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ABSTRACT
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terms may contain bound variables, (ii) to the weakly orthogonal case, where rules may have
(trivial) conflicts, and (iii) to weak head normalisation (WHN), where terms have head normal
forms. By adapting the techniques introduced for each of the three extensions separately, we
even are able to show the result generalises to each pair of combinations and to various
lambda-calculi. The combination of all three extensions remains open however.
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1 Introduction

.

We continue our study of the difference between Weak Normalisation (WN)
and Strong Normalisation (SN) started in [10], to which we refer the reader
for ample motivation. There we showed that although WN in general does not
imply the absence of infinite reductions, it does imply acyclicity (AC), i.e. the
absence of cyclic reductions in the case of orthogonal first-order term rewriting
systems (TRS). The prototypical such TRS witnessing both phenomena is:

a → f(a)

f(x) → b

with typical reduction ladder (see [10]) as in Figure 1. As exemplified by the

f(f(f(b)))

a f(a) f(f(a))

b f(b)

f(f(f(a)))

f(f(b))

f(f(f(f(a))))

Figure 1. Infinite reduction ladder in orthogonal TRS which is WN but not SN

figure, this TRS is WN. By the main result of [10], it therefore does not admit
cyclic reductions, although it obviously does admit infinite reductions. From
acyclicity we conclude, using that there are only finitely many terms of a given
size, that the terms along such infinite reductions must grow unboundedly in
size, as witnessed by the reduction ladder in the figure.

In this paper, we extend the WN ⇒ AC result, as obtained in [10] for
orthogonal first-order term rewriting systems, into three distinct directions:

(i) to the higher-order case, where terms may contain bound variables,

(ii) to the weakly orthogonal case, where rules may have (trivial) conflicts,
and

(iii) to weak head normalisation (WHN), where terms have head normal
forms.

In particular, the first of these extensions pertains to the λβ-calculus [4].
In itself this is not interesting as the λβ-calculus is not WN. We will show
however that our result carries over to its sub-calculi and in particular to
typed λ-calculi, for which WN often can be shown. Therefore, we provide a
partial answer to:

Conjecture 1.1 (Barendregt–Geuvers–Klop) WN ⇒ SN, for typed λβ.

In particular, although we do not show that infinite reductions do not exist
in such a WN typed λβ-calculus, it does follow that if an infinite reduction
would exist, then the situation is as in the prototypical TRS above: the infinite
reduction is acyclic and the terms along it grow unboundedly in size.
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We also show that the result pertains to each pair of combinations of the
individual extensions presented above. In particular, combining the first two
extensions, the result pertains to weakly orthogonal fully-extended higher-
order pattern rewrite systems (PRSs [13]). Although the λβη-calculus and its
typed sub-calculi are the prototypical examples of weakly orthogonal PRSs,
they are not fully-extended [11], so our result does not pertain immediately to
them. However, we show that our methods can be adapted to these as well,
yielding the same partial answer to the Barendregt–Geuvers–Klop conjecture
for typed λβη-calculi as for such calculi without η.

The combination of all three extensions remains open however:

Conjecture 1.2 WHN ⇒ AC, for weakly orthogonal PRSs.

We conclude this introduction with an overview of the rest of the paper. In
Section 2 we recapitulate the part of the theory of projections and residuals for
first-order orthogonal TRSs [17, Ch. 8] pertinent to this paper, and adapt it to
the higher-order and the weakly orthogonal case. The subsequent Sections 3–5
constitute the technical core of the paper. In particular, in Section 3 we adapt
various proof techniques from the literature, see e.g. [10,16,12], to obtain each
of the three individual generalisations mentioned above. In Section 4, we then
consider the (three) pair-wise combinations of each of the separate generalisa-
tions. Of these, only the combination of weak orthogonality with weak head
normalisation turns out to be non-trivial. The proof of this combination, for
first-order term rewriting systems, will take up the largest part of the paper.
The proof introduces some novel techniques based on the projection of cyclic
reductions and on covering clusters of overlapping redex-patterns by chains of
such. Finally, in Section 5, we turn our attention to λ-calculi, in particular to
λβ-calculi, λβη-calculi, and the λ-calculi with explicit substitutions λx− and
λσ. Sections 3–5 can be read independently from each other.

Throughout, the rewriting systems considered are left-linear.

2 Preliminaries on projection

In this section we present the kind of rewriting systems considered in this
paper, and show that they have projection (in a technical sense to be defined).
Projections will be the main tool employed in the subsequent sections. We
illustrate projections for each kind of rewriting system by means of examples,
which will serve as running examples throughout the rest of the paper.

This section is mainly a recapitulation of known results, with the exception
of the particular projection employed in the weakly orthogonal case.

2.1 ARSs and projections

We briefly recapitulate the notions of cycle, projection and extension, which
are crucial in this paper, at the level of abstract rewriting systems (ARSs). In
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particular, we first define projections of steps, which will then be generalised
to projections of reductions. See [17,3] for introductions to ARSs. We employ
ARSs as defined in [17, Def.8.2.2], a, b, c, . . . to range over objects, and φ, ψ,
χ, . . . to range over steps. We employ σ, τ , υ, . . . to denote (finite or infinite)
reductions.

A loop is a step having the same source and target. A non-empty reduction
in a given ARS→ is a cycle, if it is a loop in the associated reduction-ARS�.
If the source or target of a loop (cycle) is a, we will speak of a loop (cycle) on
a. In this paper, we will be interested in acyclicity (AC) of rewriting systems,
i.e. in the absence of cycles.

Recall, e.g. from [17, Def. 1.1.8(v)], that an ARS has the diamond property
if any pair of co-initial steps can be completed into a ‘diamond’ by a pair of
co-final steps (see Figure 2 left). We say that an ARS has projection if there

ψ/φ

ψ

φ/ψφ

Figure 2. Diamond property and projection

is a functional way for completion.

Definition 2.1 An ARS → is said to have projection if there is an operation
/ from pairs of co-initial steps φ, ψ to steps such that (see Figure 5 right):

• the target of ψ is the source of φ/ψ, and

• the targets of φ/ψ and ψ/φ coincide.

φ/ψ is the residual of φ after ψ, which is obtained by projecting ψ over φ.

An ARS has projection if and only if it has the diamond property.

Proposition 2.2 If → has the diamond projection, then it has projection.

Proof In order to define the function /, we consider an arbitrary unordered
pair φ, ψ of co-initial →-steps. Ordering the pair arbitrarily, say into φ, ψ,
the resulting peak can be completed into a diamond by some valley. Choose
among these valleys an arbitrary one, say the ordered pair ψ′, φ′ of co-final
→-steps. Then in case φ is distinct from ψ, we can simply set φ/ψ = φ′ and
ψ/φ = ψ′. In case φ and ψ are identical we must choose, in order to remain
functional, arbitrarily only one of these, say φ/φ = φ′. 2

In particular, a constructive proof that an ARS has the diamond property
yields a projection.

Remark 2.3 Note that by the diamond property, if there is some step φ to
an object a, then there is some step from that object a as well. This follows,
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since completing the peak φ, φ, yields at least one such step. Hence the normal
forms are the isolated points of the reduction graph of such an ARS!

Remark 2.4 Abstract residual systems as introduced in [17, Sec. 8.7], can be
seen as ARSs having projection such that the projection operation moreover
satisfies some algebraic laws. We expect that of these laws the so-called iden-
tity laws hold in all our applications below, after enriching ARSs with looping
steps, but conjecture that the so-called cube law cannot be made to hold in
general, cf. Remark 2.26. Hence we will not base our theory on residual sys-
tems. (However, orthogonal term rewriting systems do yield residual systems.)

Having projection is inherited by certain sub-ARSs [17, Def. 8.2.5(i)].

Lemma 2.5 Let  be a sub-ARS of the ARS → which has projection /.

•  has projection, if it is closed under /-projections.

•  is closed under /-projections, if it is closed under →-reduction.

Hence, given a subset of the objects of an ARS having projections, to show
the sub-ARS induced by the subset has projections, it suffices to show that it
is closed under reductions.

Projection extends from steps to reductions by tiling (see Figure 3).

σ

ψ/φψ

φ

φ/ψ

σ/τ

τ

Figure 3. Projection of infinite reduction σ over finite reduction τ by tiling

Definition 2.6 Let → be an ARS having projection /. Then the projection
of a finite or infinite reduction over a finite one is defined by (cf. [9]):

• σ/∅ = σ,

• σ/(ψ · τ) = (σ/ψ)/τ ,

• ∅/ψ = ∅, and

• (φ · σ)/ψ = (φ/ψ) · (σ/(ψ/φ)).

In this paper, we will be interested in projections of certain infinite reduc-
tions and cycles, such that their residuals have the same shape again.
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Definition 2.7 A property of reductions is said to be preserved by projection,
if whenever it holds for a given finite or infinite reduction σ, then it also holds
for the residual σ/τ of σ after any finite co-initial reduction τ .

Note that the property of being of given length is preserved by projection.

In Section 4 the concept of a reduction being an extension of another,
co-initial one, will play an important role. Since it seems to have some in-
dependent interest (cf. co-finality [17, Def. 1.1.15(iv)]), we present it here.

Definition 2.8 Let φ, ψ be co-initial steps in some ARS. If there is a reduc-
tion from the target of φ to the target of ψ, then ψ is an extension of φ. We
say that the ARS creates a given property, if for every step φ, there exists an
extension of φ having the property.

It is easy to see that extension is reflexive and transitive, i.e. a quasi-order.
Note that, starting with the ARS � of reductions, a reduction σ trivially
extends any of its prefixes, including σ itself and the empty reduction from
its source. Moreover, to show that τ is an extension of σ, it suffices to show
there is a reduction from the target of σ to some object on τ .

Lemma 2.9 Let → be an ARS having projection. Then if → creates a given
property, then the reduction-ARS � creates the property (extended stepwise)
as well.

n

φ

σ σ′

φ′

creation
extension

projection

IH
n

Figure 4. Proof of Lemma 2.9

Proof The proof is by induction on the length of a reduction. If the reduction
is empty, then there is nothing to prove. Otherwise, let the reduction consist
of a step φ followed by a reduction σ say of length n (see Figure 4). By
assumption there are a step φ′ having the property, and a reduction τ from
the target of φ to the target of φ′. By the ARS having projection, there are
reductions τ/σ and σ/τ completing σ, τ into a diamond. As noted in the
previous paragraph σ/τ has length n again, so we may apply the induction
hypothesis to it, yielding a reduction σ′ extending σ/τ via reduction τ ′ having
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the property. Therefore, all steps of the reduction consisting of φ′ followed
by σ′ have the property, and this reduction is an extension via the reduction
consisting of τ/σ and τ ′. 2

Note that the lemma generalises to infinite reductions (not needed here).
In this paper, we will be interested in creation of properties for computations
of results, i.e. for reductions whose target is an element of a set of results, e.g.
the set of head normal forms. As sets of results are closed under reduction,
extensions of such reductions will be computations of results again.

2.2 Orthogonal TRSs and projections

As it will be the basis for our generalisations, we briefly recapitulate the well-
known fact that both parallel step and multi-steps in orthogonal TRSs have
projection [9,12,17].

We assume basic knowledge of the theory of first-order term rewriting
systems (TRSs) see [17,3]. We employ TRSs as defined in [17, Def. 8.2.15].

Example 2.10 Consider the term f(a) in the orthogonal TRS with rules:

a → b

f(x) → g(x)

There are two steps having f(a) as source, obtained by contracting either the
a-redex-pattern or the f -redex-pattern:

φ:f(a) → f(b)

ψ:f(a) → g(a)

The targets f(b) and g(a) of the steps are distinct. Still they do have a
common reduct g(b), obtained by contracting the ‘other’ redex-patterns, i.e.
the f -redex-pattern and the a-redex-pattern, respectively (see Figure 5 left):

ψ/φ:f(b) → g(b)

φ/ψ:g(a) → g(b)

Intuitively, the f -redex-pattern in f(b) can be thought of as the residual of
the f -redex-pattern in the original term f(a), after the step φ. Similarly, we
have that the a-redex-pattern in g(a) is the residual of the a-redex-pattern in
f(a) after the step ψ.

The phenomenon witnessed by the example is that of projection as defined
in Definition 2.1: for a given peak s←φ t→ψ u from some term t, a common
reduct v is found by projecting each step over the other and performing the
respective residual steps s→ψ/φ v ←φ/ψ u. Because of Remark 2.3, the single
step ARS →R [17, Prop. 8.2.22(i)] associated to a TRS R in practice never
has projection. However its associated multi-step and parallel step ARSs ◦−→R

and q−→R [17, Fig. 8.8] do have projection, in case R is orthogonal. 4

4 Therefore, neither the multi-step nor the parallel step ARS has normal forms. For our
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f(a)

f(b)

ψ
g(a)

g(b)

φ φ

I(Kz)

I(λy.z)

ψ
Kz

λy.z

Figure 5. Projection for a TRS and for the λβ-calculus

Example 2.11 Consider the co-initial parallel steps (which, incidentally, are
single steps as well) φ:f(a) q−→ f(b) and ψ:f(a) q−→ g(a, a) in the orthogonal
TRS with rules

a → b

f(x) → g(x, x)

First, note that the projection of φ over itself, yields the looping parallel step
φ/φ:b q−→ b, contracting ‘zero redexes in parallel’.

Next, note that projecting φ and ψ over each other indeed yields parallel
steps φ/ψ:f(b) q−→ g(b, b) and ψ/φ:g(a, a) q−→ g(b, b) having the same target.

Viewing φ and ψ as multi-steps (recall that parallel steps are a special
case of multi-steps) yields exactly the same construction. However, note that
although there does not exist a parallel step from the initial term f(a) to
the final term g(b, b), there does exist such a multi-step, namely the step
φ∪ ψ:f(a) ◦−→ g(b, b) contracting the union of the redexes contracted in φ,ψ.

Lemma 2.12 Let R be an orthogonal TRS. Then

• the multi-step ARS ◦−→R has projection,

• the parallel step ARS q−→R has projection, and

• the projection of a parallel step over a multi-step is a parallel step.

Proof For the first two items, see [17, Prop. 8.7.7] where the stronger property
is shown that these ARSs constitute so-called residual systems. For the third
item, employ that any multi-step can be developed into a series of parallel
steps and (repeatedly) use the second item. 2

A parallel step or multi-step contracting an empty set of redex-patterns is
said to be empty. If the residual of the reduction σ after τ consists only of
empty steps, then τ is said to eliminate or absorp σ.

2.3 Orthogonal PRSs and projection

We show that orthogonal higher-order pattern rewriting systems (PRSs) [13]
have projection. Here, we provide only some intuitions for higher-order rewrit-
ing and examples illustrating PRSs. We refer the reader to [17, Chapter 11], in
particular to Definition 11.2.23, for a gentle introduction and concrete defini-
tions.

purposes, and more generally for proving confluence results, this is irrelevant.

8



Ketema, Klop, Van Oostrom

Higher-order pattern rewriting systems are higher-order in the sense that
the objects being rewritten are terms which may contain bound variables.
More precisely, the terms are simply (Church) typed λ-terms modulo αβη over
some (user-defined) alphabet of simply typed constants. Rewrite rules consist
of pairs of terms as usual, but for first-order rewrite theory to carry over, left-
hand sides are restricted to so-called rule-patterns, making that critical pairs
and hence orthogonality can be determined.

Example 2.13 The terms of the untyped λ-calculus can be encoded as simply
typed terms of type Trm, by including the simply typed constants

app:Trm→(Trm→Trm), and

abs:(Trm→Trm)→Trm

into the alphabet and restricting variables to type Trm. To denote terms,
we apply the usual notational conventions for the λ-calculus except that we
suppress writing λs. For instance, the ordinary λ-term (λx.x)z is encoded as
app(abs x:Trm.x)z of type Trm. Using this encoding, the ordinary rule scheme
for β-reduction:

(λx.M)N →M [x:=N ]

with M , N meta-variables is now rendered as a proper rule:

M :Trm→Trm.N :Trm.app(absx:Trm.Mx)N → M :Trm→Trm.N :Trm.MN

Since the left-hand side is a rule-pattern [17, Def. 11.2.18], this is a PRS rule.
(Note how substitution in the right-hand side of the original rule scheme is
rendered by means of the application MN in the rule of the PRS.)

To see how λ-terms in this encoding are rewritten the β-rule, reconsider
the λ-term (λx.x)z which can be rewritten using the β-rule scheme as:

(λx.x)z → z

For the PRS encoding we have that app(absx:Trm.x)z expands to the term
(M :Trm→Trm.N :Trm.app(absx:Trm.Mx)N)(x:Trm.x)z where the left-hand of
the rule is explicitly present. Replacing in this term the left-hand side of the
rule by its right-hand side yields (M :Trm→Trm.N :Trm.MN)(x:Trm.x)z, which
reduces to z. Combining the expansion with the subsequent replacement and
reduction yields the expected PRS step:

app(abs x:Trm.x)z → z

For the sake of readability, we will henceforth employ ordinary notations
for λ-terms, where in fact we mean their higher-order encodings.

Orthogonality of PRSs is defined, as in the first-order case, as the ab-
sence of so-called critical pairs [17, Def. 11.6.17]. Therefore projections can
be computed by tracing residuals, as in the first-order case,

Example 2.14 The encoding of the λβ-calculus as a PRS is orthogonal since
it has no critical pairs. More specifically, the left-hand side of the β-rule does

9
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not overlap itself, it is orthogonal, so we conclude that the ordinary λβ-calculus
‘is’ an orthogonal PRS.

Consider the term I(Kz) = (λx.x)((λxy.x)z) in the λβ-calculus. There
are two β-reduction steps having I(Kz) as source, obtained by contracting
either the K-redex or the I-redex:

φ:I(Kz) →β I(λy.z)

ψ:I(Kz) →β Kz

The targets I(λy.z) and Kz of the steps are distinct. Still they do have
a common reduct λy.z, obtained by contracting the ‘other’ redexes, i.e. the
I-redex and the K-redex, respectively (see Figure 5 right):

ψ/φ:I(λy.z) →β λy.z

φ/ψ:Kz →β λy.z

Intuitively, the I-redex in I(λy.z) can be thought of as the residual of the
I-redex in the original term I(Kz), after the step φ. Similarly, the K-redex
in Kz is the residual of the K-redex in the original term I(Kz) after ψ.

Lemma 2.15 ◦−→H has projection, if H is an orthogonal PRS.

Proof See [17, Sec. 11.6.2] 2

Remark 2.16 Like for TRSs, the multi-step ARS of an orthogonal PRS even
constitutes a residual system. However, unlike for TRSs, the associated paral-
lel step ARS does not have projection in general for orthogonal PRSs. See [17,
Exs. 11.6.20].

In particular the (PRS encoding of the) λβ-calculus has projection; a fact
which is of course well-known as it is at the basis of the Tait–Martin-Löf
method for proving confluence [4].

Often the encoding of a rewriting system as a PRS yields spurious terms,
i.e. terms which are not the image of any object in the original system. For
instance, the usual encoding of the λβ-calculus as a PRS allows for terms con-
taining variables having arbitrary simple types (constructed from Trm), which
are not the image of any ordinary λ-term. It is easy to see that a 1–1 corres-
pondence is obtained when variables in terms are restricted to the base type
Trm. As the resulting subset of higher-order terms is closed under reduction,
the sub-ARS of ◦−→ induced by it, has projection again by Lemma 2.5.

2.4 Weakly orthogonal PRSs and projection

A rewriting system is defined to be weakly orthogonal in case all its critical
pairs are trivial. That is, left-hand sides are allowed to have overlap, but in
case one redex overlaps another one, the result of contracting either of them
is the same. Again for concreteness sake, we take [17, Def. 11.6.17(ii)] as
definition of weak orthogonality.

10
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Example 2.17 • The TRS with rules

P (S(x)) → x

S(P (x)) → x

is weakly orthogonal since both its two critical peaks are trivial:

P (x)← P (S(P (x))→ P (x)

S(x)← S(P (S(x))→ S(x)

• The PRS encoding of the λβη-calculus is obtained from λβ-calculus by
translating the ordinary η-rule scheme:

λx.Mx→M , if x 6∈M

in the same way as the β-rule scheme before, yielding: 5

M :Trm.absx:Trm.appMx→M :Trm.M

This resulting λβη-calculus is weakly orthogonal since it has two critical
peaks both of which are trivial. They are, reverting to standard notation:

MN ← (λx.Mx)N →MN

λy.M ← λx.(λy.M)x→ λx.M [y:=x]

where x 6∈ M in both peaks. (To see triviality of the second peak, recall
that we consider terms modulo αβη.)

In order to project multi-steps over one another in weakly orthogonal PRSs,
we must decide how to deal with the possibility that one of the multi-steps
contains a redex having overlap with a redex in the other multi-step.

Definition 2.18 Let t be a term in a weakly orthogonal PRS. The maximal
multi-step t∗ from t contracts the set of redex-patterns selected by the following
procedure (see Figure 6): 6

• Start with the empty set.

• Given a set Φ of selected redex-patterns, select a redex-pattern φ in t which
does not have overlap with any redex-pattern in Φ and whose head is at
maximal depth among those.

• If selection fails, return Φ. Otherwise, adjoin the selected step φ to the set
Φ of selected redexes and repeat the previous step.

Note that this procedure is not necessarily deterministic since there may be
distinct redex-patterns the heads of which have overlap (this is the case for
the two redexes on the middle right in t in Figure 6). Putting a well-order on

5 Because the object-variable M has type Trm, it cannot be instantiated by a term con-
taining the displayed bound variable x. In this way the external side-condition that x may
not occur in M of the ordinary η-rule, is internalised in its PRS encoding.
6 In orthogonal rewriting theory in general, and for the λβ-calculus in particular, a maximal
multi-step is also known as a complete development or a Gross–Knuth step. In first-order
term rewriting it is also called a full substitution step. See [17].
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Figure 6. Term t with redex-patterns having overlap, and its maximal selection t∗.

the rules, and choosing a minimal one, is an easy way to make the procedure
deterministic in such cases.

Example 2.19 We have drawn overlaps on the left in Figure 6 such that an
inner redex-pattern is always on top of (over laps) an outer one. Maximisation
then consists in repeatedly selecting all redex-patterns which are not covered,
and removing with them all redex-patterns they (partially) cover, yielding the
selection on the right in the figure.

Example 2.20 Consider the term t = P (S(P (S(P (x))))) in the TRS of Ex-
ample 2.17. This term has the four redex-patterns indicated, which we number
1, 2, 3, and 4 from left to right. Executing the selection procedure then pro-
ceeds as follows:

• Start with the empty set ∅ of selected redexes.

• The set of redex-patterns not having overlap with ∅ is {1, 2, 3, 4}. Since 4
is at maximal depth among those, it is selected and adjoined to ∅.

• The set of redex-patterns not having overlap with {4} is {1, 2}. Since 2 is
at maximal depth among those, it is selected and adjoined to {4}.

• Since there is no redex-pattern which does not have overlap with {2, 4}, the
latter set is returned.

Hence the maximal multi-step from t is t∗:P (S(P (S(P (x))))) ◦−→ P (x).

By the selection procedure, we immediately have that for any redex-pattern φ
in t we may select some redex-pattern ι(φ) in t∗ the head of which has overlap
with φ. Assuming that also this selection is deterministic, for a given φ, this
yields a way to represent any multi-step from t by a sub-step of t∗.

Definition 2.21 Let φ be a multi-step from t. Its canonisation ι(φ) is the
multi-step obtained by replacing any redex-pattern ψ in φ by ι(ψ) (see Fig-
ure 7). A multi-step φ is called canonical if φ = ι(φ).

Example 2.22 We illustrate canonisation using the term t of Example 2.20.
Canonising the step φ:P (S(P (S(P (x))))) ◦−→ P (S(P (x))) contracting the
set {1} yields the step ι(φ):P (S(P (S(P (x))))) ◦−→ P (S(P (x))), contracting
the set {2} since the latter redex-pattern is contracted by t∗ and its head
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ι

Figure 7. Multi-step ψ from t (of Figure 6) and its canonisation ι(ψ) ⊆ t∗

has overlap with the former. Similarly, the canonisation of the multi-step
ψ:P (S(P (S(P (x))))) ◦−→ P (x) contracting {1, 2} is t∗.

Lemma 2.23 Let φ:t ◦−→ s be a multi-step in a weakly orthogonal PRS. Then

• canonisation is equipollent: #ι(φ) = #φ,

• canonisation is invariant: ι(φ):t ◦−→ s,

• canonisation embeds: ι(φ) ⊆ t∗, and

• canonisation is idempotent: ι(ι(φ)) = ι(φ).

Proof

• As established above ι is a total function on all redexes in t. By the assump-
tion that φ is a multi-step, distinct redex-patterns ψ, χ contracted by φ do
not have overlap, so the head symbols of their canonisations ι(ψ), ι(χ) must
be distinct, hence their redex-patterns do not have overlap either and ι is
total and injective on the redexes contracted by φ. Thus the multi-step φ
and ι(φ) are in bijective correspondence, i.e. they have the same cardinality.

• Invariance follows from the previous item by weak orthogonality, since any
single step ψ has overlap with its canonisation ι(ψ).

• Embedding follows immediately per construction.

• By the previous item as canonisation is the identity on sub-steps of t∗.

2

The last item of the lemma expresses that canonisation does what it pur-
ports to do; it yields canonical multi-steps. Canonising φ:t ◦−→ s coincides
with so-called orthogonalisation of φ with respect to t∗ [17, Prop. 8.8.23].

Lemma 2.24 ◦−→H has projection, if H is a weakly orthogonal PRS.

Proof We define for arbitrary multi-steps φ:t ◦−→ s and ψ:t ◦−→ u, the
residual of φ after ψ via the orthogonal projection / for PRSs and canonisation:

φ//ψ = ι(ι(φ)/ι(ψ))

This is well-defined, since by Lemma 2.23, it holds ι(φ):t ◦−→ s, ι(ψ):t ◦−→ u,
and ι(φ), ι(ψ) ⊆ t∗. Since / was established to be a projection, we conclude.2
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Example 2.25 Consider the term f(f(g(f(f(x))))) in the weakly orthogonal
TRS with rules:

f(f(x)) → f(x)

g(x) → f(x)

and the three steps from it: φ contracting the outermost ff -redex, ψ the g-
redex, and χ the innermost ff -redex. Each of these steps is canonical, hence
projecting them consists in projecting them as in the orthogonal case:

φ/ψ:f(f(f(f(f(x))))) ◦−→ f(f(f(f(x))))

χ/ψ:f(f(f(f(f(x))))) ◦−→ f(f(f(f(x))))

φ/χ:f(f(g(f(x)))) ◦−→ f(g(f(x)))

ψ/χ:f(f(g(f(x)))) ◦−→ f(f(f(f(x))))

followed by canonisation of the resulting steps. As it turns out, each is already
canonical except for the first one. Canonising the latter yields the single step
ι(φ//ψ):f(f(f(f(f(x))))) ◦−→ f(f(f(f(x)))). Using these, we may compute
further projections, e.g.

(φ//ψ)//(χ//ψ):f(f(f(f(x)))) ◦−→ f(f(f(x)))

(φ//χ)//(ψ//χ):f(f(f(f(x)))) ◦−→ f(f(f(x)))

Remark 2.26 As witnessed by the previous example, the order in which
residuals are taken matters: first projecting φ over ψ and then over (the
residual of) χ may be different from first projecting φ over χ and then over
(the residual of) ψ. Therefore, the so-called cube law as formulated in [17,
Def. 8.7.2] for an arbitrary notion of projection /:

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ)

fails when taking // as the notion of projection for weakly orthogonal PRSs,
whereas it does hold for / in the orthogonal case. We do not know whether a
residual system, extending the single step ARS, can be associated to a weakly
orthogonal PRS or, for that matter, to a weakly orthogonal string rewriting
system. If it could, it would simplify some of the constructions in Section 4.

3 Acyclicity for separate generalisations

In this section, we generalise the WN ⇒ AC result, as obtained in [10] for
orthogonal first-order term rewriting systems, into each of the three individual
directions mentioned in the introduction:

(i) to the higher-order case, where terms may contain bound variables,

(ii) to the weakly orthogonal case, where rules may have (trivial) conflicts,
and

(iii) to weak head normalisation (WHN), where terms have head normal
forms.

14
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We will do so by generalising the proof technique introduced in [10], the es-
sence of which we will present now, after which we consider each of the gen-
eralisations in the subsequent sections. The essence of [10] is captured by the
following two results and their proofs.

Theorem 3.1 (Head normalisation) If a term allows a reduction contain-
ing infinitely many head steps in an orthogonal TRS, then it does not have a
head normal form.

Proof Using the terminology of [17, Defs. 9.1.12 and 9.1.18], the contra-
positive of the statement of the theorem can be concisely expressed as: head
strategies are hyper-head-normalising for orthogonal TRSs. To conclude, note
that a head step contracts the unique outermost redex, which therefore is
external [17, Lem. 9.2.34], and hence is head needed (see the text below [17,
Def. 9.2.52]). Thus the result follows from hyper-head-normalisation of head
needed strategies [17, Thm. 9.2.60]. 2

Theorem 3.2 Weakly normalising orthogonal TRSs are acyclic.

Proof For a proof by contradiction, consider a term t in a weakly normalising
orthogonal TRS R of minimal height which is cyclic. That is, there exists a
non-empty reduction σ:t� t. By the minimality assumption σ must contain
some head step, hence the infinite reduction σω from t obtained by repeating
σ infinitely often contains infinitely many head steps. Therefore, by the Head
Normalisation Theorem, t does not have a head normal form, hence a for-
tiori also no normal form, contradicting the assumption that R was weakly
normalising. 2

Note that for the proof of the latter theorem only the Head Normalisation
Theorem and closure under sub-terms are needed. Hence, in the subsequent
sections dealing with each of the individual extensions, to generalise The-
orem 3.2, it suffices to generalise these two results.

3.1 Acyclicity of weakly normalising orthogonal higher-order TRSs

As higher-order term rewriting systems we take the PRSs of Subsection 2.3. To
generalise the WN ⇒ AC result, we could use (see the proof of Theorem 3.1)
hyper-head-normalisation of head needed strategies. Instead, in anticipation
of the generalisations in Section 4, we will base our generalisation on head nor-
malisation of so-called outermost-fair strategies [18, Thm. 2], where a strategy
is outermost-fair [17, Def. 9.3.1] if each outermost redex is fairly treated in
the sense that it will either be eventually contracted or its residual ceases to
be outermost. Since this result only holds for PRSs which are fully-extended,
meaning that whether a rule is applicable or not does not depend on whether
a bound variable occurs in one of its arguments or not, we first establish the
result for these.
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Example 3.3 The η-rule of the λ-calculus is not fully-extended as its applic-
ability depends on whether the bound variable occurs. In general, rule schemes
containing so-called variable conditions yield non-fully-extended PRS rules.

Theorem 3.4 (Fully-extended higher-order head normalisation) Head
strategies are hyper-head-normalising for orthogonal fully-extended PRSs.

Proof We have to prove head normalisation of any hyper-head-strategy, i.e.
of any strategy which eventually always performs a head step. Now note that
any hyper-head-strategy is obviously outermost-fair since at the moment a
head redex is contracted it is the only outermost redex, and since the strategy
is hyper-head, this will always eventually be the case. Thus the result fol-
lows from head normalisation of outermost-fair strategies for orthogonal fully-
extended PRSs [18, Thm. 2]. 2

Theorem 3.5 A weakly normalising fully-extended orthogonal PRS is acyclic.

Proof As for Theorem 3.2, using Theorem 3.4 and noting that reductions in
fully-extended PRSs are closed under sub-terms. 2

Example 3.6 The PRS representing the λβ-calculus (Example 2.13) is fully-
extended and orthogonal. Hence we conclude that if it were normalising, then
it would be acyclic. However, obviously, the implication is trivial since the λβ-
calculus is not weakly normalising. Still, from the proof of Theorem 3.2 one
notes that the result generalises to any sub-calculus of the λ-calculus which is
closed under reduction and taking sub-terms.

For instance, typed λβ-calculi usually do have these properties (closure
under reduction is there known as subject reduction), so for these one may
conclude AC from their weak normalisation.

Recall from [4,10] that the family of a term in a term rewriting system,
consists of all terms reachable from it w.r.t. the union of the reduction and
the sub-term relations. Since ‘sub-term steps’ can be postponed, the same
notion is obtained by considering only sub-terms of reachable terms. Hence,
an arbitrary term induces a sub-calculus: its family.

That outermost-fair reductions need not be head normalising for non-fully
extended orthogonal PRSs, is shown by the following example.

Example 3.7 Consider the term t = f(x.g(e(x))) in the orthogonal PRS
with rules

Z.f(x.Z) → Z.a

Z.g(Z) → Z.g(Z)

Z.e(Z) → Z.b

with Z of base type, everywhere. The f -rule is non-fully-extended as it tests
for the absence of the bound variable x in its argument Z. Since this test fails
in t, the term itself is not yet a redex, and hence the g-redex is the outermost-
redex, yielding an outermost-fair reduction cycle. However, a reduction to the
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head normal form a is possible, by first contracting the e-redex in t which
erases the variable x, causing the test for the f -redex to succeed.

Note that the example is not a counter-example to the implication WN
⇒ AC, since the sub-term g(e(x)) of t does not have a (head) normal form.
Indeed, it could not be, as we will show now. The problem in the example is
that the reduction step erasing the variable is ‘needed’ for the creation of the
head redex-pattern, but does not ‘contribute’ to it via the ordinary descendant
relation. We now construct the full-extension of a PRS H where this problem
is resolved, while preserving the good properties of H,

Definition 3.8 The full-extension H̄ of a PRS H is obtained by taking as
rules the rules of H, but supplying all ‘missing’ bound variables to the meta-
variables in the left-hand side of each rule, and supplying arbitrary closed
terms in the right-hand sides. Then a redex-pattern for rule l̄→ r̄ is defined
to be an instance of l̄ which can be reduced to an instance of l by means of
H-steps in its arguments. 7 All redex-pattern-defined notions for a PRS H are
generalised to its full-extension H̄ via this notion of redex-pattern (formally,
we consider consider the generated sub-PRS).

Clearly, every H redex-pattern, say for rule l→ r is a H̄ redex-pattern for
the corresponding fully-extended rule l̄→ r̄, and applying either then yields
the same result since the closed terms supplied in the right-hand side r̄ of the
latter will be erased. In general, the H-steps in arguments in the definition
of l̄ redex-pattern serve to erase variables which were restricted by variable
conditions in H.

Example 3.9 Fully-extending the PRS of Example 2.17 representing the
λβη-calculus, does not change the β-rule. However, the η-rule changes into

M̄ :Trm→Trm.abs x:Trm.app(M̄x)x→ M̄ :Trm→Trm.M̄a

for an arbitrary closed term a. Switching back to ordinary λ-calculus nota-
tion again, the term λx.KIxx then is a redex-pattern for the η̄-rule, since
β-reducing its argument KIx to I yields the instance λx.Ix of the η-rule.
However, λx.xIKx is not such a redex-pattern, since its argument xIK can-
not be λβη-reduced to a term not containing x (it is in normal form).

For an example from arithmetic, consider the term t =
∏

10

i=1
5 + (0× i) in

0× x → 0
n∏

i=1

Z → n× Z

where the variable condition that i does not occur in Z, is brought about by

7 This makes redex-patternhood undecidable. That does not matter here.
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not supplying i as an argument to the meta-variable Z. We have
10∏

i=1

5 + (0× i)→
10∏

i=1

5 + 0→ 10× (5 + 0)

as only reduction. Fully-extending the PRS leaves the first rule unchanged,
but modifies the second rule into

n∏

i=1

Z(i)→ n× Z(0)

where we have (arbitrarily) supplied the constant 0 to the meta-variable Z
in the right-hand side. In the full-extension t is a redex for this rules since
5 + (0 × i) can be reduced to 5 + 0 in which i does not occur, so we have
another reduction (with the same result!)

10∏

i=1

5 + (0× i)→ 10× (5 + (0× 0))→ 10× (5 + 0)

Lemma 3.10 Let H̄ be the full-extension of the PRS H. Then

• →H ⊆ →H̄,

• the sets of (head) normal forms of H and H̄ coincide,

• H̄ is orthogonal if and only if H is.

• residuals of H̄-redex-patterns are H̄-redex-patterns again.

• H̄-reductions are closed under standardisation.

Proof

• It suffices to note that every H-redex-pattern is a H̄-redex-pattern.

• Although a term t may have a (head) redex-pattern for H̄ but not for H,
that may exist only if t may be further reduced to a (head) redex-pattern
in H proving the result, using the previous item.

• Since everyH-redex-pattern is a H̄-redex-pattern, the ‘if-direction’ is trivial.
To prove the ‘only-if-direction’, consider for a proof by contradiction among
the set of redex-patterns having overlap two overlapping redex-patterns
φ, ψ such that the (sum of their) lengths of the witnessing H-multi-step-
reductions is minimal, and among those such that the (sum of the) number
of contracted redex-patterns in their first steps is minimal. Consider a redex-
pattern χ of maximal depth in the first multi-steps of these reductions, say
w.l.o.g. it is in the witnessing reduction for φ, i.e. it is in some argument of
φ. We distinguish cases on the relative position of χ w.r.t. ψ.

If χ is parallel to or entirely below ψ, then we obtain a contradiction
with minimality by contracting χ, and considering the residuals of φ and
ψ after χ, together with the residuals of the witnessing reductions after χ.
The latter have at most the same length, but if they have the same length
then the number of contracted redex-patterns in their first steps has become
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smaller by choice of χ.
If χ overlaps ψ, then we obtain a contradiction by considering the redex-

patterns ψ and χ and their respective witnessing reductions, where the
length of the latter is 0, by χ being a H-redex-pattern, so certainly less
than the witnessing reduction of φ.

If χ is entirely above ψ, then we obtain a contradiction with the assump-
tions that φ and ψ have overlap and that χ is entirely below φ.

Since these are all possibilities and all of them yield a contradiction, we
conclude that both witnessing reductions must be empty, hence φ and ψ
are in fact overlapping H-redex-patterns, contradicting orthogonality of H.

• Any residual of a H̄-redex-pattern φ is a substitution instance of φ. Hence,
by performing the same reduction on the residual of φ, the same variables
bound in the pattern will be erased.

• Let φ · ψ be an anti-standard pair, starting from t in a non-standard re-
duction, i.e. a pair such that either φ and ψ are parallel or ψ is entirely
outside φ. Standardisation consists in permuting such anti-standard pairs.
It suffices to show that permuting the redex-patterns φ and ψ yields redex-
patterns again. By construction of the full-extension of a PRS, the origin
ψ′ of the redex-pattern ψ in t is a redex-pattern again, since by definition it
is outside or parallel to φ. In the latter case the property follows since the
redex ψ and its origin ψ′ are identical. In the former case, it suffices to pre-
fix φ, which is then a H-step in an argument of ψ′, to the reduction which
witnessed that ψ was a redex-pattern. We conclude since the residual(s) of
φ after ψ′ are redex-patterns again by the previous item.

2

Theorem 3.11 (Higher-order head normalisation) Head strategies are
hyper-head-normalising for orthogonal PRSs.

Proof Let H̄ be the full-extension of the orthogonal PRSH. By Lemma 3.10,
a hyper-head-reduction for H is a hyper-head-reduction for H̄ as well. By
Theorem 3.4, therefore the H-reduction will find a H̄-head-normal form if one
exists. Therefore, by Lemma 3.10 again, the reduction will find a H-head-
normal form as well.

The only further point to consider is that Theorem 3.4 holds for fully-
extended orthogonal PRSs. Thereto, we have to check that its proof goes
through for the sub-PRS H̄. Since the proof was based on [18, Thm. 2]
stating that outermost-fair reductions are head normalising for fully-extended
orthogonal PRSs, it suffices to show that theorem goes through for H̄. Apart
from orthogonality, its proof requires the following properties, all of which are
implied by Lemma 3.10: 8

• residuals of redex-patterns are redex-patterns again,

8 The last two properties fail for H.
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• head normal forms are closed under reduction,

• reductions are closed under standardisation, and

• head normal forms are closed under expansions below the head.

2

Using this theorem, we obtain the desired generalisation of Theorem 3.5

Theorem 3.12 Weakly normalising orthogonal PRSs are acyclic.

Example 3.13 The λη-calculus (having only the η-rule, not the β-rule), is
an orthogonal PRS, hence we may conclude its acyclicity from its weak nor-
malisation (it is even strongly normalising, but that’s not the point here).

3.2 Acyclicity of weakly normalising weakly orthogonal TRSs

The generalisation of WN⇒ AC from orthogonal to weakly orthogonal TRSs
is entirely unproblematic.

Theorem 3.14 (Weakly orthogonal head normalisation) Head strategies
are hyper-normalising for weakly orthogonal TRSs.

Proof As for Theorem 3.4, but using normalisation of outermost-fair strategies
for weakly orthogonal TRSs [18, Thm. 1], instead of head normalisation of
outermost-fair strategies for orthogonal TRSs [18, Thm. 2]. 2

Theorem 3.15 Weakly normalising weakly orthogonal PRSs are acyclic.

Example 3.16 The predecessor/successor TRS of Example 2.17 is weakly
orthogonal, so its acyclicity may be concluded from its weak normalisation.

3.3 Acyclicity of weakly head normalising orthogonal TRSs

The generalisation of the implication WN ⇒ AC to WHN ⇒ AC is trivial,
noting that the proof of the former already established the latter.

Theorem 3.17 Weakly head normalising orthogonal TRSs are acyclic.

Proof As for Theorem 3.2, skipping the proof step that non-head-normalisation
implies non-normalisation. 2

4 Acyclicity for the pair-wise combinations

We now consider the pair-wise combinations of the generalisations of the pre-
vious sections. The proofs of two of them are straightforward adaptations of
the proofs there. The third combination turns out to be much more subtle
and will take up the rest of this section, the longest of the paper.

Theorem 4.1 For weakly orthogonal fully-extended PRSs, WN ⇒ AC.
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Proof As for Theorem 3.15, noting that the normalisation result on which
it was based ([18, Thm. 1]), holds not only for TRSs, but for fully-extended
PRSs. 2

Remark 4.2 We don’t know whether the fully-extendedness condition can
be dropped in this case, but see Theorem 5.3 for the special case of the (non-
fully-extended) λβη-calculus. Two problems with the proof method of the
previous section are that the full-extension of a weakly orthogonal PRS (see
Definition 3.8) need not be weakly orthogonal, and that head normal forms in
the full-extension need not be closed under expansions below the head.

Theorem 4.3 For orthogonal PRSs, WHN ⇒ AC.

Proof As for Theorem 3.12, but again simpler since the implication from
non-head-normalisation to non-normalisation need not be used. 2

Example 4.4 Weakly head-normalising sub-calculi of the λβ-calculus are
acyclic. See Example 3.6.

We now turn our attention to the third combination, weak head normal-
isation with weak orthogonality. In particular, we show that reductions are
acyclic in weakly orthogonal TRSs which are weakly head normalising. The
proof will be based on projecting cyclic reductions onto cyclic reductions.
More precisely, we first show that if a term t would allow both a cyclic reduc-
tion σ and a multi-step reduction to head normal form s, then we may create
(Definition 2.8) preservation of cyclicity for the steps of the latter. That is, we
may assume that the residual of σ after each of the the respective multi-steps
of the latter reduction, is cyclic. After that, we show that we may even assume
that the projections preserve head-cyclicity, i.e. preservation of cycles which
contains a(t least one) head step. This then yields a contradiction, since σ
would project onto a head-cycle from s, which was assumed to be in head
normal form.

4.1 Preservation of cycles

We first observe that the projection of a cyclic reduction over a (multi-)step
does not yield, in general, a cyclic reduction again. To overcome this problem,
we then show that we may create this property in the sense of Definition 2.8.
That is, we can always extend the multi-step to another multi-step which does
preserve cyclicity. By Lemma 2.9, this suffices to create this property for any
reduction from t to head normal form, with respect to a given cycle on t.

That residuals of cycles after arbitrary multi-steps need not be cycles is
witnessed by the following example.

Example 4.5 The step σ:f(a, a, a)→ f(a, a, a) is a cycle in the TRS

a → b

f(x, y, z) → f(y, x, a)
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However, the residual of σ after the parallel step φ:f(a, a, a) q−→ f(b, a, b) is
f(b, a, b)→ f(a, b, a) which obviously is not a cycle (see Figure 8 left).

φ̄

σ σ

cyclicacyclic

f(a, a, a) f(a, a, a)

f(a, b, a)f(b, a, b)

f(a, a, a) f(a, a, a)

f(b, b, a)f(b, b, a)

φ φ̄

Figure 8. Residuals of the cycle σ along the step φ and its extension φ̄, respectively.

Remark 4.6 The phenomenon of non-preservation of reduction cycles is well-
known from infinitary rewriting [17, Ex. 12.3.3]. There, it is used to illustrate
the fact that the notion of Cauchy convergence does not agree well with pro-
jection, i.e. residual theory.

However, there always is an extension of the step which does preserve cyclicity.

Example 4.7 The parallel step φ̄:f(a, a, a) q−→ f(b, b, a) is an extension of
the parallel step φ of Example 4.5, since the target f(b, a, b) of φ reduces to
the target f(b, b, a) of φ̄ as one easily checks. Note that the residual of the
cycle σ after φ̄ is f(b, b, a)→ f(b, b, a) which is a cycle (see Figure 8 right).

The problem is to find an algorithm for constructing such a φ̄ from φ. That
is, which constructs for an arbitrary step φ co-initial to some cycle σ, an
extension φ̄ of φ which preserves cyclicity, i.e. such that the residual σ/φ̄ of σ
after φ̄ is a cycle again. We will present, in two stages, an algorithm for doing
just that for multi-steps.

The orthogonal case is treated first since it not only provided us with the
insight used in our particular definition of the weakly orthogonal projection in
Section 2.4 above, but it also brings to the fore a, potentially interesting, cor-
respondence between projecting cycles in residual theory and dividing natural
numbers in arithmetic.

4.1.1 Preservation of cycles in orthogonal PRSs

First, we show that for a given cycle σ and co-initial multi-step φ, there is
an extension φ0 of φ such that some repetition of σ projects onto a cycle,
when projected over φ0. Next, we show that all the residuals of φ0 along this
repetition can be compressed into a multi-step φ̄, which extends φ0, such that
σ itself projects onto a cycle when projected over φ̄.

Consider repeatedly projecting the step φ in Example 4.5 over the cycle
σ (see Figure 9). First, projecting φ over σ yields φ0:f(a, a, a) q−→ f(a, b, a).
Next, projecting φ0 over σ yields φ1:f(a, a, a) q−→ f(b, a, a). Finally, pro-
jecting φ1 over σ yields φ0 again. That is, the series of residuals eventually
becomes repetitive. This situation is completely general.
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σ
f(a, a, a) f(a, a, a)

f(b, a, b) f(b, a, a)

f(a, a, a)

f(a, b, a)

f(a, a, a)

f(a, b, a)

φ φ0 φ1 φ0

σ σ σ

Figure 9. Repetition in computing residuals of φ after the cycle σ.

Lemma 4.8 (Repetition) Let φ be a multi-step co-initial to a reduction
cycle σ in an orthogonal PRS. Then there exists a multi-step φ0 extending
φ, and a positive natural number n, such that φ0/σ

n = φ0.

Proof By Lemma 2.15, the multi-step ARS ◦−→ associated to an orthogonal
PRS has projection, say it is denoted by /. Consider the infinite sequence
of residuals φ/σi of φ after the i-fold repetition of i, for arbitrary i. Since
redex-patterns in a term in an orthogonal TRS do not have overlap, ◦−→ is
finitely branching. Therefore, by the Pigeon Hole Principle, the sequence of
residuals must be eventually repetitive. Moreover, the target of φ reduces to
the target of any residual in the sequence, since the target of φ/σi reduces to
the target of φ/σi+1 via reduction σ/(φ/σi). Hence, taking the first residual
on the repetition yields the desired extension. 2

The extension of φ constructed in the proof of the lemma will be called
the repetitive extension of φ and denoted by φ0. It is easy to see that in
general it may take an arbitrary number of cycles before repetition sets in,
and that the repetition itself may also take an arbitrary number of cycles.
For instance, taking the residual of the parallel step f(a, a, a, a, a, a) q−→
f(b, a, a, b, a, a) for the rule a → b, after the single-step cycle with respect
to the rule f(x1, x2, x3, z1, z2, z3)→ f(x2, x3, x1, a, z1, z2) takes 3 cycles to be-
come repetitive with a repetition of length 3.

Remark 4.9 If, in the lemma, the cycle σ eliminates (either contracts or
erases) all the redexes of φ, then φ0 is the empty multi-step. This is wit-
nessed e.g. by the parallel step φ:f(a, a) q−→ f(b, b) and the cycle σ:f(a, a)→
f(b, a)→ f(b, b)→ f(a, b)→ f(a, a), for the TRS with rules a→ b, b→ a and
f(x, y)→ f(x, x).

Dually, if the multi-step φ erases all steps on the cycle σ, then the residual
of the cycle is empty. This is witnessed e.g. by the step φ:f(a, b) → f(a, a)
and the cycle σ:f(a, b)→ f(a, a)→ f(a, b) for the same rules.

Remark 4.10 The situation is similar to what happens in arithmetic when
dividing two natural numbers: the resulting decimal expansion eventually be-
comes repetitive, after an initial part of arbitrary length. Figure 10 illustrates
this for dividing 45 by 33, which results, after an initial digit 1, into a repe-
tition of 36. The reason for the decimal expansion being repetitive is indeed
the same as for residuals: since there are only finitely many distinct num-
bers modulo 33, the Pigeon Hole Principle yields that eventually a remainder,
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repetition of remainder

33 54
33
120
99
210

1.36

198
12...

...

Figure 10. Repetition in computing decimal expansion when dividing by 33

i.e. residual, reoccurs (in the example 12 reoccurs). Since the algorithm is
deterministic, the decimal expansion is repetitive from there on.

The extension process is monotonic.

Proposition 4.11 Let σ be a cycle co-initial to both φ and ψ and let φ ⊆
ψ, i.e. the set of redexes contracted by φ is contained in the set of redexes
contracted by ψ. Then ψ0 is an extension of φ0.

Proof By the Repetition Lemma the situation must be as displayed in Fig-
ure 11: After a number of σ-cycles both the residuals of φ and ψ become

σk

ψ ψ0 ψ0

σ σ σ σ σ σ σ

φ φ0 φ′ φ0 φ0 φ0

ψ/φ ψ0/φ
′

Figure 11. Monotonicity of extensions

repetitive, for extensions φ0 and ψ0, respectively. However, the number of
σ-cycles required for either repetition may differ (in the Figure they are 2 and
4, respectively) and moreover, the repetitions may or may not set in at the
same moment (in the Figure they do not). Now consider the first ψ0 which
is on a φ0-repetition. In the figure this is the thick curved arrow, and we can
immediately see that it is an extension of φ0 since its target is reachable from
the target of the thickly drawn occurrence of φ0 to its left.

Formally, we reason as follows. By the Repetition Lemma: φ0 = φ/σn
′

,
φ0/σ

n = φ0, ψ0 = ψ/σm
′

, and ψ0/σ
m = ψ0. for some natural numbers n′, m′

and positive natural numbers n, m. By Archimedeanity, there is some k such
that n′ ≤ m′ + km. We check that ψ/σm

′+km proves the lemma using algebra
for residual systems [17]:

• ‘it is the thick curved arrow’: ψ/σm
′+km = (ψ/σm

′

)/σkm = ψ0/σ
km = ψ0.

• ‘the thickly drawn occurrence of φ0 is to its left’: the target of φ0 reduces to
the target of φ/σm

′+km (φ′ in Figure 11) as φ0 = φ/σn
′

and n′ ≤ m′ + km.

• ‘the target is reachable from the thickly drawn occurrence of φ0 to its left’:
by the previous item, it remains to show that the target of ψ/σm

′+km is
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reachable from the target of φ/σm
′+km. We claim the more general fact

that the target of ψ/σi is reachable from the target of φ/σi, for any i.
The claim holds for any residual system with union. Firstly, union dis-

tributes over residuation in such systems, so φ/σi is a sub-step of ψ/σi:

ψ/σi = (φ ∪ ψ)/σi = (φ/σi) ∪ (ψ/σi)

Secondly, for any sub-step χ of a multi-step ζ , it holds by general residual
theory (e.g. using the finite developments theorem), that ζ has the same
source and target as the reduction consisting of χ followed by ζ/χ, 9 so ζ
extends χ. Applying this to the sub-step φ/σi of ψ/σi proves the claim.

Since extension is a quasi-order as observed above, combining the three items
yields that ψ0 is an extension of φ0. 2

Remark 4.12 For φ and ψ as in the proof, it holds that the length of either
their repetitions may exceed that of the other. For instance, let φ contract the
first a in f(a, a, a, a, a), and let ψ be the parallel step contracting the third a
as well, in a TRS with rules a→b and f(x1, x2, y1, y2, y3)→f(x2, x1, y2, y3, y1).
For the single step cycle σ with respect to the latter rule, we have φ0 = φ and
ψ0 = ψ, with respective repetition lengths 2 and 6. However, if we take for ψ
the parallel step contracting the first two as, its repetition has length 1.

Note that in the former example, the ‘generators’ are on distinct cycles,
hence the length of their combined repetition is a multiple (in fact, the least
common multiple) of their individual repetition lengths. The latter example
combines two distinct generators of the same cycle yielding the opposite situ-
ation that the length of their combined repetition divides the lengths (which
are both 2) of their individual repetition.

As an immediate consequence of the Repetition Lemma, projecting some
repetition σn of σs over the extension φ0 of some multi-step φ, is a cycle again.
By monotonicity we now also know that the extension t∗0 of the maximal
multi-step t∗ from t, extends all such φ0. However, the goal was to find an
extension φ̄ of φ such that projecting σ itself over φ̄ yields a cycle. This we
do by compressing all the residuals of the multi-step φ0 occurring along the
repetition of σ, into a single multi-step.

To see how compression works, reconsider Figure 9, showing a repetition
of length two. For the residuals φ0 and φ1 on the repetition it holds:

φ0/σ = φ1

φ1/σ = φ0

Combining these two equalities yields, by distributivity:

(φ0 ∪ φ1)/σ = (φ0/σ) ∪ (φ1/σ) = φ1 ∪ φ0 = φ0 ∪ φ1

In other words, the union of the multi-steps on the repetition is its own residual
after the cycle σ. Since the union φ̄ =

⋃
0≤i≤1

φi contains φ0, it extends φ0,

9 In fact, the reduction ζ is even permutation equivalent to χ · (ζ/χ).
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which in turn extends φ by the Repetition Lemma, from which we conclude
preservation of cyclicity. This situation is completely general.

Lemma 4.13 (Compression) Let φ/σn = φ, for some step φ co-initial to a
cycle σ and positive natural number n, and let φ̄ be its (n-fold) compression
defined as

⋃
0≤i<n φ0/σ

i. Then φ̄/σ = φ̄ and φ̄ is an extension of φ.

Proof Using distributivity, we compute

φ̄/σ = (
⋃

0≤i<n

φi)/σ =
⋃

0≤i<n

(φi/σ) =
⋃

0≤i<n

φi+1 modn =
⋃

0≤i<n

φi = φ̄

That φ̄ is an extension of φ follows from φ̄ =
⋃

0≤i<n φ/σ
i ⊇ φ/σ0 = φ, as in

the proof of Proposition 4.11. 2

Remark 4.14 Although residuals of parallel steps are parallel steps again
in first-order TRSs, their compression may yield a multi-step which is not
parallel, as witnessed by the following example. Consider the term t =
f(c(c(c(a))), c(c(c(a)))) in the orthogonal TRS with rules

a → c(a)

c(x) → x

f(x, y) → f(y, c(x))

The term t allows the cyclic reduction σ:

f(c1(c2(c3(a))), c4(c5(c6(a))))

→ f(c1(c2(a)), c4(c5(c6(a))))

→ f(c1(c2(a)), c5(c6(a)))

→ f(c1(c2(a)), c5(c6(c(a))))

→ f(c5(c6(c(a))), c(c1(c2(a))))

where we have numbered the occurrences of c in t to ease tracing each along
σ. It is easy to see that the parallel step φ0 contracting the set {c2, c5} of c-
redexes projects onto the parallel step φ1 contracting the set {c6, c1}, over one
σ-cycle, which projects onto the original φ0 after another σ-cycle. However,
their compression

φ̄ = φ0 ∪ φ1

is the multi-step contracting {c1, c2, c5, c6}, hence is not parallel as c1 nests c2

(and c5 nests c6).

Remark 4.15 Continuing Remark 4.10, we note that also compression can
be applied to repeating decimals. To see this, consider computing the decimal
expansion of 6

7
. Obviously, for each pair r, r′ of consecutive remainders it

holds:

r · 10 = r′ mod 7

Now consider the ‘compression’ r̄ = Π0≤i<nri of all the remainders along the
repetition. Since multiplication distributes over taking the remainder modulo
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7, combining the equations for all consecutive pairs of residuals yields:

r̄ · 10n = r̄mod 7

From this we may conclude, without actually computing r̄, that either r̄ = 0
or 10n = 1 mod 7, hence that the repetition is either 0 or has length 6. In
case of 6

7
the latter possibility holds: It computes to 0.857142 with remainders

r0 = 4, r1 = 5, r2 = 1, r3 = 3, r4 = 2, and r5 = 6. Hence n = 6. That one
can say something about the length of the repetition in a repeating decimal
is well-known. The point here is the analogy between this result and the
Compression Lemma. Of course, the analogy only goes so far. For instance,
the compression r̄mod 7 (= 720 mod 7 = 6) of all the remainders in 6

7
is itself

not repetitive; a change of base, from 10 to 106, is required for that.

Theorem 4.16 Let φ be a multi-step co-initial to a cycle σ. Then there exists
a multi-step φ̄ extending φ such that φ̄/σ = φ̄, hence σ/φ̄ is a cycle again.

Proof By the Repetition Lemma, there exist an extension φ0 of φ and a
positive natural number n, such that φ0/σ

n = φ0. Defining φ̄ of φ as the
n-fold compression of φ as in the Compression Lemma, we obtain by it that
φ̄ is an extension of φ0 for which it holds φ̄/σ = φ̄. The result follows by
transitivity of extension. 2

The extension φ̄ of φ constructed in the proof of the lemma will be called
the cyclic extension of φ. For instance, the cyclic extension of the step φ of
Example 4.5 is the one displayed on the right in Figure 8.

As an immediate consequence, the cyclic extension φ̄ of a multi-step φ
witnesses that the multi-step ARS ◦−→ creates preservation of cyclicity for an
arbitrary cycle σ co-initial to φ (whence our naming of this extension).

Corollary 4.17 Let t allow both a reduction cycle σ and a multi-step reduc-
tion τ to head normal form s in an orthogonal PRS. Then there is a multi-step
reduction τ̄ from t to head normal form of the same length as τ , such that
τ̄ /σ = τ̄ , so σ/τ̄ is cyclic.

Proof By Theorem 4.16 and Lemma 2.9. 2

We conclude this section with observing that for the maximal multi-step t∗

from a term t, its repetitive and cyclic extensions coincide. That is, repeatedly
taking residuals of t∗ along σ eventually ends in a repetition of length 1.
For instance, starting out with the maximal multistep f(a, a, a) ◦−→ f(b, b, a)
in Example 4.5, taking its residual along the cycle σ yields the multi-step
f(a, a, a) ◦−→ f(b, b, a), which has the desired properties. Before showing that
this situation is completely general, we first show that also the cyclic extension
is monotonic.

Proposition 4.18 If φ ⊆ ψ, then ψ̄ extends φ̄.

Proof As shown in the proof of Proposition 4.11, every residual of φ0 is con-
tained in some residual of of ψ0. From this the result follows by monotonicity
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of union. We leave the formalisation to the reader. 2

Thus, by monotonicity we know that the cyclic extension t̄∗ of the maximal
multi-step t∗ from t extends the cyclic extension φ̄ of any multi-step from t.
Using monotonicity, we show that its repetitive and cyclic extensions coincide.

Proposition 4.19 t∗0 = t̄∗.

Proof We claim that the series of residuals of t∗ along a co-initial cycle σ is
monotonically decreasing. That is, φ/σ ⊆ φ, for any such residual φ. From
this the proposition follows since t∗ only consists of finitely many redexes,
hence eventually the decreasing sequence must stabilise (quite possibly in the
empty multi-step from t).

The claim is proven by induction on the index of φ in the series.

• If the index of φ is 0, then the claim trivially holds since ψ ⊆ t∗ for any
multi-step ψ from t.

• Suppose the index of φ is n + 1 and let ψ be the step with index n. Then
ψ/σ = φ and, by the induction hypothesis, φ ⊆ ψ, i.e. φ ∪ χ = ψ for some
χ. Hence, by distributivity,

φ/σ ⊆ (φ/σ) ∪ (χ/σ) = (φ ∪ χ)/σ = ψ/σ = φ

2

4.1.2 Preservation of cycles in weakly orthogonal PRSs

We extend the results for orthogonal PRSs of the previous section to weakly
orthogonal PRSs.

Lemma 4.20 Let ◦−→ be the multi-step ARS with projection //. Then for its
sub-ARS of canonical multi-steps it holds:

• the sub-ARS is finitely branching, i.e. an object is source of only finitely
many canonical multi-steps, and

• projection // distributes over union.

Proof

• By Lemma 2.23, any canonical multi-step from a term t is a sub-multi-step
of the maximal multi-step t∗ from t. The result follows since t∗ being finite,
it has only finitely many distinct sub-multi-steps.

• Let φ, ψ, χ be co-initial canonical multi-steps. Noting that canonisation
distributes over union since it is defined redex-pattern-wise, we compute:

(φ ∪ ψ)//χ

= ι((φ ∪ ψ)/χ)

= ι((φ/χ) ∪ (ψ/χ))

= ι(φ/χ) ∪ ι(ψ/χ)

= (φ//χ) ∪ (ψ//χ)
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2

Theorem 4.21 Let φ be a multi-step co-initial to a cycle σ. Then there exists
a multi-step φ̄ extending φ such that φ̄//σ = φ̄, hence σ//φ̄ is a cycle again.

Proof It suffices to verify that the Repetition and Compression Lemmas still
hold in the weakly orthogonal setting. First of all note that since the weakly
orthogonal projection yields canonical multi-steps, we may restrict our atten-
tion in our generalisation to these.

Apart from requiring projection, the proof of the Repetition Lemma only
requires that the canonical multi-step ARS be finitely branching. This was
established in the first item of Lemma 4.20.

The proof of the Compression Lemma requires firstly that the union of a
set of co-initial canonical multi-steps is again such a step. This holds, since
sub-steps of the maximal multi-step are closed under union. Secondly, the
proof requires distribution of projection over union, which was established in
the second item of Lemma 4.20. 2

Remark 4.22 Both the Repetition Lemma and the Compression Lemma can
be entirely cast into the theory of abstract residual systems [17, Sec. 8.7]. For
the former to hold, the abstract residual system needs to be finitely branching.
For instance, it holds for parallel reduction in orthogonal TRSs. For the
latter to hold, there must be a union (least upper bound) operation which
distributes over residuation. Distribution is an algebraic law well-known both
from the λβ-calculus [4] and from orthogonal TRSs [9], and holds in general for
multi-steps in orthogonal rewriting systems. For instance, both the Repetition
Lemma and the Compression Lemma hold for orthogonal graph rewriting
systems such as interaction nets.

Corollary 4.23 Let t allow both a reduction cycle σ and a multi-step reduc-
tion τ to head normal form s in a weakly orthogonal PRS. Then there is a
multi-step reduction τ̄ from t to head normal form of the same length as τ ,
with τ̄ //σ = τ̄ , so σ//τ̄ is cyclic.

Proof By Theorem 4.21 and Lemma 2.9. 2

4.2 Preservation of parallel head cycles

Extending the results of the previous section, we show here that we may create
the property that parallel head cycles are preserved. More precisely, we show
that we may assume that the residual of a given cycle consisting of parallel
steps of which at least one is a head step, is such a cycle again, or otherwise
a non-empty parallel cycle which is shorter.

As before, we first present the orthogonal case in order to exhibit the overall
proof structure, after which that is adapted to the, much more involved, weakly
orthogonal case. Unlike before, we restrict ourselves to the first-order TRS
case (parallel steps do not behave well in the higher-order case).
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4.2.1 Preservation of parallel head cycles in orthogonal TRSs

We show that the property that ‘parallel head cycles are preserved or give rise
to non-empty parallel cycles which are shorter’, is created by orthogonal TRSs.
The proof will be based on the following two lemmas, the first of which (Head)
deals with the case that the head step is preserved hence with preservation of
parallel head cycles, and the second (Non-Head) deals with the case that the
head step is eliminated.

The proof of the Head Lemma is trivial here, but in the weakly orthogonal
case we will have to work hard to create the property, see Example 4.30.

Lemma 4.24 (Head) Let ψ be a head step co-initial to a multi-step φ in an
orthogonal TRS. Then its residual ψ/φ is either empty or a head step again.

Definition 4.25 The measure µ(φ) of a multi-step φ is the maximal length
of an outermost development of φ, where the outermost development of a
multi-step φ is defined by:

• If φ is the empty multi-step, the result is the empty reduction.

• Otherwise, the result is the contraction of an outermost redex φom followed
by an outermost development of the multi-step φ/φom.

By the Finite Developments Theorem [17, Thm. 4.5.4] µ is well-defined.
In fact, all outermost developments of a multi-step have the same length,
which follows e.g. by observing that they are self-delimiting [19]. Outermost
developments could also be called parallel standard developments, as they are
those developments which are parallel standard [17, Def. 8.5.6].

Example 4.26 Consider the maximal multi-step t∗:f(f(a, a), f(a, a)) ◦−→
g(g(b, b), g(b, b)) from the term t = f(f(a, a), f(a, a)) in the TRS

a → b

f(x, y) → g(x, x)

An outermost development of t∗ witnessing that µ(φ) = 7 is:

f(f(a, a), f(a, a))→ g(f(a, a), f(a, a))→ g(g(a, a), f(a, a))→

g(g(b, a), f(a, a))→ g(g(b, b), f(a, a))→ g(g(b, b), g(a, a))→

g(g(b, b), g(b, a))→ g(g(b, b), g(b, b))

(The length of an arbitrary development of t∗ is 13, see also Remark 4.28.)

Proposition 4.27 Let φ be a multi-step eliminating a co-initial parallel step
ψ. Then µ(φ) ≥ µ(φ/ψ) and if ψ moreover is a head step, then µ(φ) > µ(φ/ψ).

Proof We show that, for any multi-step φ with ψ/φ empty, for any outer-
most development of φ/ψ starting from s, we may construct an outermost
development of φ starting from t, of at least the same length.

If φ is the empty multi-step, there is nothing to prove.

Otherwise, let ψ′ be outermost in φ/ψ and suppose ψ′ is a residual of φ′
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in φ. First note that if the redex-pattern φ1 is above the redex-pattern φ2 in
φ, then for any residual of φ2, there exists some residual of φ1 above it unless
some redex-pattern of ψ coincides with φ1. Therefore, since ψ′ was assumed
to be an outermost (in ψ) residual of φ′:

• Either φ′ is outermost (in φ) as well. Since we assumed that ψ/φ is empty,
there cannot be a redex in ψ above φ′. Therefore, ψ′ is the unique residual
of φ′, and after performing the step φ′, we may repeat the construction for
φ/φ′ and ψ/φ′.

To see that repetition is allowed, note that ψ/φ′ is a parallel reduction
from the target of φ′ to the target of ψ′. Moreover, it is eliminated by φ/φ′,
since (ψ/φ′)/(φ/φ′) = (ψ/φ)/(φ′/φ) = ∅/(φ′/φ) = ∅, by the cube law for
residual systems (see Remark 2.26).

• Or there is some outermost redex-pattern φ′′ directly above φ′ which is both
in φ and ψ. Then after performing φ′′, we may repeat the construction for
φ/φ′′ and ψ/φ′′.

To see that repetition is allowed, note that ψ/φ′′ is a parallel step from
the target of φ′′ to the target of ψ, i.e. the source of ψ′. Moreover it is seen
to be eliminated by φ/φ′′ as in the previous item.

2

Remark 4.28 Proposition 4.27 would fail if we were to take erased steps into
account, e.g. by taking the length of an arbitrary development as measure of
a multi-step. For instance, consider the multi-step φ:e(d(a)) ◦−→ c and the
co-initial step ψ:e(d(a)) ◦−→ e(f(a, a)) in the orthogonal TRS with rules

a → b

e(x) → c

d(x) → f(x, x)

Then the length of a maximal development of φ is 2 which is less than the
length 3 of a maximal development of its residual φ/ψ:e(f(a, a)) ◦−→ c after
ψ! (Note that µ(φ) = 1 = µ(φ/ψ).)

Lemma 4.29 (Non-Head) If in an orthogonal TRS, a parallel head cycle σ
is co-initial to a multi-step φ with φ/σ = φ, then φ does not eliminate σ.

Proof Suppose (the successive residuals of) φ would eliminate all paral-
lel steps of σ. Then, by repeated application of Proposition 4.27, µ(φ) >
µ(φ/σ) = µ(φ), since σ was assumed to contain at least one head step. 2

These lemmas allow for an alternative proof to Theorem 3.17.

Proof [of Theorem 3.17] For a proof by contradiction, assume there would
exist a non-empty parallel cycle. Select among the parallel cycles of minimal
length a parallel head cycle, say σ starting with head step ψ from t. For
any multi-step φ co-initial to σ, Lemma 4.62, yields an extension φ̄ of φ. By
the Head Lemma ψ/φ̄ is either empty or a head step again. But the former
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cannot hold, since then σ/φ̄ would be a parallel cycle shorter than σ, which by
the Non-Head-Cluster lemma is non-empty, contradicting minimality of the
length of σ. Therefore, σ/φ̄ is a parallel head cycle again. Now by the weak
head normalisingness assumption there is a reduction τ from t to head normal
form s. Hence, by Lemma 2.9 and the above, we may assume that τ/σ = τ
and that σ/τ is a parallel head cycle. But this would contradict s being in
head normal form. 2

4.2.2 Preservation of parallel head cycles in weakly orthogonal TRSs

We extend the results for orthogonal TRSs of the previous section to weakly
orthogonal TRSs. In particular, we prove analogues of the Head and Non-
Head Lemmas.

Our first observation is that the Head Lemma does not hold for weakly
orthogonal TRSs, as witnessed by the following example.

Example 4.30 Consider the term t = g(f(f(a))) in the TRS with rules

g(f(f(x))) → g(f(x))

f(x) → x

Since both critical pairs are trivial, this TRS is weakly orthogonal. Consider
the weakly orthogonal projection of the head step φ:g(f(f(a))) → g(f(a))
from the term t, over the co-initial step ψ:g(f(f(x))) → g(f(a)). By the
definition (Lemma 2.24) of the weakly orthogonal projection, we first have to
canonise both steps: ι(φ):g(f(f(a))) → g(f(a)) and ι(ψ) = ψ. Using this,
we compute φ//ψ:g(f(a))→ g(a) and see that the residual of the head step φ
after ψ is not a head step. Stronger, g(f(a)) does not even have a head redex!

The problem in the example is that the redex-pattern contracted by ψ is
entirely above the redex-pattern contracted by the canonisation of the head
step φ. We will show that for given head step φ and cycle-preserving multi-
step ψ we may always create the property that there are no redex-patterns in
ψ which offend φ in this way, i.e. there are no redex-patterns contracted in ψ
which are entirely above the canonical step representing φ. This will suffice to
regain the Head Lemma. The proof is presented in the next three paragraphs,
corresponding to the following three proof steps. First, we perform a careful
analysis of clusters, which can be thought of as partially characterising the
residuals of redex-patterns in a weakly orthogonal TRS. Next, we prove an
externality [17, Def. 9.2.31] result for head clusters, i.e. clusters containing a
head redex: all redex-patterns in a residual of a head cluster descend linearly
until contracted (if at all). Finally, we use externality to create the desired
property, by eliminating from the head cluster of ψ all redex-patterns offending
φ, one by one.
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Clusters are coverable by chains

We perform a careful analysis of so-called clusters, which can be thought
of as partially characterising the residuals of redex-patterns in a weakly ortho-
gonal TRS. In particular, we show that clusters must be coverable by chains,
in a sense to be defined below, in (hypothetical) TRSs which are weakly head
normalising, weakly orthogonal, and cyclic. This will enable us, in the sub-
sequent paragraph, to show that the residual of a head cluster is a single
cluster again. To prove that clusters are coverable by chains, we prove that
several shapes are forbidden, i.e. not possible in such TRSs. For convenience,
we assume in this paragraph

R is an arbitrary weakly head normalising, weakly orthogonal, cyclic TRS.

Definition 4.31 A cluster is a non-empty set of redex-patterns which forms
a connected component w.r.t. the has-overlap-with relation. A head cluster is
a cluster containing a head redex-pattern (see Figure 12).

Figure 12. Clusters and head-cluster for the term t of Figure 6.

In other words, two redex-patterns belong to the same cluster if they are
related by the reflexive–transitive closure of the (symmetric) has-overlap-with
relation, i.e. if there is a sequence of redex-patterns having overlap, which
connects them. We often identify a cluster with the set of positions of all its
redex-patterns.

Example 4.32 • The term P (P (S(P (S(S(S(P (x)))))))) has the two clusters
indicated by the underlining, with respect to the TRS of Example 2.17,

• The whole term por(>,>) is a cluster in the TRS with rules

por(>, y) → por(>, y)

por(x,>) → por(x,>)

> → >

the leftmost >-redex is overlapped by the por(>, y)-redex which has overlap
with the por(x,>)-redex which overlaps the rightmost >-redex.

Remark 4.33 This notion of cluster generalises that of [6] (cf. Remark 4.49).

Proposition 4.34 If φ, ψ are redex-patterns belonging to the same cluster,
then they have the same sources and targets.
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Proof By induction on the length of the sequence of redex-patterns having
overlap which connects φ to ψ, each time using weak orthogonality. 2

Our first impossibility result is that there can be no looping clusters.

Definition 4.35 A cluster is looping if it admits a loop (page 4).

Proposition 4.36 (Loop) R is non-looping, i.e. there are no looping clusters.

Proof For a proof by contradiction, suppose some looping cluster C would
exist in some term t. Clearly the cluster C itself then constitutes a term
embedded in t. By the assumption that C is a looping cluster and Proposi-
tion 4.34, C only allows looping steps. Since C does allow a head step, this
would contradict the assumed weak head normalisation of R. 2

Therefore, in the rest of this paragraph we assume R is non-looping. Next,
we show that clusters cannot ‘fork’, they are ‘straight lines’.

Definition 4.37 A cluster is a Y-cluster is if it contains parallel redex-patterns.
Otherwise, it is an I-cluster (see Figure 13).

Figure 13. Y-cluster and I-clusters of the term t of Figure 6.

The first item of Example 4.32 exemplifies I-clusters. Since the two ⊥-redex-
patterns in the second item are parallel and belong to the same cluster, the
cluster is a Y-cluster.

Remark 4.38 The notion of Y-cluster is a generalisation of the notion of
Takahashi-configuration as appearing in [17, Fig. p.12]. The generalisation is
proper in the sense that there are Y-clusters which do not contain a Takahashi-
configuration. (Hint: Construct a term as in the Y-cluster in Figure 13.)

Proposition 4.39 (Y) R is Y-free, i.e. there are no Y-clusters.

Proof Let φ, ψ be steps contracting two parallel redexes in a Y-cluster. By
Proposition 4.34, φ and ψ have the same targets. Note that the only way
in which contracting two disjoint redex-patterns can yield the same result is
when they are in fact looping [17, Proposition 9.3.5], from which we conclude
by Proposition 4.36. 2
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Therefore, in the rest of this paragraph we assume R is Y-free. Since the
second item of Example 4.32 displays a Y-cluster, the TRS is not weakly head
normalising and therefore not weakly normalising either. Both the TRS in
the first item and the λβη-calculus are Y-free.

Corollary 4.40 For any cluster in a term, there is a path from the root to a
leaf, in the term seen as a tree, through all head positions of all redex-patterns
in the cluster.

Proof Because clusters are I-clusters, the set of head positions of redex-
patterns is linearly ordered, i.e. is a subset of some path from the root to
the leaves. 2

In the rest of this paragraph we fix some such path, which we call π.

Finally, we show that clusters may be assumed to be free from ‘bridges’,
i.e. from redex-patterns which have overlap with two nested redex-patterns
‘bridging’ (hence having overlap with) a redex-pattern in-between.

Definition 4.41 Let t be a term containing three redex-patterns φ1, φ2, φ3,
such that φi is entirely above φi+1. Then a redex-pattern ψ is said to bridge
φ2 from φ1 to φ3 if it has overlap with each φi (see Figure 14 left).

Example 4.42 In the term h(g(f(f(a)))), the over-lined redex-pattern bridges
the middle f -redex-pattern, for the weakly orthogonal TRS with rules:

h(g(x)) → h(g(f(a)))

g(f(f(a))) → g(f(a))

f(x) → x

φ3

φ1

lφ2

ψ g

Figure 14. ψ bridges φ2 from φ1 to φ3, and l is embedded in g

Note that the second rule in the example is more specific than the third rule,
in the sense that the left-hand side of the latter is embeddable into the left-
hand side of the former (see Figure 14 right). We will show that this holds
in general for bridges, from which absence of bridges follows since we may
assume absence of embeddings, as we show now.

Proposition 4.43 (Embedding) We may assume thatR is non-embedding,
i.e. that left-hand sides of distinct R-rules are mutually non-embeddable.
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Proof Let R′ be obtained from R by omitting any rule whose left-hand side
is non-minimal with respect to the embedding relation. We verify that R′

has all properties R has. First note that the rewrite relations →R and →R′

coincide. This holds, since if t →R s for some rule g→ d in R such that g
is not minimal w.r.t. the embedding relation, there is by well-foundedness of
the embedding relation, a rule l→ r in R′ such that l is embeddable into g.
Hence, by weak orthogonality t→R′ s.

• Since R is weakly head normalising and all R-head normal forms are R′-
head normal forms, R′ is weakly head normalising.

• R′ is weakly orthogonal, as sub-TRS of the weakly orthogonal TRS R.

• Since →R and →R′ coincide, either is cyclic if the other is.

2

Therefore, in the rest of this paragraph we assume R is non-embedding.

Remark 4.44 Proposition 4.43 invalidates the TRS used in Example 4.30,
since its first rule embeds the second one. However, head redex-patterns need
not be preserved in non-embedding TRSs either, as witnessed by the term
g(h(f(f(a)), a)) in the non-embedding weakly orthogonal TRS with rules

g(h(f(f(x)), y)) → g(h(f(x), y))

h(f(x), a) → h(x, a)

f(a) → a

as can be seen by proceeding in the same way as in Example 4.30.

A redex-pattern φ may be mapped to the set [φ] of its positions on π.

Lemma 4.45 Let φ, ψ be redex-patterns in the same cluster. Then

• [φ] is a convex subset of π containing the head position of φ.

• φ has overlap with ψ iff [φ] has a non-empty intersection with [ψ], and

• φ is entirely above ψ iff every position in [φ] is strictly above every position
in [ψ].

Proof

• By convexity of redex-patterns [17, Sect. 8.6.2] and since the position of the
head of φ is on π by assumption.

• The if-direction being trivial, we prove the only-if-direction. Suppose o is a
position both in φ and ψ. Since the head positions p, q of φ, ψ are linearly
ordered by the prefix order, we may assume w.l.o.g. that p is above q (not
necessarily strictly so). By the previous item applied to p and o in φ, q then
belongs to φ as well. The result follows since q certainly is on π.

• By the previous items.

2
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By the first item of the lemma, the set of positions [φ] associated to the
redex pattern φ is an interval in the sense of [2]. By its second and third item,
we may replace abstract reasoning only involving the notions ‘overlap with’ or
‘entirely above of’ for redex-patterns φ and ψ, by reasoning on their associated
intervals [φ] and [ψ]. Therefore, we will below often identity a redex-pattern
with its associated interval. We say that the interval φ nests the interval
ψ, φ ≺ ψ, if every position in φ is strictly above every position in ψ (using
the terminology of [2] this is expressed as: φ is before or meets ψ). If either
interval nests the other, we say they are disjoint φ ⊥ ψ. Otherwise they are
said to have overlap φ 6 ⊥ ψ.

Proposition 4.46 (Bridge) R is bridge-free, i.e. clusters don’t have bridges.

Proof For a proof by contradiction, let C be a cluster containing three redex-
patterns φ1, φ2, φ3, such that φi is entirely above φi+1, and let ψ bridge φ2

from φ1 to φ3. Let the respective rules be li→ ri for i∈{1, 2, 3} and g→d and
let φi+1 occur in the argument for variable xi in the left-hand side li. Without
loss of generality we may assume that all positions of C belong to (at least
one) of the φi or ψ.

We distinguish cases on the different possible shapes of φ2.

• That φ2 could be embedded into ψ, would contradict Proposition 4.43.

• Otherwise, there is a position p of a symbol which is in φ2 but not in ψ.
If p were strictly above ψ, then by φ1 being entirely above φ2, φ1 would

be entirely above ψ as well, but then [φ1] and [ψ] would not have overlap,
so by Lemma 4.45 neither would φ1 and ψ. Symmetrically, if p would be
strictly below ψ but comparable to some position of φ3, then since φ3 is
entirely below φ2, a contradiction with φ3 and ψ having overlap is obtained.

Hence p must occur in some argument of g, at a position incomparable to
(the positions of) φ3. We claim that therefore x1 must occur exactly once
in r1, and at the same position as in l1. To see this, prune the sub-term at
position p, replacing it by a fresh variable, say y, yielding the term D.

To prove the claim, first note that D still contains the redex-patterns φ1,
ψ and φ3, with ψ having overlap with both the others. Hence contracting
any of them in D always yields the same result. Next note that contracting
φ3 does not change the position of y, since it is incomparable to it. Hence
contracting φ1 does not change it either. Thus the positions of x1 must be
exactly the same in the left- and right-hand sides of l1→ r1. Since the rule
is left-linear, the claim follows.

Now, on the hand, contracting φ1 does not change the part of C below
x1, by the claim. On the other hand contracting φ3 does not change the
parts of C above and disjoint from x1. Since both steps must have the same
result being part of the same cluster, we therefore conclude that all steps in
the cluster C are looping, contradicting Proposition 4.36.

2
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The Bridge Proposition will be essential for the residual of a head cluster
not to fall apart into several clusters, but to remain one. The reason for this is
that although the redex-patterns in a cluster may be overlapping one another
in complex ways, there always is a simple structure covering all of them: a
chain (see Figure 15).

Definition 4.47 Define for sets of redex-patterns Φ, Ψ their difference Φ−Ψ
as the set obtained by removing from Φ all redex-patterns which have overlap
with some redex-pattern in Ψ. We say that Φ is covered by Ψ, if Φ − Ψ is
the empty set. A chain is a sequence of (intervals of) redex-patterns such
that each is overlapped by 10 its successor, but doesn’t have overlap with its
successor.

The redex-patterns (intervals) of a chain will be called its links.

Figure 15. Some I-clusters and their covering chains

Example 4.48 Consider the term t of Example 2.20 in the weakly orthogonal
TRS of Example 2.17. It is a head cluster which is covered by the sequence of
all its redex-patterns. More generally, taking all redex-patterns in a cluster
yields a chain, in either that TRS or in the other rewriting system of Ex-
ample 2.17, the λβη-calculus, as one easily verifies. That is, the situation is
as for the bottom–middle I-cluster in Figure 15.

Remark 4.49 Our definition of chain is in concordance with the definitions
of chain of λs as found in [5] and of chain as in [8].

We construct a chain covering C by a greedy algorithm: Starting from
the bottom of C, always adjoin the ‘greatest possible’ link. We first present
the algorithm, after which we prove in the subsequent Chain Lemma that it
indeed generates a chain covering C.

Definition 4.50 The greedy chain ◦◦C of a cluster C is constructed by:

• As first link choose a redex-pattern of C such that the lowest position of C
on π is in it, and among those one with the highest head position.

10 Here we use overlapped-by in the sense of [2]: φ is overlapped by ψ if they have overlap,
i.e. a non-empty intersection, there is a position of φ strictly below ψ, and, vice versa, there
is a position of ψ strictly above φ.
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• Search for the redex-pattern in C with the highest head position and such
that adjoining it yields a chain. If it exists, adjoin it as next link and repeat.

Lemma 4.51 (Chain) ◦◦C is a chain covering C.

Proof That the greedy chain is a chain holds trivially by construction.

Suppose ◦◦C would not cover C. Consider a redex-pattern φ in C which
does not have overlap with any redex-pattern of the greedy chain. Without
loss of generality we may assume that it extends maximally downward among
those, and thus the sequence witnessing that φ and the final link of ◦◦C are
connected (are being part of the same cluster) consists of a single link, say
ψ. Now note that ψ has overlap with ◦◦C , but that its head position is above
all heads of greedy redex-patterns. Consider the first greedy redex-pattern χ
with which it has overlap. If χ is the first link of ◦◦C and the lowest position of
C is in ψ, then ψ should have been chosen instead of χ. Otherwise, ψ should
have been chosen as the successor of χ. Contradiction. 2

We now use the greedy chain in our proof of the main result of this para-
graph. It expresses that after removing a suffix, i.e. a downward closed subset
of the maximal set of redex-patterns of a cluster, and all redex-patterns hav-
ing overlap with it from the cluster, the remaining redex-patterns still form a
‘cluster’. This is based on the fact that removing a suffix from a chain yields
a chain again, whereas removing an arbitrary set of links could obviously split
the chain into a number of disconnected parts.

Theorem 4.52 (Suffix) For any suffix Φ of C∗, C∗−Φ has a covering chain
in C − Φ.

Proof Since in case C∗ − Φ is empty or a singleton the statement holds
trivially, we assume the set has at least two elements. We claim that ◦◦C −Φ,
which clearly is in C − Φ, is a chain covering C∗ − Φ. To that end it suffices
to show that the lowest element of C∗−Φ, which we denote by φ2, is covered
by some link of ◦◦C − Φ. (This suffices by downward closedness of Φ and ◦◦C
being a chain, so that each link is overlapped by its successor, meaning that
its successors are above it.) We claim that the last link (generated in the
construction) of ◦◦C which had overlap with φ2, which we denote by ψ, is not
removed when taking the difference ◦◦C − Φ. For suppose ψ would have been
removed, i.e. suppose that it had overlap with some redex φ3 in Φ. By Φ being
a downward closed subset of C∗, φ2 nests φ3. We distinguish cases on whether
there is a successor to ψ in ◦◦C or not, in both cases finding a redex-pattern φ1

such that ψ bridges φ2 from φ1 to φ2, yielding a contradiction with the Bridge
Proposition.

Suppose there is a successor to ψ in ◦◦C . Then we take that to be φ1. By ◦◦C
being a chain, φ1 must have overlap with ψ, and by the choice of ψ being the
last link of ◦◦C having overlap with φ2, φ1 nests φ2. Hence the preconditions
of the Bridge Proposition are satisfied.
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If there is no successor to ψ in ◦◦C , then let φ1 be a redex-pattern in C∗−Φ
distinct from φ2, which exists by assumption. By φ2 being lowest, it is nested
by φ1. Since ◦◦C covers C with ψ as last link, which has overlap with φ2, ψ
must have overlap with φ1 as well, as the latter is above φ2, the preconditions
of the Bridge Proposition are satisfied again, and we are done. 2

Remark 4.53 Both the Chain Lemma and the Suffix Theorem are abstract
in the sense that they only employ manipulation with intervals. Hence these
results hold for finite clusters in interval algebra [2]. For instance, on intervals
a cluster is a (finite) set of intervals such that their union is a single interval,
a cover is a subset having the same union, a chain is as expected, and a
bridge is a cluster consisting of four intervals three of which are pair-wise non-
overlapping. Then the Chain Lemma expresses that every cluster without
bridges has a chain as cover.

Head clusters are external

Here we prove that this implies that any head cluster C is external [17,
Def. 9.2.31], in the sense that its residuals cannot be nested by redex-patterns
not belonging to the cluster, along a reduction σ. For this to hold, we use the
fact from the previous paragraph that any cluster may be covered by a chain.
In order for this property to be preserved by projection, i.e. for the residual
of a chain to be a chain again, we require that the steps of the reduction σ
are down steps, causing only links at the tail of the chain to be removed when
taking residuals. Externality of C and steps of σ being down steps, together
will yield the property that all redex-patterns in C have unique residuals, until
possibly contracted. Uniqueness will be the basis for their elimination in the
subsequent paragraph.

We define the residual of a cluster C via its maximal step φ∗, and adapt
the notion of externality of steps as presented in [17, Def. 9.2.31] accordingly.

Definition 4.54 The set of clusters generated by a subset P of the positions
of a term, denoted by P , is the least set of clusters which contains P . The
residual of a cluster C after a multi-step φ is defined by C∗//φ. A cluster C in
a term t is external to a reduction σ from t if the residuals of C are not nested
by other (not necessarily contracted) redex-patterns in the course of σ.

Note that even if a cluster is external, so there are no redex-patterns outside
its residuals which could duplicate its residuals, duplication could be caused
by redex-patterns within the cluster itself, invalidating the desired uniqueness.

Example 4.55 Consider the cluster f(d(x, y)) in the weakly orthogonal TRS

f(x) → f(d(x, x))

f(d(x, y)) → f(d(d(x, y), d(x, y)))
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d(x, y) → d(d(x, y), d(x, y))

Contracting the f -redex leaves two residuals of the d-redex in the same cluster. 11

Note that the f -redex-pattern is non-down in the sense that there is a non-
contracted redex-pattern which is below it and in the same cluster, namely
the d-redex-pattern. We show that any parallel reduction can trivially be
transformed into one performing only down-steps, of the same length. (In the
case of the example, the f -redex will be transformed into the d-redex.)

Definition 4.56 A down step from t, is a sub-step φ of t∗ such that, for any
redex-pattern ψ in φ, all redex-patterns of t∗ below and in the same cluster as
ψ, are in φ as well (see Figure 16).

∆

Figure 16. A multi-step χ and its corresponding down step ∆(χ)

Lemma 4.57 For any multi-step φ:t ◦−→ s there exists a down step ∆(φ):t ◦−→
s. Moreover, φ and ∆(φ) contract the same number of redex-patterns, ∆(φ) ⊆
φ∗, and if φ is a parallel step, then ∆(φ) is one as well.

Proof See Figure 16. Formally, one reasons by induction on the number of
non-down redex-patterns contracted in φ. In case this number is 0, we are
done and may simply set ∆(φ) = φ. Otherwise, the number is n+ 1 for some
n, and we may remove one innermost non-down redex-pattern and replace it
by a down redex-pattern in the same cluster and below it, but not in φ. Say
this yields φ′. By Proposition 4.34, φ and φ′ have the same sources and targets
and they obviously contract the same number of redex-patterns. However, in
φ′ there is one more redex down, and only n redexes to go. Therefore, we
conclude by the induction hypothesis, setting ∆(φ) = ∆(φ′).

By Y-freeness, the construction is deterministic, except in case a choice
exists between two redex-patterns at the same position, having overlapping
heads, at the same maximal depth. In such cases, we make the same choice
as in the construction of the maximal multi-step t∗, yielding ∆(φ) ⊆ t∗.

11 Both the first and third rules are embeddable into the second rule. As in Example 4.44
this invalidates the example (being a counter-example), but this can be overcome likewise,
e.g. by providing f and d with extra arguments (which are to be instantiated in the first
and third rule, but not so in the second rule).
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That this procedure preserve parallel-ness of multi-steps follows, since re-
placing a redex-pattern by one below it preserves parallel-ness. 2

Example 4.58 We illustrate ∆ on the same steps φ:P (S(P (S(P (x))))) ◦−→
P (S(P (x))) and ψ:P (S(P (S(P (x))))) ◦−→ P (x) and from the same term t =
P (S(P (S(P (x))))), as was used in Example 2.22 to illustrate canonisation.
Since t constitutes a single cluster, the down step corresponding to φ, simply
contracts the innermost redex-pattern in t i.e. ∆(φ):P (S(P (S(P(x))))) ◦−→
P (S(P (x))). It is easy to see that ∆(ψ) = t∗. The difference between canonical
and down steps, as is well-illustrated by φ, is that ι(φ) is not necessarily a
down step, and, vice versa, ∆(φ) does not necessarily have overlap with φ.
(But both may hold, as illustrated by ψ.)

Taking residuals of redex-patterns in non-nested clusters is particularly
simple; either the redex-pattern was not contracted and then it projects onto
itself, or else it was contracted and then it leaves no residual. Using this
characterisation, we establish some further technical properties which will be
useful in the proof of Theorem 4.60. For instance, the final item characterises
the situation in Example 4.30 as being completely general.

Lemma 4.59 Let φ:t ◦−→ s be a canonical multi-step co-initial to a down step
ψ. Let φ contract redex-patterns in a non-nested cluster C at position p. Then

(i) φ//ψ = ι(φ− ψ), and

(ii) C//ψ is empty iff χ//ψ is empty, with χ outermost among C∗.

(iii) the head positions of C and C//ψ are comparable (if the latter exists).

(iv) If C is not eliminated, but there is no redex-pattern at position o in s, then
any redex-pattern ζ at o in t has overlap with exactly two redex-patterns
in C∗, the outermost one of which is also a redex-pattern in C//ψ.

Proof We show the items in order. For the first item, note that by definition,
by assumption for φ, and since down-steps are canonical for ψ, we have φ//ψ =
ι(ι(φ)/ι(ψ)) = ι(φ/ψ). Hence it suffices to verify that

φ/ψ = φ− ψ

holds. This follows by inspection of the four clauses for residuation of multi-
steps as presented in [17, Def. 8.7.4]. More precisely, one shows that because
the cluster C was assumed to be non-nested and ψ is a down step, the second
clause there never can be applied anymore once either the third or the fourth
clause has been applied.

For the second item, note that by definition C//ψ = C∗//ψ and by assump-
tion χ ∈ C∗, so C//ψ is non-empty if χ//ψ is non-empty. To show the other
direction, note that by the first item χ//ψ = ι(χ−ψ). Since ψ is a downward-
closed sub-step of C∗ by assumption, and χ is outermost in C∗, χ− ψ is only
going to be empty if ψ = C∗, and the result follows.

To show the third item, assume that p and p′ are the positions of the

42



Ketema, Klop, Van Oostrom

heads of C and C//ψ. Since C//ψ is non-empty, we know by the previous
item that χ//ψ is non-empty too, with χ as in that item. Clearly p and p′ are
above the positions q and q′ of χ and χ//ψ, respectively. By the first item,
χ//ψ = ι(χ−ψ), so χ//ψ = ι(χ), thus q′ is seen to be below q, by inspection of
canonisation. Therefore, both p and p′ are above q′, so they are comparable
since positions form a tree.

It remains to prove the fourth and final item. If for some outermost redex-
pattern ζ of C, no redex-pattern having overlap with ζ would be contracted
by ψ, we would have that ζ is in u as well (use the displayed equality in the
first item). Therefore, for any outermost redex-pattern ζ of C, there is at least
one redex-pattern ζ ′ in ψ having overlap with it. By the assumption that C is
not eliminated, we have by the second item that the outermost redex-pattern
χ in C∗ is not eliminated by ψ. Therefore it is distinct from ζ ′, so by its
outermost-ness, χ nests ζ ′. We conclude since χ has overlap with ζ , because
ζ ′ does so, and there cannot be other redex-patterns (having overlap with ζ ,
but not with either χ or ζ ′), by the Bridge Proposition. 2

Theorem 4.60 (External) Head clusters are external to any down reduc-
tion. Moreover, a redex-pattern in a residual of the head cluster along the
reduction, has unique residuals in its residual clusters until contracted.

Proof The proof is by well-founded induction on the length of down reduc-
tions from a term t with head cluster C. Hence, assume the statement holds
for all down reductions up to a given length. If the length is zero, the state-
ment holds trivially. Otherwise, suppose the reduction is of shape σ ·ψ, with σ
a down reduction from t to s and ψ a down step from s to u. By the induction
hypothesis, the statement holds for σ, so we may define D = C//σ to be the
unique residual cluster of C along σ, and it holds that there is no redex-pattern
strictly above D. Moreover, redex-patterns in any residual of C have unique
residuals in D, until contracted. We show that E = D//ψ = D∗//ψ in u has
these properties again.

We first show that E consists of at most one cluster. As there is no
redex-pattern nesting D and since ψ is a down step, Lemma 4.59(i) yields
D∗//ψ = ι(D∗ − ψ). Since ψ is a down step, removing it consists in removing
a suffix from the chain covering D∗. Therefore, by the Suffix Theorem 4.52,
there is a chain in D−ψ covering D∗−ψ, i.e. all residual steps belong to the
same cluster again. Since the property of being a single cluster is preserved
both by canonisation and cluster generation, we conclude that E is a single
cluster.

Next we show that E is non-nested, i.e. that there is no redex-pattern
entirely above it. We present a proof by contradiction based on the idea that
if such a redex-pattern would exist, then the reduction σ can be rearranged
to witness a bridge, contradicting the Bridge Proposition (see Figure 17). So
assume existence of such a redex-pattern φ1 in u. Then E is non-empty and
we may consider a position p in φ1, which is at maximal depth on the path
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Figure 17. Decomposing σ ·ψ into σ′ ·ψp ·σ 6�p and extracting σ̂ ending in bridge u′

π from the root of s through the heads of redex-patterns in E. Note that C
is a head cluster, so its position is the root which is above p, and that p is
in its turn strictly above the residual E of C. Therefore, we can decompose
σ · ψ uniquely as σ′ · ψp · σ6�p, for some down reduction σ′ from t to t′, some
down step ψp from t′ to s′, and a down reduction σ6�p from s′ to u which is
of maximal length such that all residuals of C along it are strictly below p.
As the head of C ′ = C//σ′ is not strictly below p per construction, it must be
above p by Lemma 4.59(iii). On the other hand, also per construction, the
head of D′ = C ′//ψp is strictly below p (this is witnessed by the dashed ‘trace
lines’ crossing one another for ψp in the figure). Therefore the head redex χ
of C ′ is eliminated by ψp, but C ′ itself is not, since it has the non-empty E as
residual. By Lemma 4.59(iv) we obtain two nested redexes, say φ2 nests φ3, in
C ′ and having overlap with χ. 12 Moreover, it yields that φ2 is a redex-pattern
in D′ so it is strictly below p and therefore φ3 is so as well.

Summarising the above, we have found three redex-patterns φ1, φ2 and φ3

such that φi is entirely above φi+1. Moreover the step χ has overlap with all
three of them. In order to derive a contradiction with the Bridge Proposition,
it remains to show that they may be assumed to be redex-patterns in the
same term; presently φ1 is a redex-pattern in u while the others are redex-
patterns in t′ (see the figure)! Thereto we show that, without affecting the
latters, t′ can be reduced further to some term u′ containing φ1 as well. Note
that the reduction ψp · σ6�p does not contract redex-patterns above p, since
ψp is a down step which doesn’t contract the redex-pattern φ2 below p, and
since σ6�p doesn’t contract redex-patterns above p per its construction and the
induction hypothesis. Therefore, we can decompose the reduction ψp·σ6�p. into
reductions σo which only contract redex-patterns below o, for every position
o directly below some position on the path from the root to p, but not on the

12 The present proof only employs that there are at least two nested redexes. It might be
the case that it can be simplified using the stronger fact that there are exactly two of them.
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path itself.

Now consider extracting from ψp ·σ6�p those σo for which o is not (strictly)
below p, performing these first, say as σ̂ ending in u′ and the others after-
wards (see the figure). Then, per construction u′ is the same as u for all
positions not strictly below p. This means that u′ contains the redex-pattern
φ1, since p was assumed a minimal position in φ1. Moreover, since the pos-
itions below p are unaffected, neither are the the redex-patterns φ2 and φ3.
We claim that also the redex-pattern χ is still present in u′, which will yield
the desired contradiction with the Bridge Proposition. To prove the claim,
note that any redex-pattern χ′ contracted in σ̂ is not above p, so to elimin-
ate the redex-pattern χ which is above p, the first such χ′ must have overlap
with χ at a position disjoint from p. This implies that the term at that mo-
ment would contain the Y-cluster consisting of χ, χ′ and φ2 contradicting the
Y-Proposition. This concludes our verification that E is non-nested.

Finally, we check that any redex-pattern φ in D has a unique residual,
unless contracted in ψ. As φ//ψ = ι(φ)//ψ = ι(ι(φ)−ψ), by Lemma 4.59(i), we
conclude since canonisation always yields a unique residual, and set-difference
does so as well unless the redex-pattern is contracted in ψ. 2

Eliminating offending redex-patterns from head-clusters

We use externality, as established in the preceding paragraph, to create
the property that when projecting a head cycle over a multi-step, the latter
contracts either the (representative of the) head-redex-pattern or no redex-
pattern in the head-cluster at all. This is achieved by eliminating all offending
redex-patterns from the multi-step, one by one. To express the results we will
use the notion of a parallel head-cluster cycle.

Definition 4.61 A head-cluster step is a step contracting a (single) redex-
pattern in the head cluster (which is therefore implicitly assumed to exist). A
parallel head-cluster cycle is a parallel cycle on t, the first step of which is a
head-cluster step.

Lemma 4.62 (Elimination) Let φ be a multi-step co-initial to a parallel
head cycle σ on t, which starts with the head step ψ. Then there exist a
multi-step φ̂ extending φ, and co-initial to a parallel head-cluster cycle σ̂ on t,
starting with the head-cluster step ψ̂, such that φ̂//σ̂ = φ̂ and either ψ̂ ∈ φ̂ or
φ̂ contracts no redex-patterns in the head cluster C of t at all.

Proof By Lemma 4.57, ∆(σ) is a parallel cycle again, which starts with
the single step ∆(ψ), which contracts the innermost redex-pattern of C∗ by
definition of ∆. By Theorem 4.21 , there exists a multi-step φ̄ extending φ
such that φ̄//∆(σ) = φ̄, hence ∆(σ)//φ̄ is a cycle again.

If ∆(ψ) ∈ φ̄, we may simply set φ̂ = φ̄ and σ̂ = ∆(σ). Hence, suppose
∆(ψ) is not in φ̄. We construct φ̂ from φ̄, by eliminating, one by one, the
redex-patterns contracted by φ̄ which are also in C. Let this set of offending
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redex-patterns be denoted by φ̄C and let χ be an innermost offending redex-
pattern in it. By the External Theorem 4.60 χ has a unique residual along
∆(σ), until possibly contracted.

Suppose χ is not eliminated, i.e. has a residual after ∆(σ). We claim that
setting φ̂ = φ̄ − φ̄C and σ̂ = ∆(σ), then works. To prove the claim, note
that the situation must be as in Figure 18, that is, χ has itself as unique
residual after ∆(σ). This holds since by the External Theorem χ has a unique
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Figure 18. Head cluster with non-eliminated redex-patterns striped/in red

residual after ∆(σ) in the residual of the cluster C, which is non-nested. But
since ∆(σ) is a cycle, that non-nested cluster must be C itself, so φ̄C//∆(σ) ⊆
C//∆(σ) = C. Moreover, the residual of a redex-pattern in the head cluster
is always below its origin as one easily checks (the tracing arrows in Figure 7
don’t point upward), so the residual of χ after ∆(σ) is in φ̄C and below χ. But
χ was chosen innermost among the redex-patterns in φ̄C, so χ must in fact be
its own residual, as displayed in the figure. To finish the proof of the claim,
note that since ∆(σ) consists of down steps, if χ has a unique residual, then all
other offending redex-patterns (only one in the figure) have unique residuals
as well, since they are entirely above χ by innermost-ness of the latter. By
reasoning as for χ, using the assumption φ̄//∆(σ) = φ̄, we conclude that in
fact, every redex-pattern in φ̄C must descend to itself, so φ̄C//∆(σ) = φ̄C , and
hence its complement φ̂ must descend to itself as well: φ̂//∆(σ) = φ̂. Since this
shows that cyclicity is preserved, it remains to show that φ̂ is an extension of
φ̄. At first sight this is not clear, since φ̂ contains fewer redex-patterns than
φ̄; the offending redex-patterns φ̄C have been removed. However, consider
replacing in the cycle ∆(σ) its first step ∆(ψ) by χ. Since both these steps
belong to C they have the same sources and targets, hence this replacement
gives rise to a cycle again, say σ′ on t, Using the assumption that ∆(ψ) is not
in φ but is below all redex-patterns in φ̄C by it being a down step, we compute

φ̄C//χ = φ̄C − χ = (φ̄C//∆(ψ))− χ

Since redex-patterns in the same cluster yield the same residual relation on
redex-patterns outside the cluster, we also have φ̂//χ = φ̂//∆(ψ), so combining
both gives φ̄//χ = (φ̄//∆(ψ))− χ and continuing this along σ′ yields

φ̄//σ′ = (φ̄//∆(σ))− χ = φ̄− χ

Hence there is a reduction from the target of φ̄ to the target of the same step
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where χ has not been contracted. This may be repeated, inside-out, for each
offending redex-pattern, eventually yielding a reduction from the target of φ̄
to the target of φ̄− φ̄C , i.e. φ̂, finishing the proof of the claim.

Now suppose χ is eliminated, i.e. does not have a residual after ∆(σ).
Then we claim that defining φ̂ = φ̄ and taking σ̂ to be obtained from ∆(σ) by
replacing ∆(ψ) by χ works. For, computing as before, we find

φ̄//χ = (φ̄//∆(ψ))− χ

Continuing this along σ̂ and using the assumption χ has a unique residual
along ∆(σ) until it is eliminated, which it is by assumption, we conclude

φ̄//σ̂ = φ̄//∆(σ) = φ̄

2

We call the constructed multi-step φ̂ the head extension of φ and ψ̂ the
head-cluster step of ψ. The hard work having been done, the proofs of the
adaptations of the Head and Non-Head Lemmas from the orthogonal to the
weakly orthogonal case are trivial.

Lemma 4.63 (Head-Cluster) Let ψ̂ be the head-cluster step co-initial to
the head extension φ̂ as in Lemma 4.62. Then ψ̂//φ̂ is either empty or a
head-cluster step again.

Proof Immediate from Lemma 4.62. 2

To adapt the Non-Head Lemma lengths of (outermost) developments must
be invariant under canonisation; they are.

Lemma 4.64 The lengths of outermost developments 13 of a multi-step φ and
its canonisation ι(φ) are the same.

Proof We may transform a multi-step φ into its canonisation ι(φ), by repla-
cing inside-out every redex-pattern ψ in φ by its canonisation ι(ψ). Hence it
suffices to show that every such single replacement does not change the length
of the outermost developments. To that end, note that the unification of
the redex-patterns ψ and ι(ψ) (which have overlap) is disjoint from all other
redex-patterns, and can be treated as a single redex-pattern, contracted in
either way. 2

Lemma 4.65 (Non-Head-Cluster) Let σ̂ be the parallel head-cluster cycle
co-initial to the head extension φ̂ as in Lemma 4.62. If φ̂//σ̂ = φ̂, then φ̄ does
not eliminate σ̂.

Proof As for Lemma 4.29, noting that the proof of Proposition 4.27 on which
it is based, only needs to be supplemented by the observation that canonisa-
tion does not change the lengths of outermost developments as established in
Lemma 4.64. 2

13 In the definition of a development either the orthogonal or the weakly orthogonal projec-
tion may be employed.
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Finally, the Head-Cluster and Non-Head-Cluster Lemmas allow to prove
the main result of this section, by adapting the alternative proof to The-
orem 3.17 as presented on page 31.

Theorem 4.66 Weakly head normalising weakly orthogonal TRSs are acyclic.

Proof For a proof by contradiction, assume there would exist a non-empty
parallel cycle. Select among the non-empty parallel cycles of minimal length a
parallel head cycle, say σ starting with head step ψ from t. For any multi-step
φ co-initial to σ, Lemma 4.62 yields an extension φ̂ of φ and a co-initial parallel
head-cluster cycle σ̂ of the same length as σ starting with a head-cluster step ψ̂.
By the Head-Cluster Lemma ψ̂//φ̂ is either empty or a head-cluster step again.
But the former cannot hold, since then σ̂//φ̂ would be a parallel cycle shorter
than σ, which by the Non-Head-Cluster lemma is non-empty, contradicting
minimality of the length of σ. Therefore, σ̂//φ̂ is a parallel head-cluster cycle
again. Now by the weak head normalisingness assumption there is a reduction
τ from t to head normal form s. Hence, by Lemma 2.9 and the above, we may
assume that τ/σ = τ and that σ/τ is a parallel head-cluster cycle. But this
would contradict s being in head normal form. 2

Remark 4.67 In [20] it was shown that a term having a head loop is not
normalising. Theorem 4.66 generalises this from loops to cycles and from
normalisation to head normalisation, but requires the latter for all terms.

5 Acyclicity of weakly head normalising λ-calculi

In this section, we show that reductions are acyclic in λ-calculi which are
weakly head normalising. In particular, we show this for the ordinary λβ-
calculus, the extensional λβη-calculus, and two λβ-calculi with explicit sub-
stitutions. The proof of the former is an easy corollary to the earlier results.

Theorem 5.1 For sub-calculi of λβ-calculus W(H)N ⇒ AC.

Proof This is just Examples 3.6 and 4.4. 2

Next, we turn our attention to the λβη-calculus.

Theorem 5.2 Head strategies are hyper-normalising for λβη-calculus.

Proof Let t be a term which has a normal form. By η-postponement [4],
we may assume the reduction σ to normal form is of shape σβ · ση, for some
β-reduction σβ :t � s and η-reduction ση:s � u. Moreover, we may assume
that s is in β-normal form (if not, performing a maximal β-reduction from s
terminates and leaves a residual η-reduction to u, as one easily checks).

We will show that projecting such a reduction over a hyper-head reduction
τ eventually results in an empty reduction. To that end, we measure σ by
first the number of η-redexes contracted in ση, and second the µ-measure [18]
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of σβ. We distinguish cases on whether the (first) step φ:t→ t′ of τ projected
over, using the weakly orthogonal projection of [18,17], has a residual after σβ
or not.

In case it does, φ must be an η-step since σβ was assumed to end in β-
normal form. Moreover, φ must be eliminated by ση since the latter was
assumed to end in η-normal form. Thus the projection of ση contracts one
η-redex less.

In case it does not, φ must have been eliminated by σβ . But then the
µ-measure of the projection of σβ has been decreased (in case of overlap) or
is unchanged (in case all residuals of φ have been erased).

Noting that a head step can not be erased we conclude. 2

Theorem 5.3 For sub-calculi of the λβη-calculus, WN ⇒ AC.

Proof By Theorem 5.2. 2

We do not know whether the assumption of the theorem can be weakened
from WN to WHN. The following example displays two problems which show
up in a proof attempt along the lines above.

Example 5.4 The leftmost outermost strategy need not be head normalising,
as witnessed by the term t = λx.z(ss)x with s = λy.Kyxy. The leftmost
outermost strategy reduces this term to itself, whereas the head normal form
zΩ can be reached by first contracting the K-redexes.

A head normal form can sometimes be reached without performing a head
step, as witnessed by the term t = λx.Ix which reduces by one non-head-β-
step to the (head) normal form λx.x (it could also be reduced to that head
normal form by a head-η-step, but that’s not the issue).

Finally, we turn our attention to the two λβ-calculi with explicit sub-
stitutions λx− and λσ. The proof of acyclicity of weakly head normalising
such is by reduction to acyclicity of the associated weakly head normalising
λβ-calculus.

First, we consider the λx−-calculus [7], which is the λβ-calculus extended
with an explicit substitution operator [ := ] with rules, for x distinct from y:

(λx.M)N → M [x:=N ]

(M1M2)[x:=N ] → M1[x:=N ]M2[x:=N ]

(λx.M)[y:=N ] → λx.M [y:=N ]

x[x := N ] → N

y[x := N ] → y

Theorem 5.5 Head reductions are hyper head normalising in λx−.

Proof We have to show that reductions that eventually always perform a
head step, are head normalising. Hence, for a proof by contradiction, assume
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that t allows both for a reduction σ containing infinitely many head steps
as well as a reduction τ to head normal form s. We claim that we may
assume that σ contains infinitely many Beta-steps which project onto head-
β-steps. The result follows, since then in the λβ-calculus, the projection σ↓

x

is a reduction containing infinitely many head-β-steps, and the projection τ↓
x

is a reduction to the head normal form s, since λx−-head normal forms are
λβ-normal forms. This combination is impossible due to Theorem 3.4.

We prove the claim in four proof steps.

First, since λx− is a left-linear second-order PRS the standardisation the-
orem holds for it [18]. That is, any reduction can be transformed into a
reduction which is standard in the sense that a redex-pattern contracted in
any of its steps overlaps the redex-pattern of the first step (if any) after and
outside or to the left of it. Since λx− is left-normal, the standard reduction
can be obtained by repeatedly permuting so-called anti-standard pairs, i.e.
two consecutive steps such that the redex-pattern contracted by the latter is
entirely above or to the left of the former [12]. Hence, standardising σ yields
a standard reduction still containing infinitely many head steps. Therefore,
we may assume without loss of generality that σ is standard.

Second, all Beta-steps of σ must be on the spine. This holds true, since by
standard-ness the position of a contracted redex-pattern φ must overlap the
redex-pattern of the first redex-pattern ψ contracted outside it in σ. Such a
step ψ always exists since σ contains infinitely many head steps. From the
form of the left-hand sides of the λx−-rules, we have that if ψ is on the spine,
then φ must be so as well. Since head steps are on the spine, we conclude that
all of them are.

Third, there must always eventually be a Beta-step in σ. This holds by
SN of the explicit substitution rules of λx−, and infiniteness of σ.

Finally, assuming a Beta-step φ on the spine in σ, consider a non-substitution
symbol above it (not necessarily properly so), hence on the spine, which is
closest to the head. Note that by the form of the rewrite rules the symbol
has a unique residual, until contracted as part of a Beta-redex, which is then
closest to the head and on the spine again. Moreover, after a head step the
residual is closer to the head. Hence, eventually it must be contracted. 2

Remark 5.6 One could prove that in a λx−-reduction containing infinitely
many head steps, infinitely many of these must in fact be Beta-steps. We
refrain from doing so here, since it does not generalise to the λσ-calculus.

From hyper head normalisation we have acyclicity of λx−, as before.

Theorem 5.7 If λx− is weakly head normalising, then it is acyclic.

As before, this result in itself is not interesting as the λx−-calculus is not
weakly head normalising, but it does become interesting for sub-calculi. Let
X be a sub-calculus of λx− in the sense that it is closed under reductions and
taking sub-terms. In order to be able to reduce acyclicity of X to that of a
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λβ-calculus, it suffices to define the λβ-calculus induced by X , and verify that
weak (head) normalisation is preserved.

Definition 5.8 The sub-ARS of the λβ-calculus induced by X is →β restric-
ted to terms in X .

Proposition 5.9 For the sub-ARS of →β induced by X it holds:

• it is a sub-calculus of →β, and

• it is weakly (head) normalising, if →λx− is so on X .

Proof

• Note that any β-step on λ-terms may be simulated by a number of λx−-
steps [11, Lem. 5(3)]. Thus, closure under taking sub-terms and under
β-reduction, follow from the corresponding properties of X .

• Let t be a λ-term. By assumption, it can be reduced to some (head) normal
t′. Define s = t′↓

x
, that is, s is the substitution normal form [11, Lem. 5(1)]

of t′. By [11, Lem. 5(1,2)], s is a λ-term which is reachable by β-steps from t.
Refining the observation of the first item to: a (head) β-step from a λ-term
gives rise to a (head) Beta-step from it, we conclude that t is β-reducible to
a (head) normal form, since s being a λx−-reduct of a (head) normal form,
s itself is one too.

2

Hence, Theorem 5.7 extends to sub-calculi of λx−. Next, we consider the
calculus of explicit substitutions λσ as introduced in [1] (see e.g. [17, Sec. 3.6]).

Theorem 5.10 Head strategies are hyper head normalising for λσ.

Proof This follows from [15, Thm. 3].

Here we present a direct proof, by adapting the earlier proof for λx− above,
only indicating the essential properties used in its four proof steps.

First, standardisation holds for λσ as it is a left-linear left-normal TRS
(see Figure 19), so we may assume reductions containing infinitely many head
steps to be standard.

Second, all the Beta-steps must be on the spine. This follows by proving the
stronger property that all sub-terms above a Beta-redex-pattern (in particular
the term itself), must in fact have type Expression, which holds by standard-
ness since a Beta-redex has type Expression, terms of type Expression only
overlap terms having that type again, and if a sub-term on the spine is over-
lapped by a sub-term of type Expression, then the latter is on the spine again
(see Figure 19).

Third, the explicit substitution calculus of λσ is strongly normalising.

Checking the fourth step proceeds as for λx−, verifying that an outermost
application symbol on the spine is preserved by all steps until contracted by
a Beta-redex, and we conclude. 2
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Figure 19. Left-hand sides of λσ-rules, with Substitutions dashed/in blue

As an immediate corollary we have.

Theorem 5.11 Weakly (head) normalising sub-calculi of λσ are acyclic.

One way of construing these results is as an explanation for the fact that the
counter-examples to preservation of strong normalisation for typed λ-calculi
with explicit substitution, as found in the literature starting from the seminal
paper [14], display acyclic behaviour and hence unbounded growth; it couldn’t
have been otherwise! More precisely, we have:

Corollary 5.12 Typed λσ is acyclic.

Proof Let t be a typed λσ-term and consider its family, which is a sub-
calculus (see Example 3.6). Any term s in this sub-calculus is seen to be
weakly head normalising as follows.

First reduce s to substitution normal form. This yields a term consisting of
a (possibly empty) context of sub-terms of type Substitution having arguments
of type Expression which are (translations of) typed λβ-terms. Since typed
λβ-calculus is SN, these arguments can be reduced to normal form in the λσ-
calculus, by simulating the reduction to normal form in the λβ-calculus. This
yields a term in λσ-normal form.

Therefore, by the previous theorem, t is acyclic. 2

It is not immediately clear how to generalise this to the untyped case. In
particular, starting from some untyped λβ-term t which is strongly normal-
ising, is its associated λσ-term acyclic? The point is that it is not clear why
its family should be weakly head normalising: following the procedure in the
proof, the arguments in substitution normal form might be λβ-terms which
are not in the λβ-family of t!

Remark 5.13 It is easy to prove that the λβ-family of a λβ-term is the same
as the restriction of its λx−-family to λβ-terms; prove by induction on the
length of the λx−-reduction that the substitution normal form of any term
in a closure is reachable. For λ-calculi having some form of composition, like
λσ, this proof method does not work immediately, because of the problem
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mentioned above. Still, we conjecture that also for these, the property holds.
Since the λσ-calculus is rather unwieldy, having 11 rules, it might be simpler
to attempt to prove the conjecture first for the λx−-calculus extended with
the single substitution lemma rule

M [x:=N ][y:=P ]→M [y:=P ][x:=N [y:=P ]]

The problem in a proof attempt is then caused by the sub-term N [y:=P ]
which might not occur in the substitution normal of the term, i.e. not in the
corresponding λβ-term, in case x is erased.

Intuitively, the result should hold because of standardisation: the sub-term
can only be problematic if the left-hand side is caused by inside-out creation.
But then the application of the substitution lemma rule, transforms it into an
outside-in creation and there should be an outside-in reduction creating the
sub-term as well. It remains to formalise this intuition.

Vice versa, the λ-calculi with explicit substitutions can be construed as
counter-examples of sorts to the Barendregt–Geuvers–Klop Conjecture 1.1. As
their failure to be strongly normalising, in the typed case, can be attributed to
their ability to express and manipulate ‘composition of substitution’, it would
be interesting to formulate this ability abstractly and prove that ordinary
typed λβ-calculi are lacking it.

6 Conclusions

We have generalised our earlier result, WN ⇒ AC for orthogonal TRSs, into
several directions. The generalisations to rewriting systems which still have
a nice theory of permutation, were relatively straightforward, consisting in
generalising the Head Normalisation Theorem to these cases. In contrast,
the generalisations to rewriting systems which do not have a nice theory of
permutation, in particular to weakly orthogonal and to non-fully-extended re-
writing systems, and to the λ-calculi with explicit substitutions λx− and λσ,
required substantial effort. The reason is that generalising the Head Norm-
alisation Theorem is not straightforward for λ-calculi with explicit substitu-
tions, and even fails for weakly orthogonal and non-fully extended rewriting
systems. To overcome these problems, we have introduced several new notions
and techniques, the main ones of which were:

• the full-extension of a non-fully-extended PRS (Section 3.1),

• a theory of projections of cycles, in analogy to the theory of repeating
decimals (Section 4.1), and

• a theory of clusters of redex-patterns in weakly orthogonal term rewriting
systems, showing that they are coverable by chains (pages 33–40).

This paper is but a small step towards a theory of cyclic reductions. The
latter and, more generally, the theory of non-terminating reductions remain
largely unexplored. Apart from the Barendregt–Geuvers–Klop Conjecture 1.1,
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we have left several concrete problems open. We conclude by presenting these
as the following conjectures:

• WHN ⇒ AC, for weakly orthogonal PRSs (Conjecture 1.2).

• Weakly orthogonal TRSs do not constitute a residual system (Remark 2.26).

• Head strategies are hyper-head-normalising for the λβη-calculus (Example 5.4).

• The image in an explicit substitution calculus λ? of the λβ-family of a λβ-
term, is the same as the restriction of its λ?-family to images of λβ-terms
(Remark 5.13).
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