
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Large deviations for complex buffer architectures: the 
short-range dependent case

M.R.H. Mandjes

REPORT PNA-E0413 JULY 2004



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711



Large deviations for complex buffer architectures: the
short-range dependent case

ABSTRACT
This paper considers Gaussian flows multiplexed in a queueing network, where the underlying
correlation structure is assumed to be short-range dependent. Whereas previous work mainly
focused on the FIFO setting, this paper addresses overflow characteristics of more complex
buffer architectures. We subsequently analyze the tandem queue, a priority system, and
generalized processor sharing. In a many-sources setting, we explicitly compute the exponential
decay rate of the overflow probability. Our study relies on large-deviations arguments, e.g.,
Schilder's theorem.

2000 Mathematics Subject Classification:  60K25
Keywords and Phrases: sample-path large deviations; Gaussian traffic; Schilder's theorem; short-range dependence;
tandem queue; priority queue; generalized processor sharing; c ommunication networks; differentiated services



Large deviations for complex buffer architectures:

the short-range dependent case

Michel Mandjes ∗

Abstract

This paper considers Gaussian flows multiplexed in a queueing network, where the un-

derlying correlation structure is assumed to be short-range dependent. Whereas previous

work mainly focused on the FIFO setting, this paper addresses overflow characteristics

of more complex buffer architectures. We subsequently analyze the tandem queue, a

priority system, and generalized processor sharing. In a many-sources setting, we explic-

itly compute the exponential decay rate of the overflow probability. Our study relies on

large-deviations arguments, e.g., Schilder’s theorem.

Key words: sample-path large deviations – Gaussian traffic – Schilder’s theorem – short-

range dependence – tandem queue – priority queue – generalized processor sharing –

communication networks – differentiated services

∗M. Mandjes is with CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands, and Korteweg-

de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The

Netherlands. Email: michel@cwi.nl

1



1 Introduction

Over the past two decades, a significant research effort has been devoted to the large-deviations
analysis of queues. It has culminated in a wealth of valuable contributions to the understand-
ing of the occurrence of rare events (such as buffer overflow) in queues. Exact computation of
the overflow probability is usually a demanding task, thus motivating the search for accurate
approximations and asymptotics. Large-deviations analysis usually provides a rough (logarith-
mic) characterization of the overflow probability (in terms of an exponential decay rate), but
also insight into the system’s ‘path’ from ‘average behavior’ to the rare event.
In particular, the celebrated many-sources scaling, introduced in a seminal paper by Weiss [22],
has provided a rich framework for obtaining large-deviations results. In a many-sources setting,
one considers a queueing system fed by the superposition of n i.i.d. traffic sources, with the
service rates and buffer thresholds scaled with n as well. In the setting of a single first-in-first-
out (FIFO) queue, under very mild conditions on the source behavior, it is possible to calculate
the exponential decay of the probability pn(b, c) that the queue (fed by n sources, and emptied
at a deterministic rate nc) exceeds level nb, see, e.g., [5, 6].
Although single-class single-node FIFO queues serve as a useful baseline model and provide
valuable insight, they clearly have serious limitations. First of all, traffic streams usually tra-
verse concatenations of hops (rather than just a single node). Secondly, networks increasingly
support a wide variety of traffic types, with each of them having its own specific (stochas-
tic) characteristics and Quality-of-Service requirements in terms of packet delay, loss, and
throughput metrics. In order to deal with the heterogeneity in traffic types, networks will
typically rely on discriminatory scheduling mechanisms to distinguish between streams of the
various classes, such as priority scheduling mechanisms, or the more advanced Generalized
Processor Sharing (GPS) discipline, cf. [20, 21]. Thus, a fundamental understanding of the
large-deviations behavior of stochastic networks with non-FIFO scheduling is expected to play
a crucial role in providing end-to-end Quality-of-Service in multi-class networks. However, only
few large-deviations results are known for these more complex buffer architectures.
As indicated above, each type of traffic has its own stochastic properties, often summarized by
the correlation structure. One commonly distinguishes between short-range dependent input
(with just a mild correlation) and long-range dependent input (in which correlations decay
relatively slowly). It is noted that Gaussian models cover both, see for instance [1, 11].

Contribution. In this paper we focus on some of the above described ‘complex buffer archi-
tectures’. More specifically, we will derive the many-sources asymptotics of buffer overflow in
the tandem queue, the priority queue, and the queue operating under (two-class) GPS. We
focus on the case of short-range dependent inputs; this class of inputs covers for instance the
Gaussian counterpart [1] of the celebrated AMS model [2] (i.e., a superposition of exponential
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on-off sources), which is a standard model for coded voice. In this way, this work complements
other papers that predominantly focuses on long-range dependent inputs [13, 14].
In this paper we apply results from our previous work [11, 12], which applied to general
Gaussian sources. There we found a lower bound on the decay rate, which was tight under
a specific explicit condition. However, both the computation of the lower bound, and the
verification of the tightness condition usually require non-neglible numerical computations.
In the present paper, by restricting ourselves to the class of short-range dependent traffic,
the main benefit is that we can explicitly characterize the decay rate (in terms of the model
parameters); hence there is no need for any numerical computation.

Literature, related work. Queues with Gaussian inputs were extensively discussed in a series
of articles by Mannersalo and Norros [1, 15, 16, 17]. As far as the more complex buffer
architectures are concerned, the articles by Mannersalo and Norros mainly focus on heuristic
approximations for the decay rate of the overflow probabilities. Mandjes and Van Uitert show
in [11, 12] that these heuristics are typically close, but that there is a gap with the exact
outcome; as indicated above, they find bounds on the decay rate, and derive conditions under
which these bounds are tight.
The asymptotics for short-range dependent traffic feeding into a single FIFO queue, as pre-
sented in, e.g., Botvich and Duffield [5, Th. 3], turn out to be relevant for our paper – this
will be discussed in detail in Section 2.3. Our work is also related to Wischik’s results on
sample-path large deviations for the single queue and priority system [23]. Zhang [24] focuses
on large buffer asymptotics in a (discrete-time) GPS system with short-range dependent in-
puts; in Section 6 we comment on the relation with our (many-sources asymptotics) results for
GPS.

This paper is organized as follows. Section 2 presents preliminaries. In Section 3 the tandem
queue is analyzed, whereas Section 4 deals with the priority queue, and Section 5 with the
GPS system. Section 6 gives a discussion of the results, and some concluding remarks.

2 Preliminaries

This paper is on rare events for queues with complex buffer architectures, fed by many short-
range dependent Gaussian inputs – in this section we present the necessary prerequisites. The
first subsection introduces Gaussian sources, and defines the notion of short-range dependence
used in this paper. The second subsection recapitulates the framework for analyzing rare events
in the many-sources setting: Cramér’s theorem, and (the generalized version of) Schilder’s
theorem. The last subsection revisits the single FIFO-queue, and indicates what type of results
we wish to derive for the more complex buffer architectures (tandem, priority, GPS).
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2.1 Gaussian processes

We consider n sources, behaving as i.i.d. Gaussian processes with stationary increments. Define
Ai(s, t) as the amount of traffic generated by the ith source in (s, t], with s < t and s, t ∈
R. Denote by A(s, t) the generic random variable corresponding to a single source. The
Gaussian sources are characterized by their mean rate µ ≥ 0 and their variance function
v(·). More precisely, for all s, t with s < t, EA(s, t) = µ(t − s) (with µ smaller than c2) and
VarA(s, t) = v(t− s). We also define the centered process Ā(·) by putting Ā(t) := A(0, t)− µt.

In the sequel we often use the bivariate normal distribution of (A(0, s), A(0, t)); we define
Γ(s, t) := Cov(A(0, s), A(0, t)). It holds that

Γ(s, t) =
1
2
(v(t) + v(s) − v(t − s)). (1)

Notice that the possibility of negative traffic is not explicitly ruled out, as opposed to ‘classical’
input processes, such as (compound) Poisson input or on-off sources. For tandem queues (in
which the output of the first queue feeds into a second queue), it is noticed in [11] that, by
choosing an appropriate representation for the queue length of the second queue, negative queue
lengths can be easily avoided. For priority systems, [17] explains in detail how to circumvent
the problem of negative queue lengths (a discrete-time version of the priority discipline is
introduced, in which negative traffic can annihilate queued traffic). GPS queues can be dealt
with similarly.

Assumption 2.1 We assume that
(A1) v(·) is continuous, differentiable on (0,∞);
(A2) v(·) is strictly increasing;
(A3) for some α < 2 it holds that v(t)t−α → 0 as t → ∞.

Definition 2.2 Consider a Gaussian source with stationary increments.

(i) Brownian motion: The source BM(λ, µ) has mean input rate µ and variance function
v(t) = λt, for t ≥ 0.

(ii) Asymptotically linear variance: The source ALV(κ, λ, µ) has mean input rate µ, and a
variance function v(·) satisfying

lim
t→∞ v(t) − λt = κ.

Example I: Ornstein-Uhlenbeck input. Following Section 4.3 of [5], we represent an
(integrated) Ornstein-Uhlenbeck input process by choosing v(t) = t−1+e−t. This corresponds
to an ALV process with κ = −1 and λ = 1.
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Example II: M/G/∞ inputs with Pareto job sizes. A single M/G/∞ source consists
of jobs that arrive according to a Poisson process of rate λ̄. They stay in the system during
some holding time, that is distributed as a random variable D (with ED < ∞). During this
holding time, any jobs generates a constant traffic stream at a rate of, say, 1. We assume
P(D > t) = (t + 1)−α, i.e., D has a Pareto tail. Take α > 1; then ED = (α − 1)−1 < ∞.

We now consider the Gaussian input process that has the seam mean input rate and variance
function. The mean input rate is trivially µ := λ̄ ED per unit time, whereas the variance
function reads (assume for ease that α �∈ {2, 3})

v(t) = ν · (1 − (t + 1)3−α + (3 − α)t
)

with ν :=
2λ̄

(3 − α)(2 − α)(α − 1)
,

see [10]. Importantly, if α ∈ (1, 2) the traffic process has essentially long-range dependent
properties, as v(t) is superlinear; if α > 3, the process is ALV with κ = ν and λ = ν(3 − α).
The intermediate case α ∈ (2, 3) will be commented on in Section 6.

2.2 Large deviations

The analysis in the next sections relies on a sample-path large deviations principle (LDP) for
(centered) Gaussian processes. This subsection is devoted to a brief description of the main
theorem in this field, (the generalized version of) Schilder’s theorem [4]. However, we start by
recalling (the multivariate version of) the well-known Cramér’s theorem, see [7, Thm. 2.2.30].
We use the standard notation 〈·, ·〉 for the inner product: 〈a, b〉 := aTb =

∑d
i=1 aibi.

Theorem 2.3 [Multivariate Cramér] Let Xi ∈ Rd be i.i.d. d-dimensional random vectors,
distributed as a random vector X with moment-generating function Ee〈θ,X〉 < ∞ (for any
θ ∈ Rd). Then n−1

∑n
i=1 Xi satisfies the following LDP:

(a) For any closed set F ⊂ Rd,

lim sup
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ∈ F

)
≤ − inf

x∈F
Λ(x);

(b) For any open set G ⊂ Rd,

lim inf
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ∈ G

)
≥ − inf

x∈G
Λ(x),

where the large deviations rate function Λ(·) is given by

Λ(x) := sup
θ∈Rd

(
〈θ, x〉 − log Ee〈θ,X〉

)
, (2)
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Remark 2.4 Consider the specific case that X has a multivariate Normal distribution with
mean vector µ and (d×d) non-singular covariance matrix Σ. Using log Ee〈θ,X〉 = 〈θ, µ〉+ 1

2θTΣθ

it is not hard to derive that, with (x − µ)T ≡ (x1 − µ1, . . . , xd − µd),

θ� = Σ−1(x − µ) and Λ(x) =
1
2
(x − µ)TΣ−1(x − µ), (3)

where θ� optimizes (2); it is well-known that Λ(·) is convex. �
Lemma 2.5 Let (Xi, Yi) ∈ R2 i.i.d. bivariate normal random variables, with mean vector
(µX , µY )T, and two-dimensional covariance matrix

Σ =

(
σ2

X ρ(X, Y )
ρ(X, Y ) σ2

Y

)
.

Fix a > µX and b > µY . Then

lim
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ≥ a,
1
n

n∑
i=1

Yi ≤ b

)
= −1

2
(a − µX)2

σ2
X

,

if

E(Y | X = a) = µY +
ρ(X, Y )

σ2
X

(a − µX) < b;

otherwise

lim
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ≥ a,
1
n

n∑
i=1

Yi ≤ b

)
= −1

2
(a − µX , b − µY )TΣ−1

(
a − µX

b − µY

)
.

Proof. Using the above remark, we have to minimize Λ(x, y) over all x ≥ a and y ≤ b. Two
cases may occur, as illustrated in Figure 1. The crucial difference between the graphs is that
in the left figure, the contour that touches the line x = a has a y-value lower than b, whereas
in the right figure the opposite is the case. This is formalized as follows. Let y0 solve

∂Λ(x, y)
∂y

∣∣∣∣
x=a

= 0, i.e., y0 = µY +
ρ(X, Y )

σ2
X

(a − µX).

Hence, the left panel shows that if y0 ≤ b, then the optimum is attained at some point (x, y) in
{a}× [0, b), whereas, according to the right panel, y0 > b implies an optimum in (y, z) = (a, b).
If y0 ≤ b, Λ(a, y0) = (a − µX)2/2σ2

X , then indeed independent of b. �

We now sketch the framework of Schilder’s sample-path LDP, as established in [4], see also [8].
We restrict ourselves to the aspects that are relevant in the present study; for more details we
refer to [1, 11, 15]. Consider the n i.i.d. centered Gaussian processes Āi(·) := {Āi(t), t ∈ R}
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Figure 1: Contour lines of the (two-dimensional) rate function.

with stationary increments, and covariance Cov{Āi(s), Āi(t)}, which obviously equals Γ(s, t)
defined in Section 2.1. Define the path space Ω as

Ω :=
{

ω : R → R, continuous, ω(0) = 0, lim
t→∞

ω(t)
1 + t

= lim
t→−∞

ω(t)
1 + t

= 0
}

,

which is a separable Banach space by imposing a specific norm, as explained in [15]. Next we
introduce and define the reproducing kernel Hilbert space R ⊆ Ω – see [3] for a more detailed
account – with the property that its elements are roughly as smooth as the covariance function
Γ(s, ·). We start from a ‘smaller’ space S, defined by

S :=

{
ω : R → R, ω(·) =

n∑
i=1

aiΓ(si, ·), ai, si ∈ R, n ∈ N

}
.

The inner product on this space S is, for ωa, ωb ∈ S, defined as

〈ωa, ωb〉R :=

〈
n∑

i=1

aiΓ(si, ·),
n∑

j=1

bjΓ(sj , ·)
〉

R

=
n∑

i=1

n∑
j=1

aibjΓ(si, sj).

The closure of S under this norm is defined as the space R. With the norm defined by
||ω||R :=

√〈ω, ω〉, we define the rate function of the sample-path LDP:

I(ω) :=

{
1
2 ||ω||2R if ω ∈ R;
∞ otherwise.

Under the above assumptions, e.g., (A1) and (A3), the following sample-path LDP holds.

Theorem 2.6 [Generalized Schilder] n−1
∑n

i=1 Āi(·) satisfies the following LDP:
(a) For any closed set F ⊂ Ω,

lim sup
n→∞

1
n

log P

(
1
n

n∑
i=1

Āi(·) ∈ F

)
≤ − inf

ω∈F
I(ω);
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(b) For any open set G ⊂ Ω,

lim inf
n→∞

1
n

log P

(
1
n

n∑
i=1

Āi(·) ∈ G

)
≥ − inf

ω∈G
I(ω).

The following application of ‘Schilder’ was proven in [1].

Lemma 2.7 Let a, t be positive, and define Fa,t := {f | f(t) ≥ a}. Then

lim
n→∞

1
n

log P

(
1
n

n∑
i=1

Āi(·) ∈ Fa,t

)
= −1

2
a2

v(t)
;

the optimizing path f�(·) is, for r ∈ R, given by

f�(r) =
Γ(r, t)
v(t)

· a.

Remark 2.8 For centered BM, the optimizing path f�(·) ∈ Fa,t from Lemma 2.7, equals 0
for negative r, grows linearly with slope a/t for r ∈ [0, t], and remains at level a for r ≥ t. �
2.3 Results for single FIFO queue

This subsection recalls the results for overflow in the single FIFO queue. We consider n i.i.d.
Gaussian sources feeding into a queue with link rate nc. We focus on the probability that
the (stationary) buffer content Qn exceeds level nb. This probability decays exponentially in
n; in particular, we see that the decay rate is linear in the buffer size for BM sources, and
asymptotically linear for ALV sources.
Let A[f ](s, t) denote the amount of traffic generated in (s, t] if the sample-mean process
n−1

∑n
i=1 Ai(·) follows path f , or, in other words, A[f ](s, t) = f(t) − f(s). The paths leading

to overflow in the FIFO setting are

F (f)(b) := {f | ∃t > 0 : A[f ](−t, 0) > b + ct},
see for instance [1, 11]; here it is used that the steady-state buffer content Qn can be written
as

sup
t>0

n∑
i=1

Ai(−t, 0) − nct.

To find the corresponding decay rate, ‘Schilder’ implies that I(f) needs to be minimized over
all f ∈ F (f)(b). Addie, Mannersalo, and Norros [1] provide this decay rate, for the situation of
a general variance function v(·):

K(f)(b) := lim
n→∞

1
n

log P(Qn ≥ nb) = − inf
f∈F (f)(b)

I(f) = − inf
t≥0

(b + (c − µ)t)2

2v(t)
. (4)

The following lemma evaluates K(f)(b) in (4) for the specific situations of BM and ALV input.
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Lemma 2.9 Consider a single FIFO queue with link rate nc, fed by n i.i.d. sources.

(i) If the sources are BM(λ, µ), then, for b ≥ 0,

K(f)(b) = 2 · c − µ

λ
· b.

(ii) If the sources are ALV(κ, λ, µ), then(
K(f)(b) − 2 · c − µ

λ
· b
)

−→ −2κ

(
c − µ

λ

)2

, b → ∞.

Proof. Part (i) directly follows from computing the infimum over t ≥ 0 in (4). Part (ii) is
a consequence of [5, Thm. 3]. This theorem states the following. Let θ� denote the unique
positive solution to

lim
t→∞

1
t

log E exp(θĀ(t)) = (c − µ)θ.

Furthermore, suppose that − limt→∞ log E exp(θ�Ā(t) − θ�(c − µ)t) =: ν exists. Then it holds
that the shape function is asymptotically linear: K(f)(b) − θ�b → ν, for b → ∞.

It is not hard to check that, in our Gaussian setting, for ALV(κ, λ, µ) sources,

lim
t→∞

1
t

log E exp(θĀ(t)) = lim
t→∞

1
2t

· θ2v(t) =
λ

2
· θ2,

yielding θ� = 2(c − µ)/λ. Also,

lim
t→∞ log E exp(θ�Ā(t) − θ�(c − µ)t) = lim

t→∞
1
2
(θ�)2v(t) − θ�(c − µ)t

= lim
t→∞ 2

(
c − µ

λ

)2

· (v(t) − λt) = 2κ

(
c − µ

λ

)2

.

This proves the stated. �

In the following alternative proof of part (ii) we explicitly use the ALV properties of the sources.
We include the proof, because several proofs in the sequel of the paper are along the same lines.

Alternative proof of part (ii) of Lemma 2.9. Use expression (4), and choose ε̄ > 0
arbitrarily. It is clear that, invoking (A2) and the ALV characterization, for b large enough
and arbitrary M ,

inf
t≤Mb

(b + (c − µ)t)2

2v(t)
≥ b2

2v(Mb)
≥ b2

2Mλb + ε̄
= O

(
1

2Mλ
· b
)

.

Also

(b + (c − µ)t)2

2v(t)

∣∣∣∣
t:=b/(c−µ)

= O

(
2 · c − µ

λ
· b
)

.
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Choosing M sufficiently small, this implies that we can restrict ourselves to the infimum over
t in [Mb,∞). For any ε > 0, we can select a b sufficiently large, such that for t in this range
|v(t) − λt − κ| < ε. Hence

inf
t≥Mb

(b + (c − µ)t)2

2v(t)
≤ inf

t≥Mb

(b + (c − µ)t)2

2(λt + κ − ε)
.

The latter optimum equals

2 · c − µ

λ
· b − 2(κ − ε)

(
c − µ

λ

)2

, achieved for t =
b

c − µ
− 2 · κ − ε

λ
.

The lower bound follows after ε ↓ 0 and b → ∞. The upper bound is analogous, with ε replaced
by −ε. �

Remark 2.10 In principle, Schilder’s theorem gives upper bounds for closed sets, and lower
bounds for open sets. Hence, to find an explicit expression for the decay rate of some specific set,
one has to show that the set under consideration, say A, is an I-continuity set: inff∈Ao I(f) =
inff∈Ā I(f), with Ao and Ā the interior and closure of A, respectively; see [18]. The verification
of our overflow set being I-continuous is usually straightforward but tedious. We refer to [11]
for the proof of I-continuity of the set of paths corresponding to overflow in the second queue
of a tandem system; the priority queue and the GPS queue can be dealt with analogously. �
In concrete terms, the goal of the paper is to find the counterparts of Lemma 2.9 for the
‘complex buffer architectures’ tandem, priority, and GPS. Our analysis of the next sections
shows that this is possible, by using the bounds derived in [11, 12].

3 Buffer overflow asymptotics in the tandem queue

Consider a tandem system of queues, fed by n Gaussian sources; the output of the first queue
feeds into the second queue. The queues have link speeds nc1 and nc2, respectively; to avoid a
trivial system, we assume c2 < c1. The system is stable: a source’s mean rate µ is smaller than
c2. In this section we analyze the probability that the stationary buffer content of the second
queue, Q2,n, exceeds level nb.

From [11, Lemma 2.4], we have that

lim
n→∞

1
n

log P(Q2,n > nb) = −K(t)(b), where K(t)(b) := inf
f∈F (t)(b)

I(f);

the ‘overflow set’ F (t)(b) is defined as

F (t)(b) := {f | ∃t > t0 : ∀s ∈ (0, t) : A[f ](−t,−s) > b + c2t − c1s},
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with t0 := db being the ‘minimal’ time till overflow, starting from an empty system; d :=
(c1 − c2)−1. The main results of this section are Theorems 3.3 and 3.4 – the former treats the
BM case, whereas the latter focuses ALV input. We start by providing two lemmas, Lemmas
3.1 and 3.2; Lemma 3.1 is valid for any type of Gaussian inputs.

Lemma 3.1 For any b ≥ 0,

K(t)(b) ≥ inf
t>t0

(b + (c2 − µ)t)2

2v(t)
.

Proof. Notice that evidently

F (t)(b) ⊆ {f | ∃t > t0 : A[f ](−t, 0) > b + c2t}.

This implies the stated immediately. �

Lemma 3.2 Suppose the sources are BM(λ, µ). If c1 ≥ 2c2 − µ, then

K(t)(b) ≤ 2 · c2 − µ

λ
· b.

If c1 ∈ (c2, 2c2 − µ), then

K(t)(b) ≤ 1
2
· (c1 − µ)2

(c1 − c2)λ
· b.

Proof. (i) Suppose c1 ≥ 2c2 − µ. Then the path that generates traffic at rate 2(c2 − µ),
between −b/(c2 − µ) and 0, is in F (t)(b). (ii) Suppose c1 ∈ (c2, 2c2 − µ). Then the path that
generates traffic at rate c1, between −db and 0, is in F (t)(b). Theorem 2.6 (‘Schilder’) implies
that the norm of any feasible path constitutes an upper bound on the decay rate. Now applying
Remark 2.8, the stated follows immediately. �

The following theorems give our main results for short-range dependent traffic. It states that
its precise shape depends on whether c1 ≥ 2c2 − µ, or not.

Theorem 3.3 Suppose the sources are BM(λ, µ). If c1 ≥ 2c2 − µ, then

K(t)(b) = 2 · c2 − µ

λ
· b.

If c1 ∈ (c2, 2c2 − µ), then

K(t)(b) =
1
2
· (c1 − µ)2

(c1 − c2)λ
· b.

Proof. The result is a direct application of Lemmas 3.1 and 3.2. �

We now concentrate on the situation in which the tandem queue is fed by ALV sources. We
get the following counterpart of Lemma 2.9.(ii).

11



Theorem 3.4 Suppose the sources are ALV(κ, λ, µ). If c1 ≥ 2c2 − µ, then(
K(t)(b) − 2 · c2 − µ

λ
· b
)

−→ −2κ

(
c2 − µ

λ

)2

as b → ∞.

If c1 ∈ (c2, 2c2 − µ), then(
K(t)(b) − 1

2
· (c1 − µ)2

(c1 − c2)λ
· b
)

−→ −κ

2

(
c1 − µ

λ

)2

as b → ∞.

Proof. Our proof consists of a lower bound and an upper bound. The lower bound follows
directly from Lemma 3.1, whereas the upper bound is a matter of finding the norm of a feasible
path.

Lower bound. Choose ε > 0 arbitrarily. Take b sufficiently large, such that for all t larger than
db we have that |v(t) − λt − κ| ≤ ε. Applying the generic lower bound of Lemma 3.1, we find

K(t)(b) ≥ inf
t≥db

(b + (c2 − µ)t)2

2v(t)
≥ inf

t≥db

(b + (c2 − µ)t)2

2(λt + κ + ε)
.

If the latter infimum would be over all positive t – rather than all t larger than t0 = db – it
would be attained at

t�(b) :=
b

c2 − µ
− 2

(
κ + ε

λ

)
;

it is also observed that, for b → ∞, the condition t�(b) > db reads c1 > 2c2 − µ.

From the above we conclude that for case t�(b) > db the lower bound

K(t)(b) ≥ (b + (c2 − µ)t�(b))2

2(λt�(b) + κ + ε)
= 2 · c2 − µ

λ
·
(

b − (c2 − µ) · κ + ε

λ

)

applies, whereas for t�(b) < db we have

K(t)(b) ≥ (b + (c2 − µ)db)2

2(λdb + κ + ε)

=
b2(1 + (c2 − µ)d)2

2(λdb + κ + ε)
=

1
2
· (c1 − µ)2

(c1 − c2)λ
· b − κ + ε

2

(
c1 − µ

λ

)2

+ O

(
1
b

)
.

Now let ε ↓ 0 and b → ∞, and we get the desired lower bound.

Upper bound. Choose ε > 0 arbitrarily. Define

s�
ε (b) = max

{
dεb,

b

c2 − µ
− 2κ

λ

}
, with dε :=

1 + ε

(c1 − µ) − (1 + ε)(c2 − µ)
. (5)

Observe that, in particular,

(1 + ε)(b + (c2 − µ)s�
ε (b)) ≤ (c1 − µ)s�

ε (b). (6)

12



Define the path

f(r) := −Γ(−s�
ε (b), r)

v(s�
ε (b))

· (b + (c2 − µ)s�
ε (b)) − µr.

First we show that this path is feasible (for b large), i.e., f ∈ F (t)(b). Obviously, we have that
A[f ](−s�

ε (b), 0) = b+ c2s
�
ε (b). Left to prove is that A[f ](−s, 0) < c1s for all s ∈ (0, s�

ε (b)). With
straightforward calculations and applying (1), it turns out that this is equivalent to requiring,
for all γ ∈ (0, 1),(

1 +
v(γs�

ε (b))
v(s�

ε (b))
− v((1 − γ)s�

ε (b))
v(s�

ε (b))

)
(b + (c2 − µ)s�

ε (b)) < 2(c1 − µ)γs�
ε (b). (7)

Fixing γ ∈ (0, 1), the definition of ALV (in conjunction with s�
ε (b) → ∞ as b → ∞) implies

that there exists a b0(γ) ≥ 0, such that for any b ≥ b0(γ), we have that(
1 +

v(γs�
ε (b))

v(s�
ε (b))

− v((1 − γ)s�
ε (b))

v(s�
ε (b))

)
≤ 2(1 + ε)γ.

Observe that b0(0) and b0(1) could be chosen finite numbers, and that we can choose a function
b0(·) that is continuous on [0, 1], cf. (A1). But then requirement (7) is true for all b ≥
maxγ∈[0,1] b0(γ) (which is finite, as any continuous function attains a maximum on a finite
interval), due to (6). We thus conclude that our path is feasible.
Recall that, because of Theorem 2.6, the norm of any feasible path constitutes an upper bound
on the decay rate. We now compute (an upper bound to) the norm of our path f(·) ∈ F (t)(b).
Take δ > 0 arbitrarily. Choose b sufficiently large that |v(s�

ε (b)) − λs�
ε (b) − κ| ≤ δ (which is

possible due to the definition of ALV). Because of the feasibility of the path, and applying
Lemma 2.7, we obviously have

K(t)(b) ≤ (b + (c2 − µ)s�
ε (b))2

2v(s�
ε (b))

≤ (b + (c2 − µ)s�
ε (b))2

2(λs�
ε (b) + κ − δ)

(8)

For b large, it is clear that for c1 −µ > 2(c2 −µ)(1 + ε) the maximum in (5) is attained by the
first argument between the brackets, i.e., dεb. In this case the upper bound (8) becomes

K(t)(b) ≤ 1
2
· (c1 − µ)2

((c1 − µ) − (1 + ε)(c2 − µ))λ
· b − κ − δ

2

(
c1 − µ

λ(1 + ε)

)2

+ O

(
1
b

)
.

On the other hand, for c1 − µ ≤ 2(c2 − µ)(1 + ε),

K(t)(b) ≤ 2 · c2 − µ

λ
·
(

b − (c2 − µ) · κ − δ

λ

)
.

Now let ε, δ ↓ 0 and b → ∞, and we have established the stated. �
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4 Priority queue

In a priority queue, a link of capacity nc is considered, fed by traffic of two classes, each
with its own queue. Traffic of class 1 does not ‘see’ class 2 at all, and consequently we know
how the high-priority queue Qh,n behaves, see Lemma 2.9. A more challenging task is the
characterization of overflow in the low priority queue.
We let the system be fed by n i.i.d. high-priority (hp) sources, and an equal number of i.i.d. low-
priority (lp) sources; both classes are independent. We assume that both hp and lp sources are
Gaussian, with mean rates by µh and µ�, and variance functions by vh(·) and v�(·), respectively;
also µ := µh + µ� and v(·) := vh(·) + v�(·). (Notice that this setting also covers the case that
the number of sources of both classes are not equal. Assume for instance that there are nα lp
sources. Multiplying µ� and v�(·) by α and applying the fact that the Normal distribution is
infinitely divisible, we arrive at n i.i.d. sources.) We obviously assume µ < c.

We use the ‘two-dimensional Schilder’ framework, as described in [15]. There a large deviations
rate function I(·) is introduced, with two-dimensional argument f(·) ≡ (fh(·), f�(·)). Let Ah[fh]
and A�[f�] be defined similarly as before.
Our analysis relies on the following expression for the decay rate of overflow in the lp queue.

Lemma 4.1 The decay rate of overflow in the lp queue is given by

lim
n→∞

1
n

log P(Q�,n > nb) = −K(p)(b), where K(p)(b) := inf
f∈F (p)(b)

I(f).

Here the ‘overflow set’ is defined as

F (p)(b) :=

{
f

∣∣∣∣∣ ∃t, x > 0 : ∀s ∈ (0,∞) :
Ah[fh](−t, 0) + A�[f�](−t, 0) > b + ct + x,

Ah[fh](−s, 0) ≤ cs + x

}
.

Proof. To make sure that the lp queue exceeds nb, there must be an x > 0 such that the total
queue exceeds nb + nx, whereas the hp queue remains below nx. Now the stated follows from

Qh,n + Q�,n = sup
t>0

(
n∑

i=1

(Ah,i(−t, 0) + A�,i(−t, 0)) − nct

)
;

Qh,n = sup
s>0

(
n∑

i=1

Ah,i(−s, 0) − ncs

)
,

where Ah,i(·) (A�,i(·), respectively) corresponds to the traffic stream generated by the ith hp
(lp) source. �

Notice that the ‘overflow set’ of the above lemma is slightly different from the one we used
in [11, Section 5]. The next lemma applies the above characterization to derive a lower bound
on the decay rate.
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Lemma 4.2 Let S(p)(b, t, x) := {(ah, a�) | ah + a� > b + ct + x, ah ≤ ct + x}. Then

K(p)(b) ≥ inf
t,x>0

k(p)(b, t, x),

with

k(p)(b, t, x) :=
1
2

inf
(ah,a�)∈S(p)(b,x,t)

(
(ah − µht)2

vh(t)
+

(a� − µ�t)2

v�(t)

)
.

Also, if (b − µ�t)vh(t) ≤ ((c − µh)t + x)v�(t),

k(p)(b, t, x) = k
(p)
1 (b, t, x) :=

1
2
· (b + (c − µ)t + x)2

v(t)
,

whereas otherwise

k(p)(b, t, x) = k
(p)
2 (b, t, x) :=

1
2
·
(

((c − µh)t + x)2

vh(t)
+

(b − µ�t)2

v�(t)

)
.

Proof. First it is noted that the following trivial inclusion holds:

F (p)(b) ⊆
{

f

∣∣∣∣∣ ∃t, x > 0 :
Ah[fh](−t, 0) + A�[f�](−t, 0) > b + ct + x,

Ah[fh](−t, 0) ≤ ct + x

}
.

This immediately yields the lower bound infx,t>0 k(p)(b, t, x).
The explicit expression for k(p)(b, t, x) is derived as follows. Applying Lemma 2.5, it is readily
derived that the first constraint in S(p)(b, t, x), i.e., ah + a� > b + ct + x is always tight. The
second is tight if

µht +
vh(t)
v(t)

(b + (c − µ)t + x) > ct + x.

If it is tight, the infimum is achieved at (ah, a�) = (ct + x, b), otherwise at

(ah, a�) =
(

µht +
vh(t)
v(t)

(b + (c − µ)t + x), µ�t +
v�(t)
v(t)

(b + (c − µ)t + x)
)

.

Direct calculations yield the stated. �

Introduce the following notation: µ := µh + µ�, κ := κh + κ�, and λ := λh + λ�.

Lemma 4.3 Suppose that the high-priority sources are BM(λh, µh) and that the low-priority
sources are BM(λ�, µ�). Then

inf
t,x>0

k
(p)
1 (b, t, x) = 2 · c − µ

λ
· b;

inf
t,x>0

k
(p)
2 (b, t, x) =

ξ − µ�

λ�
· b, where ξ ≡ ξ(λh, µh, λ�, µ�) :=

√
µ2

� +
λ�

λh
(c − µh)2.
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Proof. This is a matter of standard computations. In the first minimization, it turns out that
x�

1 = 0, t�1 = b/(c − µ), whereas in the second

x�
2 = 0, t�2 =

√
λh

λhµ2
� + λ�(c − µh)2

· b.

The desired is obtained by inserting these into the objective function. �

Theorem 4.4 Suppose that the high-priority sources are BM(λh, µh) and that the low-priority
sources are BM(λ�, µ�). If λh(c − µh − 2µ�) ≤ λ�(c − µh), then

K(p)(b) = 2 · c − µ

λ
· b.

If λh(c − µh − 2µ�) > λ�(c − µh), then

K(p)(b) =
ξ − µ�

λ�
· b.

Proof. Lower bound. We use Lemma 4.2. Define three sets:

T1 := {(t, x) ∈ R
2
+ | (b − µ�t)vh(t) ≤ ((c − µh)t + x)v�(t)};

T2 with the ‘≤’-sign replaced by ‘≥’, and T̄ with the ‘≤’-sign replaced by ‘=’. Notice that
k

(p)
1 (b, ·, ·) and k

(p)
2 (b, ·, ·) coincide for (t, x) in T̄ . Let t�i , x

�
i (i = 1, 2) be defined as in the proof

of Lemma 4.3.
First consider the infimum of k(p)(b, t, x) over (t, x) ∈ T1. Clearly the optimum is in T1 \ T̄ iff
(b − µ�t

�
1)vh(t�1) < ((c − µh)t�1 + x�

1)v�(t�1), or, equivalently,

λh(c − µh − 2µ�) < λ�(c − µh); (9)

otherwise the optimum over T1 is attained in T̄ .

Then consider the infimum of k(p)(b, t, x) over (t, x) ∈ T2. Now the optimum is in T2 \ T̄ iff

(b − µ�t
�
2)vh(t�2) > ((c − µh)t�2 + x�

2)v�(t�2),

and otherwise at the boundary T̄ . More tedious calculations yields that this condition is equiv-
alent to

λh(c − µh − 2µ�) > λ�(c − µh). (10)

Because both conditions (9) and (10) are mutually exclusive, this proves the lower bound.

Upper bound. The upper bound is just a matter of computing the norms of paths in F (p)(b),
just as in the tandem case. �
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Remark 4.5 It is straightforward, but tedious, to check that both expressions for K(p)(b)
(from Theorem 4.4) coincide if λh(c− µh − 2µ�) = λ�(c− µh). During these computations, we
also find that then ξ(λh − λ�) = µ�λ. �
We now turn to the situation of ALV sources.

Lemma 4.6 Suppose that the high-priority sources are ALV(κh, λh, µh) and that the low-
priority sources are ALV(κ�, λ�, µ�). Then

lim
b→∞

(
inf

x,t>0
k

(p)
1 (b, t, x) − 2 · c − µ

λ
· b
)

= −2κ

(
c − µ

λ

)2

.

Proof. This is equivalent to Lemma 2.9. �

Lemma 4.7 Suppose that the high-priority sources are ALV(κh, λh, µh) and that the low-
priority sources are ALV(κ�, λ�, µ�). Then

lim
b→∞

(
inf

x,t>0
k

(p)
2 (b, t, x) − ξ − µ�

λ�
· b
)

= − (c − µh)2

λh

(
κh

2λh
− Φ

)
+ Φ2ξ · µ�

2κ�
,

with

Φ := −κ�

λ�

(
1 − µ�

ξ

)
.

Proof. First observe that, for any given value of b, t, the infimum of k
(p)
2 (b, t, x) over x is

attained in 0. Therefore consider inft≥0 k
(p)
2 (b, t, 0). We borrow the argument of the alternative

proof of part (ii) of Lemma 2.9.

• We first show that we can restrict ourselves to t ≥ Mb. Choosing M < µ−1
� , and ε̄ > 0

arbitrarily, and using (A2) and the ALV properties, we notice that for b large

inf
t<Mb

k
(p)
2 (b, t, 0) ≥ (1 − µ�M)2

2
· b2

Mλ�b + κ� + ε̄
= O

(
(1 − µ�M)2

2Mλ�
· b
)

. (11)

Also, it is not hard to verify that for b → ∞

k
(p)
2

(
b, b ·

√
λh

λ�(c − µh)2 + λhµ2
�

, 0

)
= O

(
ξ − µ�

λ�
· b
)

. (12)

Choosing M > 0 sufficiently small, (11) majorizes (12), and hence we can restrict our-
selves in inft k

(p)
2 (b, t, 0) to t ≥ Mb.

• Choose b large enough, such that, for all t ≥ Mb, both |vh(t) − λht − κh| < ε and
|v�(t)− λ�t− κ�| < ε. Then applying Lemma A.1 and letting ε ↓ 0 and b → ∞ yields the
stated. �
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Theorem 4.8 If λh(c − µh − 2µ�) ≤ λ�(c − µh), then

lim
b→∞

(
K(p)(b) − 2 · c − µ

λ
· b
)

= −2κ

(
c − µ

λ

)2

.

If λh(c − µh − 2µ�) > λ�(c − µh), then

lim
b→∞

(
K(p)(b) − ξ − µ�

λ�
· b
)

= − (c − µh)2

λh

(
κh

2λh
− Φ

)
+ Φ2ξ · µ�

2κ�
.

Proof. The lower bound is analogous to the lower bound in Theorem 4.4, but with Lemmas
4.6 and 4.7 replacing Lemma 4.3. The upper bound is analogous to the upper bound in the
tandem case, i.e., in the proof of Theorem 3.4. �

Waiting time asymptotics

The first part of this section was devoted to buffer overflow in the lp queue, or, more precisely,
the probability that the buffer content of the lp queue exceeds some predefined level. We now
focus on the probability of a long delay in the lp queue. To this end, following Norros [19],
consider the notion of virtual waiting time. The random variable V�,n(0) is defined as the time
it takes to transmit a ‘fluid molecule’ that enters the lp queue at time 0. We define

L(p)(b) := − lim
n→∞

1
n

log P(V�,n(0) > b).

Lemma 4.9

L(p)(b) ≥ 1
2

sup
u∈(0,b)

inf
s>0

((c − µh − µ�)s + (c − µh)u)2

vh(s + u) + v�(s)
.

Proof. The set of paths such that the virtual delay exceeds b equals

G(p)(b) := {f | ∀u ∈ (0, b) : ∃s > 0 : Ah[fh](−s, u) + A�[f�](−s, 0) > c(u + s)},

see [19, Section 4]. The stated follows immediately by applying Lemma 2.7. �

Theorem 4.10 Suppose that the high-priority sources are BM(λh, µh), and that the low-
priority sources are BM(λ�, µ�). Then

L(p)(b) = 2
(

c − µh

λ

)(
λhµ� + λ�(c − µh)

λ

)
b.

Suppose that the high-priority sources are ALV(κh, λh, µh), and that the low-priority sources
are ALV(κ�, λ�, µ�). Then(

L(p)(b) − 2
(

c − µh

λ

)(
λhµ� + λ�(c − µh)

λ

)
b

)
−→ −2κ

(
c − µ

λ

)2

.
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Proof. The lower bounds follow directly from Lemma 4.9, as follows. For BM traffic the
optimizing s�(u), for given u, equals

s�(u) =
(

c − µh

c − µh − µ�
− 2 · λh

λ

)
· u.

The resulting function of u increases on [0, b], so the optimum is attained at u� = b. For ALV
traffic we get

s�(u) −
(

c − µh

c − µh − µ�
− 2 · λh

λ

)
· u → −2 · κ

λ
,

also leading to u� = b. Now straightforward algebra (use Lemma A.1!) gives the lower bound.
The upper bound is a matter of computing the norms of feasible paths, as before. Unlike the
overflow asymptotics of the tandem and priority queue, there is just a single regime, which
makes the analysis somewhat simpler. �

Remark 4.11 We remark that in case of BM the most likely path is such that (i) between
time epochs −s�(b) and b any hp source generates traffic at a constant rate c − µ�, whereas
(ii) between −s�(b) and 0 any lp source transmits at rate c − µh. Notice that, due to the
stability constraint µh + µ� < c, these rates exceed the mean rates of the sources, i.e., µh and
µ�, respectively. Outside the intervals indicated above the sources obey their mean rates. �

5 Generalized processor sharing

In this section we consider a system where traffic is served according to a generalized processor
sharing (GPS) mechanism, consisting of two queues sharing a link of capacity nc. We assume
the system to be fed by traffic from two classes, where class i uses queue i, for i = 1, 2. It is
assumed that both classes consist of n flows (but, again, due to the infinite divisibility of the
normal distribution, this is not a restriction).
A weight φi ≥ 0 is assigned to class i and, without loss of generality, assume that these add up
to 1, i.e., φ1 + φ2 = 1. The GPS mechanism then works as follows. Class i receives service at
rate nφic when both classes are backlogged. Because class i gets at least service at rate nφic

when it has backlog, we will refer to it as the guaranteed rate of class i. If one of the classes
has no backlog and is transmitting at a rate less than or equal to its guaranteed rate, then
this class is served at its transmission rate, while the other class receives the remaining service
capacity. If both classes are sending at rates less than their guaranteed rates, then they are
both served at their sending rate, and some service capacity is left unused. We assume that
the buffer sizes of both queues are infinitely large.
Without loss of generality, we focus on the workload of the first queue. The goal here is to
analyze the decay rate of the probability that the stationary workload exceeds a threshold nb.
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Hence, denoting by Qi,n ≡ Qi,n(0) the stationary workload in the ith GPS queue at time 0,
the probability of our interest is P(Q1,n ≥ nb).
In [12, Lemma 3.2] it is shown that the ‘overflow set’ is bounded from above by

F (g)(b) :=


f

∣∣∣∣∣∣∣
∃t, x > 0 : ∀s ∈ (0, t) : ∃u ∈ (0, s) :

A1[f1](−t, 0) + A2[f2](−t, 0) > b + ct + x,

A1[f1](−s,−u) + A2[f2](−s, 0) ≤ cs − φ1cu + x


 ,

we have that

K(g)(b) := − lim
n→∞

1
n

log P(Q1,n ≥ nb) ≥ inf
f∈F (g)(b)

I(f).

In this paper we concentrate on BM input – the case of ALV is harder, and we comment on
it later (Section 6). The input of class i consists of n sources of the type BM(λi, µi). Define
also µ := µ1 + µ2 and λ := λ1 + λ2, and the ‘reduced rates’: c̄ := c − µ and c̄i = cφi − µi (for
i = 1, 2). The system is stable: µ < c.

We start by presenting an introductory lemma.

Lemma 5.1 Suppose that the class-1 sources are BM(λ1, µ1) and that the class-2 sources are
BM(λ2, µ2). Let S(g)(b, x, u, t) := {(a1, a2) | a1 > b + ct + x, a2 ≤ ct − cφ1u + x}. Then

K(g)(b) ≥ inf
x,t>0,u∈(0,t)

k(g)(b, x, u, t),

where k(g)(b, x, u, t) := 1
2 inf(a1,a2)∈S(g)(b,x,u,t) H(a1, a2), with

H(a1, a2) :=
(

(a1 − µt)2

λ1u
− 2(a1 − µt)(a2 − µt + µ1u)

λ1u
+

(a2 − µt + µ1u)2

λ1u

λt

λt − λ1u

)
.

Also, if λt(b + c̄1u) ≤ λ1u(b + c̄t + x), then

k(g)(b, x, u, t) = k
(g)
1 (b, x, u, t) :=

1
2
· (b + c̄t + x)2

λt
,

whereas otherwise

k(g)(b, x, u, t) = k
(g)
2 (b, x, u, t) :=

1
2
·
(

(c̄t − c̄1u + x)2

λt − λ1u
+

(b + c̄1u)2

λ1u

)
.

Proof. First it is noted that

F (g)(b) ⊆


f

∣∣∣∣∣∣∣
∃t, x > 0 : ∃u ∈ (0, t) :

A1[f1](−t, 0) + A2[f2](−t, 0) > b + ct + x,

A1[f1](−t,−u) + A2[f2](−t, 0) ≤ ct − cφ1cu + x


 .
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Identifying a1 with A1(−t, 0)+A2(−t, 0), and a2 with A1(−t,−u)+A2(−t, 0), the lower bound
is derived as follows. Notice that these random variables have variances λt and λ1(t−u)+λ2t =
λt − λ1u, respectively, while their covariance reads λt − λ1u. Also

(a1 − µt, a2 − µt + µ1u)T
(

λt λt − λ1u

λt − λ1u λt − λ1u

)−1(
a1 − µt

a2 − µt + µ1u

)

equals H(a1, a2). This proves the first part of the lemma. The evaluation of the maximum over
(a1, a2) ∈ S(g)(b, x, u, t) is analogous to the priority case (use Lemma 2.5). �

The following lemma presents an explicit expression for the infimum of k
(g)
1 (b, t, u, x) (mini-

mized over t, u, x). Its proof is standard, and we therefore omit the proof.

Lemma 5.2 Suppose that the class-1 sources are BM(λ1, µ1) and that the class-2 sources are
BM(λ2, µ2). Then

inf
t,x>0,u∈(0,t)

k
(g)
1 (b, t, u, x) = 2 · c − µ

λ
· b.

The derivation of the infimum of k
(g)
2 (b, t, u, x) (minimized over t, u, x) is considerably harder.

We first define

T (γ) := c̄2
1γ

2 + (c̄ − c̄1γ)2 · λ1γ

λ − λ1γ
; t(γ) :=

1√
T (γ)

.

Lemma 5.3 Suppose that the class-1 sources are BM(λ1, µ1) and that the class-2 sources are
BM(λ2, µ2). Then

inf
t,x>0,u∈(0,t)

k
(g)
2 (b, t, u, x) =

1
2

inf
γ∈(0,1)

U(γ) · b,

with

U(γ) :=
(1 + c̄1γt(γ))2

λ1γt(γ)
+

(c̄ − c̄1γ)2t(γ)
λ − λ1γ

.

Proof. First observe that, for any given value of b, t, u, the infimum over x is attained in
0. Therefore consider k

(g)
2 (b, t, u, 0) to be optimized over positive t and u ∈ (0, t). Now write

u = γt, with γ ∈ (0, 1). Perform the optimization over t. Straightforward calculus yields that
the minimum is attained at t = bt(γ). Inserting this yields the stated. �

The following two lemmas determine the infimum of U(γ) over γ ∈ (0, 1).
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Lemma 5.4 Suppose

φ1 ≥ φc
1 :=

λ1 − λ2

λ1 + λ2
·
(
1 − µ

c

)
+

µ1

c
.

For all γ ∈ (0, 1), it holds that γt(γ) ≤ t(1).

Proof. It is equivalent to check that T (γ) ≥ γ2T (1) for γ ∈ (0, 1), or

E�(γ) :=
(

c̄ − c̄1γ

c̄2

)2

≥ (λ − λ1γ)γ
λ2

=: Er(γ).

Due to the fact that E�(·) and Er(·) correspond to parabolas (where the former is convex and
the latter is concave), it is enough to verify whether E′

�(1) ≤ E′
r(1). This yields the condition

−2 · c̄1

c̄2
≤ 1 − λ1

λ2
,

which is in turn equivalent to φ1 ≥ φc
1. �

Lemma 5.5 If φ1 ≥ φc
1, then infγ∈(0,1) U(γ) = U(1).

Proof. We need to check if, for all γ ∈ (0, 1),

(1 + c̄1γt(γ))2

λ1γt(γ)
+

(c̄ − c̄1γ)2t(γ)
λ − λ1γ

≥ (1 + c̄1t(1))2

λ1t(1)
+

c̄2
2t(1)
λ2

.

Straightforward algebraic manipulations yield that this is equivalent to

λ2(λ − λ1γ)t(1) − (λ − λ1γ)γV1(γ)t(γ) + λ2t(1)V2(γ)t2(γ) ≥ 0, with

V1(γ) := λ1c̄
2
2t

2(1) + λ2(1 + c̄2
1t

2(1)); V2(γ) := (λ − λ1γ)c̄2
1γ

2 + λ1γ(c̄ − c̄1γ)2.

Now it is not hard to see that V1(γ) = 2λ2 and V2(γ) = (λ − λ1γ)/t2(γ), such that it remain
to verify that

2λ2 · (λ − λ1γ) · (t(1) − γt(γ)) ≥ 0,

but this holds (for φ1 ≥ φc
1) because of Lemma 5.4. �

With the above results we can prove our main theorem for the two-queue GPS system with
Brownian inputs.

Theorem 5.6 Suppose that the class-1 sources are BM(λ1, µ1) and that the class-2 sources
are BM(λ2, µ2). Then, with

φc
2 = 1 − φc

1; φo
2 =

µ2

c
,
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it holds that (i) for φ2 ∈ [0, φo
2],

K(g)(b) = 2 · φ1c − µ1

λ1
· b;

(ii) for φ2 ∈ [φo
2, φ

c
2],

K(g)(b) =
1
2
· U(1) · b;

(iii) for φ2 ∈ [φc
2, 1],

K(g)(b) = 2 · c − µ

λ1 + λ2
· b.

Proof. Case (i) follows directly from [12, Section 6]. Class 2 is in overload, and ‘takes away it
weight’ without any effort. As a consequence, in essence, class 1 sees a queue with service rate
nφ1c.
The proof of cases (ii) and (iii) mimicks the proof of Theorem 4.4. The lower bound uses
Lemma 5.1. Then the proof is as in the lower bound of Theorem 4.4, with the sets

T1 := {(t, u, x) ∈ R
3
+ | λt(b + c̄1u) ≤ λ1u(b + c̄t + x)};

T2 with the ‘≤’-sign replaced by ‘≥’, and T̄ with the ‘≤’-sign replaced by ‘=’. The infima of
the k

(g)
i (b, t, u, x) (over t, u, x) for i = 1, 2 follow then from Lemmas 5.2, 5.3, and 5.5.

The upper bound is just a matter of verifying that the paths of the lower bound are feasible,
and computing their norm. �

Example 5.7 Here we illustrate the result of the previous theorem by an example. We suppose
that both types of sources correspond to Brownian motions, with µ1 = 0.2, µ2 = 0.3, v1(t) = 2t,
and v2(t) = t. Take c = 1. With the buffer size of class i denoted by Bi ≡ nbi, let K

(g)
i (bi)

be the decay rate of class i, and L
(g)
i := K

(g)
i (bi)/bi. These L

(g)
i are given in Figure 2, as a

function of the weight φ1.

Suppose the weight φ1 (and hence implicitly also φ2 = 1 − φ1) has to be chosen such that the
decay rate of class i is larger than δi (for i = 1, 2). Then we need to verify whether there is
a φ1 ∈ [0, 1] such that both b1L

(g)
1 ≥ δ1 and b2L

(g)
2 ≥ δ2. This can easily be verified from the

graph below. �

6 Concluding remarks

In this paper we have computed, in a many-sources setting, the exponential decay rate of
the overflow probability in a tandem queue, a priority system, and a system operating under
a GPS scheduler. The input was assumed short-range dependent Gaussian traffic; we have
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L
(g)
1 (φ1)

L
(g)
2 (φ1)

� �

φ1 →

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2: The curves L
(g)
i (φ1) of Example 5.7.

distinguished between Brownian-motion input and input with an asymptotically linear variance
function. A few remarks are in place.

• In Section 2.1, we introduced the M/G/∞ input process with Pareto jobs. It was argued
that for α > 3 the input is ALV. For α ∈ (2, 3) it is true that v(t)/t tends to a constant, but
v(t) − t does not. Hence, the process is short-range dependent, but not ALV.
To get an impression of the large-buffer behavior for α ∈ (2, 3), we consider the FIFO queue fed
by Gaussian sources with the (somewhat simpler) variance function v(t) = t+tβ , for β ∈ (0, 1);
for ease, take µ = 0. It is readily verified that the optimizing t = t(b) is the inverse of

b(t) :=
ct + (2 − β)ctβ

1 + βtβ−1
;

for large t, it holds that b(t) ≈ ct+2(1−β)ctβ , and hence also, for large b, that the optimizing
t looks like b/c − 2(1 − β)(b/c)β. Now it can be verified that(

inf
t>0

(b + ct)2

2v(t)

)
≈ 2bc − 2c2−βbβ .

We see that a variance function consisting of a linear part as well as a polynomial, sublinear
part leads to a decay rate function with a linear and a polynomial, sublinear part. We expect
this type of behavior to carry over to the complex buffer architectures considered in this paper.

• In the GPS setting we only considered the case of BM input. In the situation with ALV
input, we run into technical problems. In the counterpart of Lemma 5.1 for ALV sources, the

24



minimum needs to be taken over all t ≥ 0 and u ∈ (0, t). Because u can be chosen close to t,
we expect that we have to impose regularity conditions on v(·) around 0, to be able to compute
the minimum over t and u.

• Zhang [24] also considers behavior of GPS schedulers for short-range dependent traffic
(more general than Gaussian, but discrete-time). His assumptions are in line with those in,
e.g., Glynn and Whitt [9], and are of the following type.
With A(t) denoting the traffic generated by a single source in an interval of length t, it is
assumed that limt→∞ t−1 log E exp(θA(t)) is finite for positive θ; for Gaussian sources this
would be equivalent to requiring that v(t) is at most linear. Such a framework obviously allows
for instance v(t)/t → λ. The results obtained are of the type I(b)/b → θ� for b → ∞, where
I(b) is the decay rate of overflow in the queue under consideration, and θ� is a positive constant.
Our requirement in the variance function, i.e., v(t)−λt → κ for ALV sources, is more demanding
(in the sense that it implies that v(·) is at most linear), but, in return, we get more precise
results: I(b) − θ�b → ν.
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Appendix

Lemma A.1 Take A, C ∈ R; B, D > 0; σ > 0; τ ∈ R. Then

lim
x→∞

„
inf
t≥0

(σt)2

A + Bt
+

(x − τt)2

C + Dt

«
− 2x

D

 r
τ2 +

Dσ2

B
− τ

!
= −σ2

B

„
A

B
− K2

«
+

K2
2

K1
· τ

C
,

with

K1 :=

 r
τ2 +

Dσ2

B

!−1

, K2 := −C

D

 
1 − τp

τ2 + Dσ2/B

!
.

Proof. First fix x, and differentiate with respect to t to find the following first-order condition:

σ2 · 2At + Bt2

(A + Bt)2
+ 2

„
τt − x

C + Dt

«
− D

„
τt − x

C + Dt

«2

= 0,

which is solved by

τt − x

C + Dt
=

1

D

 
τ +

s
τ2 + Dσ2 · 2At + Bt2

(A + Bt)2

!
.

We can equivalently express x as function of t:

x(t) = −C

D
· τ +

„
C

D
+ t

«s
τ2 + Dσ2 · 2At + Bt2

(A + Bt)2
.

Now it is readily checked that

lim
t→∞

 
x(t) − t

r
τ2 +

Dσ2

B

!
=

C

D

 r
τ2 +

Dσ2

B
− τ

!
,

and hence limx→∞ t(x) − K1x = K2. Inserting these into the objective function yields the stated. �
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