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Large deviations of Gaussian tandem queues and
resulting performance formulae

ABSTRACT

This paper considers a two-node tandem queue where the cumulative input traffic is modeled
as a Gaussian process with stationary increments. By applying (the generalized version of)
Schilder's sample-path large-deviations theorem, we derive the many-sources asymptotics of
the overflow probabilities in the second queue; “Schilder' reduces this problem into finding the
most probable path along which the second queue reaches overflow. The general form of these
paths is described by recently obtained results on infinite intersections in Gaussian processes;
for the special cases of fractional Brownian motion and integrated Ornstein-Uhlenbeck input,
they can be explicitly determined, as well as the corresponding exponential decay rate. As the
computation of this decay rate is numerically involved, we introduce an explicit approximation
(‘rough full-link approximation'). Based on this approximation, we propose performance
formulae that could be used, for instance, for network provisioning purposes. Simulation is used
to assess the accuracy of the formulae.

2000 Mathematics Subject Classification: 60F10; 60G15; 60K25
Keywords and Phrases: Tandem queues; Gaussian processes; sample-path large deviations; performance analysis



Large deviations of Gaussian tandem gueues and
resulting performance formulae

Michel Mandjes Petteri Mannersalo llkka Norros

Abstract— This paper considers a two-node tandem the traffic on communication links will become closer to
queue where the cumulative input traffic is modeled as a a Gaussian process as more independent sources add their
Gaussian process with stationary increments. By applying contribution to the network [1]; see also [2]. The Gaus-
(the generalized version of) Schilder's sample-path large- i, {raffic model is also popular due to the fact that it
deviations theorem, we derive the many-sources asymp- - .

covers both short-range (for instance so-called integrated

totics of the overflow probabilities in the second queue; .
‘Schilder’ reduces this problem into finding the most prob- Ornstein-Uhlenbeck) and long-range dependent models.

able path along which the second queue reaches overflow.The latter type of dependence was discovered in several
The general form of these paths is described by recently measurement studies in real networks: over a wide range
obtained results on infinite intersections in Gaussian pro- of lags, the correlation of traffic follows a power law. This
cesses; for the special cases of fractional Brownian motion js most succinctly expressed in terms of the variance of the
and integrated Omnstein-Uhlenbeck input, they can be ex- affic arriving in an interval of lengtty which is observed
plicitly determined, as well as the corresponding exponen- to be proportional to2" over a wide range of values tf

tial decay rate. As the computation of this decay rate is .

numerically involved, we introduce an explicit approxima- The parametelH IS referreq to as the Hurst parameter [3_]
tion (‘rough full-link approximation’). Based on this ap- and typically takes values in the range 0.7 t0 0.9. Gaussian
proximation, we propose performance formulae that could Process with stationary increments and the variance func-
be used, for instance, for network provisioning purposes. tion of the formt?" is calledfractional Brownian motion

Simulation is used to assess the accuracy of the formulae. (fBm).

Index Terms— Tandem queues, Gaussian processes

e ; ‘Gaussian tandem queues; negative traffids argued
sample-path large deviations, performance analysis

above, Gaussian traffic models naturally describe a wide
variety of relevant input processes. There is, however, a
|. INTRODUCTION conceptual difficulty of the use of Gaussian traffic mod-
Traffic engineering greatly benefits from models tha&ls, namely the fact that negative traffic is not explicitly
are capable of accurately describing and predicting thged out, as opposed to ‘classical’ input processes, such
performance of the system. The network nodes are us$-(compound) Poisson processes or on-off sources. As
ally modeled asqueues and queueing theory can bewe will discuss now, for the case of tandem queues with
used to analyze the performance (in terms of loss, déaussian input, this does not lead to any practical prob-
lay, throughput, etc.) of the nodes. However, most stu@ms.
ies address performance issues for single nodes. T&isFirst consider the single-node model, emptied at a
is evidently an oversimplification of reality, and justifiegonstant ratec, where A; denotes the traffic arriving in
research on traffic streams traversiogncatenationsf [0,t). Then the stationary distribution of the queue is
hops. given by the well-known Reich’s formula sug(A_t —

Gaussian traffic. There are good reasons for assumirg): Clearly, the distribution of such functionals can be
that network traffic is Gaussian. In particular, an applicgyaluated regardless of the possibility of negative arrivals,

tion of the central limit theorem leads us to believe th&"d hence also for Gaussian input, see e.g. [4] and [5].
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0, 0, (rough) full-link approximation. Numerical studies have
cy cy shown that these approximations are remarkably accurate.

— Our paper has two significant contributions:

1. We have characterized the decay rate of overflow in the
second queue, i.e., the ‘tandem equivalent’ of (2). This

Fig. 1. Two node tandem queue. was done by first rewriting the event of overflow in the
two-node tandem as an infinite intersection of events, and
slowest queue, see [6], [7]. Hence the total queue is givilln exploiting recently obtained results [15] on large de-
by SUR.o(A ¢ — Ct), and the second queue by viations of the§e infinite mtersegtlons. For the rellevant
cases of both integrated Ornstein-Uhlenbeck (which we

Q2 :=supA_t —Cot) — supA_; —cit). (1) abbreviate to iOU) and fBm input, we found explicit, ex-
t>0 >0 act solutions. The techniques applied stem from large-
The fact thatc; > ¢, implies thatQ, is nonnegative. deviations theory, particularly sample-path large devia-
Hence definition (1) is ‘proper’ (despite the possibility ofions, based on (the generalized version of) Schilder’s the-

negative traffic): it cannot lead to negative queue lengthaf€m.

I . . 2. As the computation of this decay rate is numericall
Contribution & literature. This paper concentrates on the P y y

. ) L involved, we introduce an explicit approximation (‘rough
evaluation of tail asymptotics in tandem queues. EXx P bP (roug

. : L : &0il-link approximation’). Using this decay rate approx-
analysis of systems with Gaussian input is usually hard _ .. PP ) 9 y ppro
- . imation, we propose performance formulae for, for in-
(explicit results are only available for standard cases, such S
. stance, network provisioning purposes. We have per-

as the single queue with Brownian motion and Browni . . .
. . ormed extensive numerical experiments to assess the ac-
bridge input), and hence we have to resort to asymptotic L .
. i g . _curacy of the decay rate approximations and resulting per-
regimes. In this paper, we assume thati.d. Gaussian

sources feed into the queueing system, where the (deIgF_mance formulae.

ministic) service rates of the queues as well as the bufferThis paper is organized as follows. In Section II, first

thresholds are scaled lny too. We now letn go to in- the basic results on the sample path large deviations for

finity; the resulting framework is often referred to as th&aussian processes are reviewed, and then special case of

many-sourcescaling, as was introduced in [8]. the events defined by infinite intersections is considered.
A vast body of results exists for single FIFO queu€eSection Il studies asymptotics of the tandem queues with

under the many-sources scaling. Most notably, undgeneral Gaussian input, whereas in Section IV we concen-

very mild conditions on the source behavior, it is possirate on two special processes: fBm and iOU. Section V

ble to calculate thexponentiatiecay rate of the probabil-is devoted to numerical studies. In the end, some conclu-

ity pn(b,c) that the queue (fed by sources, and emptiedsions are drawn in Section VI.

at a deterministic ratac) exceeds levehb. Logarithmic

asymptotics are found in, e.g., [9], [10]; recently exact

asymptotics for Gaussian inputs were found by [11]. For Il. PRELIMINARIES

Gaussian sources the logarithmic asymptotics of [3] read This section describes our prerequisites: some funda-

1 (b4 (c—pu)t)? mental results on Gaussian processes, and a humber of
Mloﬁ log pn(b,c) = _I'QB 2v(t) ’ (2)  results from our earlier work [15].

where u is the mean input rate per source, ar(t) is
the variance of the amount of traffic generated by a siA: Gaussian processes and Schilder’s theorem
I rce in a time interval of length . .
gle source in a time intervay of lengt The following framework will be used throughout the

Results as (2) cannot be easily generalized to the tan- : . .
(2) Y9 aper. First we introduce Gaussian processes, and ex-

dem case. In [12] a lower bound was derived for the decgy . . ‘

. . in that these processes could have different ‘degrees
rate of overflow in the second queue, and this lower bou 93‘ ) o

. . e of smoothness’. Then we state Schilder’s theorem, after
was under certain conditions ‘tight’ (in the sense that tf}]e o : .

aving introduced a number of required notions.

lower bound actually equals the decay rate), but there was
no tightness for the relevant case of fBm input. [13], [14baussian processed.et Z = (Z)icr be a centered, i.e.,
provide heuristics for the decay rate of overflow in prioleZ; = 0 for all t, Gaussian process with stationary incre-

ity and generalized-processor-sharing systems, such asttemts, completely characterized by its variance function



v(t) = Var(Z;). A canonical long-range dependent Gaussaussian process happens to falhirwith overwhelming
sian process is fBm, with a variance function that is prgrobability it will be close tof*. An MPP can be intu-
portional tot?™, with Hurst parameted (%, 1). Aclas- itively understood as a point of maximum likelihood.
sical example for a short-range dependent Gaussian profo state Schilder’s theorem, we firstintroduce a number
cess is the iOU process, where the variance function isajfrelevant notions. The path spaReorresponding to the
the formt — 14 e, In general, loosely stated, the moré&aussian procesz is defined as in [12], [13], and leads
convex the variance function, the stronger the positive cao-a unique probability measure P. Tieproducing kernel
relations. Hilbert space Related taZ is defined by starting from the

It is easily verified that the covariance functionbéan functionsr (t,-) and defining an inner product by
be written in terms of the variance function:

(F(s,-),r(t,-)) :r(S,t). (3)

The space is then closed with linear combinations, and
completed with respect to the notn||?> = (-,-). The in-

ner product definition generalizes to tfeproducing ker-

nel property

1
I(t,s) =Cov(4,Zs) = é(v(s) +Vv(t) —v(s—t)).
For a finite subse§ of R, denote byl (St) the column
vector{l'(s;t): s€ S}, by [(t,S) the corresponding row
vector, and by (S) the matrix
f,r(t,)="f@t), feR 4)
rS={r(st): seStes. (T ®
N ' _ _ The generalization of Schilder’s theorem on large devi-
In addition to the basic requirement that) results in ations of Brownian motion to Gaussian measures in a Ba-
a pOSl‘Elve Seml—deflr'nte covariance fgnctlon, a number ﬁﬁch space is origina”y due to Bahadur and Zabell [16]
(technical) assumptions have to be imposed/@, see (see also [17], [18]). Here is a formulation appropriate to

[15] Itis noted that these are fulfilled for the two CIaSSiCQJur case; for the definition (g:oodrate function, see, e.g.,
examples (fBm and iOU) mentioned above. [18, Section 2.1].

As indicated above, different Gaussian processes could _
have different ‘degrees of smoothness’. We call the Gaus-Theorem 1. The function:1Q — [0, ],
sian procesZ smoothatt, if it has a mean-square deriva-
tive att, that is, there exists a random variajec G such l(w) = {

that

o2, foeR
00, otherwise

limE

2 . . .
<Zt+h -4 Z{) _0 is a good rate function for the centered Gaussian measure
h—0 h ’

P, andP satisfies the large deviations principle:

It follows from the _st_ationarity of increments that4fis for E closed inQ :
smooth at 0, then it is smooth at &le R. On the other ' 1
hand, applying the above definitiontat 0, we see that lim sup-- log P(

n—oo

Z .
—€cF < —inf l(®);
. . . - 2 \m wcF
proces<Z is non-differentiable if limy_ov(h)/h® = 0. It

can be shown that fBm is non-smooth, whereas iOU hasa ¢4, g open inQ :

mean-square derivative. This difference is crucial in this 1 Z _

paper, as it implies that the solutions for fBm and iOU are liminf - log P(ﬁ € G> > — inf I(®).

0eG
essentially different. _ o o _
_ _ _ - Remark 1:With Z0), i =1,...,n, being i.i.d. copies of
Schilder’'s theorem.The remainder of this subsection isy it is noted that

devoted to the statement of the main ‘tool’ used in this
paper: Schilder’s large-deviations result for Gaussian pro- ig} = (i)
cesses. In this framework a central role is played by the vnoon i;

norm ||f|| of pathsf in the reproducing kernel Hilbert

space of the underlying Gaussian process. More precisél_lg),'S implies Schilder’s theorem can also be interpreted

‘Schilder’ states that the probability of the Gaussian pré> @ Statement on the probability that the ‘empirical mean

cess being in some closed gdtas exponential decay rate’rocess’ ohi.i.d. Gaussian sources.

31/f*||2, wheref* is the path inA with minimum norm, o _

i.e., argmineal| f||. It is noted that for closed and convex8- Results on infinite intersections

A, there exists a unique minimizer. Thf$ has the in-  The central problem dealt with in [15] is of the follow-
terpretation of thenost probable patiMPP) in A: if the ing form: given a functiord € Rand a set of timepoint§



what is the most probable path in the evé€at> £ on S}? Next, another result from [15] shows that the coeffi-
In the tandem setting, we choose a specific fornd ofs cients of the (v,-), v € V in the representation @V are

is discussed in Section III. strictly positive, as long as evews needed to make func-
For any seSC R, denote tion ¢V feasible.
Bs = {feR: f(t)>¢(t)vteS), Proposition 1. Assume a finite V. If for eachkew it

holds thatg¥\V}(v) < £(v), then the coefficients, in
the representatio®” = Sy 6, (V,-) are all strictly pos-

and let SpaA be the smallest closed linear subspack ofitive.

containing the seA C R. The following result was proven

in [15]. The theorem implies that in order to determine [1l. TANDEM QUEUES
the MPP it is enough to find the set where thand the
optimal path are congruent, i.e., overlapping.

Ls = {feR: f(t)={(t)VteS).

Consider a two-queue tandem model with infinite
buffers at both nodes. The input procels= Z; + ut
Theorem 2: Lett € R and SC R be compact. Thenis modeled as a Gaussian process with stationary incre-
there exists a functiofi* € Bs with minimal norm, i.e., ~ments, wherg is the mean rate ardis a centered Gaus-
sian process. The queues are served with deterministic
B* =argmin{| f||: f € Bs}. service rateg; for the first queue and, for the second
gqueue. We assun® > Cp, in order to exclude the triv-

Moreover3* € SparUes R where ial case where the second queue cannot build up. More-

S = ftes: B(t) =), over, we restrict ourselves to centerkdhy settingu =0
{ BV _C( )} andA = Z, since the constant drift can be included in the
Re = ﬂOSpar{F(s,-) rseft—ut+ulj. server rates [12, Remark 2.6].
u>

As argued in the introduction, the stationary queue
In general, the nature of the most probable piitide- length of the first queue readd; = SUR-o(Z_; — Cat).

pends crucially on the smoothness&jfas will appear 5o, the total queue length behaves as a queue with link
in Section IV. If Z is non-differentiable, like fBmR+ ratecy, i.e., Q1 + Qo = SUp-o(Z_¢ — Cot). Therefore, ex-
is usually spanned biy(t,-). In case of iOUZ has one pregsing the occupancy of the second queue as the differ-

derivative, and consequenti.. contains(d/dt) I'(t,-).  ence of the total buffer content and the content of the first
In general, for smooth processes with derivatives up to Yaeue, we find

derk, R+ contains also all the derivatives, i.e.,

_ {Q2>b}={3t>0:Vs>0:Z(—Z s—cCot+cC15> b};

d .

Er(t,), J = 1,...’k,

see [19] for details.

it is easily seen that we can restrict ourselves 0[O0, ],
andt > t, =b/(c; —Cp), see [12, Lemma 2.4].
- , : In this paper, our (first) aim is to determine
For any finiteV C R, let the unigue element with small- pap (first)

est norm inBy andLy be, respectively, I(b) = _r|1im %Iog P(Qan > nb),

¢" =argminges, [l9fl, 9" =argminge, [l] whereQ., is the steady state queue length of the second

By the reproducing kernel properties (3) and (4), we firfgHeue in the system withi.i.d. Gaussian sources served
that@” (-) can be written as linear combination of covariat the ratesic; andnc. In [12, Thm. 3.1], it was shown

ance functions and its norm using the inverse of the chat I (b) equals the rate function of Rz, > nb). We
variance matrix: now rephrasé(b) by applying Schilder’s theorem. To this

end, define the function

4 . — .

"o Vez e, © Gio(S) = —au(t,b) + oS,

[9°° = SVIr(V)HEv) wherea; (t,b) = (c1 — ¢2)t —b andoy = ¢1, and denote
where the vecto®(V) = (6,)vev is given by 0(V) = Up = {feR: f(s)>Gp(s)Vse [0,t]}.

(V)= (V) with £(V) = (£(V))vev. Note that for any
V CS |¢Y| is alower bound onj8*||, but it is possible  Invoking the relation between Schilder and the many-
that||@" || > ||B*]|. sources setting (as in Remark 1), the following result



is due to a straightforward time-shift, see also [12, Re- By Theorem 2, if we could find the set
mark 2.5]. It shows that determination of the rate function

can be partitioned into two steps: first find the most prob- Sp={s€0,t]: Bp(s) = Gn(s)},
able paths and their norms in thle, with fixedt andb,
and after that optimize We omit the proof. then the most probable path would be known also in
Case 2. Unfortunately, we do not have any general recipe
Theorem 3: for that at our disposal, and determini§g, can be a dif-
() — inf }H F2 = inf inf H 12 ficult task. In Section IV, we solve this problem for the
feU, t>tp feUyp 2 special cases of fBm and iOU input. Before that, we con-
) sider three approximations that we developed earlier and
- t>t 2||ﬁt oIl that will serve as benchmarks in Section V.

where Y = Ui, Ut p and B’y = argmin{|| f[| : f € Up}.
When determining the MPP id; ,, we find that there

are two regimes. In the ‘simple regime’, the MPP is just Mandjes and van Uitert [20], [12] find a lower bound

a single scaled covariance function. In the complemetf{b) of I (b). Lett; minimize

tary situation, we need more than one (possible infinitely

A. Lower bound on the decay rate

many) covariance functions and their derivatives if pro- B(t) = (b+cst)?
cess is differentiable. 2v(t)
To precisely introduce both regimes, we first note that o
if Cp(s) > 0, then, by (5), and letky(s,t) =T (s,t)(b+cot)/v(t). Then it is proven
: , that for o(St)
—s s Ct.,b(s) s|(12 Ct,b(s) F - )b
() =9() = v F(s-), le’°= YO ¢ > ¢ (b) 568(5% s
If we assume a variance functieft) such that the aboveit holds thatl (b) = 1-(b) = Jo(t). The above condition
norm has its maximum on the intervi@lt] att, then we s of course, equivalent e (t,b) /o > aF (t).
can consider the function Now consider the opposite case. fepr< ¢; < cf (b)),
we have that(b) > I-(b), with
WOrs)-Lole) el @ o=
| | . Loy = inf ot VO T\
leading to the following classification. (b) = I'thsSEUKISZX(S ) ( Fst) V(s > X(st),
Case 1lIf
amtb) . SWt) —tT (t,5) whereK, = {s€ S: ky(st}) < & p(s)} andx(st) is the
. >o(t) = Si[l(l)l?] {v(t)r(ts)} ) two-dimensional vectofb + cot, b+ cot — ¢y (t —))T.
' ’ Hence, in the regime; > cf(b) the lower bound is al-
then ways tight, in thatl (b) = I-(b). However, also for the
Go(t) Goo(t)? regimec; < ¢; < ¢ (b) [12] presents an explicit condition
Bip() == (0), (1B b||2 (7) under which the above lower bound is tight; this condition
: v(t) v(t) . o
is notfulfilled in the case of fBm.

Case 2 If ay(t,b)/op < aF(t), then the path (6) is not
feasible, and consequently a single covariance functiords Rough full-link approximation

not enough.
g As we have the exact decay rate &gr> cf (b), special

Note thatl; , ¢ R. However, this is not a problem sincqnterest is in the other regime. We here consider an ap-
Gp(0) <0 and proximation forl (b) for the case; € (cy,cf). In the con-
au(t,b) text of priority and generalized-processor-sharing queues,
G < > €ER Mannersalo and Norros [13], [14] proposed tbegh full-
link approximation Here we extend this approximation
so that we can approximatgy, on (0,t) by a sequence to the tandem case. The idea is thatife (cy,cf), the
of R-functions. Thus the results (Thm. 2 and Prop. 1) source transmits at approximately a redeuringty, units
infinite intersections hold. of time, thus causing exceedance of levéh the second
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queue. This leads to the approximatidifb) = I-(b) for Asin most caselb) > IR(b), this approximation tends to

c > cf (b), and be conservative, and is consequently appropriate for, e.g.,

) provisioning purposes.

M For Gaussian processes, the decay rate of the many-
2v(t) sources asymptotics is also useful in approximating the

for ¢z < ¢y < ¢ (b). queue-length distributi_on of a tandem queue fed by a _sin—
Mathematically, this approximation can be moti_gle source. The foIIovylng performance fqrmula was orig-

vated by replacing théJ;, by the larger setd, = inally introduced for single-node queues in [21], [22]:

{f eR: f(t) > §p(t)}; hence a requirement is imposed P(Q2 > b) ~ exp(—1R(b)). €)

for timet, rather than for al§ € [0,t]. Consequently,
According to numerical studies with single-node queues,
it seems that exp-1 (b)) is an upper bound for the tail dis-

IR(b) =

I (b) inf inf %Hf”zz inf inf %Hf”z

t>tp el p >ty feBip ; ) .
2 tribution. The same holds for tandem queues, as seen in
. (b+caot) )
= t@tf T(t) (8) Section V. Unfortunately, no formal proof for such prop-
~b

erty exists.
ThusIR(b) is a lower bound td (b), if t; <t, and if the
variance functiorv is such that the minimum is attained at IV. M OST PROBABLE PATHS FORFBM AND
t =1, in (8). INTEGRATED ORNSTEIN-UHLENBECK
Let us now focus on the inner minimization problem
C. Upper bound for the decay rate in 1(b) = infisy, infrey,, 51| T][2 i.e., minimization over
Any feasible path, i.eu € U, gives an upper bound tou, ,, with fixed t and b. We can restrict ourselves to

the decay, since, according to ‘Schilder’, ay(t,b)/op < aF (t) (Case 2), since the complementary
1 1 case (Case 1) was already solved by (7). In the following
I (b) = inf{zy f|2: fe Ub} < EHUHZ. two subsections, the most probable paths and their norms

are determined for the special cases of fBm and iOU in-
For tandem queues, the natural upper bound comes frput.
the most probable path for a busy period of lengtihn the After fixing t andb, we can simplify our notation by
first queue (as a busy periodtgfin the first queue implies denotingo, = a(t,b), &(-) = &b(+), anda® = aof (t).
thatty(c1 — c2) = b traffic is built up in the second queue)More precisely, we consider the d8by = Uip, and the

Hence, corresponding MPP
1B(b) = inf }|ny2>inf inf }HfHZ:I(b) B* =argmin{||f||: f €Bpy}-
feUy b 2 T t>ty feUy, 2 '
The evaluation of8(b) is done as in [15]. A. Fractional Brownian Motion
Consider fractional Brownian motion which is a cen-
D. Performance formulae tered Gaussian process with stationary increments and

So far we have concentrated on determining (approxiariance functiorv(t) = t?H, H € (0,1).
mations of) the exponential decay rate). In the many- ~ We first state some results from [15] without proofs.
sources setting, these can be also used to (roughly) chire first theorem shows that we can construct a sequence

acterize the probability distribution itself: of setsS' = {seR": 0< s <--- <s <t} and corre-
sponding sequence of the functiop® such thatpS' con-
P(Qzn > nb) =~ exp(—nl(b)). verges toB*. In addition to fBm, the same also holds for

In practice, numerical evaluation of the exact debéy) a large family of non-differentiable Gaussian processes.

is a difficult task, as follows from our explicit formulae in
the next section.

Therefore, for engineering purposes, we propose to rely
on an approximation based on the rough full-link approx-
imation:

P(Qzn > nb) ~ exp(—nIR(b)).
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Theorem 4: Let Z be a centered fBm and denote  i.e., the most probable path which followison [s;, s].
0o Vi The following theorem is our main result for tandem
h" = sup{fl¢”|: Vc0t], |V|<n} queues with fBm input.
n* = inf{neN: h"=h""1}. . L " -
Theorem 6: Assume H (3,1) and ;2 < a”. Then S
Then, is of the form(s*, 5] U {t}, whereg} <s* <§" <tand the
« For each n, there exists a set S [0,t] with at most function* has the expression

n elements such thipS'|| = h";

o 1If %] = ||| for some n, the* = o"; B (s) = El[Z|Z=6(r)vrels S, z2=1]
. Ifn<n*, thengpS =%, . Cov[Z,Zs| Z] .
o im0 — [;p* ¢ = fes®) +W(C(t) — e s(t));
From now on, we denote where.7 = Zis 51 = 6(Zs: ses',5]), and
Y= 0S()). .
=D 1= 1 g 2+ o) s O
The following properties are crucial for the explicit deter- 5] Var(Z —E[Z| Z])
mination of the MPP, as they show tha{ touches( at o _ o
pointss (with i = 1,....n— 1) from below. Again, the Proof: This is a slight modification of the proof for

proofs can be found in [15]. Note that if the Stexists, [1°; Thm. 5] where the case = 0 (equivalent to the busy

then Equation (10) holds for any Gaussian process whd¥g10d problem) is solved. Thus we can assure> 0.
variance function is differentiable on the whole real line.The Proof is partitioned into two parts: first we show that
B* has the claimed shape, and then we determine its norm.

Theorem 5: Let Z be a centered fBm and assumie n - shape of*: Let us study the properties of the sequence

n*. ForH € (3,1) and for all § € S'n(0,), @n which converges t@* by Theorem 4. Sincey/a; <
F -
'(s) = (s, 10y @ there exists e (0,t) such thatgs(s) < {(s) and we
#n(S) = £(s) (10) have| @1|| < ||@2|. Thus the case* = 1 is ruled out.
ForH € (0,3) and forall s € S, Now assumen < n*. Then ¢n(-) = Secx 65 (S, ).
., ., Sincefs, > 0 (Proposition 1) and(s;,-) > 0 (positive cor-
1M @n(S) =0, 1IM @n(s) = —eo. (11) " relations),gn(s) > 0 for all s R. Thus we can restrict

ourselves to the set
ForH € (0,1) and forallg € S,

; " : = =

and necessaril§' C [0/ o, t].
Now consider functiomp, and its derivatives:

o) = Clt*+ ¥ ps(s—9%— § ps(s—s)%],
0 ¥ s;’ SEZ"

§>s §<s

ta—l_ Ps (S—S)a_l] ’

0.2 0.4 0.6 0.8 1 ! 0.2 0.4 0.6 0.8

"
Fig. 2. B*(s)—C(s) for fBm with H — 0.8 andt — 1. On the left, ®n(8) = aC

ay/ap > aF, and on the righty /op < oF .

Using Theorems 4 and 5, we can show that the MPBI€re
in Bjgy) has one of the shapes shown in Figure 2: either . . .
the [[Jé.]'[h touches the conditignonly at the ‘end pointt, %~ 2H-1, C=H %93’ pi= Zs?;(’s- €(0.3).
or, in addition to the ‘end point’, the paths coincide over 3¢ : J
an interval. In the latter case, the MPP is determined bylf s, = max{S'} ands, < t, theng,(s) < {(s) for all
a linear combination of the covariance functions over &> S5, sincen(sh) = §(sn), @,(sh) = ¢'(sn) (by (10)),
infinite index set and thus calculating the norm involveandgy, (s) < O for all s> s, (by the fact that the; sum up
(complicated) integrations. Denote to 1, anda — 1 < 0). Thus

Clons) =argmin{|[f]|: f e R f(s)=C(s) Vse[s',57]}, maxsc S'} —t asn—n".



Similarly as in [15, Thm. 5], with lengthy calculations,(p;é* o = Cis ) @ndyp is orthogonal taf;. . Thus,
one can show that for eacithere exisu, andup, o = s,
(C(1) — s (1)

181 =185 51"+ Gar z— €2 71)

as claimed. [

a1 =
;§9n<51<5nfl<un<5m
2

such thatg, is at or below the conditiod on [u,,Un| U 1 ,
(s} and strictly above on [0,u,) and[Tn, ), see Fig- WhenH € 0,3) we are alwayg in Case 2, a_md conse-
ure 3 for the shapes af,, N = 1,2,3. Since the above quentlygglngle covariance functlgn never sufflceg. More-
holds for anyn, we haven* = ». The convergence Ve a finite number of the covariance functions is never
on — B* implies thatB* has the claimed shape. enoqgh and we ne_ed to con_dltlon with _respect to an m_ter-
val, i.e., the MPP is determined by a linear combination
s of the covariance functions over an infinite index set. The

shape of the MPP is shown in Figure 4.

0.3 0.3
0.2 0.2 Ho0.2
=
0.1 0.1
0.4

[ U 0.6 0.8 1 [ 0.2 0.4 0.6 0.8 1 0.3
0.1
0.2

H-0.8 H=0.8
no2 n=3

001 0.00004 o
U_U[;;Ug} \ / 0.00003
0.00002 ' 0.2 0.4 0.6 0.8 1
0.17 0.18 /¥.19 0.2] 0.21 0.22 0.00001
“'O””“F W [ o1 v\y\/“ 0702 Fig. 4. B*(s)— ¢(s) for fBM with H = 0.2 andt = 1.
-0.00001

-0.00002

0.1
0.0

Theorem 7: Assume H (0, 3). Then the set'shas the

Fig. 3. H =08. The shape ofpn(s) —{(s), n=1,2,3. Atthe form [s*,t], whereO < s* < t and the functior8* has the
scale[0, 1], cases = 2,3 are indistinguishable. The lower pictures ar%xpression

zoomed in around the poist (ands, for n= 3).
B*(s) = E[Z|Z:=C(r)vVre[st]]

Norm of 8*: For any functionf € R, define .
= C[Sﬂt](t)
0i(s) = E[Z]|Z,=f(r)Vre[s,T]], and

vi(s) = E[Z|Z:=1(r)Vre[s,S] Z2=C(t)]. 18711 = 1185 glI%

The conditional distribution of the paiiZs, Z;) w.r.t. .7 Proof: Let us first show thatr® = co. It is easy
is a two-dimensional Gaussian distribution with (randor% see theﬁSl — {t} so thate(t) = £(t) O'n the other

mean H(Zs,Z)|.#]. Thus, a further conditioning on hand, lim - ¢}(s) = by (11). Thus, wheneve is

the event{Z; = {(t)} can be computed according to th?inite, on(t— ) < £(t—e) for somee > 0 andgy & Byy..
standard formula of conditional expectation in a bivariaﬁgeIence the ‘easy’ Case 1 solution never exists o4

Gaussian distribution: More generally, using equations (11) and (12) and sim-

B Cov|Zs, Z; | 7] ilar type of argument as fad > 1/2, it is seen that the
vi(s) = ¢i(9+ Var[z | 7] (C(1) — o1 (1) shapes of thap, are such that the limiting path must
= ) +c(s)(C(t) — gt (1)), satisfy: B*(s) > {(s) if s€ (0,s") and B*(s) = {(s) if
P18+ (S5 0) — D) s [s,t] for somes* € (0,t). See Figure 5 for the shapes
where c(s) = Cov[Zs, Z;| %] /Var[Z;| %] does not de- of g5, N=1,2,3. [ |

pend onf. Applying this to the functionf(t) = 0 yields

Note that, in principle, all the quantities in the ex-
c(t) = yo(t). One can show (see [15]) that

pressions fo3* could be computed. For example when
woll2 = Var(Z —E[2|.Z]) . H € (1/2,1), an equivalent formulation is

p* = argminicr{||f|: f(s)=o0ps s€[0,5 -5,

Now, note that
f(—s)=—as", f(t—s)=o(t-5s)}

B9 = E[Z]Zs=¢(9), Vsels',5], 2 =¢(1)] As a consequence, we can consider the MPP following
= ‘/’C[;_g*y the lineazson[0,s* — s*] and and hitting two other points



Theorem 8: Assume;/ap < aF. If ag >0, then S =
{s",t}, with s* € (0,t/2), and the functiorB* has the ex-
pression

Br(s) = (£(s9),C)((s,1) (T (s',9),M(t,9)"

Fig. 6. Integrated Ornstein-Uhlenbeck inpy:(t) — ¢ (t), when
a1 = 0.2, ap = 2 (left) anday = 20 (right).

Fig. 5. H =0.2. The shape op¥'(s) — {(s),n=1,2,3.

att —s* and—s*. The straight-line part is equivalent to
x-path of [23], [24]. Also the (two-dimensional) condl-
tioned Gaussian random variable has semi-explicit repre- ((s), C(t))l‘(s,t)*l(g(s),C(t))T

sentation (see e.g. [25]), though consisting of multiple in-

tegrals. We have not succeeded in finding explicit expretith se {se [0,t] : §'(s) < {(s)}. If on =0, then
sions for the numbers ands'. However, by knowing the w ) 1,y
structure ofS', or even by just knowing from Theorem 2.y _ (¢() C(U)( 3V'(0) V(1) > ( 3V () )
that the MPP is determined by a set where it toucheis ’ V() V() r(t,-)

is easy to obtain arbitrarily accurate discrete approxima-

tions of the MPPs and their norms using some graphica

mathematical tool. (2 () v \ Tt/ (o)
prie=@o.con( 20 A8 ) (L)

Proof: The casen; = 0 is solved by finding the

Unfortunately, the results of Theorem 4 do not holchinimal element of the set
generally for smooth processes. The main reason for that . .
is the larger infinitesimal spacé&%. containing also the {f eR: 11(0)=¢£'(0), f(t) = C<t)}
derivatives of the covariance functions. This means that

n and showing that it is also an elementBy); for details

mappingt — @', with t € R", is not always continuous see [15].
and thus the existence 8t is not guaranteed.

Consid G . ith stati . Now assumex; > 0. Although Theorem 4 does not
onsider a aussian proc@swlt stationary Incre= .14 in general, we can still apply a similar method. Con-
ments and variance(t) =t —1+e'. This is an iOU

sider the set
model, which can be interpreted as the Gaussian counter—

part of the Anick-Mitra-Sondhi model [22]. Since trade Bs={f cR: f(s)> (), f(t) > (1)}

processs defined by the stochastic differential equation
and define the ‘least likely’ point

where $ minimizes the norm

Nl

B. Integrated Ornstein-Uhlenbeck input

s' = argmaxcoy {[| f[|: f €Bs},

whereW denotes the standard Brownian motidns ex-
actly once differentiable. In the above differential equ
tion bothy ando should be equated to 1 to get the desired & {se 0,]: 9'(s) < &( )} C [oa/aa,t/2],
variance function.

Our main result for tandem queues with iOU input sayshere the right end point of the interval follows from the
that the lower bound of [12] is tight*(b) = I (b). Again, antisymmetry of+ I'(t,s) —saround point/2.
Case 1 & /op > oF) is trivial and the decay rate is given Denote
by (7).

g(\_/hich exists whenevar; > 0. Clearly,

g=argmin{||f||: f €Bs} =61 (t,-)+ 60 (S",").
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SinceByoy C By, we havef|3*|| > [|g|| and we only need
to prove that the pathis feasible, i.e.g € By The basic I(p), I (b)
. . . ? . 500
idea is to show that path is convex on[0,s], and first

convex and then concave ¢8i,t] (see the right picture in 400

Figure 6).

Assume firss € (s*,t]. Then 300

1 1
d(s) = 62— es—e (9) 4 éez(e*S— e -5y, e
1 1 100
g'(5) = 50n(e %) Spp(—e e ),
10 20 30 40 50 b

The second derivative has at most one zero[sirt]. T(b) - 1% (b)

However, sincey(s*) = —as + aos’, g(t) = —og + apt
andd'(s*) = ay (similarly to (10)), there is exactly one  ¢.4
pointsy € [s*,t] such tha”’(sp) = 0. On the other hand,
s* <t/2 implies thatg”(s*+) > 0. Thusg(s) > {(s) for 0.35
all [s*,t].

Next consides € [0,s"], when

E

10 20 30 40 50
1 1
dg(s) = é91(2— esS—e 94 é(92(2— es—e 59 0.25
1 1
g'(s) = 501(e°—e )+ S0 (e 5+ 9.

2 2

. 7. Comparison of decay ratesnd|R for Ornstein-Uhlenbeck

- - Fi
Similarly as above, the second derivative has at mqggutl Parametersi(t) —t—1+et, c; — 1, ¢, — 0.9.

one zero. On the other hand, we hayés*—) > 0 and
g’(0) > 0. This implies thag”(s) > 0 for all s€ [0,s*].

Thusg(s) > ¢(s) forall s€ [0,s"] andg € Byg,; as claimed. 2 (b), 5 (b), I (b)
. ’ ’

6
V. NUMERICAL STUDIES s
A. Comparison of the decay rates
As seen in the previous section, the computation of *
the exact decay rate is numerically involved. Fortunately, ,
the proposed approximate decay rates are close enough to
the exact outcome, at least from the performance analysis .

viewpoint.

10 20 30 40 50

For iOU input, we have already proved in Theorem 8 0-05
thatl“ = 1. In Figure 7, we compare the exact decay tate . .
with the rough full-link approximatiom®. Note that scal- 0.0 rere
ing the variance b means scaling the pictures with the | ,
same number. In the top picture, the decay rates are al-
most indistinguishable. When plotting the difference, we o.02

I% (b) -I" (b)

see that it is more or less bounded.

For fBm, we do not calculate the exact decay rate, but °-%*
rather an upper bound based on the busy period solution, —
i.e., 1B(b). Because of the self-similarity of the busy pe- 10 20 30 40 50
riod problem with fBm input — see [24, Prop. 4.1] — it
is enough to determin®(1). Other values are given bYFig. 8. Comparison of decay rateandi R for fBm input. Parameters:
1B(b) = b>~211B(1). The lower bound$R andI* are then v(t)=t?!,H =0.85,c; =1,c, =0.9.
compared to the upper boutfél Again, when plotting the

b
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decay rates in the same picture, one hardly sees any dif- H=0.6,..,0.9
ference (see Figure 8). The behavior is qualitatively the

same foralH € (1,1). 0.1
0.01
B. Estimating the queue length distribution
0.001
In order to check the accuracy of the performance es-
0.0001

timate (9), we have compared it to estimates obtained by
simulation. The simulation traces were generated using 0.00001
an extension of random midpoint displacement algorithm N b
RMDpn, see [26]. Each simulation wag*steps at the 10 20 30 40 20
resolution 2°°,

In all scenariose; = 1 andc, = 0.9 so thatcy < ¢™(b)  Fig. 10. Tail probabilities PQ, > b) for a tandem queue fed by FBM
for almost allb. Note that ifc; > cf (b) then the MPP- source:v(t) =t2", ¢ = 1, c; = 0.9. The thick lines are the approxi-
based approximations are as good as those of the siﬁgqaé'ons by (9) and the thin lines the results from the simulations.
queue; see some examples in [21], [22].

We consider three different traffic models. The first 1 C=1,2,5,25
one is the iOU input with scaled variance functily =
C(t—1+exp(—t)), for C=5,10,2550. The results are
shown in Figure 9. Performance of a tandem queue serv-  0.01
ing fBm with different Hurst parameters, i.e/(t) = t?1, 0.001
H = 0.6,0.7,0.8,0.9, is shown in Figure 10. Finally,
Gaussian input with varianegt) = C((t +1)%2 -3t - 1),
C =1,2,5,25 is studied in Figure 11. This process is 0-00001
the Gaussian counterpart of the so-called Mé@iput 1.%10°¢ b

0.1

0.0001

. . . . . . 10 20 30 40 50
with Pareto distributed session durations, see [12]. It is
a smooth process (like iOU) and has long-range correla-
tions (like fBm). Fig. 11.  Tail probabilities PQ, > b) for a tandem queue fed by
Gaussian process witht) = C((t + l)% — %t —1):c=1,c,=09.
c=5,10,25,50 The thick lines are the approximations by (9) and the thin lines the
! results from the simulations.
0.1 L .
would eliminate most of the gap between the estimate and
0.01 the simulation results.
0.001 VI. CONCLUDING REMARKS AND OUTLOOK
0.0001 In this paper, we have considered Gaussian tandem
b gqueues as an application of the recently obtained results

ro ° 30 40 >0 on infinite intersections in Gaussian processes. In princi-

ple, the same approach could have been applied, for exam-
Fig. 9.  Tail probabilities RQ > b) for a tandem queue fed by anple, in priority and generalized processor sharing queues.
integrated Omnstein-Uhlenbeck soursét) = C(t—1+e™), c1=1, \yg studied two ‘classical’ input processes in order to
¢z = 0.9. The thick lines are the approximations by (9) and the thlaemonstrate the basic ideas: fractional Brownian motion
lines the results from the simulations.

and integrated Ornstein-Uhlenbeck. These processes have

All these simulations show that the accuracy of esteither zero or one derivative; the existence of higher-order

mate (9) is about the same order as in single-node quelwdssivatives would cause substantial complications.
Moreover, it seems to give an upper bound for the tail dis- The second topic considered was the performance mea-
tributions. This demonstrates that it might have use sures based on the most probable paths. It turns out that
coarse performance analysis and dimensioning, althoubke decay raté(b) is very well approximated by the lower
the overall accuracy is not very good. One possibleundi‘(b) and the rough full-link approximatiof(b).
improvement is to scale by the non-idle probability aShese expressions can be used to generate approximations
in [22], i.e., P(Q2>b) ~ P(Q2 > 0)exp(—I(b)). This for the probability distribution (rather than its exponential
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decay rate). We see that, as in the single-node case, tf16y R.R. Bahadur and S.L. Zabell, “Large deviations of the sample
show the correct qualitative behavior, but from a quantita-
tive perspective there is room for improvements; scalirﬂ%]
by the non-idle probability might yield better approxima-
tions. It would be desirable to find well-founded improved
approximations based on our MPP identification, but thi8]

remains a challenge for future work.

(19]
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