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Large deviations of Gaussian tandem queues and
resulting performance formulae

ABSTRACT
This paper considers a two-node tandem queue where the cumulative input traffic is modeled
as a Gaussian process with stationary increments. By applying (the generalized version of)
Schilder's sample-path large-deviations theorem, we derive the many-sources asymptotics of
the overflow probabilities in the second queue; `Schilder' reduces this problem into finding the
most probable path along which the second queue reaches overflow. The general form of these
paths is described by recently obtained results on infinite intersections in Gaussian processes;
for the special cases of fractional Brownian motion and integrated Ornstein-Uhlenbeck input,
they can be explicitly determined, as well as the corresponding exponential decay rate. As the
computation of this decay rate is numerically involved, we introduce an explicit approximation
(`rough full-link approximation'). Based on this approximation, we propose performance
formulae that could be used, for instance, for network provisioning purposes. Simulation is used
to assess the accuracy of the formulae.
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Large deviations of Gaussian tandem queues and
resulting performance formulae
Michel Mandjes Petteri Mannersalo Ilkka Norros

Abstract— This paper considers a two-node tandem
queue where the cumulative input traffic is modeled as a
Gaussian process with stationary increments. By applying
(the generalized version of) Schilder’s sample-path large-
deviations theorem, we derive the many-sources asymp-
totics of the overflow probabilities in the second queue;
‘Schilder’ reduces this problem into finding the most prob-
able path along which the second queue reaches overflow.
The general form of these paths is described by recently
obtained results on infinite intersections in Gaussian pro-
cesses; for the special cases of fractional Brownian motion
and integrated Ornstein-Uhlenbeck input, they can be ex-
plicitly determined, as well as the corresponding exponen-
tial decay rate. As the computation of this decay rate is
numerically involved, we introduce an explicit approxima-
tion (‘rough full-link approximation’). Based on this ap-
proximation, we propose performance formulae that could
be used, for instance, for network provisioning purposes.
Simulation is used to assess the accuracy of the formulae.

Index Terms— Tandem queues, Gaussian processes,
sample-path large deviations, performance analysis

I. I NTRODUCTION

Traffic engineering greatly benefits from models that
are capable of accurately describing and predicting the
performance of the system. The network nodes are usu-
ally modeled asqueues, and queueing theory can be
used to analyze the performance (in terms of loss, de-
lay, throughput, etc.) of the nodes. However, most stud-
ies address performance issues for single nodes. This
is evidently an oversimplification of reality, and justifies
research on traffic streams traversingconcatenationsof
hops.

Gaussian traffic. There are good reasons for assuming
that network traffic is Gaussian. In particular, an applica-
tion of the central limit theorem leads us to believe that
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the traffic on communication links will become closer to
a Gaussian process as more independent sources add their
contribution to the network [1]; see also [2]. The Gaus-
sian traffic model is also popular due to the fact that it
covers both short-range (for instance so-called integrated
Ornstein-Uhlenbeck) and long-range dependent models.
The latter type of dependence was discovered in several
measurement studies in real networks: over a wide range
of lags, the correlation of traffic follows a power law. This
is most succinctly expressed in terms of the variance of the
traffic arriving in an interval of lengtht, which is observed
to be proportional tot2H over a wide range of values oft.
The parameterH is referred to as the Hurst parameter [3]
and typically takes values in the range 0.7 to 0.9. Gaussian
process with stationary increments and the variance func-
tion of the formt2H is calledfractional Brownian motion
(fBm).

Gaussian tandem queues; negative traffic.As argued
above, Gaussian traffic models naturally describe a wide
variety of relevant input processes. There is, however, a
conceptual difficulty of the use of Gaussian traffic mod-
els, namely the fact that negative traffic is not explicitly
ruled out, as opposed to ‘classical’ input processes, such
as (compound) Poisson processes or on-off sources. As
we will discuss now, for the case of tandem queues with
Gaussian input, this does not lead to any practical prob-
lems.

• First consider the single-node model, emptied at a
constant ratec, whereAt denotes the traffic arriving in
[0, t). Then the stationary distribution of the queue is
given by the well-known Reich’s formula supt>0(A−t −
ct). Clearly, the distribution of such functionals can be
evaluated regardless of the possibility of negative arrivals,
and hence also for Gaussian input, see e.g. [4] and [5].

• Now consider the tandem system; for ease we restrict
ourselves to a two-node system shown in Figure 1, but
the argument can be extended to tandems of any size. To
avoid trivialities, we assume the (constant) link speed of
queue 1 (c1) larger than the link speed of queue 2 (c2).
A ‘reduction principle’ applies: the total queue length is
unchanged when the tandem network is replaced by its
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Fig. 1. Two node tandem queue.

slowest queue, see [6], [7]. Hence the total queue is given
by supt>0(A−t −c2t), and the second queue by

Q2 := sup
t>0

(A−t −c2t) − sup
t>0

(A−t −c1t). (1)

The fact thatc1 > c2 implies that Q2 is nonnegative.
Hence definition (1) is ‘proper’ (despite the possibility of
negative traffic): it cannot lead to negative queue lengths.

Contribution & literature.This paper concentrates on the
evaluation of tail asymptotics in tandem queues. Exact
analysis of systems with Gaussian input is usually hard
(explicit results are only available for standard cases, such
as the single queue with Brownian motion and Brownian
bridge input), and hence we have to resort to asymptotic
regimes. In this paper, we assume thatn i.i.d. Gaussian
sources feed into the queueing system, where the (deter-
ministic) service rates of the queues as well as the buffer
thresholds are scaled byn, too. We now letn go to in-
finity; the resulting framework is often referred to as the
many-sourcesscaling, as was introduced in [8].

A vast body of results exists for single FIFO queues
under the many-sources scaling. Most notably, under
very mild conditions on the source behavior, it is possi-
ble to calculate theexponentialdecay rate of the probabil-
ity pn(b,c) that the queue (fed byn sources, and emptied
at a deterministic ratenc) exceeds levelnb. Logarithmic
asymptotics are found in, e.g., [9], [10]; recently exact
asymptotics for Gaussian inputs were found by [11]. For
Gaussian sources the logarithmic asymptotics of [9] read

lim
n→∞

1
n

logpn(b,c) =− inf
t>0

(b+(c−µ)t)2

2v(t)
, (2)

where µ is the mean input rate per source, andv(t) is
the variance of the amount of traffic generated by a sin-
gle source in a time interval of lengtht.

Results as (2) cannot be easily generalized to the tan-
dem case. In [12] a lower bound was derived for the decay
rate of overflow in the second queue, and this lower bound
was under certain conditions ‘tight’ (in the sense that the
lower bound actually equals the decay rate), but there was
no tightness for the relevant case of fBm input. [13], [14]
provide heuristics for the decay rate of overflow in prior-
ity and generalized-processor-sharing systems, such as the

(rough) full-link approximation. Numerical studies have
shown that these approximations are remarkably accurate.

Our paper has two significant contributions:
1. We have characterized the decay rate of overflow in the
second queue, i.e., the ‘tandem equivalent’ of (2). This
was done by first rewriting the event of overflow in the
two-node tandem as an infinite intersection of events, and
then exploiting recently obtained results [15] on large de-
viations of these infinite intersections. For the relevant
cases of both integrated Ornstein-Uhlenbeck (which we
abbreviate to iOU) and fBm input, we found explicit, ex-
act solutions. The techniques applied stem from large-
deviations theory, particularly sample-path large devia-
tions, based on (the generalized version of) Schilder’s the-
orem.
2. As the computation of this decay rate is numerically
involved, we introduce an explicit approximation (‘rough
full-link approximation’). Using this decay rate approx-
imation, we propose performance formulae for, for in-
stance, network provisioning purposes. We have per-
formed extensive numerical experiments to assess the ac-
curacy of the decay rate approximations and resulting per-
formance formulae.

This paper is organized as follows. In Section II, first
the basic results on the sample path large deviations for
Gaussian processes are reviewed, and then special case of
the events defined by infinite intersections is considered.
Section III studies asymptotics of the tandem queues with
general Gaussian input, whereas in Section IV we concen-
trate on two special processes: fBm and iOU. Section V
is devoted to numerical studies. In the end, some conclu-
sions are drawn in Section VI.

II. PRELIMINARIES

This section describes our prerequisites: some funda-
mental results on Gaussian processes, and a number of
results from our earlier work [15].

A. Gaussian processes and Schilder’s theorem

The following framework will be used throughout the
paper. First we introduce Gaussian processes, and ex-
plain that these processes could have different ‘degrees
of smoothness’. Then we state Schilder’s theorem, after
having introduced a number of required notions.

Gaussian processes.Let Z = (Zt)t∈R be a centered, i.e.,
EZt = 0 for all t, Gaussian process with stationary incre-
ments, completely characterized by its variance function
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v(t) .= Var(Zt). A canonical long-range dependent Gaus-
sian process is fBm, with a variance function that is pro-
portional tot2H , with Hurst parameterH ∈ (1

2,1). A clas-
sical example for a short-range dependent Gaussian pro-
cess is the iOU process, where the variance function is of
the formt −1+ e−t . In general, loosely stated, the more
convex the variance function, the stronger the positive cor-
relations.

It is easily verified that the covariance function ofZ can
be written in terms of the variance function:

Γ(t,s) .= Cov(Zt ,Zs) =
1
2
(v(s)+v(t)−v(s− t)).

For a finite subsetS of R, denote byΓ(S, t) the column
vector{Γ(s, t) : s∈ S}, by Γ(t,S) the corresponding row
vector, and byΓ(S) the matrix

Γ(S) .= {Γ(s, t) : s∈ S, t ∈ S} .

In addition to the basic requirement thatv(t) results in
a positive semi-definite covariance function, a number of
(technical) assumptions have to be imposed onv(t), see
[15]. It is noted that these are fulfilled for the two classical
examples (fBm and iOU) mentioned above.

As indicated above, different Gaussian processes could
have different ‘degrees of smoothness’. We call the Gaus-
sian processZ smoothat t, if it has a mean-square deriva-
tive att, that is, there exists a random variableZ′t ∈G such
that

lim
h→0

E

(
Zt+h−Zt

h
−Z′t

)2

= 0.

It follows from the stationarity of increments that ifZ is
smooth at 0, then it is smooth at allt ∈ R. On the other
hand, applying the above definition att = 0, we see that
processZ is non-differentiable if limh→0v(h)/h2 = ∞. It
can be shown that fBm is non-smooth, whereas iOU has a
mean-square derivative. This difference is crucial in this
paper, as it implies that the solutions for fBm and iOU are
essentially different.

Schilder’s theorem.The remainder of this subsection is
devoted to the statement of the main ‘tool’ used in this
paper: Schilder’s large-deviations result for Gaussian pro-
cesses. In this framework a central role is played by the
norm || f || of paths f in the reproducing kernel Hilbert
space of the underlying Gaussian process. More precisely,
‘Schilder’ states that the probability of the Gaussian pro-
cess being in some closed setA has exponential decay rate
1
2|| f

∗||2, where f ∗ is the path inA with minimum norm,
i.e., argminf∈A|| f ||. It is noted that for closed and convex
A, there exists a unique minimizer. Thisf ∗ has the in-
terpretation of themost probable path(MPP) inA: if the

Gaussian process happens to fall inA, with overwhelming
probability it will be close tof ∗. An MPP can be intu-
itively understood as a point of maximum likelihood.

To state Schilder’s theorem, we first introduce a number
of relevant notions. The path spaceΩ corresponding to the
Gaussian processZ is defined as in [12], [13], and leads
to a unique probability measure P. Thereproducing kernel
Hilbert space Rrelated toZ is defined by starting from the
functionsΓ(t, ·) and defining an inner product by

〈Γ(s, ·),Γ(t, ·)〉= Γ(s, t). (3)

The space is then closed with linear combinations, and
completed with respect to the norm‖ · ‖2 = 〈·, ·〉. The in-
ner product definition generalizes to thereproducing ker-
nel property:

〈 f ,Γ(t, ·)〉= f (t), f ∈ R. (4)

The generalization of Schilder’s theorem on large devi-
ations of Brownian motion to Gaussian measures in a Ba-
nach space is originally due to Bahadur and Zabell [16]
(see also [17], [18]). Here is a formulation appropriate to
our case; for the definition ofgoodrate function, see, e.g.,
[18, Section 2.1].

Theorem 1: The function I: Ω → [0,∞],

I(ω) .=
{ 1

2‖ω‖2, if ω ∈ R,
∞, otherwise,

is a good rate function for the centered Gaussian measure
P, andP satisfies the large deviations principle:

for F closed inΩ :

limsup
n→∞

1
n

logP

(
Z√
n
∈ F

)
≤− inf

ω∈F
I(ω);

for G open inΩ :

liminf
n→∞

1
n

logP

(
Z√
n
∈G

)
≥− inf

ω∈G
I(ω).

Remark 1:With Z(i), i = 1, . . . ,n, being i.i.d. copies of
Z, it is noted that

Z√
n

d=
1
n

n

∑
i=1

Z(i).

This implies Schilder’s theorem can also be interpreted
as a statement on the probability that the ‘empirical mean
process’ ofn i.i.d. Gaussian sources.

B. Results on infinite intersections

The central problem dealt with in [15] is of the follow-
ing form: given a functionζ ∈Rand a set of timepointsS,
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what is the most probable path in the event{Z≥ ζ onS}?
In the tandem setting, we choose a specific form ofζ , as
is discussed in Section III.

For any setS⊂ R, denote

BS
.= { f ∈ R : f (t)≥ ζ (t) ∀t ∈ S} ,

LS
.= { f ∈ R : f (t) = ζ (t) ∀t ∈ S} .

and let SpanA be the smallest closed linear subspace ofR
containing the setA⊆R. The following result was proven
in [15]. The theorem implies that in order to determine
the MPP it is enough to find the set where theζ and the
optimal path are congruent, i.e., overlapping.

Theorem 2: Letζ ∈ R and S⊆ R be compact. Then
there exists a functionβ ∗ ∈ BS with minimal norm, i.e.,

β
∗ .= argmin{‖ f‖ : f ∈ BS} .

Moreover,β ∗ ∈ Span
⋃

t∈S∗ Rt± where

S∗ = {t ∈ S: β
∗(t) = ζ (t)} ,

Rt± =
⋂
u>0

Span{Γ(s, ·) : s∈ [t−u, t +u]}.

In general, the nature of the most probable pathβ ∗ de-
pends crucially on the smoothness ofZ, as will appear
in Section IV. If Z is non-differentiable, like fBm,Rt±
is usually spanned byΓ(t, ·). In case of iOU,Z has one
derivative, and consequentlyRt± contains(d/dt) Γ(t, ·).
In general, for smooth processes with derivatives up to or-
derk, Rt± contains also all the derivatives, i.e.,

d j

dt j Γ(t, ·), j = 1, . . . ,k,

see [19] for details.

For any finiteV ⊂R, let the unique element with small-
est norm inBV andLV be, respectively,

ϕ
V .= argminϕ∈BV‖ϕ‖, ϕ

V .= argminϕ∈LV‖ϕ‖.

By the reproducing kernel properties (3) and (4), we find
thatϕV(·) can be written as linear combination of covari-
ance functions and its norm using the inverse of the co-
variance matrix:

ϕ
V(·) = ∑

v∈V

θvΓ(v, ·), (5)

‖ϕ
V‖2 = ζ (V)Γ(V)−1

ζ (V)

where the vectorθ(V) = (θv)v∈V is given by θ(V) =
Γ(V)−1ζ (V) with ζ (V) = (ζ (v))v∈V . Note that for any
V ⊆ S, ‖ϕV‖ is a lower bound on‖β ∗‖, but it is possible
that‖ϕ

V‖> ‖β ∗‖.

Next, another result from [15] shows that the coeffi-
cients of theΓ(v, ·), v∈V in the representation ofϕV are
strictly positive, as long as everyv is needed to make func-
tion ϕV feasible.

Proposition 1: Assume a finite V . If for each v∈ V it
holds thatϕV\{v}(v) < ζ (v), then the coefficientsθv in
the representationϕV = ∑v∈V θvΓ(v, ·) are all strictly pos-
itive.

III. TANDEM QUEUES

Consider a two-queue tandem model with infinite
buffers at both nodes. The input processAt = Zt + µt
is modeled as a Gaussian process with stationary incre-
ments, whereµ is the mean rate andZ is a centered Gaus-
sian process. The queues are served with deterministic
service ratesc1 for the first queue andc2 for the second
queue. We assumec1 > c2, in order to exclude the triv-
ial case where the second queue cannot build up. More-
over, we restrict ourselves to centeredA by settingµ = 0
andA

.= Z, since the constant drift can be included in the
server rates [12, Remark 2.6].

As argued in the introduction, the stationary queue
length of the first queue readsQ1 = supt≥0(Z−t − c1t).
Also, the total queue length behaves as a queue with link
ratec2, i.e., Q1 + Q2 = supt≥0(Z−t − c2t). Therefore, ex-
pressing the occupancy of the second queue as the differ-
ence of the total buffer content and the content of the first
queue, we find

{Q2 ≥ b}= {∃t ≥ 0 :∀s≥ 0 : Z−t −Z−s−c2t +c1s≥ b} ;

it is easily seen that we can restrict ourselves tos∈ [0, t],
andt ≥ tb

.= b/(c1−c2), see [12, Lemma 2.4].

In this paper, our (first) aim is to determine

I(b) .=− lim
n→∞

1
n

logP(Q2,n ≥ nb) ,

whereQ2,n is the steady state queue length of the second
queue in the system withn i.i.d. Gaussian sources served
at the ratesnc1 andnc2. In [12, Thm. 3.1], it was shown
that I(b) equals the rate function of P(Q2,n > nb). We
now rephraseI(b) by applying Schilder’s theorem. To this
end, define the function

ζt,b(s)
.=−α1(t,b)+α2s,

whereα1(t,b) = (c1−c2)t−b andα2 = c1, and denote

Ut,b
.= { f ∈ R : f (s)≥ ζt,b(s)∀s∈ [0, t]} .

Invoking the relation between Schilder and the many-
sources setting (as in Remark 1), the following result
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is due to a straightforward time-shift, see also [12, Re-
mark 2.5]. It shows that determination of the rate function
can be partitioned into two steps: first find the most prob-
able paths and their norms in theUt,b with fixed t andb,
and after that optimizet. We omit the proof.

Theorem 3:

I(b) = inf
f∈Ub

1
2
‖ f‖2 = inf

t≥tb
inf

f∈Ut,b

1
2
‖ f‖2

= inf
t≥tb

1
2
‖β

∗
t,b‖2,

where Ub
.=

⋃
t≥tb Ut,b andβ ∗

t,b = argmin{‖ f‖ : f ∈Ut,b}.
When determining the MPP inUt,b, we find that there

are two regimes. In the ‘simple regime’, the MPP is just
a single scaled covariance function. In the complemen-
tary situation, we need more than one (possible infinitely
many) covariance functions and their derivatives if pro-
cess is differentiable.

To precisely introduce both regimes, we first note that
if ζt,b(s) > 0, then, by (5),

ϕ
s(·) = ϕ

s(·) =
ζt,b(s)
v(s)

Γ(s, ·), ‖ϕ
s‖2 =

ζt,b(s)2

v(s)
.

If we assume a variance functionv(·) such that the above
norm has its maximum on the interval[0, t] at t, then we
can consider the function

ζt,b(s)
v(s)

Γ(s, ·)−ζt,b(s) ∀s∈ [0, t], (6)

leading to the following classification.

Case 1: If

α1(t,b)
α2

≥ α
F(t) .= sup

s∈[0,t]

{
sv(t)− tΓ(t,s)
v(t)−Γ(t,s)

}
,

then

β
∗
t,b(·) =

ζt,b(t)
v(t)

Γ(t, ·), ‖β
∗
t,b‖2 =

ζt,b(t)2

v(t)
. (7)

Case 2: If α1(t,b)/α2 < αF(t), then the path (6) is not
feasible, and consequently a single covariance function is
not enough.

Note thatζt,b 6∈R. However, this is not a problem since
ζt,b(0)≤ 0 and

ζt,b

(
α1(t,b)

α2
+ ·

)
∈ R,

so that we can approximateζt,b on (0, t) by a sequence
of R-functions. Thus the results (Thm. 2 and Prop. 1) on
infinite intersections hold.

By Theorem 2, if we could find the set

S∗t,b
.=

{
s∈ [0, t] : β

∗
t,b(s) = ζt,b(s)

}
,

then the most probable path would be known also in
Case 2. Unfortunately, we do not have any general recipe
for that at our disposal, and determiningS∗t,b can be a dif-
ficult task. In Section IV, we solve this problem for the
special cases of fBm and iOU input. Before that, we con-
sider three approximations that we developed earlier and
that will serve as benchmarks in Section V.

A. Lower bound on the decay rate

Mandjes and van Uitert [20], [12] find a lower bound
IL(b) of I(b). Let t∗b minimize

Jb(t)
.=

(b+c2t)2

2v(t)
,

and letkb(s, t)
.= Γ(s, t)(b+ c2t)/v(t). Then it is proven

that for

c1 ≥ cF
1 (b) .= sup

s∈(0,t∗b)

kb(s, t∗b)
s

,

it holds thatI(b) = IL(b) .= Jb(t∗b). The above condition
is, of course, equivalent toα1(t∗b,b)/α2 ≥ αF(t∗b).

Now consider the opposite case. Forc2 < c1 < cF
1 (b)),

we have thatI(b)≥ IL(b), with

IL(b) .= inf
t≥tb

sup
s∈Kb

1
2

x(s, t)T
(

v(t) Γ(s, t)
Γ(s, t) v(s)

)−1

x(s, t),

whereKb =
{

s∈ S: kb(s, t∗b) < ζt∗b ,b(s)
}

andx(s, t) is the
two-dimensional vector(b+c2t,b+c2t−c1(t−s))T.

Hence, in the regimec1 ≥ cF
1 (b) the lower bound is al-

ways tight, in thatI(b) = IL(b). However, also for the
regimec2 < c1 < cF

1 (b) [12] presents an explicit condition
under which the above lower bound is tight; this condition
is not fulfilled in the case of fBm.

B. Rough full-link approximation

As we have the exact decay rate forc1 ≥ cF
1 (b), special

interest is in the other regime. We here consider an ap-
proximation forI(b) for the casec1 ∈ (c2,cF

1 ). In the con-
text of priority and generalized-processor-sharing queues,
Mannersalo and Norros [13], [14] proposed therough full-
link approximation. Here we extend this approximation
to the tandem case. The idea is that ifc1 ∈ (c2,cF

1 ), the
source transmits at approximately a ratec1 duringtb units
of time, thus causing exceedance of levelb in the second
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queue. This leads to the approximationIR(b) = IL(b) for
c1 ≥ cF

1 (b), and

IR(b) =
(b+c2tb)2

2v(tb)

for c2 < c1 < cF
1 (b).

Mathematically, this approximation can be moti-
vated by replacing theUt,b by the larger setsBt,b =
{ f ∈ R : f (t)≥ ζt,b(t)}; hence a requirement is imposed
for time t, rather than for alls∈ [0, t]. Consequently,

I(b) = inf
t≥tb

inf
f∈Ut,b

1
2
‖ f‖2 ≥ inf

t≥tb
inf

f∈Bt,b

1
2
‖ f‖2

= inf
t≥tb

(b+c2t)2

2v(t)
. (8)

Thus IR(b) is a lower bound toI(b), if t∗b ≤ tb and if the
variance functionv is such that the minimum is attained at
t = tb in (8).

C. Upper bound for the decay rate

Any feasible path, i.e.,u∈Ub gives an upper bound to
the decay, since, according to ‘Schilder’,

I(b) = inf

{
1
2
‖ f‖2 : f ∈Ub

}
≤ 1

2
‖u‖2.

For tandem queues, the natural upper bound comes from
the most probable path for a busy period of lengthtb in the
first queue (as a busy period oftb in the first queue implies
thattb(c1−c2) = b traffic is built up in the second queue).
Hence,

IB(b) .= inf
f∈Utb,b

1
2
‖ f‖2 ≥ inf

t≥tb
inf

f∈Ut,b

1
2
‖ f‖2 = I(b)

The evaluation ofIB(b) is done as in [15].

D. Performance formulae

So far we have concentrated on determining (approxi-
mations of) the exponential decay rateI(b). In the many-
sources setting, these can be also used to (roughly) char-
acterize the probability distribution itself:

P(Q2,n > nb)≈ exp(−nI(b)).

In practice, numerical evaluation of the exact decayI(b)
is a difficult task, as follows from our explicit formulae in
the next section.

Therefore, for engineering purposes, we propose to rely
on an approximation based on the rough full-link approx-
imation:

P(Q2,n > nb)≈ exp(−nIR(b)).

As in most casesI(b)≥ IR(b), this approximation tends to
be conservative, and is consequently appropriate for, e.g.,
provisioning purposes.

For Gaussian processes, the decay rate of the many-
sources asymptotics is also useful in approximating the
queue-length distribution of a tandem queue fed by a sin-
gle source. The following performance formula was orig-
inally introduced for single-node queues in [21], [22]:

P(Q2 > b)≈ exp(−IR(b)). (9)

According to numerical studies with single-node queues,
it seems that exp(−I(b)) is an upper bound for the tail dis-
tribution. The same holds for tandem queues, as seen in
Section V. Unfortunately, no formal proof for such prop-
erty exists.

IV. M OST PROBABLE PATHS FORFBM AND

INTEGRATED ORNSTEIN-UHLENBECK

Let us now focus on the inner minimization problem
in I(b) = inft≥tb inf f∈Ut,b

1
2‖ f‖2, i.e., minimization over

Ut,b with fixed t and b. We can restrict ourselves to
α1(t,b)/α2 < αF(t) (Case 2), since the complementary
case (Case 1) was already solved by (7). In the following
two subsections, the most probable paths and their norms
are determined for the special cases of fBm and iOU in-
put.

After fixing t andb, we can simplify our notation by
denotingα2 = α2(t,b), ζ (·) = ζt,b(·), andαF = αF(t).
More precisely, we consider the setB[0,t]

.= Ut,b, and the
corresponding MPP

β
∗ = argmin

{
‖ f‖ : f ∈ B[0,t]

}
.

A. Fractional Brownian Motion

Consider fractional Brownian motion which is a cen-
tered Gaussian process with stationary increments and
variance functionv(t) = t2H , H ∈ (0,1).

We first state some results from [15] without proofs.
The first theorem shows that we can construct a sequence
of setsSn .= {s∈ Rn : 0 < s1 < · · ·< sn ≤ t} and corre-
sponding sequence of the functionsϕSn

such thatϕSn
con-

verges toβ ∗. In addition to fBm, the same also holds for
a large family of non-differentiable Gaussian processes.
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Theorem 4: Let Z be a centered fBm and denote

hn .= sup
{
‖ϕ

V‖ : V ⊆ [0, t], |V| ≤ n
}

n∗
.= inf

{
n∈ N : hn = hn+1} .

Then,
• For each n, there exists a set Sn ⊆ [0, t] with at most

n elements such that‖ϕSn‖= hn;

• If ‖ϕSn‖= ‖ϕSn+1‖ for some n, thenβ ∗ = ϕSn∗
;

• If n≤ n∗, thenϕSn
= ϕ

Sn
;

• limn→∞ ϕSn
= β ∗.

From now on, we denote

ϕn(·)
.= ϕ

Sn
(·).

The following properties are crucial for the explicit deter-
mination of the MPP, as they show thatϕn touchesζ at
pointssi (with i = 1, . . . ,n− 1) from below. Again, the
proofs can be found in [15]. Note that if the setSn exists,
then Equation (10) holds for any Gaussian process whose
variance function is differentiable on the whole real line.

Theorem 5: Let Z be a centered fBm and assume n≤
n∗. For H ∈ (1

2,1) and for all si ∈ Sn∩ (0, t),

ϕ
′
n(si) = ζ

′(si). (10)

For H ∈ (0, 1
2) and for all si ∈ Sn,

lim
s↗si

ϕ
′
n(s) = ∞, lim

s↘si

ϕ
′
n(s) =−∞. (11)

For H ∈ (0,1) and for all si ∈ Sn,

lim
s→si

ϕ
′′
n (s) =−∞. (12)

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2
H=0.8

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3
H=0.8

Fig. 2. β ∗(s)− ζ (s) for fBm with H = 0.8 andt = 1. On the left,
α1/α2 > αF , and on the rightα1/α2 < αF .

Using Theorems 4 and 5, we can show that the MPP
in B[0,t] has one of the shapes shown in Figure 2: either
the path touches the conditionζ only at the ‘end point’t,
or, in addition to the ‘end point’, the paths coincide over
an interval. In the latter case, the MPP is determined by
a linear combination of the covariance functions over an
infinite index set and thus calculating the norm involves
(complicated) integrations. Denote

ζ
∗
[s1,s2] = argmin{‖ f‖ : f ∈ R, f (s) = ζ (s) ∀s∈ [s∗,s∗]} ,

i.e., the most probable path which followsζ on [s1,s2].
The following theorem is our main result for tandem
queues with fBm input.

Theorem 6: Assume H∈ (1
2,1) and α1

α2
< αF . Then S∗

is of the form[s∗,s∗]∪{t}, whereα1
α2
≤ s∗ < s∗ < t and the

functionβ ∗ has the expression

β
∗(s) = E[Zs|Zτ = ζ (τ) ∀τ ∈ [s∗,s∗], Zt = t]

= ζ
∗
[s∗,s∗](t)+

Cov[Zt ,Zs|F ]
Var[Zt |F ]

(ζ (t)−ζ
∗
[s∗,s∗](t)),

whereF = F[s∗,s∗] = σ(Zs : s∈ [s∗,s∗]), and

‖β
∗‖2 = ‖ζ

∗
[s∗,s∗]‖

2 +
(ζ (t)−ζ ∗[s∗,s∗](t))

2

Var(Zt −E[Zt |F ])
.

Proof: This is a slight modification of the proof for
[15, Thm. 5] where the caseα1 = 0 (equivalent to the busy
period problem) is solved. Thus we can assumeα1 > 0.
The proof is partitioned into two parts: first we show that
β ∗ has the claimed shape, and then we determine its norm.

Shape ofβ ∗: Let us study the properties of the sequence
ϕn which converges toβ ∗ by Theorem 4. Sinceα1/α2 <
αF there existss∈ (0, t) such thatϕ1(s) < ζ (s) and we
have‖ϕ1‖< ‖ϕ2‖. Thus the casen∗ = 1 is ruled out.

Now assumen < n∗. Then ϕn(·) = ∑s∈Sn θsΓ(s, ·).
Sinceθsi > 0 (Proposition 1) andΓ(si , ·)≥ 0 (positive cor-
relations),ϕn(s) ≥ 0 for all s∈ R. Thus we can restrict
ourselves to the set

{s∈ [0, t] : ζ (s)≥ 0}=
[

α1

α2
, t

]
and necessarilySn ⊆ [α1/α2, t].

Now consider functionϕn and its derivatives:

ϕ
′
n(s) = C

tα + ∑
si∈Sn
si>s

ρsi (si −s)α − ∑
si∈Sn
si<s

ρsi (s−si)α

 ,

ϕ
′′
n (s) = αC

[
tα−1− ∑

si∈Sn

ρsi (s−si)α−1

]
,

where

α
.= 2H−1, C

.= H ∑
si∈Sn

θsi , ρi
.=

θsi

∑sj∈Sn θsj

∈ (0,1).

If sn = max{Sn} andsn < t, thenϕn(s) < ζ (s) for all
s > sn, sinceϕn(sn) = ζ (sn), ϕ ′

n(sn) = ζ ′(sn) (by (10)),
andϕ ′′

n (s) < 0 for all s≥ sn (by the fact that theρi sum up
to 1, andα −1 < 0). Thus

max{s∈ Sn}→ t asn→ n∗.
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Similarly as in [15, Thm. 5], with lengthy calculations,
one can show that for eachn there existun andun,

α1

α2
≤ un < s1 < sn−1 < un < sn,

such thatϕn is at or below the conditionζ on [un,un]∪
{sn} and strictly aboveζ on [0,un) and [un,sn), see Fig-
ure 3 for the shapes ofϕn, n = 1,2,3. Since the above
holds for anyn, we haven∗ = ∞. The convergence
ϕn → β ∗ implies thatβ ∗ has the claimed shape.
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0.4

H=0.8
n=1

0.2 0.4 0.6 0.8 1

-0.1

0.1

0.2

0.3

0.4

H=0.8
n=2,3
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-0.0001

-0.00005

0.00005

0.0001

H=0.8
n=2

0.17 0.18 0.19 0.2 0.21 0.22

-0.00002

-0.00001

0.00001

0.00002

0.00003

0.00004

H=0.8
n=3

Fig. 3. H = 0.8. The shape ofϕn(s)− ζ (s), n = 1,2,3. At the
scale[0,1], casesn= 2,3 are indistinguishable. The lower pictures are
zoomed in around the points1 (ands2 for n = 3).

Norm ofβ ∗: For any functionf ∈ R, define

ϕ f (s) = E[Zs|Zτ = f (τ) ∀τ ∈ [s∗,s∗]] ,
ψ f (s) = E[Zs|Zτ = f (τ) ∀τ ∈ [s∗,s∗]; Zt = ζ (t)] .

The conditional distribution of the pair(Zs,Zt) w.r.t. F
is a two-dimensional Gaussian distribution with (random)
mean E[ (Zs,Zt) |F ]. Thus, a further conditioning on
the event{Zt = ζ (t)} can be computed according to the
standard formula of conditional expectation in a bivariate
Gaussian distribution:

ψ f (s) = ϕ f (s)+
Cov[Zs,Zt |F ]

Var[Zt |F ]
(ζ (t)−ϕ f (t))

= ϕ f (s)+c(s)(ζ (t)−ϕ f (t)),

where c(s) = Cov[Zs,Zt |F ]/Var[Zt |F ] does not de-
pend onf . Applying this to the functionf (t) ≡ 0 yields
c(t) = ψ0(t). One can show (see [15]) that

‖ψ0‖2 = Var(Zt −E[Zt |F ])−1 .

Now, note that

β
∗(s) = E[Zs|Zs = ζ (s), ∀s∈ [s∗,s∗], Zt = ζ (t)]

= ψζ ∗[s∗,s∗]
,

ϕζ ∗[s∗,s∗]
= ζ ∗[s∗,s∗], andψ0 is orthogonal toζ ∗[s∗,s∗]. Thus,

‖β
∗‖2 = ‖ζ

∗
[s∗,s∗]‖

2 +
(ζ (t)−ζ[s∗,s∗](t))2

Var(Zt −E[Zt |F ])

as claimed.

WhenH ∈ (0, 1
2) we are always in Case 2, and conse-

quently a single covariance function never suffices. More-
over, a finite number of the covariance functions is never
enough and we need to condition with respect to an inter-
val, i.e., the MPP is determined by a linear combination
of the covariance functions over an infinite index set. The
shape of the MPP is shown in Figure 4.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

H=0.2
n=¥

Fig. 4. β ∗(s)−ζ (s) for fBM with H = 0.2 andt = 1.

Theorem 7: Assume H∈ (0, 1
2). Then the set S∗ has the

form [s∗, t], where0 < s∗ < t and the functionβ ∗ has the
expression

β
∗(s) = E[Zs|Zτ = ζ (τ)∀τ ∈ [s∗, t]]

= ζ
∗
[s∗,t](t)

and
‖β

∗‖2 = ‖ζ
∗
[s∗,t]‖

2.

Proof: Let us first show thatαF = ∞. It is easy
to see thatS1 = {t} so thatϕ1(t) = ζ (t). On the other
hand, lims↗t ϕ ′

1(s) = ∞ by (11). Thus, wheneverα2 is
finite, ϕn(t−ε) < ζ (t−ε) for someε > 0 andϕ1 6∈ B[0,t].
Hence, the ‘easy’ Case 1 solution never exists.

More generally, using equations (11) and (12) and sim-
ilar type of argument as forH > 1/2, it is seen that the
shapes of theϕn are such that the limiting path must
satisfy: β ∗(s) > ζ (s) if s∈ (0,s∗) and β ∗(s) = ζ (s) if
s∈ [s∗, t] for somes∗ ∈ (0, t). See Figure 5 for the shapes
of ϕn, n = 1,2,3.

Note that, in principle, all the quantities in the ex-
pressions forβ ∗ could be computed. For example when
H ∈ (1/2,1), an equivalent formulation is

β
∗ = argminf∈R{‖ f‖ : f (s) = α2s, s∈ [0,s∗−s∗],

f (−s∗) =−α2s∗, f (t−s∗) = α2(t−s∗)}

As a consequence, we can consider the MPP following
the lineα2son [0,s∗−s∗] and and hitting two other points



9

0.2 0.4 0.6 0.8 1

-2

-1

1

2

3

H=0.2
n=1

0.2 0.4 0.6 0.8 1

-2

-1

1

2

3

H=0.2
n=2

0.2 0.4 0.6 0.8 1

-2

-1

1

2

3

H=0.2
n=3

Fig. 5. H = 0.2. The shape ofϕSn
(s)−ζ (s), n = 1,2,3.

at t − s∗ and−s∗. The straight-line part is equivalent to
χ-path of [23], [24]. Also the (two-dimensional) condi-
tioned Gaussian random variable has semi-explicit repre-
sentation (see e.g. [25]), though consisting of multiple in-
tegrals. We have not succeeded in finding explicit expres-
sions for the numberss∗ ands∗. However, by knowing the
structure ofS∗, or even by just knowing from Theorem 2
that the MPP is determined by a set where it touchesζ , it
is easy to obtain arbitrarily accurate discrete approxima-
tions of the MPPs and their norms using some graphical
mathematical tool.

B. Integrated Ornstein-Uhlenbeck input

Unfortunately, the results of Theorem 4 do not hold
generally for smooth processes. The main reason for that
is the larger infinitesimal spacesRt± containing also the
derivatives of the covariance functions. This means that
mappingt 7→ ϕ t , with t ∈ Rn, is not always continuous
and thus the existence ofSn is not guaranteed.

Consider a Gaussian processZt with stationary incre-
ments and variancev(t) = t − 1+ e−t . This is an iOU
model, which can be interpreted as the Gaussian counter-
part of the Anick-Mitra-Sondhi model [22]. Since therate
processis defined by the stochastic differential equation

dXt =−γXt dt +σ dWt ,

whereW denotes the standard Brownian motion,Z is ex-
actly once differentiable. In the above differential equa-
tion bothγ andσ should be equated to 1 to get the desired
variance function.

Our main result for tandem queues with iOU input says
that the lower bound of [12] is tight:IL(b) = I(b). Again,
Case 1 (α1/α2 ≥ αF ) is trivial and the decay rate is given
by (7).
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0.2

0.25

0.3

Fig. 6. Integrated Ornstein-Uhlenbeck input:β ∗(t)− ζ (t), when
α1 = 0.2, α2 = 2 (left) andα2 = 20 (right).

Theorem 8: Assumeα1/α2 < αF . If α1 > 0, then S∗ =
{s∗, t}, with s∗ ∈ (0, t/2), and the functionβ ∗ has the ex-
pression

β
∗(s) = (ζ (s∗),ζ (t))Γ((s∗, t))−1(Γ(s∗,s),Γ(t,s))T

where s∗ minimizes the norm

(ζ (s),ζ (t))Γ(s, t)−1(ζ (s),ζ (t))T

with s∈
{

s∈ [0, t] : ϕ
t(s) < ζ (s)

}
. If α1 = 0, then

β
∗(·)= (ζ ′(0),ζ (t))

( 1
2v′′(0) 1

2v′(t)
1
2v′(t) v(t)

)−1( 1
2v′(·)
Γ(t, ·)

)
.

and

‖β
∗‖2 =(ζ ′(0),ζ (t))

( 1
2v′′(0) 1

2v′(t)
1
2v′(t) v(t)

)−1(
ζ ′(0)
ζ (t)

)
.

Proof: The caseα1 = 0 is solved by finding the
minimal element of the set{

f ∈ R : f ′(0) = ζ
′(0), f (t) = ζ (t)

}
and showing that it is also an element ofB[0,t]; for details
see [15].

Now assumeα1 > 0. Although Theorem 4 does not
hold in general, we can still apply a similar method. Con-
sider the set

Bs
.= { f ∈ R : f (s)≥ ζ (s), f (t)≥ ζ (t)}

and define the ‘least likely’ point

s∗ = argmaxs∈[0,t] {‖ f‖ : f ∈ Bs} ,

which exists wheneverα1 > 0. Clearly,

s∗ ∈
{

s∈ [0, t] : ϕ
t(s) < ζ (s)

}
⊂ [α1/α2, t/2],

where the right end point of the interval follows from the
antisymmetry ofs 7→ Γ(t,s)−s around pointt/2.

Denote

g
.= argmin{‖ f‖ : f ∈ Bs∗}= θ1Γ(t, ·)+θ2Γ(s∗, ·).



10

SinceB[0,t] ⊂ Bs∗ , we have‖β ∗‖ ≥ ‖g‖ and we only need
to prove that the pathg is feasible, i.e.,g∈B[0,t]. The basic
idea is to show that pathg is convex on[0,s∗], and first
convex and then concave on[s∗, t] (see the right picture in
Figure 6).

Assume firsts∈ (s∗, t]. Then

g′(s) =
1
2

θ1(2−e−s−e−(t−s))+
1
2

θ2(e−s−e−(s−s∗)),

g′′(s) =
1
2

θ1(e−s−e−(t−s))+
1
2

θ2(−e−s+e−(s−s∗)).

The second derivative has at most one zero on[s∗, t].
However, sinceg(s∗) = −α1 + α2s∗, g(t) = −α1 + α2t
and g′(s∗) = α2 (similarly to (10)), there is exactly one
point s0 ∈ [s∗, t] such thatg′′(s0) = 0. On the other hand,
s∗ < t/2 implies thatg′′(s∗+) > 0. Thusg(s) ≥ ζ (s) for
all [s∗, t].

Next considers∈ [0,s∗], when

g′(s) =
1
2

θ1(2−e−s−e−(t−s))+
1
2

θ2(2−e−s−e−(s∗−s)),

g′′(s) =
1
2

θ1(e−s−e−(t−s))+
1
2

θ2(e−s+e−(s∗−s)).

Similarly as above, the second derivative has at most
one zero. On the other hand, we haveg′′(s∗−) > 0 and
g′′(0) > 0. This implies thatg′′(s) > 0 for all s∈ [0,s∗].
Thusg(s)≥ ζ (s) for all s∈ [0,s∗] andg∈B[0,t] as claimed.

V. NUMERICAL STUDIES

A. Comparison of the decay rates

As seen in the previous section, the computation of
the exact decay rate is numerically involved. Fortunately,
the proposed approximate decay rates are close enough to
the exact outcome, at least from the performance analysis
viewpoint.

For iOU input, we have already proved in Theorem 8
thatIL = I . In Figure 7, we compare the exact decay rateI
with the rough full-link approximationIR. Note that scal-
ing the variance byC means scaling the pictures with the
same number. In the top picture, the decay rates are al-
most indistinguishable. When plotting the difference, we
see that it is more or less bounded.

For fBm, we do not calculate the exact decay rate, but
rather an upper bound based on the busy period solution,
i.e., IB(b). Because of the self-similarity of the busy pe-
riod problem with fBm input – see [24, Prop. 4.1] – it
is enough to determineIB(1). Other values are given by
IB(b) = b2−2H IB(1). The lower boundsIR andIL are then
compared to the upper boundIB. Again, when plotting the
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Fig. 7. Comparison of decay ratesI andIR for Ornstein-Uhlenbeck
input. Parameters:v(t) = t−1+e−t , c1 = 1, c2 = 0.9.
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Fig. 8. Comparison of decay ratesI andIR for fBm input. Parameters:
v(t) = t2H , H = 0.85,c1 = 1, c2 = 0.9.
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decay rates in the same picture, one hardly sees any dif-
ference (see Figure 8). The behavior is qualitatively the
same for allH ∈ (1

2,1).

B. Estimating the queue length distribution

In order to check the accuracy of the performance es-
timate (9), we have compared it to estimates obtained by
simulation. The simulation traces were generated using
an extension of random midpoint displacement algorithm
RMDmn, see [26]. Each simulation was 224 steps at the
resolution 2−5.

In all scenarios,c1 = 1 andc2 = 0.9 so thatc1 < cF(b)
for almost allb. Note that ifc1 ≥ cF

1 (b) then the MPP-
based approximations are as good as those of the single
queue; see some examples in [21], [22].

We consider three different traffic models. The first
one is the iOU input with scaled variance functionsv(t) =
C(t−1+ exp(−t)), for C = 5,10,25,50. The results are
shown in Figure 9. Performance of a tandem queue serv-
ing fBm with different Hurst parameters, i.e.,v(t) = t2H ,
H = 0.6,0.7,0.8,0.9, is shown in Figure 10. Finally,
Gaussian input with variancev(t) =C((t +1)3/2− 3

2t−1),
C = 1,2,5,25 is studied in Figure 11. This process is
the Gaussian counterpart of the so-called M/G/∞-input
with Pareto distributed session durations, see [12]. It is
a smooth process (like iOU) and has long-range correla-
tions (like fBm).
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Fig. 9. Tail probabilities P(Q2 > b) for a tandem queue fed by an
integrated Ornstein-Uhlenbeck source:v(t) = C(t−1+ e−t), c1 = 1,
c2 = 0.9. The thick lines are the approximations by (9) and the thin
lines the results from the simulations.

All these simulations show that the accuracy of esti-
mate (9) is about the same order as in single-node queues.
Moreover, it seems to give an upper bound for the tail dis-
tributions. This demonstrates that it might have use in
coarse performance analysis and dimensioning, although
the overall accuracy is not very good. One possible
improvement is to scale by the non-idle probability as
in [22], i.e., P(Q2 > b) ≈ P(Q2 > 0)exp(−I(b)). This
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Fig. 10. Tail probabilities P(Q2 > b) for a tandem queue fed by FBM
source:v(t) = t2H , c1 = 1, c2 = 0.9. The thick lines are the approxi-
mations by (9) and the thin lines the results from the simulations.
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Fig. 11. Tail probabilities P(Q2 > b) for a tandem queue fed by

Gaussian process withv(t) = C((t +1)
3
2 − 3

2t−1): c1 = 1, c2 = 0.9.
The thick lines are the approximations by (9) and the thin lines the
results from the simulations.

would eliminate most of the gap between the estimate and
the simulation results.

VI. CONCLUDING REMARKS AND OUTLOOK

In this paper, we have considered Gaussian tandem
queues as an application of the recently obtained results
on infinite intersections in Gaussian processes. In princi-
ple, the same approach could have been applied, for exam-
ple, in priority and generalized processor sharing queues.
We studied two ‘classical’ input processes in order to
demonstrate the basic ideas: fractional Brownian motion
and integrated Ornstein-Uhlenbeck. These processes have
either zero or one derivative; the existence of higher-order
derivatives would cause substantial complications.

The second topic considered was the performance mea-
sures based on the most probable paths. It turns out that
the decay rateI(b) is very well approximated by the lower
boundIL(b) and the rough full-link approximationIR(b).
These expressions can be used to generate approximations
for the probability distribution (rather than its exponential
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decay rate). We see that, as in the single-node case, they
show the correct qualitative behavior, but from a quantita-
tive perspective there is room for improvements; scaling
by the non-idle probability might yield better approxima-
tions. It would be desirable to find well-founded improved
approximations based on our MPP identification, but this
remains a challenge for future work.
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