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Abstract. Uniform sampling of join orders is known to be a competitive
alternative to transformation-based optimization techniques. However,
uniformity of the sampling process is difficult to establish and only for a
restricted class of join queries techniques are known.
In this paper, we investigate non-uniform sampling devising a simple yet
powerful algorithm that is generally applicable. The key element of the
algorithm is a mapping of randomly generated sequences of join predi-
cates to query plans. We take advantage of the bottom-up constructing
of query plans by simultaneously computing the costs and discarding
partial plans as soon as they exceed the best costs found so far, which
implements a highly effective cost-bound pruning component.
Sampling does not produce the optimal plan but a near-optimal solution
which is fully sufficient as the cost function grows more and more inac-
curate with increasing query size. In return, our algorithm establishes a
well-balanced trade-off between result quality and time invested in the
optimization process.

1 Introduction

Join-ordering is one of the most persistent problems in query optimization.
Over the last decade, special attention has been devoted to probabilistic tech-
niques that proofed superior to heuristics [SMK97]. Galindo-Legaria et al.
made out a good case for using uniform random sampling of plans rather
than transformation-based algorithms like Simulated Annealing [GLPK94]. They
showed that sampling matches randomized algorithms in quality but outruns
them in terms of convergence, i.e. finds high quality solutions earlier. The nu-
cleus of this work is the one-to-one mapping between plans and ordinal numbers.
Generating random numbers and un-ranking the associated query plan then es-
tablishes a mechanism to sample plans with uniform probability. However, the
algorithm devised is a complex construction and the deployment is limited to
acyclic graphs only [GLPK95]. This limitation—though popular with previous
work—is a distinct restriction. Queries as for instance in the standard data ware-
house benchmark suite of TPC-H/R contains indeed cyclic queries [Tra98]. But
this algorithm does show the way how to exploit the characteristic features of
the search space successfully.

In this paper, we investigate how to overcome this restriction without loss of
performance. And more general, we address the question whether uniformity of
the sampling is a necessary prerequisite.



QuickPick, the algorithm we develop in this paper, performs biased sam-
pling by selecting edges from the join graph and adding the respective joins to
the query plan. To cut down on the running time we add a cost-bound prun-
ing strategy: We simultaneously compute the costs while building up the plan
and partial plans that exceed the costs of the currently best plan are discarded
as early as possible. The algorithm is distinguished by its high result quality
and short running times. Additionally, QuickPick is of low complexity both
in time complexity and implementation, and is applicable to any query graph
overcoming the restriction for uniform sampling.

To analyze the algorithm and explain its superior performance, we scrutinize
cost distributions, i.e. the frequencies of cost values in the entire search space.
Reviewing previous work and complementing it with own experiments, we ab-
stract cost distributions making them accessible to formal reasoning. This way
we can derive accurate approximations of the quality of the results of sampling.
Our investigations indicate that uniform sampling provides upper bounds for
our new algorithm.

Road-Map. In Section 2, we briefly outline the model for the problem and discuss
cost distributions and quality measures. In Section 3, we introduce the sampling
algorithm and give a quantitative assessment of it in Section 4. We review related
work in Section 5. Section 6 contains our conclusions and outlook to further
research.

2 Preliminaries

Since the join-ordering problem has been discussed in detail in previous work
we give only a short outline of the basic setting here. More detailed descriptions
can be found e.g. in [SAC+79,SG88,IK91,SM97,SMK97].

A join query is given by a join or query graph whose nodes correspond to the
base tables used in the query. Its edges are annotated with the predicates of the
query, and denote which tables are to be joined. A query plan is a binary tree
where each inner node corresponds to a predicate of the query; the leaves corre-
spond to the base relations. Each such query plan is of certain costs, computed
according to a cost function or model. Both components together make up the
join ordering problem of finding the query plan with the least costs.

Since cost models have to reflect the query engine which will execute the
plan, cost models differ in general from one system to another, yet there are
properties all cost models have in common as we will point out later.

2.1 Cost Distributions

The term cost distribution refers to the frequencies of all possible cost values
occurring in the entire search space. They reflect the ratio of high to low quality
solutions. Cost distributions are closely interconnected with the object function.
As a consequence, cost distributions are characteristic for a given combinatorial



optimization problem, i.e. all instances of a problem display cost distributions
with similar properties. The degree of variation is problem specific but limited
in its extent; apart from pathological cases. For example, the Symmetric Travel-
ing Salesman Problem is characterized by normal distributions with heavy tails
[Waa99]. The cost distributions in query optimization differ substantially from
that due to the different nature of the cost function. They display a strong
asymmetry with a distinct concentration of cost values close to the optimum.

The first to notice this problem intrinsic property was Swami who reported
that, surprisingly, lesser sophisticated optimization strategies like Iterative Im-
provement are often superior to more complex methods like Simulated Anneal-
ing. Swami not only discovered the skew of the cost distribution but also noted
its stability across different cost functions: He observed that in experiments with
different cost models, an I/O-based one and a Main-memory cost model, per-
formance of optimization algorithms were comparable, suspecting underlying
structures common to different cost models [SG88,Swa89].

Ioannidis and Kang for the first time investigated the shape of the cost distri-
bution explicitly finding curves that are best described as Gamma distributions
[IK91]. However, they experimented only with one single I/O-based model and
therefore attributed their findings to the specific cost model used.

In [WGL00], authors present a sampling mechanism implemented in a com-
mercial database system and extract cost distributions for TPC-H queries using
an industrial quality cost function. Furthermore full-blown query optimization
and not only join ordering as in previous work was concerned. These finding bear
strong resemblance with Ioannidis and Kang’s results lending strong support to
the abstraction with Gamma distributions.

In contrast to experiments with cost models of increasing complexity we
want to complement these observations with experiments using a rudimentary
cost function that handles joins only like cartesian products. Such a simplified
model is of particular interest for two reasons: Firstly, joins may degenerate to
cartesian products, thus the evaluation of cartesian products forms an upper
bound of O(n2) for any join. Secondly, the problem of optimizing the order of
cartesian products—though appearing less difficult on first sight—is of the same
complexity as join ordering as Scheufele and Moerkotte showed [SM97].

In the cartesian model, costs of each operator compute recursively to

c(v) = c(vl) · c(vr)

where v denotes an operator, i.e., inner node in the query plan, and vl and vr its
left and right children respectively. If v is leaf, c(v) is the size of the associated
base table. The total cost of the plan is the sum of costs per operator.

To extract cost distributions for the cartesian model, we enumerate all non-
isomorphic trees of given size, i.e. trees that are not isomorphic under commu-
tative exchange of subtrees. For each tree we generate 1000 configurations of
base table sizes according to a given distribution and compute the costs. The
parameters of the experiment are size of the problem, i.e. number of base ta-
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Fig. 1. Cost distributions for cartesian model for µ = 2, 5, 10, 100 and σ as
fraction of µ.

bles which translates to the number of leaves in the processing tree, and mean
and deviation of the distribution of base tables. Figure 1 shows the resulting
cost distributions for trees of size 10. The deviation is given as a fraction of the
mean. In this experiment, we used normal distributions for the base tables but
experiments with other distributions showed similar results [WP98]. We observe
only little skew for a small deviation (0.05) and increasing skew for larger devia-
tion (0.50). The whole range of shapes observed can be abstracted with Gamma
distribution of shape parameter ν between 1 and 2 as suggested by Ioannidis
and Kang. Moreover, this experiment also confirms the connection between the
skew of the cost distribution and the deviation. The higher the deviation—i.e.,
the variance of the database catalog—the stronger the skew.



The above experiment pinpoints the cause of the skew that has been observed
with richer cost models. The tree structure of the plans with its multiplicative
costing is responsible for the shape of the cost distributions. When moving from
the cartesian model to join ordering the cost distributions become less smooth
as not all non-isomorphic trees are valid tree-shapes. Moreover the additional
selectivities of the join predicates add further distortions. However, as the sum
of experiments—previous work and own ones presented in this paper—suggests
further additions to the cost model, including extensions to cover a large variety
of operator implementation like different join implementations but also other
kinds of operators than joins or cartesian products, do not alter the major char-
acteristic of the cost distributions. Thus, the abstraction proposed by Ioannidis
and Kang appears more general than authors first thought.

Before we discuss how to exploit the distributions for optimization purposes,
we present some considerations on how to measure the quality of the optimization
results.

2.2 Quality Measures

The cost computation in a database system uses statistical data about the state
of the database to estimate the execution costs. As natural consequence, the
estimates contain errors. While rather precise for small queries, the accuracy of
the cost estimation deteriorates with increasing size of the query as estimate
errors propagate exponentially through the query plan [IC91]. Plans whose costs
differ only by a few percent cannot be distinguished any more reliably; near-
optimal results are as good as the optimum itself.

To reach a trade-off between time spent on the optimization and the result
quality, Swami proposed a classification according to which query plans can be
divided into three groups: good, acceptable and bad plans. Plans are considered
good if they have costs below twice the minimal costs cmin , acceptable if they
are no more expensive than 10 times cmin , and bad otherwise. In the following
we refer to this classification as scaling-based classification.

Note, quality measures of this kind are only of theoretic value in general.
When optimizing queries in ad-hoc manner, neither the costs of the optimum
nor an approximation is usually available. The same holds for the measure we
present below.

Scaling-based classification suffers from the severe drawback to be not invari-
ant under additive translation as the following example shows. Consider a cost
distribution of the quality of an exponential distribution

φt(x) =

{
e−x+t, if x ≥ t
0, else

t is the additive shift of the distribution. Figure 2 shows φ1 and φ3. The optima
are of costs 1 and 3 respectively. We should expect both distributions to have the
same ratio of good, acceptable and bad plans as the distribution are of exactly
the same shape, only shifted by 2. For φ1 the ratio of good plans computes to
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Fig. 2. Classification according to Swami

0.63 (interval [1, 2] in Fig. 2). However, for φ3 the ratio of good plans is 0.95
(interval [3, 6]). Though the distribution actually stayed the same, the ratio of
good plans is up 50% at 0.95. The cause for the instability is that only a single
reference point, namely cmin , is taken into account.

To overcome this drawback, we classify plans with respect to the cost distri-
bution. We denote the quality of a plan by the relative quantile Qx of the cost
distribution its costs are in. We say a plan q is of quality Qx if the following
holds for its costs

c(q)− cmin

cµ − cmin
≤ x.

Figure 3 shows the exponential distribution of the example above (cf. Fig. 2).
For example, Q1 denotes the quantile from cmin up to cµ. The quantiles Q1

and Q0.1 are highlighted. As the figure shows, quantile-based classification is
independent of any translation.

In the following we will use Q0.1 as target quantile for the optimization, i.e.,
we try to find a plan whose costs are in Q0.1. Larger quantiles may be justified
for larger join queries though.

3 Probabilistic Bottom-up Join Order Selection

In order to implement an unrestricted sampling mechanism we use a mapping
of join predicates to query plans. It might be helpful to outline the idea behind
this mapping first: given a sequence of join predicates, we add the corresponding
join operators of the query plan one after another. If the predicate involves a
base table that is not yet leaf of the query plan, we add a join operator whose
children are the new base table and the partial plan that contains the other
table. If both tables are already part of the tree, we add only the predicate to
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the deepest possible join. To generate now query plans at random we simply
generate random sequences of predicates.

In Figure 4, the algorithm, called QuickPick, is outlined in pseudo code.
After initializing the variable r that records the cheapest plan found so far with
∞, the candidate set E′ is initialized with the set of edges of the join graph, and
q with the base relations. Throughout the random bottom-up construction of a
tree q holds all partial trees, i.e. q is actually a forest. Generally, only at the very
end—earlier only for cyclic join graphs—, q is completed to a single processing
tree.

Until the stopping criterion, say a time limit, is fulfilled q is incrementally
built-up by choosing and removing an edge e from the candidate set and adding
the corresponding join to the tree (AddJoin). In doing so, the subtrees that
contain the two endpoints of e, i.e. the base relations joined by this edges, are
connected with a join operator. If both relations are already leaves to the same
sub-plan, only the predicate of e is added to the tree at the deepest possible
point. After each such insertion, the costs of the subtrees are computed and
summed up. Recall, that q is generally a forest consisting of several disjoint
processing trees. If the costs exceed r, the costs of the best plan found so far, we
discard q and initialize E′ and q again and start assembling a new tree. If the
set of candidate edges is empty—i.e. we have completed the processing tree—we
check for a new record and in this case copy the plan to qbest . After initializing
E′ and q we start building a new tree.1

1 The basic principles of QuickPick—without cost-bound pruning—have been de-
scribed already by Pellenkoft [Pel97]. There, this algorithm is called Random Edge
Selection and proofed to be incapable of achieving uniform sampling. However, no
further performance analysis is conducted. Others might have probably used simi-
lar algorithms to generate initial solutions. However, they also did not evaluate the
potential of this elementary technique.



Algorithm QuickPick

Input G(V,E) join graph
Output qbest best query plan found

r ←∞ // initialize lowest costs so far
E′ ← E
q ← G′(V, ∅) // initialize query plan
repeat

choose e ∈ E′ // random edge selection
E′ ← E′ \ {e}
AddJoin(q, e) // add join or predicate
if E′ = ∅ or c(q) > r do // either plan complete or costs exceed

// best costs so far

if c(q) < r do // check for new best plan
qbest ← q
r ← c(q)

done
E′ ← E
q ← G′(V, ∅) // reset query plan

done
until stopping criterion fulfilled
return qbest

Fig. 4. Algorithm QuickPick

Essential for the cost bound pruning is the cost computation along the struc-
ture in the making. We assume a monotonic cost formula where operators do not
influence the costs of their predecessors other than monotonically increasing, i.e.
adding an operator later cannot reduce the costs of any subtree.

4 Assessment

Before presenting figures on QuickPick we investigate the potential of uniform
sampling using abstractions for the cost distributions. Afterwards, we compare
it to non-uniform sampling and point out the differences and their impact.

4.1 Uniform Sampling

We can put random sampling on solid formal grounds and compute probabilities
for a successful search in dependency of the running time invested.

Let A be the random variable

A := costs of a query plan chosen at uniform probability.
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Fig. 5. Probability to select plan with costs below certain threshold

The probability to obtain a plan in Qx under a cost distribution ξ is

P [A ∈ Qx] =

cmin+ x
cµ−cmin∫

cmin

ξ(t)dt.

For the random variable An

An := lowest costs in a sample of n plans chosen at uniform prob-
ability

the following holds:

P [An ∈ Qx] = 1−
(
P [A 6∈ Qx]

)n
= 1−

(
1− P [A ∈ Qx]

)n
In Figure 5, the probability P [An ∈ Qx] is shown for various x. As cost

distribution we use Gamma distributions with shape parameter ν = 1, 2. The
sample size is given on the x-axis and the probability is plotted against the
ordinate. As both diagrams show, finding a plan better than average (Q1.0) is
almost certainly achieved by a sample of only as little as 10 plans. For ν = 1 the
probability to obtain a plan in Q0.2 within a sample of size 20 is already beyond
0.95. For a sample larger than 47 plans, the probability for plans in Q0.1 is higher
than 0.99 (cf. Fig. 5a). As Figure 5b shows, larger sample sizes are needed to
achieve the same quality in case of ν = 2. In particular, to reach into Q0.1 with
a probability greater than 0.99 requires n to be at least 982. Table 1 shows the
necessary values of n to achieve P [An ∈ Qx] ≥ 0.99. Note, those figures are
by far smaller than the widely accepted limits used for transformation-based
probabilistic optimization or even genetic algorithms.
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Fig. 6. Comparison of cost distributions obtained with biased and uniform sam-
pling

4.2 Cost Distribution

In order to determine the cost distribution under QuickPick, we implemented
a cost model comparable to those proposed in [EN94,KS91,Ste96]. Clearly, to
be successful, the cost distribution φB under QuickPick must be at least as
favorable as the original, i.e. shifted to the left relative to φ.

In the following we compare φB and φ under three aspects: (1) selective
samples, (2) the correlation coefficient between a larger set of cost distributions,
and (3) the shift of φB relative to φ.

In Figure 6, two pairs of cost distributions for high and low variance catalogs
are shown. Both samples are of size 5000, the query size used is 50. To obtain
cost distributions with QuickPick we disabled the cost bound pruning so that
complete trees were constructed. In a larger series of test cases φB was without
exception always left of φ. Moreover, φB bore in all cases strong resemblance
with exponential distributions.

To test for a connection of φB and φ we compute the correlation coefficient.
For two random variables, this coefficient is defined as

k =
E[(X −E[X ])(Y −E[Y ])]

σXσY
,

Table 1. Sample size needed for P [An ∈ Qx] ≥ 0.99

Q0.1 Q0.2 Q0.3 Q1.0

ν = 1.0 47 24 16 5
ν = 2.0 982 261 123 16
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where E[X ] denotes the mean of X and σX is the deviation. For fully correlated
distributions, k approaches 1. The more the distributions differ, the lower k gets.
In Figure 7, the correlation coefficient is plotted as a function of the query size.
Each point comprises 50 pairs of randomly generated queries. The plot shows a
clear trend of decreasing correlation with increasing query size.

Finally, we determine the relative shift of φB which is defined as

s(x) =

x∫
cmin

φB(x)

x∫
cmin

φ(x)

(see e.g. [IK91]). In Figure 8 the shift s(µ(φ)) is plotted as function of the query
size. Again, each data point represents the average of 50 queries. Values above
1 indicate that φB is relatively shifted to the left of φ.

Our results clearly exhibit the trend that the biased cost distribution is even
more favorable to sampling than the original one. With increasing query size,
the difference between the two distributions becomes more distinct, showing the
biased one stronger to the left of the original.

4.3 Quantitative Assessment

According to our analysis of the cost distribution, the results reported on by
Galindo-Legaria et al. in [GLPK94] can immediately be transferred and serve,
so to speak, as an upper bound for the result quality.

Like uniform sampling, QuickPick is unlikely to find the optimum as sam-
pling works on the premise that all solutions in the top quantile—the size is
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parameter to the problem—are equally good. Thus “hitting” this quantile in the
course of the sampling is good enough.

Result Quality Figure 9 shows the quality of the results in terms of quantile-
based quality. For the experiments we differentiated the following shapes of query
graphs: stars, chains, and tree-shaped on the one hand, and a type which we call
n-cycle on the other hand. The first group of three comprises queries that can
also be optimized with uniform sampling. The second group exceed the scope of
uniform sampling. A graph of type n-cycle contains exactly n cycles, as the name
suggests, but the remainder of the graph is unspecified, i.e. we use randomly
generated tree-shaped graph and insert n additional edges. Our notion of cyclic
graphs reflects real queries better than highly connected graph structures such as
grids or cliques. Also the graph theoretic notion of connectivity is little suitable
as almost all queries in actual applications are of a connectivity no higher than
one.

For acyclic graphs, QuickPick delivers results of a quality comparable to
that of uniform sampling—for star graphs, QuickPick actually implements even
uniform sampling. In case of cyclic query graphs, the results are of even higher
quality (see Fig. 9).

Convergence Behavior Like with uniform sampling, QuickPick’s strong
point is its quick convergence. Figure 10 shows the costs of the best plan found
as function of the elapsed time in comparison with Iterative Improvement and
uniform sampling. Due to its biased cost distribution, QuickPick converges sig-
nificantly quicker. With longer running time the competitors catch up. Iterative
Improvement sometimes beats QuickPick, not significantly though.

To underline the differences between uniform sampling and QuickPick, we
compute the probability to hit the quantile Q0.1 for both algorithms. Q0.1 refers
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to the respective quantile of the original distribution. In Figure 11, these prob-
abilities are plotted as function of the size of the sample. The left plot shows
the situation for a high, the right for a low variance catalog. To hit the quantile
with more than 90% probability in the high variance case requires a sample size
of 18 and 40 for QuickPick and uniform sampling respectively. In case of low
variance catalog, the numbers differ even more significantly: 13 and 154.

Cost-bound Pruning Let us finally investigate the impact of cost-bound prun-
ing on QuickPick. We introduced the algorithm in the form that partial trees
are discarded as soon as their costs exceed the currently best plan’s cost.

According to our general considerations about the cost distributions the ef-
fectiveness of the pruning depends on the shape of the distributions. The further
to the left the distribution is the lower the gains, i.e. the trees are built-up almost
to completeness. In Figure 12 this effect is demonstrated with low and high vari-
ance catalogs for a query of size 100. The left plot in 12a, shows the number of
join predicates inserted with AddJoin—referred to as size of tree in the figure.
As a stopping criterion we used 100000 insertions which made in this example
for 1286 explored trees in total. For each (partial) tree we indicate the size when
it was discarded (see Fig. 12a, left), 100 being the maximum. Note, not every
tree completed is a new record since the last join can still exceed the best costs
so far, which happens specifically frequent with high variance catalogs. The plot
on the right hand side shows the average tree size as function of the number of
trees. Starting at 100 it drops quickly to about 80 (see Fig. 12a, right).

In Figure 12b the same analysis is done for a low variance catalog. Since there
is no strong concentration of solutions as opposed to the previous case, pruning
kicks in earlier. The average tree size drops to about 40. Consequently, 100000
steps make for a larger number of (partial) trees explored; 2539 in this example.
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Fig. 12. Effectiveness of cost-bound pruning in QuickPick

In the first case savings amount to some 20%, in the second almost 60%
on average. As a practical consequence, QuickPick with cost-bound pruning
inspects a larger sample of trees, 1286 and 2539 in these cases, within the same
running time that would be required to build up 1000 plans completely.

5 Related Work

The join-ordering problem continuously received attention during the past
two decades. Besides enumeration techniques for small query sizes (cf. e.g.
[SAC+79,VM96,PGLK97]), heuristics have been developed in order to tackle



larger instances [KBZ86,SI93]. However, as Steinbrunn et. al. pointed out, heuris-
tics yield only mediocre results as the queries grow in size [SMK97].

On the other hand, beginning with [IW87], randomized techniques have been
introduced and attracted particular interest ever since. Swami and Gupta as
well as Ioannidis and Kang proposed transformation-based frameworks where—
after creating an initial plan—alternative plans are derived by application of
transformation rules. The two most prominent representatives of this class of
algorithms Iterative Improvement and Simulated Annealing can be proven to
converge toward the optimal query plan for infinite running time. A theoretical
result which is of limited use for practical applications as it does not describe the
speed of convergence. As we pointed out above, these algorithms spend most of
the running time on escaping local minima and making up for poor intermediate
results, reaching high quality results eventually though.

In [GLPK94], Galindo-Legaria et al. showed that uniform sampling can
achieve results of similar quality but significantly quicker.

In addition, navigating algorithms like Simulated Annealing depend on the
quality of the initial query plan which affects the stability of the results obtained
and requires careful parameter tuning: if the convergence is urged too firmly, the
algorithm may get stuck in a local minimum at an early stage, if the convergence
is not forced valuable running time is given away. To mitigate this problem,
hybrid strategies like Toured Simulated Annealing and Two-Phase Optimization
were developed [LVZ93,IK91].

Ioannidis and Kang presented a thorough analysis of the search space topol-
ogy induced by transformation rules. Moreover, according to these studies, nav-
igating algorithms require more than linearly increasing running time with in-
creasing query size.

6 Conclusion

Based on the observation that sampling is a competitive alternative to trans-
formation-based optimization algorithm like Simulated Annealing, we sat out to
investigate background and limitations of sampling techniques for query opti-
mization. To date, the problem of uniform random generation of query plans is
only solved for acyclic query graphs.

In this paper, we devised a randomized bottom-up join order selection that
performs biased sampling and is not limited in its application. Our experiments
suggest that results for uniform sampling form an upper bound for the new sam-
pling technique underlining its superior performance. The algorithm presented
is distinguished by (1) its low complexity of both run time behavior and imple-
mentation (2) high quality results and (3) quick convergence.

Our results show that join ordering is, due to its cost distribution, actually
“easier” than its property of being NP-complete may suggest. Similar effects are
known for other NP-complete problems like graph coloring [Tur88]. The algo-
rithm we presented establishes a well-balanced trade-off between result quality
and time invested in the optimization process.



Future Research. Results presented make our algorithm an interesting build-
ing block for optimization of more complex queries including aggregates and
sub-queries. Our future research is directed to investigate ways of integrating
sampling and exact methods to speed up the latter. Another direction we are
eager to explore is the random generation of plans for complex queries on the
lines of the technique presented in this paper.
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