
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

A process framework and typology for software product 
updaters

R.L. Jansen, S. Brinkkemper, G. Ballintijn

REPORT SEN-E0419 OCTOBER 2004

SEN
Software Engineering



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



A Process Framework and Typology for Software
Product Updaters

ABSTRACT
Product software is constantly evolving through extensions, maintenance, changing
requirements, changes in configuration settings, and changing licensing information. Managing
evolution of released and deployed product software is a complex and often underestimated
problem that has been the cause of many difficulties for both software vendors and customers.
This paper presents a framework and typology to characterize techniques that support product
software update methods. The framework is based on a detailed process model of software
updating. Finally, this paper assesses and surveys a variety of existing techniques against the
characterisation framework and lists unsolved problems related to software product updaters.

1998 ACM Computing Classification System: D.2.7
Keywords and Phrases: software updating





A Process Framework and Typology for
Software Product Updaters
Slinger Jansen

Centre for Mathematics and Computer Science
Amsterdam, The Netherlands

Email: r.l.jansen@cwi.nl

Sjaak Brinkkemper
Institute of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

Email: s.brinkkemper@cs.uu.nl

Gerco Ballintijn
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands
Email: g.ballintijn@cwi.nl

Abstract— Product software is constantly evolving
through extensions, maintenance, changing require-
ments, changes in configuration settings, and chang-
ing licensing information. Managing evolution of
released and deployed product software is a complex
and often underestimated problem that has been the
cause of many difficulties for both software vendors
and customers. This paper presents a framework
and typology to characterize techniques that support
product software update methods. The framework
is based on a detailed process model of software
updating. Finally, this paper assesses and surveys a
variety of existing techniques against the characteri-
sation framework and lists unsolved problems related
to software product updaters.

1. PRODUCT UPDATING

Managing evolving software is a complex task
for software distributors and vendors. Moreover,
maintaining a large software system, such as a
business ERP application, can be particularly diffi-
cult and time consuming. The tasks of adding new
features, adding support for new hardware devices
and platforms, system tuning, and defect fixing all
become exceedingly difficult as a system ages and
grows.

One particular area of software evolution that
requires more research, is the evolution of released
and installed applications. To deal with the evolu-
tion of released software, distributors and vendors
currently have the choice of either buying an (ex-
pensive) general product updating tool or building
propietary tools. After a thorough analysis, to be
presented in this paper, we conclude that both
approaches unfortunately have significant problems
since existing software update tools are usually
incomplete and the effort and risk of building such
tools “in house” is often underestimated.

The contribution of this article is threefold.
Firstly, a framework is provided that embodies the
complete software update process and the uncov-
ered areas of deployed software evolution. Sec-
ondly, a typology is provided to classify software
product updaters. Finally, the framework is used to
compare current techniques and technology, and to
indicate what areas still need to be covered.

Updating software can be seen as moving from
one configuration to another by addition, removal,
replacement, or reconfiguration of software func-
tionality. A physical software update contains the
applicable functionality and configuration alter-
ations. By this definition, changing a license or
some configuration setting can also be seen as part
of the software update process. A software updater
automates the process steps involved with software
updates. To discuss the concepts and technologies
of this paper, we introduce the notion of software
product updaters.

Carzaniga et al [1] described some of the tech-
niques mentioned in this article, however, recent
developments have lead to new insights and tech-
niques. For the evaluation a list of techniques
focussed on runtime updating from Ajmani [2] has
been used. On the lower levels of component up-
date architectures, Clegg [3] provides an evaluation
of component update methods for implementers of
run-time updating.

The remainder of this paper is organized as
follows. Section 2 describes what the software
update process looks like. The steps that make up
the update process are modelled and explained. We
also provide a typology for updaters and finally
evaluate current software updaters in relationship to
the framework. Section 3 further defines the steps



of delivery and deployment and uses the detailed
descriptions to evaluate the same updaters against
the detailed descriptions. Finally, we discuss the
presented framework and our future work in Sec-
tion 4.

2. THE PRODUCT SOFTWARE UPDATING

PROCESS

2.1. Update Process Framework

This Section describes the software product up-
date process framework and a detailed description
is given of the steps that make up the process.
The update process model has two participants: the
customer and the vendor. The framework, shown in
Figure 1, is based on customer states and vendor-
customer interaction, and has been derived from
other update model descriptions and the evaluated
tools. The customer blocks are states in this dia-
gram, with the bold lined states being final states.
The Uninformed Customer state is the start point
for the process. Solid arrows are state transitions,
which can be activated by both the vendor and by
the customer. The dotted arrows show interaction
between the vendor and the customer. Once the
vendor offers the customer the ability to update a
product of that vendor the update process is ini-
tiated. The following list describes all the process
steps in the product update model in detail:

Advertise Update - An update will first be
made available in some release repository. When a
vendor wishes to provide updates to its customers,
the customers first need to be informed through the
available communication channels.

Receive Information - Customers inform them-
selves about updates from a vendor through com-
mercial channels, such as web sites, mail, e-mail,
and portals. Other channels are memory resident
notifiers, such as the Windows Update Notifier, and
memory resident processes that automatically start
downloading an update once a customer accepts
the update that is sent.

Receive Update -A customer can receive an
update automatically and manually. Issues for re-
ceiving the update are security, authenticity of
the update, and integrity checks. Another issue is
the checking of pre-download dependency checks
such as available disk space and the presence of
dependent components.

Remove Update -The presence of the update
data that has been downloaded during the Receive
Update step, enables switching between configura-
tions and redistribution of updates. For this reason
the remove update is an explicit step in the update
process framework.

Deliver Update - Once a customer has been in-
formed of an update, the vendor wishes to transfer
the update to the customer site by mail, e-mail,
a website from which the customer can download
(pull) the update, or a memory resident process
that automatically receives and installs an update.
Several issues, which partly are discussed in this
paper, arise when the transfer of an update occurs,
such as security problems and the format in which
the update is sent to the customer.

Install/Deploy Update - A customer installs
an update wishing to gain functionality, improve
performance, and fix problems. The deployment
of updates is the most complex software update
process step, and is explained in further detail in
Section 3.

Rollback/Deinstall Update - When a customer
wishes to go back to a previous configuration, an
update must be rolled back or deinstalled. Dein-
stallation introduces requirements on the software
architecture and its extensibility, such as state
transformations to the older configurations, and
incremental updates instead of destructive updates.

(Re)configure Update - An update can be
(re)configured before activation and after activa-
tion. These settings can often be changed at run-
time or by editing some configuration file, such as
the httpd.conf file for the Apache webserver.

Vendor Feedback -An opportunity that is often
missed by software producers, but widely used by
for instance Microsoft and Exact Software [4], is
the use of vendor feedback after the deployment
of an update or component. Feedback generated by
the deployer of the update can be sent back to the
vendor to be used for future testing and feedback
on the deployment process.

Activate Update - After deployment the update
must be activated so that the update can be used
by the customer. The activation process step is
threefold and consists of configuration, a license
approval, and running the update. The configura-
tion binds all unbound variabilities that have been
introduced by the update. Licensing, if necessary,
makes sure that the software update is used accord-
ing to the vendor-customer contract.

Deactivate Update - Deactivation is required
when a user does not want or is not allowed to
use the update anymore. The most important part
of deactivation is the return of a license key to the
licensing system or deployment and distribution
system. If a deployment and distribution system
is present, the deactivation process could also
signal the server so that future updates for the
deactivated software are no longer sent to this



Vendor
Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall

Receive UpdateVendor
Repository

P
ro

d
u
ct

Deliver Update

Installed 
Customer

Deploy/Install Update

Vendor Feedback

Activated
Customer

DeactivateActivate Update

Remove

(Re)configure

(Re)configure

Fig. 1. Update Process Framework

workstation or workspace.

For our research we have evaluated the coverage
of these process steps for a number of techniques
currently used in the field or implemented by
academia. The evaluation shows what parts of
the process framework are still uncovered, how
covered process steps have been implemented by
the techniques, and what requirements are imposed
by these implementations.

Each of the process steps has specific require-
ments and problem areas. Two process steps that
are crucial for the framework, being delivery and
deployment, are further explained in detail in Sec-
tion 3. The release and derelease steps on the
vendor side have not been included in this model.
The reason for this is that in this paper we do not
focus on the processes that take place on the side
of the software vendor. At present our focus lies
on the implementation and framework of product
update software and we are less interested in the
development process of the software that is actually
distributed.

2.2. A Typology for Product Updaters

In order to obtain more insight in the available
product update technology we distinguish three

types of product updaters. The typology is created
because it creates more insight into the specific
available technology and draws out the frame-
work for evaluation of product software update
techniques. The three types are distinguishable by
looking at delivery and deployment methods and
policies, and by looking at process coverage.

• Package Deployment Tools -During the
evaluation of update tools many package
deployment tools (PDTs) were encountered.
These deployment technologies are based on
the concept of a package, and on a site
repository that stores information representing
the state of each installed package. A pack-
age is an archive that contains the files that
constitute a system together with some meta-
data describing the system. Examples of these
package tools are Red Carpet, APT, Loki-
Update1, RPM-update2, Nix [5], SWUP3, and
Portage4. RPM, Portage, and Nix are the most
advanced.

• Generic Product Updaters -Generic product
updaters (GPUs) are updaters that completely

1http://www.lokigames.com/
2http://www.kleemann.org/rpm-update/oldindex.html
3http://swup.trustix.org/
4http://www.gentoo.org/doc/en/portage-manual.xml



abstract from a product and attempt to be
usable for any product. Two generic product
updaters that are available commercially are
InstallShield5 and PowerUpdate6.

• Vendor Product Updaters - Vendor prod-
uct updaters (VPUs) specifically facilitate the
update process of one product, such as Mi-
crosofts Windows XP update, Exact Soft-
ware’s Product Updater [6], and Symantec’s
LiveUpdate.

The typology described above is largely inspired
by Carzanigas grouping [7] of deployment tech-
niques and Ajmanis listing of update techniques
[2]. One specific technology has not yet been
included in the typology, being runtime updaters,
which are further discussed in Section 4. This
technology, however, can still be described using
the updater typology.

2.3. Evaluation of Update Process Coverage

In Table I is displayed how the evaluated update
techniques cover the process steps that make up the
update process framework. The process coverage
for update techniques shows different classes of
updaters and enables identification of updaters. The
process coverage also displays what areas certain
techniques focus on and what process steps need
more research from both academia and the industry.
• Means that a process is completely covered.

◦ Means that the process is only partially covered.
Coverage has been evaluated based on a number of
characteristics of each process step, but for the sake
of brevity we cannot go into more detail. For in-
stance, partial support for “send update” means that
there are means to get the update to the customer,
such as a release repository and communication
channels. Full support for “send update” means that
push technology is also available.

2.4. Discussion

When looking at the process coverage of the
various techniques, there are clear distinctions be-
tween the types. One of those distinctions is that
current package deployment tools do not support
any form of vendor feedback. We will not discuss
each type of updater.

The generic product updaters (GPUs) cover
many of the process steps. Especially in the area
of licensing and customer interaction the GPUs are
strongly represented. Firstly, the GPUs have to be
used by different parties, sometimes even using

5www.installshield.com
6www.powerupdate.com

P
ro

du
ct

N
am

e
Ty

pe
C

us
to

m
er

in
te

ra
ct

io
n

T
ra

ns
fe

rr
al

D
ep

lo
ym

en
t

Li
ce

ns
in

g
R

ec
ei

ve
In

fo
A

dv
er

tis
e

U
pd

at
e

Ve
nd

or
F

ee
db

ac
k

R
ec

ei
ve

U
pd

at
e

S
en

d
U

pd
at

e
In

st
al

l
U

pd
at

e
R

ol
lb

ac
k

R
em

ov
e

R
e-

co
nfi

gu
re

A
ct

iv
at

e
U

pd
at

e
D

ea
ct

iv
at

e

P
ow

er
U

pd
at

e
G

P
U

◦
◦

◦
•

◦
◦

•
In

st
al

lS
hi

el
d

G
P

U
◦

◦
◦

•
◦

◦
•

•
•

R
ed

C
ar

pe
t

G
P

U
•

•
•

•
•

•
◦

•
◦

S
of

tw
ar

e
D

oc
k

G
P

U
•

•
•

•
•

•
•

•
•

F
ile

W
av

e
G

P
U

◦
•

◦
◦

◦
◦

•
•

A
P

T
P

D
T

•
◦

•
•

R
P

M
-u

pd
at

e
P

D
T

•
◦

•
•

N
ix

P
D

T
•

◦
•

•
•

•
S

W
U

P
P

D
T

•
◦

◦
•

P
or

ta
ge

P
D

T
◦

◦
•

◦
•

◦
•

•
Lo

ki
U

pd
at

e
V

P
U

◦
◦

•
◦

◦
E

xa
ct

P
U

V
P

U
◦

◦
◦

•
◦

◦
◦

◦
M

S
S

U
S

V
P

U
•

•
◦

•
◦

◦
Li

ve
U

pd
at

e
V

P
U

•
•

•
◦

◦
•

•
Le

ge
nd

:•
F

ul
l

su
pp

or
t;
◦

P
ar

tia
l

S
up

po
rt

G
P

U
:

G
en

er
al

pr
od

uc
t

up
da

te
r;

V
P

U
:

Ve
nd

or
pr

od
uc

t
up

da
te

r;
P

D
T

:
P

ac
ka

ge
de

pl
oy

m
en

t
to

ol

TABLE I

UPDATE TECHNIQUEPROCESSCOVERAGE



different platforms, and therefore need to provide
as many different update scenarios as possible.
Secondly, the GPUs in this evaluation are, with the
exception of the Software Dock [8], commercial
tools, and therefore licensing and customer interac-
tion are required. Finally, when compared to other
updaters, the GPUs have most options for vendor
feedback, which is a commercially attractive solu-
tion for getting feedback from customers.

The package deployment tools (PDTs) are tools
specifically designed to deploy and install packages
on (usually) open source based systems. These
systems are often extended with external tools from
which our evaluation abstracts. The tools therefore
cover all standard process steps strongly, but in the
areas of customer interaction and licensing they
are not sufficient. The reasons for this are part of
the nature of package deployment. Firstly, issues
such as vendor feedback are solved on another
level, usually through bug reporting systems and
developer communities. Secondly, licensing is not
an issue, since most of the software available in
the open source community is free.

Vendor product updaters (VPUs) are generally
weaker in the areas of transferral and deployment,
yet stronger in the areas of customer interaction and
licensing. In the area of customer interaction the
VPUs are strongly represented, because that is their
”bread and butter”. One clear distinction between
VPUs and GPUs is that removal and rollback is not
supported in most VPUs. Whereas GPUs assume
that the deployed products will be removed, VPUs
assume their products and updates will remain
deployed forever, which is not surprising in the
case of updates for a virus removal tool or security
updates. VPUs are have restricted functionality,
because they have been designed to only perform
these steps for one product and one way of vendor-
customer interaction. We see that many of the
methods used in VPUs are simplifications of the
more complex software update models.

3. DELIVERY AND DEPLOYMENT

Two steps in the proposed process model form
the core of our model, being delivery and de-
ployment. In this Section the process steps of
delivery and deployment are further explained. The
updating techniques are then evaluated against the
provided definitions.

3.1. Delivery

Delivery formats identify many characteristics
of updaters. Some updaters, such as PDTs focus
on the sole delivery of packages, whereas GPUs

attempt to support the full myriad of delivery
formats. Delivery formats affect the size of updates
that are delivered to customers. The choice of
delivery format therefore affects the total model of
delivery, especially in an environment with limited
resources.

New configurations can be delivered to cus-
tomers in different ways. The configurations can
be transferred in the following formats:

• Packages of Components -A package of
components can be delivered to a customer.
Usually these packages first need to be un-
packed, before they can be installed and acti-
vated. Examples of techniques that use pack-
ages are RPM-update, APT, DeployMe, Red
Carpet, Portage, and Nix.

• Components -A separate component consists
of a batch of files.

• Files - The simplest form of transfer data
are separate files. These files can be licenses,
configuration settings, and binaries.

• File deltas - Differences between a customer
site configuration and a vendor site configura-
tion can be expressed as file deltas. File deltas
can be transferred using efficient algorithms
such as Rsync [9]. A file delta is a listing
of differences between two file versions, with
which any of the two versions can generate
the other version. Sending just the difference
between files is more efficient than sending
the complete file.

Without some pre-processing at the customer
site, each of these formats would place some
restrictions on the final deployment environment.
However, when correctly assembled before deploy-
ment these formats are interchangeable. For exam-
ple, file deltas for a complete component can be
used to generate the new component. The chosen
delivery format(s) affect different factors, such as
the size of updates and the deployment method, and
together with the deployment issues and deploy-
ment policies uniquely identify an updater. Service
packs are similar to component packages in our
delivery formats.

3.2. Deployment

The process of installing updates introduces
most complexity for software vendors. The soft-
ware architecture of a system determines the ex-
tensibility of the system, whether the update can
occur at runtime or not, and whether there are
scripting tools available to perform certain tasks
(such asMake). Finally, dependencies need to be
checked during deployment, such as dependencies



on the operating system, the presence of certain
components, the compatibility between the update
and the current customer configuration, and many
others.

To deploy or install the delivered software,
a choice for an appropriate deployment method
needs to be made. Some of these metods are:

• Overwrite - The deployment method em-
ployed most often by software vendors is the
method of overwriting the application files,
license files, or configuration settings. The
solution bases itself on the assumption that the
deployed set of files or components does not
change over time due to external forces. There
is no way to rollback an overwrite, unless the
customer is using a versioned file system. One
example of an overwriting update method is
the Windows Updater which will first unregis-
ter a dll, overwrite it with a newer version, and
register it again. Another example is the Exact
Software Product Updater, which compares all
the versions of the locally available files to the
available files on the release site. When there
are differences, the product updater overwrites
only the different files on the customer site.

• Plug-in - Plug-ins are often used to create
extensible configurations. The method of us-
ing Plug-in architectures simply support the
extensions of a configuration by addition and
removal of unique Plug-ins. Other Plug-in
[10] can handle different versions of the same
Plug-in as well.

• Deinstall/Reinstall - For many applications
an update constitutes the uninstallation of all
previous installed versions of that applica-
tion7.

In the open source community applications are
often delivered and deployed as source distribu-
tions. These source distributions first need to be
compiled, which can be seen as a separate step
in the deployment process. Well known systems
that assist with source distributions are Maak [11]
and RTools [12]. It should be noted that the three
deployment methods mentioned above can just as
well be applied to source distributions.

Other issues that deal with deployment are the
ability of a technique to provide scripting, to do
dependency analysis, to perform integrity checking,
to deploy multiple versions of the same component,
and to enable push technology. Each of these abil-
ities puts specific requirements on the deployment
and implementation architecture.

7Examples are: NullSoft Winamp, LavaSoft Ad-Aware, etc

Scripting is used to perform post deployment
configuration on an update. Such scripts can be
used to execute, activate, configure, compile and
build an update. Scripts can be shell scripts, which
are often used by package deployment tools, but
also a specifically designed language that registers
or unregisters Plug-ins. In the framework presented
in Figure 1 we did not yet introduce verification of
an update, such as synchronisation checks, signa-
tures, and completeness checkers. In each of the
three final states, a customer should be able to
perform verification steps.

Dependency analysis is a much studied area of
deployment [13] and aims to provide a complete
and consistent set of components. To achieve this
goal many problems need to be tackled, such
as support for multiple versions of components,
automatic resolution of dependencies, and explicit
management of the dependencies. One specific
ability of dependency checking that places extra
requirements on the deployment architecture is
the support for multiple versions of a component.
Multiple version support is therefore part of the
evaluation framework and is a technology that en-
ables switching between configurations and having
two components depend on different versions of
another component. Finally, push technology puts
extra requirements on the implementation of the
messaging architecture of an updater. A customer
needs to be able to receive updates automatically
and the vendor needs to be aware of all the cus-
tomer workspaces.

3.3. Evaluation of Delivery and Deployment

The evaluation of the following techniques in-
cludes more specific definitions of the delivery and
deployment process steps than the evaluation done
by Carzaniga et al [1], because the definitions need
to be made more explicit. The evaluation shows
that updaters grouped by just the process coverage
framework do not distinguish subtle yet important
differences in delivery formats and deployment
policies. These differences have been listed here,
and provide a more detailed and defined evalua-
tion framework. To obtain the detailed framework,
we have focussed on delivery and deployment.
Delivery and deployment are more complex than
the other process steps, because there are more
alternatives to efficiently achieve the goals that are
part of these process steps.

The evaluation in Table II includes a description
of what formats of delivery are used by each
updater. The evaluation also describes what deploy-
ment methods and architectures are supported by



each updater. Finally, some issues that uniquely
identify an update technique are evaluated. The
criteria for evaluation are similar to those for Table
I.

From the evaluation of the updaters against the
descriptions of delivery and deployment we deduce
the following. To begin with, the generic prod-
uct updaters (GPUs) support all different delivery
formats. Especially the two most advanced tools
in this category, PowerUpdate and InstallShield,
are the only tools able to deal with all formats
of delivery. These are also the only tools that are
able to send across file deltas, instead of complete
files. The GPUs are not well represented in the
deployment feature area, because these features are
specific to deployment environments, from which
the GPUs wish to abstract. However, GPUs are
quite able when it comes to commercially inter-
esting push technology, especially when compared
to the other updater categories. GPUs generally do
not make use of Plug-in technology, which can be
explained by the fact that Plug-ins are largely de-
pendent on the Plug-in software architecture. GPUs
are strongly represented for the feature of scripting
since it is required to perform post installation
configuration steps.

The package deployment tools (PDTs) support
only package deployment and generally only sup-
port deinstallation and reinstallation to update a
package. Scripting and dependency analysis are
always present in package deployment systems,
to enable post deployment configuration and com-
pleteness checking with other components. PDTs
do not use push technology, which can be ex-
plained by the fact that (open source) users of these
PDTs often do not want others to be in charge
of their software. PDTs are strongly represented
in the areas of dependency analysis and integrity
checking. The dependency analysis is required for
PDTs because packages have many dependency
relationships with other packages. Automatic reso-
lution of these dependencies therefore is a valuable
feature. Integrity checking prevents instability and
ensures authenticity.

Finally, the Vendor product updaters (VPUs) all
depend on files as the primary format of transfer
to the customer. These files generally overwrite
the previous installation, except when these files
are special Plug-ins, such as virus definitions for
LiveUpdate or unregistered dlls for Microsoft SUS.
The VPUs do not incorporate much dependency
analysis, scripting, or integrity checking. Finally,
the VPUs do not make use of push technology.

4. DISCUSSION ANDFUTURE WORK

The aim of this paper is to show that there is
no product updater that provides all functionalities
required by software vendors. On the other hand
the development of VPUs is not an efficient solu-
tion, since each software vendor is implementing
a subset of the process steps shown in our frame-
work. It is surprising that no GPU has yet been
adopted universally by the industry. One of the
reasons for presenting the framework in Figure 1
and the typology is to redefine the requirements on
and re-establish the need for such GPUs.

4.1. Typology

The types presented in the typology all have
specific requirements and functionalities. To be-
gin with GPUs are generally commercial tools
focussed on deploying software on Windows based
systems, with the exception of PowerUpdate, which
is now focussing on multi platform deployment.

Secondly, the discussed PDTs have some inter-
esting characteristics. Nix, for instance, is a “stop
the world” system, whereas Portage and RPM
simply extend current functionality. Nix, however,
stores components in isolation from each other in
a part of the file system called the store, where
each component has a globally unique name that
enables pointer scanning. The construction of com-
ponent configurations and the resulting closures are
described using Fix store expressions. Safe deploy-
ment is achieved by distributing these expressions,
along with all components in the store referenced
by them.

Another interesting PDT is Portage. Portage,
as most other package management system, can
resolve dependencies; but one feature that makes it
different is the fact that it also supports conditional
dependencies. By changing one configuration vari-
able in a Portage configuration file it can disable
optional support (and thus the need to depend on it)
for particular features or libraries at compile time.
In addition Portage enables multiple versions of
packages installed simultaneously to satisfy the de-
mands of other packages. The traditional approach
to this problem has been to treat different versions
of the same package as different packages with
slightly different names, such as with RPM and
APT.

Thirdly, there are advantages and disadvantages
to VPUs. To begin with there are commercial
advantages to VPUs. An important reason for using
VPUs instead of GPUs for software vendors is
that they themselves are responsible for the update
processes of their products. For Norton Anti-Virus



Delivery Deployment Deployment
Format Policy Issues

Ty
pe

P
ac

ka
ge

C
om

po
ne

nt

F
ile

s

F
ile

de
lta

O
ve

rw
rit

e

P
lu

g-
in

D
e-

R
ei

ns
ta

ll

S
cr

ip
tin

g

D
ep

en
de

nc
y

A
na

ly
si

s

In
te

gr
ity

C
he

ck
in

g

M
ul

tip
le

Ve
rs

io
ns

pu
sh

PowerUpdate GPU • • • • • • • •
InstallShield GPU • • • • • • •
Red Carpet GPU • • • • • • • ◦
Software Dock GPU • • • • • • • ◦ ◦ •
FileWave GPU • • •
APT PDT • • • • •
RPMupdate PDT • • • • •
Nix PDT • • • • • • •
SWUP PDT • • • •
Portage PDT • • • • • •
Loki Update VPU • • •
Exact PU VPU • •
Windows XP SUS VPU • • • ◦ ◦
LiveUpdate VPU • • • •

Legend:• Full support;◦ Partial Support
GPU: General product updater; VPU: Vendor product updater;

PDT: Package deployment tool

TABLE II

UPDATE TECHNIQUEBUSINESS ANDDEPLOYMENT ISSUES

for example, Norton is completely responsible for
security procedures, network management, and all
other aspects having to do with product updating.
Often VPUs are a cheap solution over GPUs,
however, VPUs can only cover a small problem
area compared to general product updaters and the
complexity of the software updating process grows
as requirements increase. When requirements are
stated for the product updater to support different
versions, customers, customisations, and licenses,
it soon becomes apparent to the software ven-
dor that specialized knowledge is required. The
limited availability of such tools and the cost of
implementing a GPU, have lead many software
vendors to develop their own VPUs and essentially
reinvent the wheel. Another disadvantage is that the
updaters commonly perform destructive updates.
Microsoft update services, for instance, overwrites
dlls, without any rollback functionality.

A category of update technology that is not
specified in this paper is runtime updating, because
run-time updating is not widely applied for soft-
ware products yet. Much work has been done in
the areas of runtime and dynamic updating [14].
Providing a service or system that is available 24

hours a day is a commercially attractive solution
to many problems. These systems of course also
evolve with time, thereby requiring some extensible
mechanism. We shall not list these mechanisms
here, but Ajmani has created a list of mecha-
nisms and component frameworks [2]. There are
two important factors to consider when looking
at runtime updating, being continuity and state
transfer [15] [16]. An interesting technique, de-
signed by Ajmani and Liskov [10], attempts to
support many different versions of one component
at runtime, thereby enabling runtime extension.
Runtime updaters, however, are generally focussed
around one technology, such as CORBA or J2EE,
and do not focus on any other process modules
than transferral and deployment. Simple versions of
these technologies are often used in other product
updaters, such as Microsoft SUS or LiveUpdate.

4.2. Delivery and Deployment

The discussed features of the deployment pro-
cess introduce many questions about software up-
dating techniques. To begin with, the file delta for-
mat and push technology is not (yet) strongly repre-
sented among the evaluated software updaters. The



absence of the file delta format can be explained
by the fact that bandwidth and diskspace are cheap
nowadays and therefore the time and money in-
vested in such technology is not profitable. The
fact that push technology is hardly available can
be explained by the type of software evaluated.
Most of the techniques mentioned in this paper are
product updaters and customers are more interested
in having a working product than a product that is
acutely and always up to date. Secondly, multiple
versions are only supported by technologies from
academia (software dock, Nix) and Portage. The
complexity of dealing with multiple versions of the
same component, which is crosscutting through a
system, has not received sufficient attention.

4.3. Future Work

One requirement that has as of yet been undis-
cussed is what Carzaniga et al [1] refer to as
site abstraction, the ability to abstract from the
vendor-customer model and introduce one or more
redistribution sites into the model. Carzaniga et al
already refer to a redistribution tool, the Interdock,
in their model, yet no implementation has yet been
created. An open research issue is to redefine such
an architecture where (re)distribution of compo-
nents, files, licenses, and configuration settings are
modelled.

The aim of the issues listed in this paper is
to explicitly define software update problems ex-
perienced in the field. One striking conclusion
that can be drawn from the evaluation is that re-
configuration is highly underestimated for product
updating.

The listed techniques can support the industry
and can be inspirational for those designing their
own technique. The presented material paves the
way to build a generally applicable product updater.
However, many of the problems mentioned in this
paper have already been solved by tools such as
Nix and the Software Dock. Our plan is to reuse
some of these techniques.

4.4. Conclusion

To conclude, this paper shows that there is
no (general) product updater that provides all
functionalities required by software vendors. The
contribution of this article is threefold. To begin
with we present a framework that models the
software update process and uncovers the areas of
deployed software evolution that require more re-
search. Also, we provide a typology that classifies
software updaters. Finally, we use the framework
to compare current update tools.

REFERENCES

[1] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek,
D. Heimbigner, and A. Wolf, “A characterization frame-
work for software deployment technologies,” 1998.

[2] S. Ajmani, “A review of software upgrade techniques for
distributed systems,” Aug. 2002.

[3] S. Clegg, “Msc independent study: Evolution in extensible
component-based systems,” 2003.

[4] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software
Release and Deployment at Exact, A Case Study Report.”
Technical Report CWI, 2004.

[5] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a
memory management discipline on software deployment,”
in IEEE Workshop on Software Engineering (ICSE’04).
IEEE, 2004.

[6] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Integrated
SCM/PDM/CRM and Delivery of Software Products to
160.000 Customers,” insubmitted, 2005.

[7] R. S. Hall, D. Heimbigner, and A. L. Wolf, “Evaluating
software deployment languages and schema,” inICSM,
1998, pp. 177–196.

[8] R. Hall, D. Heimbigner, and A. L. Wolf, “A coopera-
tive approach to support software deployment using the
software dock,” inInternational Conference on Software
Engineering, 1999, pp. 174–183.

[9] A. Tridgell, “Efficient algorithms for sorting and synchro-
nization,” Ph.D. dissertation, 1999.

[10] S. Ajmani, “Automatic software upgrades for distributed
systems,” Apr. 2003, ph.D. thesis proposal.

[11] E. Dolstra, “Integrating software construction and soft-
ware deployment,” in11th International Workshop on
Software Configuration Management (SCM-11), ser. Lec-
ture Notes in Computer Science, B. Westfechtel, Ed., vol.
2649. Portland, Oregon, USA: Springer-Verlag, May
2003, pp. 102–117.

[12] H. E. Harrison, S. P. Schaefer, and T. S. Yoo, “Rtools:
Tools for software management in a distributed computing
environment,” Summer 1988, pp. 85–93.

[13] M. Larsson and I. Crnkovic, “Configuration management
for component-based systems,” inProc. Int. Conf. on
Software Engineering (ICSE), May 2001., 2001.

[14] M. W. Hicks, J. T. Moore, and S. Nettles, “Dynamic soft-
ware updating,” inSIGPLAN Conference on Programming
Language Design and Implementation, 2001, pp. 13–23.

[15] V. Mencl, Z. Petrova, and F. Plasil, “Update description
language,” inWeek of Doctoral Students WDS 99, 1999.

[16] R. Bialek and E. Jul, “A framework for evolutionary,
dynamically updatable, component-based systems,” inThe
24th IEEE International Conference on Distributed Com-
puting Systems Workshops, Hachioji, Tokyo, Japan, March
23-24 2004, pp. 326–331.

ACKNOWLEDGMENT

We would like to thank Eelco Dolstra for our
fruitful discussions on configuration settings. We
would also like to thank Sameer Ajmani for provid-
ing an unpublished list of update techniques on-line
and Tijs van der Storm for extensively reviewing
the paper. Finally, we would like to thank Arie van
Deursen for his helpful review.

APPENDIX

SHORT DESCRIPTION OFUPDATE

TECHNOLOGIESUSED

PowerUpdate - PowerUpdate is a commercial mul-
tiplatform software updating and delivery tool designed
to maintain software applications. PowerUpdate can be



integrated into integrated development environments and
supports features such as environment analysis and cross
platform deployment. PowerUpdate can also check in-
tegrity of products on the customer side.

InstallShield - InstallShield is PowerUpdate’s largest
competitor and differs from PowerUpdate in the facts
that it is only suitable for deployment on Microsoft based
environments and cannot do integrity checking.

Red Carpet - Red Carpet is a software deployment
tool for Linux. Red Carpet works through installtion
channels that can be used to communicate and deploy
updates at customers. Red Carpet supports automatic de-
pendency and conflict resolution. One important feature
of Red Carpet is that they provide Ximian, which is
basically a server that contains many different packages
that can be deployed for free.

Software Dock - The Software Dock, a project that
started at the University of Colorado, is a system of
loosely coupled, cooperating, distributed components
that are bound together by a wide area messaging and
event system. The components include field docks for
maintaining site specific configuration information by
consumers, release docks for managing the configuration
and release of software systems by producers, and a
variety of agents for automating the deployment process.

FileWave - FileWave is quite similar to Red Carpet
with a lot less features. Mostly, FileWave focusses on
deployment of applications on Mac OS X environments,
though recently they have started to support Microsoft
based environments as well.

APT - The Advaced Package Tool installs packages
and manages dependencies automatically for Debian
environments. APT has been implemented for Red Hat
by Connectiva.

RPMupdate - RPM is the Red Hat Package Manager.
Nix - Nix is a system for software deployment de-

veloped by the Trace research group. It supports the
creation and distribution of software packages, as well
as the installation and subsequent management of these
on target machines.

SWUP - Swup is short for “Software Updater” and
can automatically update packages together withcron,
independent of the package manager.

Portage -Portage is the package manager for Gentoo
Linux. Portage has some slight advantages over the
other package deployment tools, such as conditional
dependencies.

Loki Update - The Loki Update Tool is a small tool
written to support the most trivial tasks of updating, such
as downloading and installing.

Exact PU - The Exact Software Product Updater
provides the mechanisms for delivering packages and
updates to the customer. When the product updater is
run at the customer site, it needs to be provided with
an installation location (CD ROM or the Web), a license
file and a local installation that is updated.

Microsoft SUS - Microsoft Software Update Service
is used for Microsoft Office Update and Windows Update
to deliver service packs, bug fixes, and security updates
to customers. The updater works mainly at runtime.

LiveUpdate - Symantec provides different types of
protection systems for computers connected through a
network. Symantecs Antivirus and Firewall software are
widely used, and are updated through LiveUpdate. Our

evaluation also includes the license tool LiveSubscrip-
tion, because it covers a relevant part of the update
process.


