
consideration grow by a factor of 2. This matches the difference between the
two traversal operators since using an order generates n(1 + n)/2 models at
each execution. But then of course, the incremental strategy does not select
the right model anymore but with some extra arcs. We have experimented
also reusing the topological order that may be inferred from models selected
from sample spaces of lower dimension, and then the amount of models tak-
en into consideration grows by a factor smaller than two, and the selected

models are slightly better than those from the previous case.

6 Conclusions and Discussion

The simple idea of splitting the sample space of models 2" in smaller sub-
spaces, where model selection can be carried out more efficiently, and then

reuse the selected models to build a good initial one for a larger sample s-
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pace, certainly appears more sensible than trying to select models directly
on a vast sample space of models.

As a matter of fact, if one has a very good initial model, to start model
selection with, then it is clear that model selection will not take many steps
to find which model fits best the data. Of course, by very good here we mean
that our subject-matter knowledge about the model is close to the model
underlying the data.

It is of no discussion that it exists an optimal sequence of movements that
would allow a model selection process to select the right model in a minimal
amount of steps. It is also clear that to find this optimal sequence is an
intractable problem. Nevertheless there might be procedures that help ap-
proaching this optimal sequence. Hence, one may ask whether is it possible to
find a procedure of polynomial cost that outputs a sequence of variables that
allows the model selection process to finish having taken into consideration
an optimal (minimal) amount of models.

The combining function g(w™, w™ ) we have used, which just unifies the
two input sets of edges, is very naive, but very little can be done given two
models from two spaces 2", Q0% defined over disjoint subsets of variables. We
are currently investigating the possibility of using spaces that overlap, thus it
might be possible then to find a combining function that outputs something
more promising than just the union of edges of two Bayesian Networks.

It is also important to realize that the core idea of this work is rather
general, so it may be applied to other kind of graphical models, having in
mind then, that maybe a different measure of association might be more
convenient.

The relation among different types of graphical models, and those results

that allow to move from one type to another through models that lie on
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overlapping regions of these classes, are a promising ground to address the

two previous lines of work.
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