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Numerical solution of flows that are partially bounded by a freely moving bound
ary is of great importance in practical applications such as ship hydrodynamics. 
The usual method for solving steady viscous free-surface flow subject to gravi
tation is alternating time integration of the kinematic condition, and the Navier
Stokes equations subject to the dynamic conditions, until steady state is reached. 
This paper shows that this time integration approach is often inefficient. It pro
poses an efficient iterative method for solving the steady free-surface flow problem. 
The new method relies on a different but equivalent formulation of the free-surface 
flow problem, involving a so-called quasi free-surface condition. The convergence 
behavior of the new method is shown to be asymptotically mesh-width indepen
dent. Numerical results are presented for two-dimensional flow over an obstacle in 
a channel. The results confirm the mesh-width independence of the convergence 
behavior, and comparison of the numerical results with measurements shows good 
agreement. © 2001 Elsevier Science 
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l. INTRODUCTION 

The numerical solution of flows that are partially bounded by a freely moving boundary is 
of great importance in ship hydrodynamics [ 1, 6, 8, 13], hydraulics, and many other practical 
applications, such as coating technology [ 16, 17]. In ship hydrodynamics, an important area 

of application is the prediction of the wave pattern that is generated by the ship at forward 
speed in still water. This wave generation is responsible for a substantial part of the ship's re
sistance, and therefore, it should be minimized by a proper hull form design. Computational 
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methods play an important role in this design process. Most computational tools that are 
currently in use for solving gravity-subjected free-surface flows around a surface-piercing 
body rely on a potential flow approximation. Present developments primarily concern the 
solution of the free-surface Navier-Stokes (or RANS) flow problem. 

For time-dependent free-surface flows, generally there is no essential difference in the 
treatment of the free surface between numerical methods for potential flow or Navier
Stokes flow. Typically, the solution of the flow equations and the adaptation of the free 
boundary are separated. Each time step begins with computing the flow field using the 
dynamic conditions imposed at the free surface. Next, the free surface is adjusted through 
the kinematic condition, employing the newly computed velocity field. 

For steady free-surface flows, however, such a conformity of approaches for viscous and 
inviscid flow cannot be observed. For instance in ship hydrodynamics, whereas dedicated 
techniques have been developed for solving the free-surface potential flow problems (see, 
e.g., [ 15]), methods for Navier-Stokes flow usually continue the aforementioned transient 
process until a steady state is reached (see, e.g., [1, 6]). However, this time integration method 
is often computationally inefficient. In general, the convergence to steady state is retarded by 
slowly attenuating transient surface-gravity waves. Moreover, the separate treatment of the 
flow equations and the kinematic condition yields a restriction on the allowable time step. 
Owing to the specific transient behavior of free-surface flows and the time-step restriction, 
the performance of the time integration method deteriorates rapidly with decreasing mesh 
width. In practical computations, tens of thousands oftime steps are often required, rendering 
the time integration approach prohibitively expensive in actual design processes. 

Several approaches have been suggested to improve the efficiency of time-integration 
methods (e.g., pseudo-time integration [8] and quasi-steady methods [22]). lt appears that 
these approaches indeed improve the efficiency, but do not essentially improve the asymp
totic convergence behavior of the time-integration method. 

Alternative solution methods for steady free-surface Navier-Stokes flow exist, but they 
have not been widely applied in the field of ship hydrodynamics. In the field of coating 
technology successive approximation techniques are often employed, in particular kinematic 
iteration and dynamic iteration [ 17). Kinematic iteration imposes the dynamic conditions 
at the free surface and uses the kinematic condition to displace the boundary. Dynamic 
iteration imposes the kinematic and the tangential dynamic conditions at the free surface 
and uses the normal dynamic condition to adjust the boundary position. However, the 
convergence behavior of both iteration schemes depends sensitively on parameters in the 
problem (see, e.g., [5, 19]). A method that avoids the deficiencies of the aforementioned 
iterative methods, is Newton iteration of the full equation set [ 17]. The positions of the (free
surface) grid nodes are then added as additional unknowns and all equations, including the 
free-surface conditions, are solved simultaneously. An objection to this method is that 
simultaneous treatment of all equations is infeasible for problems with many unknowns, 
such as three-dimensional problems and problems requiring sharp resolution of boundary 
layers. Finally, the free-smi'ace flow problem can be reformulated into an optimal-shape 
design problem, which can then in principle be solved efficiently by the adjoint optimization 
method. A problem with this approach is its complexity: although much progress has been 
made in the formulation of ad joint equations for problems from fluid dynamics, including 
the Navier-Stokes equations [9], setting up the ad joint method remains involved. Moreover, 
efficiency is only obtained if proper preconditioning is applied [20, 21], and constructing 
the preconditioner for the free-surface Navier-Stokes flow problem is intricate. 

.... 



122 VAN BRUMMELEN. RAVEN, AND KOREN 

The current work presents an iterative method for efficiently solving steady free-surface 

Navier-Stokes flow problems. Although our interest is the previously outlined ship hydro

dynamics application, it is anticipated that the method is also applicable to other gravity

dominated steady viscous free-surface flows at high Reynolds numbers, such as occur, for 

instance, in hydraulics. The proposed method is analogous to the method for solving steady 

free-surface potential flow problems presented in Ref. [ l 5]. The method altematingly solves 

the steady Navier-Stokes equations with a so-called quasi free-surface condition imposed 

at the free surface and adjusts the free surface using the computed solution. The quasi free

surface condition ensures that the disturbance induced by the subsequent displacement of 

the boundary is negligible. Each surface adjustment then yields an improved approximation 

to the actual free-boundary position. 

The contents of the paper are organized as follows. In Section 2 the equations governing 

incompressible, viscous free-surface flow are stated and the quasi free-surface condition 

is derived. Section 3 proves that the usual time integration approach is generally inept for 

solving steady free-surface flows. Section 4 outlines the iterative solution method and ex

amines its convergence behavior. Numerical experiments and results for a two-dimensional 

test case are presented in Section 5. The application to actual ship-wave computations is in 

progress and will be reported in a sequel. Section 6 contains concluding remarks. 

2. GOVERNING EQUATIONS 

2.1. Incompressible Viscous Flow 

An incompressible, viscous fluid flow subject to a constant gravitational force is consid

ered. Although only steady solutions are of interest, for the purpose of analysis the equations 

are considered in time-dependent form. 

The fluid occupies an open, time-dependent domain V,1 c IR" (d = 2, 3), which is en

closed by the free boundary, S,7, and a fixed boundary, a V,1 \S,1• Positions in IT~" are identified 

by their horizontal coordinates (x1, ...• Xd- I) and a vertical coordinate y, with respect to the 

Cartesian base vectors e1, ... , ed-I and j, respectively. The origin is located in the undis

turbed free surface So, and the gravitational acceleration, g, acts in the negative vertical 

direction. We consider free surfaces that can be represented by a so-called height-function, 

i.e., SI/= {(x, r1(x. t))}. The height-function r7 is assumed to be a smooth function of the 

horizontal coordinates and time (see Fig. I for an illustration). 

The distinguishing parameters of the viscous free-surface flow problem are the Froude 

number, Fr= U /,Ji!,, and the Reynolds number. Re = pU €/ µ, with U an appropriate 

gl 
e, 

' '. 

' ' ; 

.... _ ..... s, 

ev,, \ s, 

FIG. 1. Schematic illu~tration of the free-surface How problem. 
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reference velocity. g the gravitational acceleration, e a reference length. and 11 the dynamic 

viscosity of the fluid. The fluid density p is assumed to be constant. The state of the flow 

is then characterized by the (nondimensionalized) fluid velocity v(x, y. f) and pressure 

p(x, y, t). Incompressibility of the fluid implies that the velocity field is solenoidal: 

divv=O, (x.y)EV,1.t>O. (la) 

Conservation of momentum in the fluid is described by the Navier-Stokes equations. The 

pressure is separated into a hydrodynamic component <p and a hydrostatic contribution as 

p(x, y, f) = <p(x, y, t) - Fr-2y. Because the gradient of the hydrostatic pressure and the 

gravitational force cancel, the Navier-Stokes equations for a gravity-subjected incompress

ible fluid read 

av - + div VV + \lcp - div r(v) = 0, (x, y) E V,1, I > 0, 
At 

where r (v) is the viscous stress tensor for an incompressible Newtonian fluid, 

(lb) 

(le) 

Our primary interest is in turbulent flows. We consider the Reynolds averaged Navier

Stokes (RANS) equations. supplemented with a turbulence model that is based on eddy 

viscosity. For our purpose, the RANS equations are essentially the same as the Navier

Stokes equations, with the important difference being that the RANS equations have steady 

solutions even at the envisaged high Reynolds numbers. 

2.2. Free-Surface Conditions 

Free-surface flows are essentially two-phase flows, of which the properties of the con

tiguous bulk fluids are such that their mutual interaction at the interface can be ignored. 

For an elaborate discussion of two-phase flows, see. for example, Refs. [2] and [ 18 ]. The 

free-surface conditions follow from the general interface conditions and the assumptions 

that both density and viscosity of the adjacent fluid vanish at the interface and, furthermore. 

that the interface is impermeable. Here it is moreover assumed that interfacial stresses can 

be ignored, which is a valid assumption in the practical applications envisaged. 

On the free surface. the fluid satisfies a kinematic condition and d dynamic conditions. 

Impermeability of the free surface is expressed by the kinematic condition 

a 11 -,----- + v · \7(r7 - v) = 0, (x . . v) E S,1, t > 0. 
ilt . 

(2a) 

Supposing that the viscous contribution to the nom1al stress at the free surface is negligible, 

continuity of stresses at the interface requires that the pressure vanish at the free surface. 

This results in the normal dynamic condition 

(2b) 

The requirement that the tangential stress components vanish at the free surface is expressed 

by the d - I tangential dynamic conditions 

t'·r(v)·n=O. (x.y)ES,1.t>O. (2c) 
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Here, ti (i = 1, ... , d - 1) are orthogonal unit tangent vectors to S,7, and n denotes the unit 

normal vector to S,7• 

One may note that the number of free-surface conditions for the viscous free-surface flow 
problem is d + I. The incompressible Navier-Stokes equations in JRd require d boundary 
conditions. Hence, the number offree-surface conditions is indeed one more than the number 
of required boundary conditions. 

2.3. Quasi Free-Surface Condition 

A fundamental problem in analyzing and computing free-surface flow problems is the 
interdependence of the state variables v and p and their spatial domain of definition through 
the free-surface conditions. This problem can be avoided by deriving a condition that holds to 
good approximation on a fixed boundary in the neighborhood of the actual free boundary. We 
refer to such a condition as a quasi ji·ee-swface condition, because the qualitative solution 
behavior of the initial boundary value problem with this condition imposed is similar to that 
of the free-boundary problem, but the boundary does not actually move. A suitable quasi 
free-surface condition for the free-surface Navier-Stokes flow problem is derived below. 

Let Sry denote the actual free surface, as defined before. In a similar manner, a nearby fixed 
boundary Se = {(x, tl(x))} is introduced, with e(x) a smooth function on S0 . We require 
that Se be close to the actual free surface in such a manner that 

8(x, t) = 11(x, t) - B(x) (3) 

is small and sufficiently smooth. In particular, for all t > 0, 8 must satisfy 118 lls,, + II \7 8 lls,, + 
1181 lls" =:: E, for some E «I. Here II · lls" is a suitable norm on the approximate boundary. 
Assuming that p and v can be extended smoothly beyond the boundary SH, Taylor expansion 
in the neighborhood of S8 yields for p and v at the actual free surface 

p(X, Y/(X, t), t) = p(X, 8(X), t) + O(X, t)j · \1 p(X, e(x), t) + 0(E2), (4a) 

v(x, 11(x, t), t) = v(x, 8(x), t) + 8(x, t)j · Vv(x, 8(x), t) + 0(E 2). (4b) 

The normal dynamic condition (2b) demands that the left-hand side of Eq. (4a) vanish. 
Hence, the elevation of the free surface can be expressed in tenns of the pressure and its 
gradient at the approximate surface: 

17(x, t) = B(x) - . p(x, e(x), t) + 0(E2). 
J. v p(x, e(x), t) 

(5) 

To obtain an 0 (E 2) accurate quasi free-surface condition (i.e., an O (E 2 ) approximation of 
the conditions at Se), 11 and v in the kinematic condition (2a) can be replaced by Eqs. (5) and 
(4b), respectively. The resulting condition is, however, intractable. Instead, two additional 
assumptions concerning v and p are introduced to obtain a convenient quasi free-surface 
condition. The first assumption is that the vertical derivative of the pressure is dominated 
by the hydrostatic component, -Fr-2. Generally, this assumption is valid for waves of 
moderate steepness. Specifically, we suppose that a constant a" « 1 exists such that for all 
t > 0, 

(6) 
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The second assumption is that the vertical derivative of v is small, in such a manner that a 

constant av « 1 exists with the property that, for all t > 0, 

(7) 

Under this assumption, the velocity at the actual free boundary, v(x, ry(x, t), t), can be ac

curately approximated by the velocity at the fixed boundary, v(x, B(x), t). By Eq. (4b), the 

enor in the approximation is only 0 (Eav ). In Ref. [3] it is shown that the velocity deviation 

through the free-surface boundary layer is proportional to the surface curvature and I/ /Rt. 
Moreover, a, in Eq. (7) increases with the wave steepness. Therefore, the assumption av « I 
is valid if the steepness and curvature of the free-surface waves are moderate and if Re is 

sufficiently large. 

Under the above assumptions a convenient quasi free-surface condition can be derived. 

Substitution of the hydrostatic approximation of the pressure gradient in Eq. (5) yields 

p(x, B(x). t) . 0 
17(x. t) = fi(x) - 1 = B(x) + Fr-p(x, B(x), t)(l + O(ap)). (8) 

-Fr--(!+ O(ap)) 

The dynamic conditions (2b) and (4a) imply that p = O(E) on SH. Hence, ignoring terms 

0 (E 2• Ea1, ), the free-surface elevation is related to the hydrodynamic pressure at the ap

proximate boundary by 

11(x, t) = B(x) + Fr2 p(x, t1(x). t) = Fr2c;o(x, fi(x), t). (9) 

To transfer the kinematic condition (2a) to the approximate surface S0 , 17 is replaced by 

Eq. (9) and v on S,1 is replaced by v on SH. The error thus introduced is only 0 (E 2, Eap, Eav ). 

Special care is required in expressing the gradient of 17, because Eq. (9) relates 17 to <p on 

the curvilinear surface SH: 

0 dc;o , (ac;o ac;o ae) , ( ac;o (ae ·)) V17 =Fr- - =Fr- -;-- + -:---:- =Fe V<p +-;--- -:- - J . 
dx ax ay ax ay dx 

(10) 

lt then follows that 

- + v · \7(17 - v) =Fr- - + v · \7(1n - Fr- }') iJ I] . ' ( iJ<p 2 ) 

ar . . at r 

, ac;o ( ae ·) , +Fr- -v · - - J + 0 (E- ea rn ) = 0. iJy iJX , P' v 
(11) 

Using the kinematic condition (2a) and definition (3), the second term on the right-hand 

side of Eq. ( 11) can be recast as 

,ac;o ,aip ,ac;o 
Fr--;---v · V(B - y) = Fr--;--v · \7(17 - 8 - y) = -Fc-(v ·'Vo+ 81 ). (12) 

ay ay ay 

Owing to the smoothness of 8, the term in parenthesis is just O(E) and Eq. (12) is only 

0 (Eap ). The second tem1 on the right-hand side of Eq. ( 11) can therefore be ignored. Hence, 

it follows that 

o<p _, - + v · V (1n - Fr - v) = 0 
ilt r · 

(13) 
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approximates the conditions at the boundary SH to 0(E2, Ea1,, Eav). This implies that 
Eq. ( 13) is a quasi free-surface condition on any fixed boundary that is sufficiently close to 

the actual free surface, provided that Eqs. (6) and (7) are fulfilled. 
One may note that Eq. (13) is exactly satisfied at the actual free surface. Therefore, the 

quasi free-surface condition can replace either the kinematic condition (2a) or the normal 
dynamic condition (2b) in the fonnulation of the free-surface conditions in Section 2.2. 

The importance of the quasi free-surface condition is that the quasi free-surface flow 
solution (i.e., the solution of the Navier-Stokes equations with Eqs. ( 13) and (2c) imposed at 
a fixed boundary in the neighborhood of the actual free surface) is an accurate approximation 

of the actual free-surface flow solution. Because the tangential dynamic conditions are 
largely irrelevant to the shape of the free surface [3], it is anticipated that the change in the 
solution due to imposing Eq. (2c) at Sfl instead of SI/ is negligible. In that case, if Eq. (13) 
holds at Sf/, then the free surface conditions (2b) and (2a) are satisfied to 0 (E 2, Ea1,, Eav) 

at the boundary 

{(x, Fr2rp(x, e(x, t)))}. ( 14) 

Therefore, the solution of the quasi free-surface flow problem is an 0(E 2, Ea1,, Eav) ap
proximation to the solution of the free-surface flow problem. Moreover, ( 14) is an equally 
accurate approximation of the actual free-surface position. One may note that ( 14) just uses 
the nonnal dynamic condition to detennine the position of the free surface. 

3. TIME INTEGRATION METHODS 

The most widely applied iterative method for solving gravity-dominated steady free
surface Navier-Stokes flow is alternating time integration of the kinematic condition, and 
the Navier-Stokes equations subject to the dynamic conditions, until steady state is reached. 
This section examines the computational complexity of this time integration method (i.e., 
the number of operations per grid point expended in the solution process). 

The computational complexity of the time integration method depends on the physical 
time that is required to reduce transient wave components in the initial estimate to the 
level of other errors in the numerical solution. The transient behavior of surface gravity 
waves therefore plays an essential part in the complexity analysis. This transient behavior is 
discussed in Sections 3.1 and 3.2. Next, the implications on the computational complexity 
are examined in Section 3.3. 

3.1. Surface Gravity Waves 

We consider the specific case of a small-amplitude disturbance of a uniform horizontal 
flow on a domain V C ll£d of infinite horizontal extent and unit vertical extent. The domain is 
bounded by the undisturbed free surface So = { (x, 0)} and a rigid impermeable free-slip bot
tom B = { (x, -1)}. The uniform flow velocity is v<01 = ( v\0>, ... , v,jl~ 1, 0), with I vWl I = I. 
The above implies that the undisturbed fluid depth and flow velocity are designated as ref
erence length and velocity, respectively. 

Suppose that a disturbance is generated in the flow, such that for all t > 0 the resulting 

surface-elevation satisfies 1111 l\s0 + II V lJ lls0 + 1111 1 lls0 ::.:: E, for some positive E. We assume 
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that the corresponding perturbed free-surface flow solution can be written as 

(;) (x, y, t; E) = ( v~ 1 ) + E ( ;::~) (x, y, t) + 0(E2), as E ~ 0. (15) 

From Section 2.3 it follows that the solution of the quasi free-surface flow problem on Vis 

an 0(E 2, Eap, Eav) approximation of the actual free-surface flow, with ap and av defined 

by Eqs. (6) and (7), respectively. However, Eq. (15) implies that a" and av are of O(E). 

Hence, the quasi free-surface flow solution on Vis an 0 (E 2 ) approximation to the actual 

free-surface flow solution. Consequently, for sufficiently small and smooth perturbations 

the results on the behavior of the quasi free-surface flow solution apply immediately to the 

behavior of the actual free-surface flow solution. 

Suppose that the disturbance can be written as a linear combination of horizontal Fourier 
modes exp(ik · x + iwt ), with k E ~d-I the wavenumber of the Fourier mode and wits fre

quency. Because the perturbed quasi free-surface flow problem is linear to 0 ( E2), it suffices 

to consider a single mode. If the following Fourier mode is inserted for the perturbations in 

Eq. ( 15), 

(I) 
Vd-1 

(I) 
Vc1 

<P(I) 

ik1cosh Clkl(l + y)) 

(x,y,t}= ikd-1cosh(lkl(l+y)) exp(ik·x+iw;(k)t), (16a) 

lklsinh ClkJ(l + y)) 

(-l)iic:t>(k)cosh(Jkl(I + y)) 

where w J (k) is either of the two roots of the dispersion relation, 

w;(k) = -v'0l · k - (-l)J<f>(k), j = 1, 2, ( 16b) 

and 

(16c) 

then the corresponding v and rp comply to 0 (E 2 ) with the quasi free-surface flow problem, 

except for the tangential dynamic conditions (2c), which yield 

(17) 

Because Eq. ( 17) is only 0 (E lkl 3 /Re)aslkl ~ 0, the error is negligible for sufficiently small 
k and large Re. Hence, Eq. ( l 6a) accurately describes the behavior of smooth free-surface 

waves in a uniform horizontal flow at sufficiently high Reynolds numbers. The perturbations 
( l 6a) are called surface gravity waves. (For an elaborate discussion of surface gravity waves 

in potential flow see, e.g., Refs. [ 11, 12)). 

3.2. Asymptotic Temporal Behavior 

The asymptotic temporal behavior of surface gravity waves is determined by the asymp

totic properties of the Fourier integral of the modes (I 6a). The behavior of the integral 
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transform fort --+ oo can be detennined by means of the asymptotic expansion 

loc F(k) exp(iti/r(k)) dk 

= F(ko) 211 exp(i[ti/!(k0)+ ~nsignifr"(ko)]) + O(e-131 ). 
tllfr"(ko)I 4 

(18) 

with f3 a positive constant, F (k) an analytic function, and ko a stationary point of 1{r (k) 

(i.e., 1//(ko) = 0). The expansion (18) requires that 1/t(k) be smooth in the neighborhood 

of stationary points in the sense that the ratio ifr"'(k0 )/[1/r"(k0 )[ 312 is small (see Ref. [11]). 

The method of stationary phase (sometimes called the method of steepest descent) can be 

used to prove (18) (see, e.g., Refs. [12, 25]). 

The Fourier integral of Eq. (16a) can be evaluated fort --+ oo by introducing a suitable 

coordinate transformation fork and applying Eq. ( 18) recursively with respect to the trans

formed coordinates. Denoting by a(x, y, t) a component in Eq. (16a) and by a(k, y) its 

Fourier transform, one obtains 

a(x, y, t) = &(ko. y)(2n/t)'d-ll/2(det H(ko))- 112 exp(itl{r(ko) +ii;)+ O(e-fi1 ), (19a) 

as t ---+ oo, where 

1/r(k) = k · x/t + Wcx(k), (19b) 

and where H(k) denotes its Hessian and t; is a multiple of TC /4 depending on the properties 

of the Hessian (see also Ref. [24]). By Eqs. (16b) and (16c), for fixed x and t---+ oo, a 

stationary point k0 of lfr(k) occurs when 

iH>(k)=Fr_ 1tanh[kl+lkl(l-tanh2 [k[)kj =v1ni, j=l, ... ,d-1. (20) 

akj 2J[k[ tanh !kl [kl 1 

Assuming that v'°l is scaled such that [v10> I = 1, a sufficient and necessary condition for a 

stationary point to exist is Fr-2 A([kj) = I, with 

(tanh [kl+ [kj(I - tanh2 [k[)) 2 

A([k[) = 4[k[ tanh !kl (21) 

One can show that A(lk!) is a bijection from lR+ to (0,1]. Therefore, a single stationary point 

exists if and only if Fr 5 1 (i.e., for subcritical flows). This stationary point corresponds 

to a wave of which the group velocity (see, e.g., Refs. [ 12, 24]) equals the flow velocity. 

Consequently, the energy associated with this wave remains at a fixed position and decays 

only owing to dispersion. 

By Eq. (19a), at subcritical Froude numbers the asymptotic temporal behavior of the 
surface-gravity waves (16) in !Rd is O(tll-dl/2) as t---+ oo. In particular, surface grav

ity waves attenuate as I/ .Ji in JR2 and as I/ t in JR3• At supercritical Froude numbers, a 

stationary point of 1fr (k) does not exist and the first term in Eq. (l 9a) disappears. The 

surface gravity waves then vanish exponentially as t ---+ oo. 
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3.3. Computational Complexity 

Suppose the objective is to solve a steady free-surface flow problem using the time 

integration method. The asymptotic temporal behavior of surface gravity waves can then 

be used to estimate the asymptotic computational complexity of the method. 

Spatial discretization of the incompressible Navier-Stokes equations with appropriate 

boundary conditions on fixed boundaries and the free-surface conditions on the free bound

ary yields a discrete operator L11: A1i r-+ B11, with A 11 denoting the space of grid functions 

on a grid with characteristic mesh-width h. The operator L1i is assumed to be stable and 

pth order consistent (i.e., the discretization error, E11 , is O(hl') ash_.,. 0). 

Numerical time integration of the spatially discretized free-surface flow problem yields a 

sequence q/; E A 11 , n = 0, 1, 2, .... The grid-function q~; is a restriction of initial conditions 

to the grid. Assuming the time step in the time integration method, r, to be constant, q); 
approximates the solution of the free-surface ft ow problem at time t = 11 r. Suppose that the 

discretized free-surface flow problem has a unique solution qi, E A;,, and that the sequence 

q); indeed approaches qi, as nr _.,. oo. The evaluation error is defined by 

" II " ·*II y = l/;, - l/11 • (22) 

If the aim is to approximate the solution of the steady free-surface flow problem, it 

is sufficient to reduce the evaluation error to the level of the discretization error. Further 

reduction does not yield an essential improvement in the approximation of the continuum 

solution anyway. By (l 9a), the asymptotic behavior of the evaluation error at subcritical 

Froude numbers is 

y" = 0 ((nr)(l-di/2), as nr _.,. oo. (23) 

For an example of this convergence behavior in actual computations, see the numerical 

experiments on tine grids in Ref. [22]. From Eq. (23) it follows that y 11 :=: E;, requires 

(24) 

Equation (24) implies an increase of the number of time steps to reach steady state within 

the required tolerance. This is particularly manifest for high-order discretizations (large p) 

and low spatial dimension (d = 2). 

An additional complication is that usually the allowable time step decreases with h. Time 

integration of free-surface flow problems typically proceeds in two alternating steps: (T 1) 

integrate the incompressible Navier-Stokes, subject to the dynamic conditions at the free 

surface and appropriate boundary conditions at fixed boundaries; and (T2) integrate the 

kinematic condition to adjust the free-surface position, using the solution from (T 1 ). 

Owing to this separate treatment and the hyperbolic character of the kinematic condition, 

stability of the numerical time integration method requires that the time step comply with 

a CFL condition, r ex h. 
In summary, Eq. (24) and the CFL condition imply that the number of time steps required 

to reach y" :=: E1i is O(h-( 1+21'/(c/-Iii). Assuming that the computational complexity of the 

time integration method is proportional to the number of time steps, at subcritical Froude 

numbers the computational complexity is 

W = 0(11-l 1+2f'i(t1-lll), I 0 as 1 _.,. . (25) 
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Equation (25) implies a severe increase in the computational expenses as h decreases. 
For example, in the typical case of a second-order discretization of the three-dimensional 
problem, if the mesh width is halved, the required computational work per grid point 
increases by a factor of 8. 

4. EFFICIENT SOLUTION OF STEADY FREE-SURFACE FLOWS 

From Section 3 it is evident that the usual time integration approach is inept for solving 
steady free-surface flows at subcritical Froude numbers. In this section we present an effi
cient iterative solution method for gravity-subjected steady free-surface flows. The method 
is outlined in Section 4.1. The convergence properties of the method and its computational 
complexity are examined in Sections 4.2 and 4.3. 

4.1. Iterative Solution Method 

From the results in Section 2.3, it follows that an accurate approximation to the free
surface flow and to the free-surface position can be obtained by the following operations. 

(11) For a given initial boundary S, solve (v, cp) from 

div vv +\lip - div r.(v) = 0 }· 
d1vv = 0 

(x. y) E V, 

B(v, p) = b(x. y), (x. y) E iJV \ S. 

ti ·T(V)·n=O} 
, (x.y)ES. 

V·V<p-Fr-2j·V=0 

where Eq. (26b) represents boundary conditions on the fixed boundary. 
(12) Use the solution of (Il) to adjust the boundary S to 

{(x, y + Fr2cp(x, y)): (x, y) ES}. 

(26a) 

(26b) 

(26c) 

(27) 

Note the appearance of the quasi free-surface condition in its steady form in Eq. (26c ). 
The modified boundary approximates the actual free surface more accurately than does the 
initial boundary, provided that the conditions discussed in Section 2.3 are fulfilled. Hence, it 
is anticipated that the solution to the free-surface flow problem can be obtained by iterating 
the operations (11) and (I2). 

If S is the actual free surface, then the normal dynamic condition is satisfied (i.e., p 
vanishes on S). In that case, n II V p, and Eq. (26c) implies that the solution of Eqs. (26) 
complies with the kinematic condition and the tangential dynamic conditions. Hence, oper
ation (l l) then yields the free-surface flow. Moreover, the normal dynamic condition ensures 
that the surface adjustment in (I2) vanishes, so that the solution of the free-surface flow 
problem is indeed a fixed point of the iteration. 

It is important to notice the absence of time-dependent te1ms in (11) and (I2). Therefore, 
the slow decay of transient waves described in Section 3 is irrelevant to the convergence of 
the iterative process. The actual convergence properties of (I I )-(12) are examined below. 
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4.2. Convergence 

The convergence behavior of the iterative method (I 1)-(12) can be conveniently exam

ined by rephrasing the free-surface flow problem as an optimal-shape design problem. A 

general characteristic of free-boundary problems is that the number of free-boundary con

ditions is one more than the number of boundary conditions required by the governing 

boundary-value problem. A free-boundary problem can therefore be reformulated into the 

equivalent optimal-shape design problem of finding the boundary that minimizes a norm 

of the residual of one of the free-surface conditions, subject to the boundary-value problem 

with the remaining free-surface conditions imposed. 

To obtain an optimal-shape design formulation of the steady free-surface flow problem, 

the cost functional E is defined by 

E(S. (v, p)) = l lp(x, y)I dS. (28) 

Assuming that Eq. (26) is well posed for all surfaces Sin a space of admissible boundaries 

a' and that a contains the actual free surface, the free-surface flow problem is equivalent 

to the optimal-shape design problem 

min[ E (S. (v. p)): (v, p) satisfies (26)}. 
SEO 

(29) 

Notice that problem (29) is in fact a constrained optimization problem, with the boundary 

value problem (26) serving as a constraint on (v, p). 

The optimal-shape design formulation of the free-surface flow problem allows convenient 

assessment of the convergence properties of the iterative method (11 )-(12). Each iteration 

adjusts the approximation to the free-surface position. Convergence of the iterative method is 

ensured if each surface adjustment yields a reduction in the cost functional (28). Moreover, 

the reduction of the cost functional between successive iteractions is a measure of the 

efficiency of the method. 

To detern1ine the effect of a surface adjustment, consider the boundary Sand the modified 

boundary 

Sw = {(x, y) + rn(x, y)j: (x, y) ES}, (30) 

for a suitably smooth function ex independent of E on S. The modified boundary is the 

boundary of a domain Vw, which approaches Vas E -+ 0. Following Ref. (14], V and Vw 

are embedded in a bounded set c and it is assumed that for all V c c with S E 0, a solution 

for Eq. (26) can be extended smoothly beyond the boundary, so that (v, p) is well defined 

everywhere in c. 
The displacement of the boundary from S to Srn induces a disturbance in the solution of 

Eq. (26). Denoting by (v, Plrn the solution of Eq. (26) on Vw, the induced disturhance is 

defined by 

I . I 
(v, p)"' = l1m -((v, Plrn - (v, p)). 

,__.() E 
(31) 

Taylor expansion of the cost functional then yields 

E(Sw, (v. Plrnl = J.". IP+ E(cxj · \7 p + p~)i(l + Eµa) dS + 0(E 2), as E-+ 0. (32) 
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In Eq. (32). the functionµ" :SI-* IR accounts for the change in the surface area from dS to 
dS"'. Ignoring tenns O ( E2), the modified boundary Sw improves on S if a positive constant 

( < 1 exists such that 

1 IP+ E(aj · '\/ P + p~)l(l + Eµa) dS ::=: s l IPI dS. (33) 

If condition (33) holds for some ( < l, then the modification of the boundary from S to 
Sw yields a reduction in the cost functional. The smallest positive constant that satisfies 

condition (33) is called the contraction number. Clearly, a small contraction number implies 

a successful surface modification. 
Operation (l2) in the iterative procedure gives a correction in the boundary position 

rn = Fr2 p. In that case, the value of the cost functional corresponding to the modified 

surface is bounded by 

Hence. the contraction numbers of the iterative process (I 1 )-(12) is bounded by 

J~ IEp~I dS 
(:::ap+·f. I ldS +0(E), 

.s p 
(35) 

with a" defined by Eq. (6). From condition (35) it follows that if E and er" are indeed small, 
then the induced disturbance determines the convergence behavior of the iterative method. 

To establish convergence of (11 )-(12), it remains to be seen whether the induced distur
bance p~ is indeed small. In Section 2.3 it was shown that the quasi free-surface condition 
( 13) approximates the conditions at a fixed boundary in the neighborhood of the free surface 
to 0 (E 2• E al'. Ea,). Hence, displacing this condition from s to sf(J/ yields no greater distur
bance than that. In Ref. [3] it is shown that the tangential dynamic conditions are largely 
irrelevant to the shape of the free surface. Conversely, the induced disturbance due to en
forcing the tangential dynamic conditions at S instead of Srn can be neglected. Therefore, 

the contraction number of the iterative method (11 )-(12) is estimated as 

(36) 

4.3. Computational Complexity 

Equation (36) provides an upper bound for the contraction number of the iterative method 

(I 1 )-(12). One may note that if the approximate boundary is sufficiently close to the actual 
free surface (E small), then Eq. (36) depends on properties of the continuum solution only. 
Therefore, ifthe free-surface flow problem is solved numerically, the convergence behavior 
of the iterative method is asymptotically independent of mesh width. 

The iteration must be continued until the pressure defect at the free surface (28) has been 
reduced to the level of the spatial discretization error. Further reduction does not essentially 

improve the approximation of the continuum solution anyway. Each iteration reduces the 
pressure defect at the free surface by a factors. Therefore, the number of iterations /1 must 
satisfy 

(' = O(hl'). (37) 
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This implies that n = 0 (p Jog h/log s ). Assuming that the computational complexity of 
the iterative method is proportional to the number of iterations, the following estimate of 
the computational complexity is obtained: 

W = O(logh). (38) 

Hence, the efficiency of the iterative method (Il)-(I2) deteriorates only moderately with 
decreasing mesh width. 

To eliminate the remaining weak Ii-dependence of the computational complexity, nested 
iteration can be employed. Generally, an iterative solution method is used to solve the 
boundary-value problem (26) in step (II) of the algorithm. The nesting involves the use 

of the solution from the previous iteration as an initial estimate for the solution process. 
Because this initial estimate becomes increasingly accurate, the cost of performing (II) 
reduces as the iteration progresses. In particular, assuming that the cost of solving Eq. (26) 
is proportional to the pressure defect at the free surface, the amount of work that is required 
to achieve Eq. (37) is 

, l 
W = w + >-w+ >--w+ ···+>-"w < --w ., ., ., - 1-s . (39) 

with w denoting the cost of solving Eq. (26) initially. Observe that the computational 
complexity (39) is indeed entirely independent of the mesh width. 

5. NUMERICAL EXPERIMENTS AND RESULTS 

The method is tested for subcritical flow over an obstacle in a channel of unit depth, at 
Fr = 0.43 and Re = I .5 x I 05, with the undisturbed fluid depth and the undisturbed flow 
velocity at the free surface assigned as the reference length and velocity, respectively. The 
geometry of the obstacle is 

27 H , 
y(x) =-I+ 4 L3 x(x - L)-, 0:::: x :SL, (40) 

with H and L the (nondimensionalized) height and length of the obstacle, respectively. 
Choosing H = 0.2 and L = 2, the setup is in agreement with that in Ref. [5]. At the bottom 
boundary no-slip boundary conditions are imposed. A boundary-layer velocity profile in 
accordance with the experiments from Ref. [5] is imposed at the inflow boundary. 

The test case with H = 0.2 displays large-amplitude waves that exhibit typical nonlinear 
effects, such as sharp wave crests and wavelength reduction. In addition, H = 0.15 is 
considered. This test case displays waves more in accordance with linear wave theory (see, 
e.g., Refs. [11, 12]). 

The experiments are performed on grids with horizontal mesh widths h = 2-5 , 2-0 • The 
number of grid cells in the vertical direction is 70 and exponential grid stretching is applied 
to resolve the boundary layer at the bottom. Furthermore, the grid is coarsened toward the 
inflow and outflow boundaries to reduce reflections. A typical example of a grid used in the 
numerical experiments is presented in Fig. 2. The RANS equations, closed with an eddy
viscosity model owing to Cebeci and Smith [7], and the boundary conditions are discretized 
and solved by the method described in Ref. [10]. After each evaluation, the grid is adapted 
using vertical stretching. An initial estimate of the solution on the adapted grid is subse
quently generated by linear interpolation from the solution on the previous grid. Details of 
the discretization method and the setup of the numerical experiments can be found in Ref. [ 4]. 
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0.0 =---
-0.2 ,__ 

~ 

-0.4 ~ 

-0.6 

~ ~ -0.8 

-1.0 
0 2 4 6 

FIG. 2. Example of a grid used in the numerical experiments. The grid is coarsened for illustration purposes. 

Figure 3 shows the wave profile obtained in successive iterations for H = 0.2. The 
initial estimate (zeroth iterate) is just the undisturbed free surface. One may note that 
the first iterate already displays a qualitatively correct wave profile. This confirms that the 
quasi free-surface flow solution is an accurate approximation of the actual free-surface flow 
solution. A converged solution is obtained in less than 10 iterations. Owing to the decreasing 
computational cost of each iteration (refer to Section 4.3 ), the entire computation is just 

two to three times as expensive as the corresponding fixed domain problem with symmetry 
boundary conditions at the undisturbed surface. 

Figure 4 displays the pressure defect at the free surface after consecutive iterations. The 
results confinn convergence of the method. For H = 0.15, the average contraction number 
is s ~ 0.15 and the convergence behavior is indeed independent of h. After several iterations 
the contraction number increases. However, this is entirely due to the fact that the quasi 
free-surface flow problem (26) is solved only by approximation. If the tolerance on the 
residual of Eq. (26) is reduced (i.e., if Eq. (26) is solved more accurately), then the original 
contraction number is recovered. For H = 0.20, the average contraction number is s ~ 0.45 
for h = 2-5 and I; ~ 0.52 for h = 2-6. As a result of strong nonlinearity, the asymptotic 
mesh-width independence of the convergence behavior is in this case not yet apparent. 

1/ 

0.1-.--------------------------. 

-o.1-'-~~~,o---.-~..-.~~~ ........ 2~~-.,......,3....-.--~-'T"4--~..-ts 

x 

FIG. 3. Wave profile obtained after successive iterations (H = 0.2). 
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-6 

-7 

n 

FIG. 4. Pressure defect at the free surface versus the iteration number for H = 0.15. h = 2 ; (0), h = 2 -o I:::::). 

and H = 0.20, h = 2-1 (+), h = 2-;(0). 

A detailed investigation of the convergence behavior of time integration methods for the 

test case with H = 0.20 is presented in Ref. [22]. Typically, the time integration method 

requires approximately 10-i surface adjustments to reduce the initial error by a factor of l 0. 

The presented method achieves this in approximately four iterations, for a similar setting 

of the numerical experiment. 

Figure 5 compares the computed wave elevation with measurements from Ref. [5 J. In 

Ref. [5], a nondimensionalized amplitude a= 4.5 x 10-2 ± 15% and wavelength 

0.1~----------------------------, 

0.05 

0 

-0.05 

-0.1 0 2 3 4 

FIG. S. Computed wave elevation for IJ = 2 "(solid line) and measurements from Rd. [5] (markers only), 

for H == 0.20. The obstacle is located in the interval x E [ 0, 2 ]. 
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A. = 1.10 ± 10% are reported for the trailing wave. The trailing wave of the computed 

wave elevation on the grid with h = 2-6 displays amplitude a = 6.5 x 10--2 and wave

length A. = 1.11. Hence, the computed wavelength agrees well with the measurements. The 

amplitude appears to be overestimated. However, the difference between the amplitude of 

the numerical results and of the experimental data is not unusual (see, e.g., Refs. [22, 23]). 

Observe also that the difference in the amplitude of the first wave and the second wave is 

coJTectly predicted. 

6. CONCLUSION 

The usual time-integration method for solving steady free-surface Navier-Stokes flow 

problems was shown to be inefficient owing to the specific transient behavior of surface

gravity waves and a CFL condition on the allowable time step. 

Motivated by the demand for efficient computational methods in practical applications, 

we proposed a new iterative-solution method. The method alternatingly solves the steady 

Navier-Stokes equations with a quasi free-surface condition imposed at the free surface, 

and adjusts the free surface using the computed solution and the normal dynamic condition. 

Examination of the convergence properties of the iterative method revealed that the 

method uses the quasi free-surface condition to ensure that the disturbance induced by 

the displacement of the boundary is small. It was shown that the convergence behavior of 

the method is asymptotically independent of the mesh width. The asymptotic computational 

complexity of the iterative method deteriorates only moderately with decreasing mesh width. 

Mesh-width independence of the computational complexity can be achieved by means of 

nested iteration. 

Numerical results were presented for two-dimensional flow over an obstacle in a channel. 

For the presented test cases, a converged solution was obtained in at most 10 iterations. The 

numerical results agree well with measurements. The numerical experiments confirmed that 

the convergence behavior of the method is asymptotically independent of mesh width. 

We believe that the proposed method will be useful in ship hydrodynamics, hydraulics, 

and other fields of application in which the efficient computation of steady free-surface 

flows at high Reynolds number is required. 
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