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Abstract

Agent-based computational economics (ACE) combines elements from economics and com-
puter science. In this paper, we focus on the relation between the evolutionary technique that
is used and the economic problem that is modeled. Current economic simulations often derive
parameter settings for the genetic algorithm directly from the values of the economic model
parameters. In this paper we show that this practice may hinder the performance of the GA
and thereby hinder agent learning. More specifically, we show that economic model param-
eters and evolutionary algorithm parameters should be treated separately by comparing two
widely used approaches to population learning with respect to their convergence properties
and robustness.
Keywords: Genetic Algorithms, Economics, Robustness

1 Introduction

Agent-based computational economics (ACE) concerns the computational study of economies
modeled as evolving systems of autonomous interacting agents [37]. The ACE approach combines
elements from evolutionary economics, cognitive science and computer science. Evolution-inspired
algorithms, such as genetic algorithms are increasingly used in ACE [2, 3, 4, 5, 19, 20, 11, 6, 30,
31, 15, 16, 14, 33, 38, 1, 21, 28, 12, 44, 10, 36, 17, 35]. Evolutionary algorithms are biologically
inspired techniques that use the concept of “survival of the fittest” to evolve agent behaviour that
becomes better and better adapted to the environment (i.e., a particular market). Evolutionary
algorithms thus provide us with a way to model boundedly rational agent learning and decision
making. The popularity of evolutionary algorithms in economic simulations can be attributed to
the fact that they allow us to model large systems of boundedly rational agents from the bot-
tom up. Evolutionary algorithms were originally designed for and used in optimization problems
and there is a vast literature that describes how to tune the algorithm to perform well in opti-
mization problems [26, 24, 8, 39]. Now that evolutionary algorithms are also used in the social
simulation domain these guidelines have to be reestablished. Current economic simulations often
derive parameter settings for the genetic algorithm directly from the values of the economic model
parameters. In this paper we show that this practice may hinder the performance of the GA
and thereby hinder agent learning. Furthermore, we show that in order to obtain robust results
economic model parameters and evolutionary algorithm parameters should be treated separately
by comparing two widely used approaches to evolutionary algorithm learning.

In the first approach the evolutionary population is considered as a population of agents (one
chromosome equals one agent) whereas in the second approach the evolutionary population is
considered as a population of strategies from which the agents can choose. We show that the first
approach (direct evolutionary interpretation of the economic model) may lead to premature conver-
gence of the genetic algorithm. Robustness to variations in the parameter settings is particularly
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important in social simulation since it is often difficult to give a direct economic interpretation
of a particular evolutionary algorithm parameter (such as population size or recombination rate).
This makes it impossible to interpret the economic meaning of a simulation outcome that changes
when a technical parameter is slightly changed. Therefore in order to derive any results from
evolutionary social simulation it is important that results are valid for a wider range of parameter
settings, that is that they are robust. In this paper, the focus is on robustness with respect to the
technical evolutionary algorithm parameters. The paper proceeds by giving a general overview of
genetic algorithms in section 2 and a discussion of the interpretation of both genetic algorithms
models for the learning behavior of economic agents in section 3. Section 4 describes the different
experiments that were performed and conclusions are given in section 6.

2 Evolutionary algorithms

Evolutionary Algorithms. An evolutionary algorithm (EA) is a technique that uses the concept
of “survival of the fittest” to evolve a population of strategies [25, 32]. Using an EA, strategies are
represented as chromosomes and the chromosomes evolve from generation to generation yielding
better and better strategies. A typical EA can be described as follows [32]. First, a population
of randomly initialized chromosomes is generated. The population is subsequently changed and
improved in a number of generations by means of selection, recombination (“crossover”), and
mutation. Selection chooses the better chromosomes (with higher accumulated payoff) that will
serve as parents for the next generation of strategies. This corresponds to the concept of “survival
of the fittest” in nature. Offspring is then formed by pairwise recombination of the parents.
Finally, the offspring chromosomes are slightly changed (with a small probability) and the new
population replaces the old one.

Thus, an EA has several parameters, being among others the mutation rate (the probability
for a gene or bit in a chromosome to change), the population size (the number of chromosomes in
the population), the recombination rate (the percentage of chromosomes that will be subject to
recombination) and the representation of the chromosome. The values of these parameters have to
be carefully chosen in order for the EA to perform well. Although there are no conclusive results
on which parameter settings allow effective EA performance, there are some general guidelines
available (see for example [32, 9]).

Parameter issues. Particularly important in this paper is the avoidance of premature con-
vergence by allowing the population diversity of the GA to be sufficient, that is a sufficient number
of different elements (chromosomes) must be present in the population to avoid sampling errors
due to small population size. This is a merely technical condition, under which the highly stylized
EA operators (mutation, recombination, selection) and parameters operate properly. Premature
convergence restricts the EA in it’s learning capabilities. This occurs when, early in the search
process, the EA focuses on the exploitation of a small selection of rather fit strategies at the ex-
pense of the exploration of other regions of the search space. In optimization problems premature
convergence causes the EA to get stuck in various local optima (in different runs), while lacking
the diversity to explore other regions of the search space and find the global optimum. To preserve
sufficient diversity and to avoid premature convergence, the values of the EA-parameters have to
be carefully chosen. Known factors that influence the diversity of the population (and thus the
occurrence of premature convergence) are among others mutation rate, population size, selection
pressure and the chosen chromosome representation. The length and representation of the chro-
mosome affect convergence. The representation that is chosen should be able to represent all
possible strategy values. Furthermore, we consider it good practice to choose chromosome length
and representation in such a way that the average outcome of randomly initialized population of
the chromosomes does not lie on or close to equilibrium values of the economic model.
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3 Economic interpretation of genetic algorithms

Two general approaches to social or population learning can be distinguished and each approach
represents a different economic interpretation of genetic algorithm learning. In the first approach
each agent is represented by a single chromosome in the EA population (see for example [19, 42]).
In this approach the number of chromosomes equals the number of economic agents. In the second
approach the population of chromosomes and the economic model are separated (for example [7,
34]). The population of chromosomes is regarded as a pool of strategies from which the agents can
choose. Both approaches consider the recombination operator as a model of information exchange
between two agents or strategies. Whereas the mutation operator is regarded as a model for error
or innovation. Although there thus exists an economic interpretation of the genetic operators the
modeler should be very careful in interpreting the economic meaning of simulation results. It
is very difficult to attach an economic meaning to social simulation results that were obtained
using specific values for the GA parameters, in particular if outcomes change considerably with
small changes of the parameters. In general, we propose that in order to make valid economic
interpretations based on evolutionary simulations - results should be robust, that is valid for a
larger range of parameter settings.

Several authors have commented on the economic interpretation of genetic algorithms [13,
19, 22, 27]. A commonly heard objection against this interpretation is that in population based
evolutionary algorithms, strategies are shared by all agents. This means that agents have direct
insight in which strategies were used by others. Furthermore, agents can copy (parts of) strategies
from (well performing) others by means of selection and recombination. This is not true for many
social systems; economic agents (firms, bargaining individuals), for example, often make great
efforts to hide their strategies from their competitors. This suggests that the use of GAs as a
model for agent learning is only valid when the strategies that are considered are simple actions
that are observable in the market. The second modeling approach (chromosome equals a single
strategy) is therefore preferred to the chromosome-equals-agent approach of population learning.
Below we will illustrate this by showing the robustness results obtained for a large range of values.

4 Experimental setup

This section describes the experimental setup that was used to investigate the effect of evolutionary
model parameter settings on economic outcomes. As described above two main approaches can be
distinguished (see Table 1). Using approach I [19, 42], each agent is represented by a single strategy
in the genetic population. The second approach allows an agent to pick a strategy from a large
population of strategies. In approach I the value of the genetic algorithm parameter population
size (that is the number of strategies in the genetic pool) is directly determined by the economic
model. In approach II this is not the case. Using approach II [7, 34], we have to set the value
for the population size in such a way that the economic outcomes are robust to changes of the
parameter values (both economic and genetic).

Approach I Approach II

Chromosome = Agent Chromosome = Strategy
Population size determined by Population size determined by
number of economic agents proper EA learning

Table 1: Summarizing the two evolutionary learning approaches

The Cournot oligopoly The testbed for our simulations is a textbook [40, 18] Cournot oligopoly
market with 4 players. We develop an evolutionary simulation of this model and use it to compare
both approaches. The rest of this section will describe the Cournot oligopoly and the setup of the
evolutionary simulation. We use a population learning evolutionary algorithm to model the search
and learning behaviour of economic agents in a Cournot oligopoly game with four agents. The
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Cournot oligopoly market describes a situation where a few firms compete in a single market. The
firms have some market influence through a common price demand curve. In this situation, firms
have to make a strategic decision, taking into account the decisions of the other firms. Here we
focus on the Cournot oligopoly which provides a model for the market when the the firms produce
a homogeneous good and compete on quantity. The 4 firm oligopoly model we use is characterized
by the following equations:

Market price : P = 256 − Q, where Q =
∑

4

i=1
qi

Profit firm i : πi = Pqi − 56qi

The Cournot-Nash equilibrium occurs when each firm’s output is a best response to the combined
output of the other firms - at output 40. When firms produce at the competitive outcome, each
produces an output of (on average) 50 and the firms make no profit. Profits are highest when
the 4 firms act as a single monopolist and produce the collusive output of on average 25 per firm.
Collusion usually does not occur in the one-shot game.

A general outline of the Cournot oligopoly simulation is given below. Each period an agent
draws a strategy from the population of strategies. If approach I is used the number of strategies
is equal to the number of agents (4 in this paper). Using approach II we have to find a suitable
population size (the number of strategies/chromosomes in the genetic population). In order to do
this we incrementally (steps of 4) increase the population size and run the system repeatedly with
a large number of values for the population sizes. Another parameter that influences simulation
results is the representation of the strategies, in particular the length of the strategy. Longer
strategies represent larger possible output values. Initializing the population with a representation
that allows agents to produce quantities that exceed demand by far can be done if the modeler
does not want the agents to have any a priori knowledge about the market (everything has to be
learned). Again we look for settings that render robust results.

Outline of the simulation model:
Step 1 Select strategy:

Each agent randomly draws a strategy
from the population of strategies

Step 2 Determine action

Step 3 Play game

Step 4 Assign payoff

The fitness of a strategy equals
the payoff gained by the agent
using the strategy

Step 5 If all strategies have been used:

Update strategies using EA

Table 2 gives an overview of the parameter settings used in the experiments. The smallest
population size tested was 4 (i.e, equal to the number of agents - Approach I) and the largest
population size tested 200. The chromosome length was varied between 6 (maximum output 64)
and 9 (maximum output 512). In all cases the average output of a randomly initialized population
does not lie on the Cournot-Nash or the competitive equilibrium. The structure of the initial
population is determined by the initial density parameter. A population that is initialized with a
density of 0.5 (the default value), fifty percent of the bits is set to 1 on average. The values for
the mutation rate are within the range of commonly recommended values [24]. We consider the
convergence of the model withe respect to the different outcomes of the game for a large range
of values of the size of the population of strategies. Each period of the game agents select a
strategy from the population of strategies. This population is subsequently updated by a genetic
algorithm. The general outline of the simulation model is described below. A genetic algorithm
is said to converge if almost all strategies in the population are identical. Note that there can be
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no convergence in the mathematical sense, for the mutations disrupt the uniform state over and
over again.

I II

Economic Model Parameters
Number of agents 4 4
EA Parameters
Crossover rate 1.0 1.0
Mutation rate (per bit) 0.01 0.01
Population size 4 4-200

(increments 4)
chromosome length 6-9 6-9
representation binary binary
initial density 0.1, 0.5 (default), 0.9 0.1, 0.5 (default), 0.9

Table 2: Parameter settings used in the Cournot oligopoly experiments. Approach I is the method-
ology where a chromosome equals an agent whereas in approach II a chromosome equals a strategy.

5 Robustness results - comparing the two approaches

This section describes the experiments we have performed comparing approach I and II to social
learning. We are especially interested in the robustness properties of the two approaches. Apart
from looking at the population size we study the behaviour of both approaches under different
initial conditions and different representations. In all simulations we have used a simple GA
with mutation rate 0.01 and crossover rate 1.0. First we study the effect of population size
on the outcome of the Cournot oligopoly game. We start by initializing the population size at 4
(approach I) and then increasing this value (with steps of size 4) to determine a population size that
yields robust results. Figure 1 shows the results of our experiments for different representations
(chromosome lengths). The first figure (left) represents the relationship between average output
and population size. Each point in the graph represents the average over 20 runs of 400 generations
(generation 100-500 to compensate for initial noise effects) each that were executed using each
value of the population size. The initial population density is 0.5 in these experiments, that is,
initially half of the bits is set to one. The second figure (right) gives the standard deviation of
average output over those 20 runs for each tested value of the population size. Results are given
for different representations of the strategies, that is chromosome length 6,7, and 8.

5.1 Aggregate results

The outcomes for population size 4 correspond to approach I and we can deduce from the figure
that population sizes of around 100 chromosomes would be suitable for approach II. Notice that
for small values of the population size the difference between individual runs is very large (high
standard deviation) whereas averages converge towards Cournot-Nash values for larger values.
Convergence is slower for longer chromosome length where genetic drift causes averages to go up
(as chromosome length increases a random mutation is more likely to lead to a large increase
in production than with smaller chromosome lengths). Note that simulations using different
representations all converge to the Cournot-Nash equilibrium with small standard deviation for
sufficiently large population sizes. Furthermore, figure 1 suggests that convergence is not robust
with respect to representation for small population sizes.

To gain more insight in the convergence behaviour of both approaches we take a look at
the average population behaviour using approach I en II. Figure 2 shows the average population
behaviour for different representations and different initial conditions over 500 generations. (Note
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Figure 1: Average output versus population size, averages (left) and standard deviations (right)
over 20 runs. Each plotted value represents the average output over 20 runs and over the last 400
generations (generation 100 to 500) to eliminate initial noise effects.

that the y-axis is larger for chromosome length 9 to accommodate all outcomes). All tested
chromosome lengths allow the agents to produce at both the Cournot-Nash and competitive output
levels and therefore do not constrain their production capacity in any way. The results show
that approach I is not robust with respect to representation, that is different representations
yield different economic outcomes. On the other hand population averages do converge towards
Cournot-Nash outputs irrespective of representation length if approach II is used. If we look
at convergence behaviour with respect to initial population density we see again that approach
I does not yield robust results for all representations. Only for chromosome length 7 we can
observe convergence towards the competitive equilibrium for all tested initial conditions. We
will take a closer look at the individual runs in the next section to futher study the convergence
behaviour. The outcomes in figure 2 suggest that the lack of robustness is caused by premature
convergence caused by a lack of diversity in the population. Very small (0.1) or very large (0.9)
initial densities lead to an almost uniform population and this effect is off course strongest for small
population sizes. While some learning towards profitable outcomes occurs under these conditions,
the population converges before a good outcome is reached. Indeed we see that outcomes for
different representations show most agreement for initial density 0.5 when population diversity is
maximized.

5.2 Individual runs

Figure 3 and Figure 4 show the twenty individual runs for each approach. Notice that there
is no uniform convergence when approach I is used. More specifically, if we look at the results
for chromosome length 7 in Figure 3 (bottom half) we see that the apparent convergence to the
competitive equilibrium is only present at the aggregate level. Furthermore, we see that individual
runs sometimes converge to very large output values (Figure 4) leading to losses for the agents.
Here learning stops before profitable outcomes are reached. If approach II is used, however we
see that all individual runs converge towards the Cournot-Nash level where is agents output is a
best response to the aggregate output of the other agents. The agents obtain higher profits when
their aggregate output is at Cournot-Nash level than at the competitive level. These results show
that a significantly large population of chromosomes is needed to prevent premature convergence
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Figure 2: Average output for different population sizes - averages over 20 runs. Approach I:
population size 4, Approach II population size 100. Note that the y-axis is larger for chromosome
length 9 to accommodate all outcomes.

to a less profitable outcome. These experiments show that a sufficiently large population size is
a necessary condition for convergence to the Cournot-Nash equilibrium in this model. Population
learning genetic algorithms can thus be used to model procedurally rational agents in the Cournot
oligopoly game. Evolutionary algorithm learning is a sufficiently powerful learning technique
to arrive at the Cournot-Nash outcome in a population learning setting. When GA learning
is inhibited due to small population sizes, the learning outcome depends strongly on the initial
population and GA learning is reduced to imitation based learning. We have performed some
experiments to illustrate this effect in the next section.

5.3 From imitation based learning to genetic algorithm learning

The evolutionary algorithm is built using selection, recombination and mutation. If we look at
each of these components separately, we can gain further insight into the effects of population
diversity. An algorithm using only selection (imitation) can be compared to replicator dynamics
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a simple learning model that is often used in economics [23, 43, 29]. The difference between
replicator dynamics and genetic algorithm learning is that replicator dynamics is solely based on
imitation while recombination and mutation are integral parts of genetic algorithm performance.
Another difference between genetic algorithms and replicator dynamics is the way fitnesses are
compared. In replicator dynamics, agents can imitate strategies used by a direct opponent while
in a GA strategies used in all games are compared population wide. Theoretical results using
replicator dynamics in oligopoly settings show that there is convergence towards the competitive
equilibrium in the long run as long as the competitive outcome is present in the initial population.
Replicator dynamics is based on imitation of more successful strategies. To illustrate the learning
capabilities of a properly set up GA, we have extended a replicator dynamics version of the Cournot
oligopoly with recombination and mutation. We have used the method of fitness comparison used
in replicator dynamics (only imitate strategies of direct opponents). Furthermore, we have inserted
the competitive outcomes in the initial population (as in [41]) . These experiments can give us
some insight in how the recombination and mutation operator of the GA are influenced by small
population sizes. Averages over 20 runs are given in Figure 5. Results are shown for only selection
(imitation) and imitation plus recombination and mutation (mutation rate 0.1) for chromosome
length 7. We see that convergence behaviour of the imitation based learner is less influenced by the
population size than the GA. Using a sufficiently large population size GA convergence towards
the Cournot-Nash outcome can be observed even when a relative fitness measure is used. This
shows that approach II is indeed robust with respect to initial conditions, representation and also
transformation of the fitness function. This is important since many economic applications are
characterized by relative rather than absolute fitness measures.
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Figure 5: The influence of population size on imitation based and GA learning. Averages over 20
runs

6 Conclusions

We have compared two widely used approaches to evolutionary population learning. In the first
approach population size is determined by the number of agents in the economic model while in the
second approach these economic and technical parameters are treated separately. We show that the
first approach can lead to premature convergence, inhibiting the learning capabilities of the agents,
related to the abstract learning technique. The second approach leads to robust outcomes with
respect to population size, initial density, representation of the strategies and fitness evaluation.
These experiments show that economic model parameters and evolutionary algorithm parameters
should be treated separately to allow for robust results. Furthermore, the modeler should make
sure that simulation outcomes are robust with respect to changes in the experimental setup. This
paper provides a first start in developing a robust methodology for the design and implementation
of evolutionary economic simulations.
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