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ABSTRACT

Main memory is continuously improving both in price and capacity� With this comes new storage problems

as well as new directions of usage� Just before the millennium� several main memory database systems are

becoming commercially available� The hot areas include boosting the performance of web�enabled systems�

such as search�engines� and auctioning systems�

We present a novel data storage structure � the ��storage structure� a high performance data structure�

allowing automatically indexed storage of very large amounts of multi�attribute data� The experiments show

excellent performance for point retrieval� and highly e�cient pruning for pattern searches� It provides the bal�

anced storage previously achieved by random kd�trees� but avoids their increased pattern match search times�

by an e�ective assignment bits of attributes� Moreover� it avoids the sensitivity of the kd�tree to insert orders�
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�� Introduction

Many unconventional database applications require support for multi�attribute indices to achieve
acceptable performance� Decision Support Systems allow users to analyze and use large amounts of
data online� Queries may use several attributes simultaneously� Using a main�memory multi�attribute
index can greatly speedup interactive analysis for the online user�

The holy grail in database systems is a data structure that supports multi�attribute indexed storage�
that has minimal insert overhead� and yields highly accelerated searches over very large amounts of
online data�

We can observe from the abundant literature that most multidimensional data structures fail one
way or another� either for a high number of attributes �WSB���� or when the data is not evenly
distributed �NHS�	�� Most schemes are static in their partitioning� assuming total randomization�
which lead to multi�dimensional hashing of di
erent kinds� Other schemes use adaptive and dynamic
partitioning schemes� often resulting in the cost of large main�memory overhead instead�

The ��storage technique proposed here is a novel design� It is an automatic and adaptive indexed
storage technique� It requires no tuning or programmer�application selection of indices� Indexing is
only performed for data when benecial in terms of balanced storage under inserts� keeping the in�
dexing overhead low� The ��structure is optimized for high performance record retrieval and searches�
while allowing incompletely speci�ed searches� i�e�� searches where only a subset of attributes� values



�

are known� also known as pattern searches� The ��tree is a dynamic tree data structure that copes
well with varying data distributions� Point inserts and retrievals are completed in logarithmic time�

In contrast to most multi�dimensional hashing schemas� the ��tree exploits the data skew� It ignores
bits which have no use for indexing� providing highly e�cient and adaptable incremental reorganiza�
tions� Moreover� data inserts in sorted order on one or several attributes hardly a
ects the shape of the
resulting tree� Experiments in Section 	 ascertains this by comparing with a kd�tree which experience
high skew�

�� Related Work

In this section we give a short overview of di
erent partitioning methods� This area of research started
out optimizing the usage of narrow resources� such as main memory� by reducing disc accesses� and
limiting CPU usage� Now� during the ���s the scenario has evolved to the needs of new applications
areas focusing on high availability and high�performance accesses� This is achieved by index structures
that use main memory �sometimes distributed� to automatically manage highly dynamic datasets and
which can adopt itself to di
erent distributions� avoiding the decits of earlier indexing methods�
worst case behaviors�

For static data sets� one can employ a choice�vector which denes what bits from what attributes to
use� Furthermore the bits can be chosen in such a way that recurring queries run fast� This is shown in
the multi�attribute hashing structure proposed in Towards Optimal Storage Design � Multi�attribute
Hashing �Har�	�� Two strategies are investigated for the selection of the bits� one method gives each
attribute equal chance of being used� the other gives the minimal bit allocation� also referred to as the
optimal allocation�

Many multi�dimensional storage structures are based on the idea of mapping several dimensions
into a one dimension and then exploit the highly investigated eld of one dimensional data structures�
An e
ective scheme is to use multi�dimensional �order preserving� hash structures� A pseudokey
�bitstring of xed length� is constructed by interleaving bits from the di
erent attributes� During the
insertions of data into the storage structure� an increasing number of bits are used to organize� access
to data� Di
erent strategies include MOLPHE �KS���� PLOP�hashing �KS���� quad�trees �Sam����
kd�tries �Ore���� and others �Oto��� �HSW��� �Tam����

However� it is common for these statically dened hashing schemes that while some bits occur to
be �random� others are totally useless for indexing and leads to unbalanced structures�

The prominent tree�based structure for multi�attribute searching is the kd�tree �Ben���� It is a binary
tree� The discriminator in internal nodes� was originally limited by strict cycling through the attributes�
attribute i�k at level i in the tree� Later� the optimized kd�tree �FBF��� was introduced� storing the
records in buckets� and choosing the attribute with the largest spread in values as discriminator�
using the mean value for partitioning� kd�tree were then introduced as a general search accelerator for
searching multi�key records by suggesting means for storing data on secondary storage devices �Ben����

Rivest PhD Thesis �Riv�	� analyzes� among other structures� a kd�tree style structure using a binary
bit from the data as discriminator� The performance of Tries �Riv�	� are also analyzed which parallels
the analysis the kd�trees� Here the discriminator of a node is chosen so that it has not been used
higher up in the tree�

This overview demonstrates that both static and dynamic methods can supply only a partial solution
to the problem space� The ��storage combines these methods in a way explained in the next section�

�� The ��storage
We now explore the design space of the ��structure using a dynamic tree structure to e�ciently prune
the search space� The tree uses actual bit values from the attributes to organize the tree during the
split of a leaf�node into several new nodes� A number of split�strategies are discussed in Section ��	� We
show� in Section ���� how the records are stored in buckets clustered on attributes� and� in Section ����
we show how the structure is searched e�ciently�

For simplicity it is assumed that all attributes are discrete and of limited cardinality� Furthermore�



	� The �
storage �

for simplicity we assume the domains of an attribute to be compacted to the range �����N � ��� where
N bits are needed to store the data�

��� Buckets and Branch nodes
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Figure �� A bucket of an ��tree and its attributes�

The ��tree consists of two components� the leaf�nodes� which store the data� and the branch�nodes�
which organize the access structure� A branch is dened by the split�points of a node� A split�point is

a tuple �attribute� bit�number�� In general there can be ��split�points branches� The leaf�nodes
�buckets� contain vertically partitioned records� i�e�� using one array per attribute� Vertical partitioning
has been shown to give supreme performance in Monet �BWK��� �BK���� A mimimal Omega�tree
consisting of a single bucket is shown in Figure ���� Figure ��� show the stored attributes� The domain
column shows the discrete value span for the domain� the column �Bits� shows the number of bits
required to store the normalized domain� The branch�nodes� lead to branches at lower nodes or to
leaf�nodes� The characteristics of the branches is decided at split time�

��� An Example
In Figure � we show a more elaborate ��tree� The branch�nodes have a set of split�points� A split�point
pose limitations on the subtrees that are given by following the branches� Each bucket�s domain is
completely and uniquely specied by it�s path from the root node� For a record to be stored in a
bucket it has to fulll the conditions summarized in the box of the bucket�

The �root�node� � the leftmost node � splits the tree into two branches� There is only one split�
tuple in that node� namely �City� 	
� which indicates that the tree has two branches split using the
�rd bit from the attribute City� Bits are numbered � from the Least Signicant Bit �LSB� to the
Most Signicant Bit �MSB�� Since the split uses the highest bit of city �bit ��� it divides its domain
into two intervals� One being city��� and one being city �� �� At the next level� splits have been
decided independently in the two sub�trees� The city�� branch splits on age� �Age� �
� giving the
two branches age�� and age���� The lower sub�tree� city���� was split using two attributes
bits� again �Age��
 but with �Sex��
� giving 	 branches� The identity �additional restrictions� of the
branches can be seen in the gure� In this tree� both nodes of the second level are split again on the
age attribute using the �th bit �value � �� � ���� further dividing the intervals�

For attributes where not all bits are used there is an uncertainty about which domain the sub�tree
they belongs to� In the uppermost right node in Figure �� we can see a node split using �City� �
�
Notice that the bit �City� �
 has been left out� since it was of no use for splitting� for all records
the bit have the same value� This creates a complex active interval for the resulting buckets� We have
depicted the domain of the sub�tree for the city attribute as city���X�X� and city���X�X�� The
�X�s� can still be used in a further split in this sub�tree� When searching an explicit value using only
city� still only one branch needs to be visited� An interval search on city both branches may have
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Figure �� A �typical� ��marshaled tree�

to be visited� However� studying the domain set of the two buckets we nd that the rst stores city
� f������g and the second city � f��	����g�

��� Point Searching
To locate the position in the tree for a given record we start navigating the tree at the root node�
By examining the branches at the current node we can decide which branch to follow reaching a new
node� The process is repeated� eventually leading up in the appropriate bucket� A branch is chosen if
the nodes split�points� values on the branch agrees with the same bits in the record�

Similarly to kd�tree the search�insert complexity is logarithmic �Ben����
Incompletely specied searches are performed similarly� but may� enter several branches and buckets�

��	 Splitting Strategy
During the growth of the tree� buckets will become overloaded� i�e�� reaching their storage capacity
causing them to split� A split is performed by partitioning the content of the current bucket into
some new buckets and replacing the current bucket by a branch node� The partitioning is dened by
a split�point� Which split�point is chosen depends on the split�strategy employed� More explicitly a
split strategy denes the attributes to consider and their order� and in which order the bits of the
attributes are preferred� and which bit value distributions are acceptable� A bit is acceptable when the
count of ��s over the records in the bucket is in the percentage range �����A� ��� !A�� where A is
a structure parameter� further investigated in Section 	��� More signicant bits are preferred�

We use a new split strategy called ��marshal� which fullls a number of goals� First� all attributes
should be given a chance of being used in the decision split�points in the tree structure� Secondly� it
aims to use attributes in split�points on the whole width of the tree� to guarantee e�cient pruning�
Third� bits are used for easy splitting and organization of the tree� Fourth� bits are to be preferred in
such an order that range�queries would benet� And� nally� bits are chosen by a local split operation
only if they are acceptable�

Alternative strategies are used in� randomized kd�tree �DECM���� and kd�trie �Ore���� and ��
pseudo �KK���� These strategies have been found to have their limitations� This is further discussed
in �KK��� where a metrics is developed to shed light on their inner workings� Based on these experi�
ences we have designed the ��marshal strategy�



�� Performance evaluation and Tuning �

Splitting Algorithm The pseudo�code in Figure � describes the details of how a bucket is split in
the ��marshal structure� If a bucket after an insert reached its LIMIT it is split and replaced by a
new internal node� The new node contains branches to newly created buckets� For e�cient splitting�
using our vertically partitioned storage schema� we rst determine the split�point� The split�point is
determined by searching the attributes from the queue in the bucket� The rst attribute with an
acceptable bit is chosen�

When a split�point has been found� it is used to create a splitvector that holds the destination bucket
for every attribute� Both the search for a split�point and creating the splitvector requires sequential
accesses only� Then in Split� the attributes are moved sequentially to the new buckets� The buckets
are then assigned a queue where the used attribute has moved to the end� enabling a cycling through
the attributes used in the queue�

proc Determine splitpoint�array Records� array Attributes� �

for �a � Attributes do

for �r � Records do

update count�r�a� od

for �bit � ����� do

if �acceptablecount�bit��
return � a� bit � � od od�

proc Calculate Splitvector�array Records� a� �

array move����LIMIT�
for �i � ���LIMIT do

move�i� 	
 �Records�i��a�bit� od
return move�

proc Split�array Records� array Attributes� array move� �

array Bucket�������
for �a � Attributes do

for �i � ���LIMIT do

add Record�i��a to Bucket�move�i�� od od�

Figure �� Bucket Split Algorithm

�� Performance evaluation and Tuning

In this section we analyze and benchmark the ��storage structure� We conrm that single records
inserts and searches conform to O�log�n��� and that the time for partially specied record searches
decreases exponentially with the amount of attributes specied� Comparison is performed against the
kd�tree showing excellent search performance� and highly improved stability in single record search
times� enabled by the better balanced tree� The number of internal nodes used by the ��structure is
�	K compared to the �	K of the kd�tree�

For our experiments we use an SGI Origin ���� currently equipped with �	 CPUs and a total of 	�
GBytes RAM� A �	�bit process can transparently� from the programming point of view� access all its
RAM� However� there are extra costs� Each CPU has �local� access to � GBytes RAM and �remote�
memory is cashed� The operating system may move processes from one CPU �and memory� to another
if it decides that this would be benecial for the process� because a large number of remote memory
accesses can be eliminated by executing the process at an other CPU where that memory is local�

First� we nd the optimal capacity of an ��bucket� Then we discuss the insert performance�

	�� Bucket Size vs Pruning
Although the ��tree is an automatic storage schema� there are still a few parameters of interest to
tune� These parameters depends on the underlying hardware� i�e memory access costs� memory access
patterns and cache�performance�
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We identify two such parameters for the ��tree� The rst parameter is the average bucket size
implied by an upper LIMIT on the bucket size� This parameter is a
ected by the target hardwares�
cache capabilities� The second parameter is the acceptable ��� frequency of a bit to be considered in
a split�

If the bucket size is too large� a single element search exhibits time linear to the size of the bucket�
and if the bucket size is too small� we will spend more time navigating the tree structure� Therefore�
we choose to determine a LIMIT large enough not to in"uence single element search times�

Bucket Size Max Min Avg Std Dev
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��� �� �� ���� ���	
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Table �� Statistics on point searches� varying bucket limits� times in ��s��
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Figure 	� Varying a� search times b� insert times�

Table � shows experiments of singe�point searches where the upper bucket size limit is varied between
�� up to ������ elements per bucket� �� M records with � attributes were inserted using ��� MBytes
of memory just for the record storage� The search time is dominated by the navigation time� For a
limit up to ���� records the search time is stable� starting at �� �s for bucket of size ��� going up
to approximately �� �s at a limit of ����� Beyond the ���� records the actual size of the bucket is
re"ected or dominates �over 	���� the search times�

Figure 	�a� depicts the search time for di
erent searches using ���� and��� Using less attributes then
querying increases the search time� with a local minima at ��� to ���� and around ���� to �����
limited bucket size� For the remaining experiments we choose the maximum bucket size to be ����
since point searches are predictable and fast� Others searches are reasonable in search time�

In Figure 	�a� there is a peak at a LIMIT of ����� The explanation is simple # at this point the
number of buckets decreases� and with that the number of branch�nodes causing the tree height of
the tree to be somewhat lower� For these queries this had the e
ect that the search times increased
since a vital index level vanished�

	�� Insert costs
Figure 	�b� shows the total insert times for ��M inserts in seconds for the ��tree using increasing
bucket sizes� The overhead consists of function call costs and the cost of tree reorganizations� As a
reference we show the time for inserting the record into one array each for the attributes� The quotient
between the insert time of the ��tree and the insert into arrays roughly approximates the height of
the tree� thus re"ecting the number of times a value has been copied during a split�



�� Performance evaluation and Tuning 	

For example inserts with LIMIT � ����� uses �	� seconds� ���� times as long as linear storage� This
insert time is related to the current tree depth� in this case approximately �	� Increasing the bucket
size by a factor of �� �LIMIT � ������ just causes a slight decrease to ���� times as long� Still� at
LIMIT � ��� ��� the actual time per insert is only �	�� �s� Inserts using the ��tree shows a nal
overhead of �� seconds for an �innite� large bucket�

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 40 60 80 100 120 140 160

[m
s]

[M elements]

1-attribute
2-attributes
3-attributes
8-attributes

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

[u
s]

[M elements]

8-attributes

Figure �� Search time using a� ������� attributes in ��tree b� details of � attribute�

	�� Search cost for a growing data set
First we ascertain that a point search is a highly e�cient and fast operation� As can be seen in
Figure ��b�� the cost starts at �� �s for � million tuples to increase to �� �s for �	� times more data$

When querying larger data sets� as shown in Figure ��a�� query times are signicantly higher� For
these specic queries the query time as well as the result set size increase linearly with the le size�
The � attributes query rises to just above 	�� ms� � attributes gives a search time of ���� ms� nearly
the performance of linear scanning� Whereas � attribute is somewhat more e�cient� The reason here
is that the result of the ��attribute query is a subset of the results of the ��attribute query and that
there is no index available for the second attribute� thus the same amount of data is scanned but
requiring two attributes testing�

In Figure ��a� we compare the ��tree pattern search performance with linear scanning� Point search�
in this case � attribute search� gives the highest improvement� with a search time negligible compared
to scanning� The other queries improve the search time by a factor of � to �� times over scanning�
The improvement ultimately depends on the search pattern specied and the result size�

To access the average performance of di
erent queries� we observe all partial match queries ���� for
� attributes�� using a subset of the attributes from a specic record� The resulting plot is shown in
Figure ��c�� The average performance quickly improves when more attributes are present� Decreasing
from seconds to micro seconds for point queries� The best performance # �	 �s � is achieved when all
attributes ��� are specied in the query� Using � attributes gives results in the range from �� �s up
to ��� �s� with an average search time of �� �s�

	�	 In
uence of Number of Attributes
To investigate how ��tree performs for a higher number of attributes we build les with a varying
number of attributes� We have already shown the performance for � attributes� and will now quickly
compare it will �� attributes�

Figure ��d� shows statistical values for a �� attribute le� The average search times are drastically
�exponentially� reduced when more information is available in pattern search� however� the search
times varies orders of magnitudes depending on the values of which attributes are present in the query
The curves have similar character as for the � attribute le� Figure ��c�� The minimum and maximum
observed values are orders of magnitudes lower respectively higher� One di
erence in this experiment
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is that the area of the search time bounded by maximum and minimum search time is smaller than
the case of a � attribute le�

	�� Comparison with kd�tree
We now compare the performance of the ��tree with the performance of the kd�tree� using an ��
attribute le� searching ��M records�

Figure ��a� shows the performance of the kd�tree and ��tree ��� relative to the high performing
��tree ���� For the ��tree ��� the overhead is reasonably stable around ������� but for the kd�tree
it starts at around ��� going up to �� times as much for searching records using � attributes� The
reason for this is the skewed kd�tree which for most of the data in this experiment got very deep
thereby causing large overhead to accessing individual records at the leaves�

Figure ��b� shows the standard deviation observed for the kd�tree and ��tree� For less specied
pattern searches the standard deviation is slightly higher using the kd�tree than for the ��tree� For
highly specied patterns the deviation on the kd�tree does not improve compared to the ��tree� The
��tree comes near a perfectly stable search time with a very low variance of ��

This is due to the inability of the kd�tree to handle di
erent data distributions and insert orders�
the kd�tree might be very skewed giving very fast access to some records that are near to the root but
performing poorly when searching for records that are stored further down in the tree� The ��trees
on the contrary exploits these skewed distributions and insert order providing more stable search
performance�

We make two observations� First� increasing the acceptance interval� as dened in Section ��	� from
A � ��� to A � ��� gives a slight but stable performance increase� The only noticeable drawback
is that it increases the amount of buckets needed to store the data from around �	K to ��K with the
depth still around �	 levels� This is to be compared with the �	K buckets generated by the kd�tree
and its depth of �� levels� The second observation is that the performance of the ��tree is much more
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stable than that of the kd�tree� The ��tree avoids creating skewed trees in cases where the kd�tree
would�

�� Conclusions

We have presented the ��storage structure� a self organizing multi�attribute indexed storage� The per�
formance has been assessed using generated data from the drill down benchmark �BRK���� Compared
to the kd�tree� the ��storage method provides a highly stable performance for single records searches
over GBytes of data� while avoiding the highly skewed structures easily created by the kd�trees� This is
realized by relaxing the constraints� while maintaining the intended properties of kd�trees like highly
e�cient pruning�

Future work� currently being investigated involves creating a scalable distributed extension of the
��storage� For this we plan to use the dissection splitting algorithm of hQT% �Kar��� which was
previously shown to provide excellent partitioning for the distributed quad�tree structure�
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