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1000 —c Processors

Abstract. In the past decade, advances in the speed of com
modity CPUs have far out-paced advances in memory la2 o — . DRAM
tency. Main-memory access is therefore increasingly a per=
formance bottleneck for many computer applications, includ-?;_ L
ing database systems. In this article, we use a simple sca”
test to show the severe impact of this bottleneck. The insight:
gained are translated into guidelines for database architectur 10
in terms of both data structures and algorithms. We discus
how vertically fragmented data structures optimize cache per
formance on sequential data access. We then focus on eqt
join, typically a random-access operation, and introduce radi
algorithms for partitioned hash-join. The performance of these
algorithms is quantified using a detailed analytical model that
incorporates memory access cost. Experiments that validal
this model were performed on the Monet database system.
We obtained exact statistics on events such as TLB misses arfdg. 1. Hardware trends in DRAM and CPU speed
L1 and L2 cache misses by using hardware performance coun-
ters found in modern CPUs. Using our cost model, we show
how the carefully tuned memory access pattern of our radixdirect tradeoff between capacity and speed in DRAM chips,
algorithms makes them perform well, which is confirmed by and the highest priority has been for increasing capacity. The
experimental results. result is that from the perspective of the processor, memory
has been getting slower at a dramatic rate. This affects all com-
Key words: Main-memory databases — Query processing —puter systems, making it increasingly difficult to achieve high
Memory access optimization — Decomposed storage model processor efficiencies.
Join algorithms — Implementation techniques Three aspects of memory performance are of interest:
bandwidth, latency, and address translation. The only way to
reduce effective memory latency for applications has been to
incorporatecache memories the memory subsystem. Fast
and more expensive SRAM memory chips found their way
1 Introduction to computer boards, to be used as L2 caches. Due to the
ever-rising CPU clock-speeds, the time to bridge the physi-
Custom hardware — from workstations to PCs — has expecal distance between such chips and the CPU became a prob-

rienced tremendous improvements in the past decades. U}eM; S0 modern CPUs come with an on-chip L1 cache (see
fortunately, this growth has not been equally distributed overFig- 2). This physical distance is actually a major complication
all aspects of hardware performance and capacity. Figure for designs trying to reduce main-memory latency. The new
shows that the speed of commercial microprocessors has if?RAM standards Rambus [Ram96] and SLDRAM [SLD97]
creased roughly 70% every year, while the speed of commodtherefore concentrate on fixing the memory bandwidth bottle-
ity DRAM has improved by little more than 50% over the past "eck [McC95], rather than the latency problem.

decade [Mow94]. Part of the reason for this is that there isa  Cache memories can reduce the memory latency only
when the requested data is found in the cache. Their effective-

A preliminary version of this paper has been published as [BMK99]. ness depends on the memory access pattern of the application.
* This work was carried out while the author was at the University Thus, unless special care is taken, memory latency becomes an
of Amsterdam, supported by SION grant 612-23-431. increasing performance bottleneck, preventing applications —
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usage. Concerning query processing algorithms, we focus on
equi-join and introduce new radix algorithms for partitioned
Latencies: hash_lOln

TLE nigs:; 380 oyclis In Sect. 4, we analyze the properties of these algorithms
______ Bifil (R with detailed analytical cost models that quantify query costs
L1 eache-line S Limes s20emes  jn terms of CPU cycles, TLB misses, and cache misses. These

L2 cachea-ling —=

LE a0 100 ovles models show how memory access determines the performance
e 1 Wiain Mamory of database algorithms, and they enable us to tune the mem-
‘ ory access pattern of our algorithms carefully to achieve op-
Memary Page Ui ial Momory timal performance. Exhaustive experiments using the Monet
swap lile system confirm the significant performance improvement that
fon 5k our memory-conscious algorithms achieve over standard al-
gorithms.
Finally, we evaluate our findings and conclude thatthe hard
data obtained in our experiments justify the basic architectural

including database systems — from fully exploiting the IOOWerchoices of the Monet system, which back in 1992 were mostly

of modern hardware. based on intuition.

Besides memory latency and memory bandwidth, trans-
lation of logical virtual memory addresses to physical page . .
addresses can also have a severe impact on memory accesdnitial experiment
performance. The memory management unit (MMU) of all . , )
modern CPUs has a translation lookaside buffer (TLB), a kindln this section, we demonstrate the severe impact of mem-
of cache that holds the translation for (typically) the 64 mostOry access cost on the performance of elementary database
recently used pages. If a logical address is found in the TLBOPerations. Figure 3 shows results of a simple scan test on
the translation has no additional cost. OtherwisEL.B miss & number of popular workstations of the past decade. In this
occurs. A TLB miss is handled by trapping to a routine in t€St, we sequentially scan an in-memory buffer, by iteratively
the operating system kernel, which translates the address akgading one byte with a varyirgiride, i.e., the offset between
places it in the TLB. Depending on the implementation andtWO subsequently accessed memory addresses. This experi-

hardware architecture, TLB misses can be even more costl{’€nt mimics what happens if a database server performs a

=

Fig. 2. Hierarchical memory system

than a main memory access. read-only scan of a one-byte column in an in-memory table
For a more detailed discussion of the hardware backWith a certain record-width (the stride); as would happen in
ground, we refer the interested reader to [MBKOO]. a selection on a column with zero selectivity or in a simple

aggregation (e.g., Max or Sum). Theaxis in Fig. 3 shows

the cost of 200000 iterations in elapsed time, anditaxis
1.1 Overview shows the stride used. We made sure that the buffer was in

memory, but not in any of the memory caches.
In this article we investigate the effect of memory access cost
on database performance by looking in detail at the main-
memory cost of typical database applications. Our researcB.1 General observations
group has studied large main-memory database systems for
the past 10 years. This research started in the PRISMA projedVhen the stride is small, successive iterations in the scan read
[AvdBFT92], focusing on massive parallelism, and is now cen-bytes that are near to each other in memory, hitting the same
tered around Monet [BQK96,BWK98], a high-performance cache line. The number of L1 and L2 cache misses is therefore
system targeted to query-intensive application areas likdow. The L1 miss rate reaches its maximum of one miss per
OLAP and Data Mining. For the research presented here, wéeration as soon as the stride reaches the size of an L1 cache
use Monet as our experimentation platform. line (16 to 32 bytes). Only the L2 miss rate increases further,

The rest of this paper is organized as follows. In Sect. 2, weuntil the stride exceeds the size of an L2 cache line (16 to
analyze the impact of memory access costs on basic databa&@8 bytes). Then, it is certain that every memory read is a
operations. We show that, unless special care is taken, a dataache miss. Performance cannot become any worse and stays
base server running even a simple sequential scan on a tabtenstant.
will spend 95% of its cycles waiting for memory to be ac- In the following, we first present a detailed analysis of our
cessed. We present a detailed analytical cost model that dexperiment in order to understand the impact of various parts
scribes how hardware characteristics like cache line sizes anaf the hardware system on the performance of (basic) database
cache miss latencies determine the performance of a sequeaperations, such as a sequential in-memory scan. We use an
tial scan. This memory access bottleneck is even more difficulSGI Origin2000 with MIPS R10000 processors (250 MHz)
to avoid in more complex database operations such as sortings a sample machine, but we keep the models applicable to
aggregation and join, which exhibit a random access patternother systems as well by using a set of specific parameters to
In Sect. 3, we discuss the consequences of this bottleneaflescribe the respective hardware characteristics. Table 1 lists

for data structures and algorithms to be used in database sysie parameters for the Origin2000. In [MBKOO], we present a
tems. We identify vertical fragmentation as the solution for calibration toolto automatically extract these parameters on
database data structures that leads to optimal memory caclamy computer hardware. The software is freely available for
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Table 1.Hardware characteristics

record-width in bytes (stride)

Description Value

Machine type SGI Origin2000
0s IRIX64 6.5
CPU MIPS R10000
CPU speed 250 MHz
CPU-inherent parallelism ¢ 4

Main-memory size
L1 cache size

L1 cache line size
L1 cache lines

L2 cache size

L2 cache line size
L2 lines

TLB entries

Page size

TLB size(|TLB| - ||Pyl|)
L1 miss latency

L2 miss latency
TLB miss latency
Memory bandwidth

1)
LSt
|L1|ra
122
LSt2
|L2|12
|TLB|
[Pl
|[TLB|
L2
IMem
lrLs
bwnem

48 GB (4 GB local)
32KB

32 bytes

1024

4 MB

128 bytes

32768

64

16 KB

1 MB

24ns = 6 cycles
400 ns = 100 cycles
228 ns = 57 cycles
555 MB/s

download from http://www.cwi.nitmonet/. There, the cali-
brated results for a large number of hardware platforms are

available, too.

After the detailed analysis, we discuss our scan experime

in a broader context.

2.2 Detailed analysis

cache) and additional costs due to L2 cache accesses and main-
memory accesses.

To measure the pure CPU costs —i.e., without any memory
access costs —we reduce the problem size to fitinthe L1 cache
and ensure that the table is cached in L1 before running the
experiment. This way, we observéd piy = 24 ns (6 cycles)
per iteration for our experiment.

We model the costs for accessing data in the L2 cache and
in main memory by scoring each access with the respective la-
tency. As observed above, the number of L2 and main memory
accesses (i.e., the number of L1 and L2 misses, respectively)
depends on the access stride. With a stsidenaller than the
cache line sizd.S, the average number of cache misses per it-
erationisM (s) = ;5. With a stride equal to or larger than the
cache line size, a miss occurs with each iteration. In general,
we get ¢ € {1,2})

s
—, if LSr;
Myi(s) = { IS5, if s < LSy
1, if s > LSy

= min 5 1
- LSLi’ 9

with M, andLSy; (i € {1,2}) denoting the number of cache
misses and the cache line sizes for each level, respectively.
Figure 4 compares{;,; and M, to the measured number of
cache misses.

We get the total costs per iteration — depending on the
ccess stride — by summing the CPU costs, the L2 access
osts, and the main-memory access costs:

T(s) = Tcpu + Tr2(s) + Taem(S),
with
Tra(s) = Myi(s) - lpe,

(“model 17)

In general, the execution costs per iteration of our experimen?Mem(S) = M12(s) - Wiem,
— depending on the stride — can be modeled in terms of wherel, (x € {L2,Mem}) denote the (cache) memory ac-
pure CPU costs (including data accesses in the on-chip Ltess latencies for each level, respectively. We measure the L2
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Fig. 4. Measuredgointy and modeledlines) cache misses Fig. 5. Sequential scan: experiment and models

and memory latency with our hardware calibration tool pre-

sented in [MBKOO}: Figure 5 shows the resulting curve as However, we have to consider another limit: bandwidth.

“model 1.” L2 bandwidth is large enough to alloyv= 4 concurrent L1
Obviously, this model does not match the experimental redoads within a single L2 latency period, reducing the effective

sults. The reason is, that the R10000 processor is super-scalatency to (14)th. Memory bandwidth, however, is limited to

and can handle up t9 = 4 active operations concurrently. 555 MB/s (see [MBK99]). Hence, at ledst;,, = 220 ns (55

Thus, the impact of memory access latency on the overall exegycles) are needed to load one L2 line (128 bytes).

cution time may be reduced as (a) there musf baresolved Now, we can refine our model as follows:

memory requests before the CPU stalls, and (b) upltb or N

L2 cache lines may be loaded in parallel. In other words, op-_ (s) = O(01(s). Tepu, Tra(s)) (“model 27)

erations may (partly) overlap. Consequently, their costs must’(s) = 0(02(5), T'(s), TMcm(s))

not simply be added. Instead, we combine two cost compo-

nentsz andy — given the degree € [0... 1] they overlap — with (5)
using the following function: T — M (ro2t8) ),
) L2(5) Ll(S) MLl(S) L2
O(o,z,y) = max{z,y} + (1 — 0) - min{z, y}
=2 +y—o-min{z,y} Tem(s) = Mypa(s)-(1— 2(5) “(1=Imin) ) -IMem-
. . . . . MLQ(S)
This overlap function forms a linear interpolation between the ] .
two extreme cases andTcpu, M1, Mya, IL2, Imem @S in “model 1". Figure 5
depicts the resulting curve as “model 2.” This fits the experi-
e nooverlap ¢=0) = O(0,z,y) =z +y, mental curve pretty well. The differences for small strides can
e fulloverlap o =1) = O(1,z,y) = max{z, y}. be eliminated by setting; = 1 for all strides, as “model 3”

Let o, andos, be the degrees of overlap for L2 access angshowsinthe figure. This in turn means thatthe CPU itself loads

main-memory access, respectively. Then, we get the total coSEVeral L1 lines concurrently, even if 4 subsequent memory
considering overlap by applying the overlap function twice: referencesrefertothe same L1line. Inthis scenario, the “ideal

performance of
!
T' = Ofos, toru. Tiz). T(s) = max{Topu, Tra(s), Taiom ()}, (ideal’)
T = Of02,T", Thvem)- i.e., witho; = 0, = 1, is not reached (see “ideal” in
The following consideration will help us to determingand  Fig.5), because the whole memory bandwidth cannot be uti-
02. In our experiments, we have a pure sequential memoryized automatically for smaller strides, i.e., when several mem-
access pattern. Up to a stride of 8 bytes, 4 subsequent memogyy references refer to a single L2 line.
references refer to the same 32-bytes L1 line, i.e., only one
L1 line is loaded at a time, not allowing any overlap of pure
calculation and memory access (= o, = 0). With strides 2.3 Discussion
between 8 and 32 bytes, linearly increases towards its max-
imum. The same holds fex, with strides between 32 and 128 The detailed analysis and the models derived show how hard-
bytes, as L2 lines contain 128 bytes on the R10000. Thus, ware specific parameters such as cache line sizes, cache miss

get( € {1,2}) penalties, and degree of CPU-inherent parallelism determine
the performance of our scan experiment. We will now discuss
0, if s < % the experiment in a broader context.
5 — LS » While all machines in Fig. 3 exhibit the same pattern of
0;(s) = 50, s if 7 < s < LSL; performance degradation with decreasing data locality, Fig.

, if s > LSL,;. ! See also http://www.cwi.némonet/.
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3 clearly shows that the penalty for poor memory cache usg parl price desonl qly lax Nag Stalus shigmod date1
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speed has improved by almost an order of magnitude, botl = 1|+ 105 D 0% 1T Tabek + v v .
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sion that if no attention is paid in query processing to data
locality all advances in CPU power are neutralized due to the
memory access bottleneck caused by memory latency. Th |«

int int int float Noat int floatehar(1)inl  varchardate date date char(27)
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considerable growth of memory bandwidth — reflected in the vertical fragmentation in Monet
growing cache line sizés- does not solve the latency problem ——
s 3 . oid float o encoding BATT
If datalocallty IS IOW . ) . 100010 | (10000475 | 1000|010 1000 AIR
This trend of improvement in bandwidth but standstill in jiea/10] 10011150 1001 0.00) | 1001 WAL Pl © (AEC ARy
latency [Ram96, SLD97] is expected to continue, with no real® 11 10021020 1002 000 | 1078 FRHCK T $2 AR
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tions, before data is accessed. The effectiveness of this teCluz-1s | oot 1425 | 1oo7 000 |1007 MAIL—— 3" B
nigue for database applications is, however, limited due to the > [«—»| [«—»] logical appearance  |af  structures
fact that the amount of CPU work per memory access tenNdigpytes sbytes  byies  optimized BAT storage: 1 byte per column
to be small in database operations (e.g., the CPU work in OUL. - & Vertically decomposed storage in BATS
select-experiment requires only 4 cycles on the Origin2000). 9.5 y P 9
Another proposal [MKW 98] has been to make the caching
system of a computer configurable, allowing the programmer
to give a “cache-hint” by specifying the memory-access stridea BAT is represented in memory as an array of fixed-size two-
that is going to be used on a region. Only the specified datdield records [OID,value], or binary units (BUN). Their width
would then be fetched, hence optimizing bandwidth usageis typically 8 bytes.
Such a proposal has not yet been considered for custom hard- In the case of the Origin2000 machine, we deduce from
ware, however, let alone in OS and compiler tools that wouldrFig. 3 that a scan-selection on a table with stride 8 takes 10
need to provide the possibility to incorporate such hints forCPU cycles per iteration, whereas with a stride of 1 it takes
user programs. only 4 cycles. In other words, in a simple range-select, there
is so little CPU work per tuple (4 cycles) that the memory
access cost for a stride of 8 still weighs quite heavily (6 cy-
3 Architectural consequences cles). Therefore we have found it useful in Monet to apply two
space optimizations that further reduce the per-tuple memory

. . s requirements in BATs:
In the previous sections we have shown that it is less and less UI"€Me s S

appropriate to think of the main memory of a computer systenVirtual OIDs: Generally, when decomposing a relational ta-
as “random access” memory. In this section, we analyze the ble, we get an identical system-generated column of OIDs
consequences for both data structures and algorithms used in in all decomposition BATSs, which idense and ascending
database systems. (e.g., 1000, 1001,..,1007). In such BATs, Monet com-
putes the OID values on the fly when they are accessed
using positional lookup of the BUN and avoids allocat-
ing the 4-byte OID field. This is called a “virtual OID” or
VOID column. Apart from reducing memory requirements

. o . by half, this optimization is also beneficial when joins or
The default physical tuple representation is a consecutive byte semi-joins are performed on OID columhg/hen one of

sequence, which must always be accessed by the bottom op- 4 jin columns is a VOID, Monet uses positional lookup

erators in a query evaluation tree .(typically selections or pro-  j,stead of, e.g., hash-lookup, effectively eliminating all
jections). In the case of sequential scan, we have seen that join cost.

performance is strongly determined by the record width (theg, e encodings: Database columns often have a low domain
position on ther-axis of Fig. 3). This width quickly becomes cardinality. For such columns, Monet uses fixed-size en-

too large, and hence performance decreases (e.g., an Iltem tu- codings in 1- or 2-byte integer values. This simple tech-
ple, as shown in Fig. 6, occupies at least 80 bytes on relational nique was chosen because it does not require decoding ef-
systems). To achieve better performance, a smaller stride iS5t when the values are used (e.g., a selection on a string
needed, and for this purpose we recommend ugartjcally “MAIL” can be re-mapped to a selection on a byte with
decomposedata structures. value 3). A more complex scheme (e.g., using bit com-
Monet [BK95,BK99] uses the Decomposed Storage  pression) might yield even more memory savings, but the

Model [CK85], storing each column of a relational table ina  yecqding step required whenever values are accessed can
separate binary table, called a binary association table (BAT)

3.1 Data structures

3 The projection phase in query processing typically leads in Monet
2 In one memory fetch, the Origin2000 gets 128 bytes, whereago additional “tuple-reconstruction” joins on OID columns, which are
the Sun LX gets only 16; an improvement of factor 8. caused by the fact that tuples are decomposed into multiple BATSs.
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1-Pass Cluster

Pass 1 (2 bits) Pass 2 (1 bit)

o I 000)
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Fig. 7. Straightforward clustering algorithm Fig. 8. 2-pass/3-bit Radix-cluster (lower bits given in parentheses)

) ) smaller relation (the inner relation). The outer relation is
quickly bepome cpunterproductlve due to extra CPU ef-  {han scanned, and for each tuple a hash-lookup is per-
fort. Even if decoding would only cost a handful of cycles  formed to find the matching tuples. If this inner relation
for each tuple_, th|ls would more than doyble the amount plus the hash-table does not fit in any memory cache, a
of CPU effort in simple data_base operations, such as the performance problem occurs, due to the random access
range-select from our experiment. pattern. Merge-join is not a viable alternative as it requires
Figure 6 shows that when applying both techniques; the  sorting on both relations first, which would cause random

storage needed for 1 BUN in the “shipmode” column is re- ~ access over even a larger memory region.

duced from 8 bytes to just 1. Consequently, we identify join as the most problematic
operator; therefore we investigate possible alternatives that
can get optimal performance out of a hierarchical memory

3.2 Query processing algorithms system.

We now briefly discuss the effect of the memory access bottle-
neck on the design of algorithms for common query processin% 3 Clustered hash-join
operators. '

Selections: If the selectivity is low, most data needs to be vis- Shatdahl et al. [SKN94] showed that a main-memory vari-

ited, and this is best done with a scan-select (it has optima?m of Grace Join, in which both relations are first partitioned

data locality). For higher selectivities, Lehman and Carey®n nash-number inté/ separatelusters which each fit the

[LC86] concluded that the T-tree and bucket-chained hashMemMory cache, performs better than a normal bucket-chained

table were the best data structures for accelerating seled@Sh-join. This work employs a straightforward clustering al-

tions in main-memory databases. The work in [Rongs]gorithm that simply scans the relation to be clustered once,

reports, however, that a B-tree with a block-size equal toinserting each scanned tuple in one of the clusters, as depicted

the cache line size is optimal. Our findings about the in-I" Fig. 7. This constitutes a random access pattern that writes

creased impact of cache misses indeed support this clainiit0 H separate locations. i exceeds the number of avail-
since lookup using a hash-table or T-tree causes rando

r1’:}’ble cache lines (L1 or L2fache trashingoccurs; alterna-
memory access to the entire relation, a non-cache-friendijiVely: if H exceeds the number of TLB entries, the number of
access pattern.

LB misses will explode. Both factors will severely degrade

Grouping and aggregation: Two algorithms are often used ©verall join performance. . .
here: sort/merge and hash-grouping. In sort/merge, the ta- As an improvement of this straightforward algorithm, we

ble is first sorted on the group-by attribute(s) followed by ProPose a clustering algorithm that has a cache-friendly mem-

scanning. Hash-grouping scans the relation once, keepin@"y 2CCess pattern, even for high valueghf
a temporary hash-table where the group-by values are

key that give access to the aggregate totals. This numberq oninto H clusters using multiple passes (see Fig. 8). Radix-

groups is often limited, such that this hash-table fits the L2 . ) X
- clustering on the loweB bits of the integer hash-value of a col-
cache, and probably also the L1 cache. This makes hasrUmn is done inP sequential passes, in which each pass clusters

grouping superior to sort/merge concerning main-memory ) _ ) P
access, as the sort step has random access behavior /€S onB, bits, starting with the leftmost bit$(, B, =

is performed on the entire relation to be grouped, whichB)- Thepnumber of clusters created by the radix-cluster is
probably does not fit any cache. H = []; H,, where each pass subdivides each cluster into

Equi-joins: Hash-join has long been the preferred main- H, = 27> newones. When the algorithm starts, the entire rela-
memory join algorithm. It first builds a hash-table on the tion is considered as one cluster and is subdividdgiin= 251

adix algorithms The radix-clusteralgorithm splits a rela-
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L
(000) R partitioned-hashjoin(L, R, H):
(001) (000) radix-cluster(L,H)
(001) E@ radix-cluster(R,H)
(001) FOREACH cluster IN [1... H]
(001) hash-join(L[c], R[c])
(010)
(011) radix-join (L, R, H):
(100) radix-cluster(L,H)
(100) radix-cluster(R,H)
(101) FOREACH cluster IN [1..H]
(110) nested-loop(L[c], R[c])
(111
Fig. 9. Joining 3-bit radix-clustered inputs (black tuples hit) Fig. 10. Join algorithms employed
clusters. The next pass takes these clusters and subdivides eagh the number of bits usedBfor clustering), implying the
into H, = 252 new ones, yielding?; - H- clusters in total, number of clusters! = 27, .
etc. Note that withP? = 1, the radix-cluster behaves like the 2- the number of passes used during clusteriy (
straightforward algorithm. 3. the number of bits used per clustering pass)(

The interesting property of the radix-cluster is that the |, yhe following, we present an exhaustive series of exper-
nl:]r_?ber_"of rr]qn;jomly ﬁlccests)ed;gllcﬁﬁ can bebkepthl_ow, 4 iments to analyze the performance impact of different settings
while still a high overallnumber aff clusters can be achieved ¢ ihege parameters. After establishing which parameters’ set-

ujsging mlﬁltiplﬁ pashses. More S?eaﬁﬁal:x if we ker_ - htings are optimal for radix-clustering a relation Bnbits, we
27~ smaller than the number of cache lines, we avoid cachgm oyr attention to the performance of the join algorithms
trashing altogether. with varying values ofB. Finally, these two experiments are

After radix-clustering a column o bits, all tuples that  .mpined to gain insight in overall join performance.
have the same3 lowest bits in its column hash-value ap-

pear consecutively in the relation, typically forming chunks
of C/2B tuples. It is therefore not strictly necessary to store 4.1 Experimental setup
the cluster boundaries in some additional data structure; an al-

gorithm scanning a radix—clystered relation can dgtermine then our experiments, we use binary relations (BATS) of 8-bytes-
cluster boundaries by looking at these lowgrradix bits. wide tuples and varying cardinalities, consisting of uniformly
This allows very fine clusterings without introducing over- gjstributed unique random numbers. In the join experiments,
head.by large boundar_y structures. Itis interesting to note thahe join hit rate is one, and the result of a join is a BAT that
a radix-clustered relation is in faotderedon radix bits (see  ontains the [OID,0ID] combinations of matching tuples (i.e.,
parentheses next to the right-most column in Fig.8). When, join-index [Valg7]). Subsequent tuple reconstruction is cheap
using the algorithm in the partitioned hash-join, we explonin Monet, and equal for all algorithms, so as in [SKN94] we
this property, by performing a merge step on the radix bits ofyg not include it in our comparison.
both radix-clustered relations to obtain the pairs of clusters e experiments were carried out with an Origin2000 ma-
that should be hash-joined with each other (see Figs.9 anghine on one 250 MHz MIPS R10000 processor. This system
10). . oL . has 32KB of L1 cache, consisting of 1024 lines of 32 bytes,
The alternativeadix-join algorithm, also proposed here, 4\ of L2 cache, consisting of 32 768 lines of 128 bytes, and
makes use of the very fine clustering capabilities of radix-gicient main memory to hold all data structures. Further,
cluster. Ifthe number of clustefg is high, the radix-clustering  his system uses a page size of 16 KB and has 64 TLB entries.
brings the potentially matching tuples near to each other. Afye ysed the hardware event counters of the MIPS R10000
chu_nk sizes are smaII,_ a simple nested _Ioop is then_ Sl_JfIf|C|_ertt_:pU [Sil97] to get exact data on the number of cycles, TLB
to filter out the matching tuples (see Fig. 10). Radix-join is misses, 1.1 misses and L2 misses during these experirhents.
similar to hash-join in the sense that the numbeshould  ysing the data from the experiments, we formulate an ana-

be tuned to be the relation cardinaliy divided by a small |ytical main-memory cost model that quantifies query cost in
constant; just like the length of the bucket-chain in a hashyarms of these hardware events.

table. If this constant gets down to 1, radix-join degenerates
to sort/merge-join, with radix-sort [Knu68] employed in the

sorting phase. 4.2 Radix-cluster

To analyze the impact of all three parametdss £, B,) on
4 Quantitative assessment radix-clustering, we conduct two series of experiments, keep-
ing one parameter fixed and varying the remaining two.

The radix-cluster algorithm presented in the previous section # The Intel Pentium family, SUN UltraSparc, and DEC Alpha pro-
provides three tuning parameters: vide similar counters.
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First, we conduct experiments with various numbers of L1 L1
bits and passes, distributing the bits evenly across the passes.
The points in Fig. 11 depict the results for a BAT of 8M tuples
—the remaining cardinalities (15625C < 64M) behave the
same way. The vertical grid lines indicate where the number
of clusters created is equal to the number of TLB entries and
L1 and L2 cache lines — or a power of those — respectively. Up 5
to 6 bits, using just one pass yields the best performance (mE 1e+07 |
ms). Then, as the number of clusters to be filled concurrently =
exceeds the number of TLB entries (64), the number of TLB
misses increases tremendously, decreasing the performance.
With more than 6 bits, two passes perform better than one.
The costs of an additional pass are more than compensated
by having significantly less TLB misses in each pass using
half the number of bits. Analogously, three passes should be
used with more than 12 bits, and four passes with more than
18 bits. Thus, the number of clusters per pass is limited to
at most the number of TLB entries. A second more moderate
increase in TLB misses occurs when the number of clusters
exceeds the number of L2 cache lines. Then, the additional L2  1e+07 |-
misses are caused by cache conflicts, forcing modified cache,
lines to be written back to memory before they are completely %
filled. These write-backs refer to pages whose addresses aré
no longer cached in the TLB, yielding an additional TLB miss -
per L2 miss.

Similarly, the number of L1 cache misses and L2 cache
misses significantly increases whenever the number of clusters
per pass exceeds the number of L1 cache lines (1024) and L2  1¢+06 |
cache lines (32 768), respectively. The impact of the additional

L2 misses on the total performance is obvious for one pass (it TLB 1182 TL8° LB
does not occur with more than one pass, as then at most 13 - - e
bits are used per pass). The impact of the additional L1 misses ., | -;{*/ R
on the total performance nearly completely vanishes due to /ﬁﬁ PP Bl
the heavier penalty of TLB misses and L2 misses. Finally, .
we notice that the best-case execution time increases with the | o™ o

. 1le+06 |- i j -
number of bits used. / ;

The following model calculates the total execution costs g
for a radix-cluster depending on the number of passes, theﬁ
number of bits, and the cardinality of the input relatiah-£ ; I
| Rel): P T SO R

IMPJic)P.(C wc+Aﬁlc<P’) 337

misses

1e+05 | i i 4

+ML2,C < ) Mem
Pt
+MT1B,c (P’ C) lTLB) 1e+04 | & ]
+
. .
with (¢ € {1,2}) 5 / onEEE
My o(Bp, C) = E e w A
L EaL Sk BN S8 B &8 B B8 B B RO Bl by i
/EJ,E/
H B-8-o-g-t/oBom
. |L'|p , it H, < |Li|y; /
2| Relvi + i 1403 | / .

H, . . X
C- [1 + log (|L B ﬂ, if H, > |Li|y; 5 10 15 20

number of bits

and Fig. 11.Performance (points) and model (lines) of radix-cluster

(C = 8M)
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Mrrp.(Bp,C) = 4.3 Isolated join performance
H, . We now analyze the impact of the number of radix bits on the
2 |Relpe + | Relpg - (|TLB>’ if Hy < [TLB]| pure join performance, not including the clustering cost.
. Pg
TLB
C-(l— |),ipr>TLB|
Hy 4.3.1 Radix-Join
H, .
¢ (|L2L2) ’ it Hy < |L2]e2 The points in Fig. 14 depict the experimental results of radix-
T H join (L1 and L2 cache misses, TLB misses, elapsed time) for
C- [1 + log (|L2|p )], if H, > |L2|12 different cardinalities. The lower graph (in ms) shows that the
L2

performance of radix-join improves with increasing number

|Rel.; and|Cl|..; denote the number of cache lines per rela- Of radix bits. The upper graph confirms that only cluster sizes
tion and cluster, respectivelyRe|p, the number of pages per significantly smaller than L1 size are reasonable. Otherwise,
relation, | Li|r.; the total number of cache lines, both for the the number of L1 cache misses explodes due to cache trashing.

L1 (i = 1) and L2 ¢ = 2) caches, andil'LB| the number of We limited the execution time of each single run to 15 min,
TLB entries. thus using only cluster sizes significantly smaller than L2 size
w. denotes the pure CPU costs per tuple. To calibrateand TLB size (i.e., number of TLB entriespage size). Thatis
w,, we reduced the cardinality so that all data fits in L1, andWhy the number of L2 cache misses stay almost constant. The
pre-loaded the input relation. Thus, we avoided memory acPerformance improvement continues until the mean cluster
cess completely. We measured = 50 ns on the Origin2000  Size is 1 tuple. At that point, radix-join has degenerated to
(250 MHz). sort/merge-join. The high cost of radix-join with alarge cluster
The first term ofM; . equals the minimal number ofiL ~ Siz€ iS explained by the fact that it performs nested-loop join
misses per pass for fetching the input and storing the outpu®n each pair of matching _clu§ters. Therefore, cIL_Jsters need to
The second term counts the number of additionafrisses, e keptsmall; our results indicate that a cluster size of 8 tuples
when the number of clusters either approaches the numbd$ optimal. _
of available L lines (H, < |Li|;) or even exceeds this The following model calculates the total execution costs
(H, > |Lily,). First, the probability that the requested cluster for & radix-join, depending on the number of bits and the car-
is not in the cache — due to address conflicts — increases un@finality®:
H, = |Li|].;. Then, the cache capacity is exhausted, and a C
cache miss for each tuple to be assigned to a cluster is certaiff; (B, C) = C - [Hw cwy + C - wy + My (B, C) - s
But, with further increasindd,,, the number of cache misses
also increases, as now also the cache lines of the input may +My2:(B, C) - Ivtem
be replaced before all tuples are processed. Thus, each input +Mrre.(B,C) - lrup,
cache line has to be loaded more than once. L
The first two terms oMt 5 . are made up analogously. with (i € {1,2})
Additionally, using the same schemalds, ., the third term M. (B, C) =
models the additional TLB misses that occur due to write-" “**"
backs (see above) when the number of clusters either ap-

proaches the number of available L2 ling$,( < |L2|.2) C . M, if ||C1| < || Lil|
or even exceeds thigfl, > |L2|1.2). 3-|RelL; + || Ll |

The lines in Fig. 11 represent our model for a BAT of 8M ) )
tuples. The model shows to be very accutaégures 12 and C - [Cllvi, if [|[CH] > || L]

13 confirm the accuracy of our model for various cardinali-

ties. In Fig.12, the optimal number of passes is chosen pe@nd

event, showing that our model correctly predicts the behav-

ior of each single event. Figure 13 uses the number of pass T15.:(B,C) =
that achieves minimal execution time. Here, the graphs show

that (on the Origin2000) the impact of TLB misses dominates et Jif ||Cl|| < [|TLB]|
the execution time. At most 64 clusters should be generated . |ge|, + ITLB]|

per pass, although the caches would allow 1024 (L1 cache) or )

even 32768 (L2 cache). C - [Cllpg, if||Cl| > [[TLB]l.

The question remaining is how to distribute the number
of radix bits over the passes. We conducted another numbe#e|pg, | Re|r;, and|Li|y,; are as above (€ {1,2});||C!|| and
of experiments, using a fixed number of passes, but varyingC!|p, denote the cluster size in byte and number of pages,
the number of radix bits per pass. The results showed that arespectively;|| Li|| and ||[T'LB|| denote (in byte) the size of

even distribution of radix bits (i.eB; ~ %i e{1,...,P}) both cachesi(e {1, 2}.) and the memory range covered by
achieves the best performance. |TLB| pages, respectively.
5 On our Origin2000, we calibratdgp = 228ns,lr2 = 24ns, 5 For simplicity of presentation, we assume the cardinalities of

andiyem = 400ns [MBK99]. both operands and the result to be the same.



240 S. Manegold et al.: Optimizing database architecture for the new bottleneck: memory access

L1 L12 L1 112
T T T T T T
r ; mEAN : A A DA
1e+08 e OEETR 4 1e+08 F " e i
L P gl o g-B-oaae
e : e :
r puEE mlAAnm
le+07 M E le+07 j—crﬁ*m/._._._._.M E
2 I M : 0 w :
2 ¢
2 r 5 oaad n X] mmmEEE [ ]
E le+06 Doy 64000000 E E 1e+06 | Bewaaod 4600000 i
g 8000000 —— e b 8000000 ——
I o.p.0.E-8-@ 1000000 - * B 1000000 ------
1e+0s | o 12500 Le+05 | 15625 —
r gpasses A zslpasses A
L o passes = ; passes m
M e fpasses ¢ M 2passes 9
le+04 | : . 1 pass s le+04 F : . 1 pass P
L2 L2
1e+08 ¢ T T T 1e+08 . . .
- poond - mm AAAAAAAAé
I Egemegem B e - .
18407 | fopoopocpoongergoge g F E 18407 b oo E
F A A
- g enopOoB000 W-—-—-—l—"i'
» le+06 _—i—O—O—O—O—OM - » 1le+06 | -
2 i 9
Q k%] @m-om--EEaE
E 3 __n'%"ELD"B'D'D'D £ BeB-8-88-a E]".
S 1e+05 R s e S St T | N le+05 | F T ]
I SO 4' +A .......... 74' +D
1e+04 + + + + + + + + + + + TS 4 let04 b+ + + + + + + + + + + T+ F i
+ +
S S e S A S S S A
le+03 L L L 1e+03 L L L
TLB TLB? TLB® TLB* TLB TLB? TLBS LB
1e+08 ¢ T T T le+08 T T .
A A A A
L A A o . ™ A 4
1e+07 b . 1e+07 b : . : .
1e+06 g 1e+06 g
K] i QR 48 8
E 1le+05 | =g a0 E £ 1le+05 | E
a [ ¥ A A A ]
[ L O A A A =
le+04 /B’U E le+04 | i
7
L IS NS
i -[j'13“[]"@"-VD.‘“”.mi”A mEe .
16403 |, oy ¥ i . 16403 |, 4oy ¥ . E
FE +FF -+ + SRR +—F—F +
1le+02 L L 1e+02 1 1
1e+05 T 1le+05 T
| n bbbt Byt nAa baes ad.B8
3 [T b mmon LR S
0.E5-8-8-8
le+04 | ot 4 1le+04 g i
r A ® A ®A
Q_B/I—n—.—l"l_u_n}—‘ - T B
r /B—B—B—ﬁ—D/E /B—B—B—EB—D/E
i - bt _
a 1e+03 ) 1e+03
3 I PR B Q P N
£ L LeaoaoT® 2 Loeooo®?
E Jerop pH+res” 9 E lerop | Heees” ]
-
[
I . BTN S L St ) S
letol T A HF A TS | les0l | FEEET ]
e S B
P e 4 4 L 4 5 F + + —T T
1e+00 ' 1e+00 :
5 10 15 20 5 10 15 20
number of bits number of bits

Fig. 12.Performancegointg and model{nes) of radix-cluster (op-  Fig. 13. Performance fointg and model lfnes) of radix-cluster
timal number of passes per event) (number of passes for best performance)



2]

le+10

le+09

le+08

1le+07

L1 misses

le+06

le+05

le+04

le+07

1le+06

L2 misses

le+05

le+04

1le+05

le+04

TLB misses

le+03

le+02

le+06

le+05

le+04

millisecs

le+03

1e+02 [

le+01

T
‘. 64000000
“m e 8000000 —v— |
L m /,/ 1000000 ----e - |
g 125000 & ]
- 15625 —+— |
P

T
*

P SN

S S SRR S i R N R 2

600000000000 0 @ o]

B T

T T T T T
L R .
N v
3 ., VY
. VVVVvVVVvVY
o LN
. .
o, o o
= ., R R N ]
o™,
o
o
o B B R R =
\*\K+;Li;,
"
L IS S A T S

" clustersize<8tuples
1 1

5 10 15 20
number of bits

Fig. 14.Performance and model of radix-join

25

. Manegold et al.: Optimizing database architecture for the new bottleneck: memory access 241

The first term ofT; calculates the costs for evaluating
the join predicate — each tuple of the outer relation has to
be checked against each tuple in the respective cluster; the
cost per check is,. The second term represents the costs for
creating the result, withy, denoting the costs per tuple.

The left term ofMy,; , equals the minimal number ofiL
misses for fetching both operands and storing the result. The
right term counts the number of additional inisses during
the inner loop, when the cluster size either approachegzi
(llICY] < ||Li|]) or even exceeds thig|Cl|| > ||Li]|]). First,
the probability that the requested tuple is not in the cache
— due to capacity conflicts — increases with growing cluster
size. Then, the cache capacity is exhausted, and a cache miss
for each tuple to be joined is certain. With further increasing
cluster size, the number of cache misses also increases, as
now each iteration of the inner loop also causes a cache miss.
M1, is made up analogously. The lines in Fig. 14 prove the
accuracy of our model for different cardinalitias,(= 24 ns,

w,, = 240ns).

4.3.2 Partitioned hash-join

The partitioned hash-join also exhibits increased performance
with increasing number of radix bits. Figure 15 shows that
performance increase flattens after the point where the entire
inner cluster (including its hash table) consists of less pages
than there are TLB entries (64). Then, it also fits the L2 cache
comfortably. Thereafter performance decreases only slightly
until the point that the inner cluster fits the L1 cache. Here,
performance reaches its minimum. The fixed overhead by al-
location of the hash-table structure causes performance to de-
crease when the cluster sizes get too snfal2(0 tuples) and
clusters get very numerous.

As for the radix-join, we also provide a cost model for the
partitioned hash-join:

Th(B,C)=C -wy + H - wj, + M1 n(B,C) - 12
+Mion(B,C) - Intem
+MrrB (B, C) - lTLB,

with (i € {1,2})

Mpin(B,C) =
ol . .
c. '|'LZ.'|'7 if |c) < |1zl
3-|Relr; + 1zl
L1
c-1o.<1_ >,if||C’l||<||Lz’||
l|C1|
and
Mmisn(B,C) =
I
c.%, it ||C1|| < ||TLB|
3-Relpg +{ LBl
|| Lil| ) :
C-10-<1— Jif [|Cl|| > ||TLB||.
A

|Rel1i, |Re|pg, ||C1|, || Li||, and||T'LB|| are as above.
wy, represents the pure calculation costs per tuple, i.e.,
building the hash-table, doing the hash-lookup and creating
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Fig. 15.Performance and model of partitioned hash-join

the result.w;, represents the additional costs per cluster for
creating and destroying the hash-table.

The left term ofMy,; , equals the minimal number ofiL
misses for fetching both operands and storing the result. The
right term counts the number of additionalmisses, when the
cluster size either approachesdize or even exceeds this. As
soon as the clusters become significantly larger thiaedch
memory access Yyields a cache miss due to cache trashing: with
a bucket-chain length of 4, up to 8 memory accesses per tuple
are necessary while building the hash-table and performing the
hash-lookup, and another 2 to access the actual tuple. When the
cluster sizes get very small, hash-tables of a fixed minimal size
(256 buckets) need to be allocated and destroyed at increasing
frequency. This causes additional L1 misses, approximately 6
per cluster. Hence, the terid - 6 has to be added td/r, .
Again, the number of TLB misses is modeled analogously.

The lines in Fig. 15 represent our model for different car-
dinalities g, = 680ns,w;, = 3600ns). The predictions are
very accurate.

4.3.3 Improved partitioned hash-join

The model in the previous section shows that our original
implementation of partitioned hash-join suffers from two pa-
rameter settings: the average hash-bucket size of 4 tuples and
the minimal hash-table size of 256 buckets.

Hash-bucket size Following the linked list within a hash-
bucket (during hash-build and hash-probe) performs arandom
memory access pattern with very poor data locality. Hence, up
to 8 additional cache and TLB misses per tuple occur with large
clusters (see above). The only way to improve this situation
is to avoid random memory access as much as possible by
reducing the hash-bucket size. We modify our implementation
to useperfect hashingi.e., reducing the targeted hash-bucket
size from 4 tuples to just 1 tuple.

Hash-table size.Another (minor) improvement we make is
that we decrease the minimal hash-table size from 256 buckets
to just 2 buckets.

Figure 16 compares our original version of the partitioned
hash-join as presented in [BMK99] with the improved im-
plementation as presented above. Reducing the hash-bucket
size yields a significant reduction in TLB and cache misses
for large clusters: from 8 to just 3 additional misses per tuple;
in other words, almost a factor of 2 in the total number of
misses. This in turn speeds up the execution time by almost
a factor of 2 for large clusters. Even for small clusters, where
no additional cache or TLB misses occur, the performance
has (slightly) improved, as now less comparisons are neces-
sary during hash-lookups. Additionally, reducing the minimal
hash-table size avoids the increase in L1 cache misses with
very small clusters. But this has hardly any impact on the ex-
ecution time, as the CPU costs for creating and destroying a
large number of tiny hash-tables dominate the performance.

Altogether, our results show that tuning the join phase of a
partitioned hash-join appropriately —in addition to optimizing
the clustering phase as we proposed in [BMK99] — achieves
an additional performance improvement of up to a factor of 2.
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4.4 Overall join performance

After having analyzed the impact of the tuning parameters on

the clustering phase and the joining phase separately, we now

turn our attention to the combined cluster and join cost for

both the partitioned hash-join and radix-join. Radix-cluster

gets cheaper for less rad® bits, whereas both radix-join

and partitioned hash-join get more expensive. Putting together

the experimental data we obtained on both cluster and join

performance, we determine the optimum numbeBdbr the

relation cardinality and the join algorithm.
It turns out that there are four possible strategies, which

correspond to the diagonals in Figs. 15 and 14:

phash@) L2: (improved) partitioned hash-join o3 =
log,(C - 12/||L2]|) clustered bits, so the inner relation
plus hash-table fits the L2 cache. This strategy was used
in the work of Shatdahl et al. [SKN94] in their partitioned
hash-join experiments.

phash@) TLB: (improved) partitioned hash-join o =
log,(C - 12/||TLBYJ|) clustered bits, so the inner relation
plus hash-table spans at md$tL B| pages. Our exper-
iments show a significant improvement of the pure join
performance between phash L2 and phash TLB.

phash@#) L1: (improved) partitioned hash-join oB =
log,(C - 12/||L1]|) clustered bits, so the inner relation
plus hash-table fits the L1 cache. This algorithm uses more
clustered bits than the previous ones; hence it really needs
the multi-pass radix-cluster algorithm (a straightforward
1-pass cluster would cause cache trashing on this many
clusters).

radix: radix-join on B = log,(C/8) clustered bits. The
radix-join has the most stable performance but has higher
startup cost, as it needs to radix-cluster on significantly
more bits than the other options. It is therefore only a win-
ner with large cardinalities.

Figure 17 compares radix-join (thin lines) and original
partitioned hash-join (thick lines) throughout the whole bit
range, using the corresponding optimal number of passes for
the radix-cluster (see Sect.4.2). The diagonal lines mark the
setting for B that belong to the four strategies. The optimal
setting for original partitioned hash-join varies between phash
TLB and phash L1. With bigger clusters, the join phase is too
expensive; with smaller clusters, clustering becomes too ex-
pensive. The differences between phash TLB and phash L1
are very small; hence, for simplicity of presentation, we refer
to the optimal setting as “phash TLB.” Similarly, radix-join
yields it best performance somewhere between 16 and 4 tu-
ples per cluster. We refer to the optimal setting as “radix 8.” In
most cases, radix 8 outperforms phash TLB slightly. Figure 18
shows the respective comparison between radix-join and im-
proved partitioned hash-join. Again, phashLB is the opti-
mal setting, but now phashTLB slightly outperforms radix
8.

Figure 19 compares the overall performance of all three
join algorithms — radix, phash, and phashfor a cardinality
of 8M tuples. The non-logarithmic scale on thaxis clearly
shows the large improvement in the performance of database
algorithms (an equi-join, in this case) due to memory access
optimization.

Finally, Table 2 compares our radix-cluster-based strate-
gies to non-partitioned (“simple”) hash-join and sort/merge-
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Fig. 17. Overall performance of radix-joirtl{in lineg vs. original Fig. 18. Overall performance of radix-joirtt{in lineg vs.improved
partitioned hash-jointfick lineg partitioned hash-jointfick lineg

join. Our sort/merge-join uses a quick-sort algorithm, which Database algorithms and data structures should therefore be

shows a reasonably good memory access pattern. For largéesigned and optimized for memory access from the outset.
cardinalities, it runs up to twice as fast as simple hash-joinSloppy implementation of the key algorithms or “features”
However, on smaller relations the that fit into the L2 cache,at the innermost level of an operator tree (e.g., pointer swiz-
simple hash-join is about twice as fast as sort/merge-joinzling/object table lookup) can lead to a performance disaster
The original version of partitioned hash-join (phash TLB) and that ever faster CPUs will not be able to rescue.

radix 8 show very similar performance, running up to almost ~ Conversely, careful design can lead to an order of magni-
6 times faster than simple hash-join. The improved version ofude performance advancement. In our Monet system, under
partitioned hash-join (phasfTLB) performs about 10%-20% development since 1992, we have decreased the memory ac-
faster than radix 8 and phash TLB, being almost a factor of 7cess stride using vertical decomposition; a choice that back
faster than the simple hash-join. This clearly demonstrates thdf 1992 was mostly based on intuition. The work presented
cache-conscious join algorithms perform significantly betterhere now provides strong evidence that this feature is in fact
than the “random-access” algorithms. Here, “cachethe basis of good performance. Our simple-scan experiment
conscious” does not only refer to L2 cache, but also to the Lidemonstrates that decreasing the stride is crucial for optimiz-
cache and especially the TLB. Further, Figs. 17 and 18 shoWnd usage of memory bandwidth.

that our radix algorithms improve join performance, both in ~ Concerning query processing algorithms, we have formu-
the “phash¢) TLB / L1” strategies (cardinalities larger than lated radix algorithms and demonstrated through experimen-

250000 require at least two clustering passes) and with théation that these algorithms form both an addition and an im-
radix-join itself. provement to the work in [SKN94]. The modeling work done

to show how these algorithms improve cache behavior dur-

ing join processing represents an important improvement over
5 Evaluation previous work on main-memory cost models [LN96,WK90].

Rather than characterizing main-memory performance on the
In this research, we brought to light the severe impact of memeoarse level of a procedure call with “magical” costs factors
ory access on the performance of elementary database opembtained by profiling, our methodology mimics the memory
tions. Hardware trends indicate that this bottleneck has beeaccess pattern of the algorithm to be modeled and then quanti-
present for quite some time; hence our expectation is that itfies its cost by counting cache miss events and CPU cycles. We
impact will eventually become deeper than the I/O bottleneckwere helped in formulating these models through our usage of
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Table 2. Algorithm comparison: absolute performance and relative improvement over simple hash-join and sort/merge-join

Cardinality | Simple hash-join| Sort/merge-join phash TLB radix 8 phask TLB
A (ms) B(ms) | AIB| C(ms) | AIC | BIC | D(ms) | AID | BID | £E(ms) | AIE | BIE
64000000 618527 400074 | 1.55| 104467| 5.92 | 3.83 | 106504 | 5.81 | 3.76 | 91922 | 6.73 | 4.35
32000000 273312 179150| 1.53| 49579 | 551 | 3.61 | 49104 | 557 | 3.65| 43471| 6.29 | 4.12
16000000 117519 55515 | 2.12 | 24892 | 4.72 | 2.23 | 25759 | 456 | 2.16 | 20972 | 5.60 | 2.65
8000000 52652 26639 | 1.98| 11992 | 4.39| 2.22| 11547 | 456 | 2.31| 10134 | 5.20 | 2.63
4000000 24170 12193 | 1.98 5552 | 435 | 2.20 5540 | 4.36 | 2.20 5033 | 4.80 | 2.42
2000000 11033 5855 | 1.88 2730 | 4.04 | 2.14 2743 | 4.02| 2.13 2064 | 5.35| 2.84
1000000 4849 2743 | 1.77 1264 | 3.84 | 2.17 1277 | 3.80| 2.15 1038 | 4.67 | 2.64
500000 1877 1326 | 1.42 617 | 3.04 | 2.15 608 | 3.09| 2.18 498 | 3.77 | 2.66
250000 597 613 | 0.97 301 | 1.98 | 2.04 249 | 240 | 2.46 243 | 2.46 | 2.52
125000 149 286 | 0.52 138 | 1.08 | 2.07 100 | 1.49| 2.86 118 | 1.26 | 2.42
62500 66 137 | 0.48 64 | 1.03 | 2.14 47 | 1.40| 2.91 48 | 1.38 | 2.85
31250 31 65| 0.48 31| 1.00| 2.10 23| 1.35| 2.83 231 1.35| 2.83
15625 15 31| 0.48 15| 1.00 | 2.07 11| 1.36| 2.82 11| 1.36 | 2.82
clustersize [bytes] systems at a macro level, including those that manage disk-
lIL2)| [|TLB|| L1l 256*12 8*8 . -
: : : - - : resident data. Nyberg et al. [NB®4] stated that techniques
A1 radix such as software-assisted disk-striping have reduced the 1/10
sof G pﬁggﬁ'j B bottleneck, i.e., queries that analyze large relations (like in
B OLAP or Data Mining) now read their data faster than it can be
%Egiies : processed. We observed this same effect with the Drill Down
i hasees & Benchmark [BRK98], where a commercial database product
B simple hashdoin v managing disk-resident data was run with a large buffer pool.
40 - H A While executing almost exclusively memory-bound, this prod-
local min O uct was measured to be a factor 40 slower on this benchmark
globalmin () than the Monet system. After inclusion of cache-optimization
i techniques such as described in this paper, we have since been
: able to improve our own results on this benchmark with almost
30 . . .
P an extra order of magnitude. This clearly shows the importance
g : N of main-memory access optimization techniques.
2 ,/M"“_ : ! In Monet, we use /O by manipulating virtual memory
Yo : mappings and hence treat disk-resident data as memory with
20 I ‘ F a large granularity. This is in line with the consideration that
vl disk-resident data is the bottom level of a memory hierarchy
i " that goes up from the virtual memory, to the main memory
3 through the cache memories up to the CPU registers (Fig. 2).
Yeoagoa ok ot Algorithms that are tuned to run well on one level of the mem-
10k e © ol ory also exhibit high performance on the lower levels (e.g.,
radix-join has pure sequential access and consequently also
runs well on virtual memory). As the major performance bot-
tleneck is shifting from I/O to memory access, we therefore
think that main-memory optimization of both data structures
0 0 5 1'0 1'5 2'0 2'5 and algorithms — like those described in this paper — will be

Fig. 19. Overall performance of radix-join, original and improved

number of bits

partitioned hash-join((=8M)

increasingly decisive in efficiently exploiting the power of cus-
tom hardware.

6 Conclusion and future work

hardware event counters presentin modern CPUs. Our detaildtlwas shown that memory access cost is increasingly a bot-
cost models enabled us to identify a significant bottleneck intleneck for database performance. We subsequently discussed
the implementation of the partitioned hash-join (following the the consequences of this finding on both the data structures
bucket-chain during hash-lookups caused too many cache arahd algorithms employed in database systems. We recommend
TLB misses) and hence to improve the implementation usingusing vertical fragmentation in order to better use scarce mem-
perfect hashing.
We think our findings are not only relevant to main-memo- in join processing, and we formulated detailed analytical cost
ry databases engineers. Vertical fragmentation and memornodels that explain why these algorithms make optimal use
access cost have a strong impact on performance of databae€ hierarchical memory systems found in modern computer

ory bandwidth. We introduced new radix algorithms for use
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hardware. Further, our cost models enabled us to identify th@knu68]

hash-bucket size as a performance bottleneck for hash-joins in

the main memory. We showed that using perfect hashing solvels C86]

the problem and achieves the best performance, up to twice

as fast as our previous results [BMK99]. Finally, we placed

our results in a broader context of database architecture, and

made recommendations for future systems. [LN96]
We only used one sample architecture (an SGI Origin2000)

in this study; however, our on-going work is to investigate how

both our optimization techniques and our cost models perforrrEMBKgg]

on other hardware platforms. In [MBKOO], we preseuzdi-

bration toolto automatically extract relevant characteristics of

the (cache-) memory system (such as cache sizes, cache line

sizes, and cache miss latencies) of any computer hardware. VYI@IBKOO]

show that feeding these parameters into the cost models pre-

sented here is sufficient to accurately predict the performance

of database algorithms on different popular computer systems,

such as a Sun Ultraworkstation, an Intel Pentiumlll PC, and anmccos)

AMD Athlon PC. This in turn enables us to automatically tune

our memory-conscious algorithms to their optimal settings on

any hardware they run on.

[MKW 98]
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