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In this note we present a new Rosenbrock solver which is third-order accurate for 
nonlinear parabolic problems. Since Rosenbrock methods suffer from order reduction 
when they are applied to partial differential equations, additional order conditions have 
to be satisfied. Although these conditions have been known for a longer time, from the 
practical point of view only little has been done to construct new methods. Steinebach 
modified the well-known solver RODAS of Hairer and Wanner to preserve its classical 
order four for special problem classes including linear parabolic equations. His solver 
RODASP, however, drops down to order three for nonlinear parabolic problems. Our 
motivation here was to derive an efficient third-order Rosenbrock solver for the nonlinear 
situation. Such a method exists with three stages and two function evaluations only. A 
comparison with other third-order methods shows the substantial potential of our new 
method. 
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1 Introduction. 

Diverse physical phenomena occurring in a wide range of industrial applications 
are modelled by systems of time-dependent partial differential equations (PDEs). 
Due to the great complexity of the established models, the numerical analysis of 
PDEs is often the central tool to assess the models and to gain profound knowl­
edge about the underlying physical processes. Much progress has been achieved in 
the development and design of efficient and robust simulation programs for solv­
ing time-dependent PDEs. One of those programs is the Kardos package which 
was developed at the Konrad-Zuse-Zentrum in Berlin to solve a general class of 
nonlinear evolution problems. The most important feature of Kardos is that the 
quality of the numerical approximations is judged during the computation and 
an adaptive strategy is automatically determined to improve the accuracy where 
needed (3]. Kardos uses linearly implicit one-step methods of Rosenbrock type 
and multilevel finite elements to discretize in time and space, respectively. In the 
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solution of PDEs using an adaptive mesh, one-step methods have an inherent ad­
vantage over multistep methods such as BDF. Since each interpolation of variables 
onto a new mesh generates a discontinuity in time, a multistep method usually 
must be restarted at lower order, whereas one-step methods can continue at higher 
order. In addition, Rosenbrock methods avoid the solution of nonlinear equations, 
working the exact Jacobian directly into the integration formula (Rosenbrock [9], 
Hairer and Wanner [2]). Nowadays they are widely accepted to work satisfactorily 
for moderate accuracy requirements which are typical for the solution of PDEs. 

It is a known fact that one-step methods such as Rosenbrock, Runge-Kutta, 
and extrapolation methods suffer from order reduction when they are applied to 
stiff ODEs and semi-discrete PDEs (see e.g. Sanz-Serna et al. [11], Verwer [15]). 
For nonlinear parabolic PDEs, this phenomenon was theoretically investigated in 
a sequence of papers by Lubich, Ostermann, and Roche [6, 7, 4, 5]. Their results 
show that the temporal order of convergence is mainly influenced by the spatial 
regularity of the solution, which usually depends on the boundary conditions. 
Consequently, one-step methods having a high order of accuracy will loose this 
advantage for real-life PDEs supplemented with complex boundary conditions. To 
avoid this disturbing feature, Runge-Kutta methods with high stage order (see 
e.g. Bendtsen [l]) have to be used [5]. Since Rosenbrock methods have stage order 
one, their coefficients have to satisfy additional conditions to obtain a higher order 
of convergence [7, 4] as well. Analogous conditions for the stiff ODE case related 
to B-convergence properties were announced previously in [14, 12]. Improved 
Rosenbrock methods which preserve the classical order of convergence for linear 
parabolic PDEs were given by Scholz [12] and Steinebach [13] up to order four. As 
a direct consequence of the results given in [4], the family of 3-stage Rosenbrock 
methods proposed by Scholz ( [12, Prep. 5]) could be used to construct a third-order 
accurate method for nonlinear parabolic PDEs, but there one of the intermediate 
time points lies outside the time step-a property which one should try to avoid. 

Here we want to construct a third-order method which evaluates the functions 
at the beginning and at the end of each time step. Such methods are particularly 
valuable when time-dependent terms are present in the PDE operator. More 
precisely, since a Rosenbrock method evaluates the functions at tn + aiT, i = 
1, 2, ... , to integrate from tn to tn+l with a step oflength T, rapid solution changes, 
e.g. due to time-dependent boundary conditions or forcing functions, can only be 
detected properly within the interval [tn, tn +amT] where am =maxi ai. Serious 
errors in the numerical solution are possible with formulas the evaluations of which 
do not span the whole interval [tn, tn+il· It turns out that a third-order method 
with am = 1 exists for three stages employing only two function evaluations. 
This method is A-stable with R(oo) ~o.73, fulfills the additional conditions from 
(7, 4] for avoiding order reduction, and fulfills also the third-order conditions for 
differential-algebraic equations (DAEs) of index one. We call this method ROS3P 
where P stands for parabolic PDEs. A second-order embedding with the same 
stability properties can be derived easily for error estimation. 

We shall present comparative convergence and efficiency results for two differ­
ent nonlinear parabolic problems, illustrating that ROS3P behaves indeed like a 
third-order method for nonlinear parabolic equations. It is worthwhile to mention 
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that ROS3P which was added to the Kardos package performed brtter in various 
problem classes where complex boundary conditions are present. 

2 Rosenbrock methods. 

Applied to the initial-value problem 

(2.1) OtU = F(t, u), u(O) = u0 • 0 < t::::; T, 

with the step size T > 0 a linearly implicit one-step method of Rosenbrock tvpe 
has the form · 

(I - I/ii OuF(t,,, Un)) Kni = F(tn + O;T, Un+ T ~ aijKnj) 
J=l 

i-1 

(2.2) + T OuF(t,,, Un) L /ijKnj + T/; 81F(t,,, u11 ), i = 1, ... , S, 

with 

j=l 
s 

Un+l =Un+ T L b;Kni, 
i=l 

i-1 

a;= 2: a;j, 

J=l 

i 

and /; = LriJ. 
j=l 

The operator F(t, u) in (2.1) stands either for a PDE operator supplemented 
with appropriate boundary conditions or for a semi-discrete PDE operator which 
typically arises in the method of lines approach. The notations 81 and Ou denote 
partial derivatives with respect to t and u. 

For convenience, we set a;j = 0 for j 2: i, /iJ = 0 for j > i, and use the notation 

( ) T JR' 1 = 1,. ... 1 E . 

We assume /ii = r > 0 for all -i, which is the standard simplification to derive 
Rosenbrock methods with one and the same matrix on the left-hand side of (2.2). 

3 Order conditions for a third-order method with s = 3. 

The consistency conditions for order three are (see e.g. Hairer and Wanner [2]) 

(3.1) 
(A2) 

(A3a) 

(A3b) 

b2/32 + b3133 = t - (, 
2 2 - 1 b2o:2 + b3a3 - 3, 

. 1 2 
b3f32/332 = 6 - 1 +I · 
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Additional conditions have to be satisfied to avoid order reduction for one-step 
methods of Rosenbrock type (see Lubich and Ostermann [4]). To obtain full order 
three we have to fulfil! 

bT Bi (2B2 1 - a::2) = 0 for 1 :$ j :$ 2, 

which can be simplified taking into account (3.1) to 

(3.2) { 
(Bl) b3f332a~ = i - h, 
(B2) 'Y = ~ ± iJ3 (1'2 - 'Y + i = 0) . 

Using (B2) we find b3 j332a~ :f:O in (Bl). Consequently, /32 = 0 in (A3b) due to 
(B2). Now we fix j33, a2, and a 3 to compute bT = (bi, b2, b3) from (Al)-(A3a). 
This leads to 

(3.3) 

~/33 - (~ - 1)a~ 
b2 = 213 ' 

0!2 3 
l -')' 

b3 = 2 j33 , 

bi = 1 - b2 - b3. 

Replacing b3 in (Bl), we derive 

(3.4) 

and conclude remembering that f331 = j33 - (332. The free parameters are (33, a2, 
and a3. 

4 Algebraic order conditions for a third-order method with s = 3. 

To reach order three for DAEs too, the following algebraic order condition has 
to be satisfied (see Roche [8]) 

(4.1) 

where (w;i)i,j=l =B- 1 . A simple calculation shows 

LEMMA 4.1. A Rosenbrock method which satisfies (Al)-(A3b) and (Bl)-(B2) 
fulfills also ( C 1). 

PROOF. Invert Band use (A3a), (Bl), and (B2) to get (Cl). D 

5 ROS3P-An A-stable method. 

We choose 'Y = 'Y+ = 1/2 + ,/3/6 to get A-stability with IR(oo)I ~ 0.73, where 
R(z) = 1 + zbT(I - zB)-11 is the stability function. The second value 'Y- = 
1/2 - ,/3/6 does not give an A-stable method; see Table 6.3 in [2]. In order to 
include only two function evaluations, one at the beginning of the time step and one 
at the end, we set a21 = 0:31 = 1, and 0:32 = 0. From /321 = 0, we derive 121 = -1. 
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P_ositive values for the vector b can be achieved by setting (33 = 3/2 - 3'}', which 
yields bi = 2/3, b2 = 0, and b3 = 1/3. Simple calculations give j332 = 1/2 - 21 
and f33i = 1 - 'Y leading to "(32 = 1 /2 - 21 and "(3i = -1. Finally, we construct an 
embedded ~ethod of second order replacing the coefficients bi in (2.2) by different 
coefficients bi. Since /32 = 0, we have to include all bi, i = 1, 2, 3. The order 
conditions are 

(5.1) { (~1) ~l + b2 + b3 = 1, 

(A2) b3f33 = ~ - 'Y . 

}''rom (A2) we find b3 = 1/3. We set bi = 1/3 and b2 = 1/3 in order to fulfill 
(Al), which is only one possibility. 

Table 5.1: Set of coefficients for the 3-stage ROS3P method. 

'Y = 7.886751345948129e-01 

a21 = 1.267949192431123e + 00 C21 = -1.607695154586736e + 00 

a31 = l.267949192431123e+00 C3i = -3.464101615137755e+OO 

a32 = 0 .OOOOOOOOOOOOOOOe +oo C32 = -1. 732050807568877 e +oo 

0!1 = 0 .OOOOOOOOOOOOOOOe+oo 'Yl = 7.886751345948129e-01 

0!2 = 1.000000000000000e+ 00 'Y2 = -2.113248654051871e-01 

0!3 = i.oooooooooooooooe +oo 'Y3 = -l.077350269189626e+OO 

m1= 2. OOOOOOOOOOOOOOOe + 00 mi= 2.113248654051871e+OO 

m2= 5. 773502691896258e - 01 m2= l .OOOOOOOOOOOOOOOe+OO 

m3= 4. 226497308103742e- 01 m3= 4.226497308103742e-01 

In the following, we give the defining formula coefficients for the transformec 
form of a Rosenbrock scheme, which is usually employed in practice to avoi< 
matrix-vector operations. 

( ..!._ - 8uF(tn, Un)) Uni= F(tn + O!iT,Un + ~ aijUnj) 
T"( J=l 

i-1 
"Cij + ~ -:;:-Unj + T"(i 8tF(tn, Un), i = 1, · ·., s, 

(5.2) j=i 
s 

Un+l =Un+ L miUni, 
i=i 

s 

Un+l =Un+ L mi Uni· 
i=i 

The difference un+l -'Un+i can be used as a local error estimator. The coefficients 
of the whole method called ROS3P are presented in Table 5.1. 
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6 Convergence test. 

To test our scheme we consider the equation 

(6.1) Btu - v\72 u + uBxu + u8yu = 0, 0 < t:::; T = 0.1, 

defined on the domain !1 = (0, 1/2) x (0, 1/2). The initial and Dirichlet boundary 
conditions are chosen from the exact solution 

u(:r,y,t) = l/(l+exp((x+y-t)/(2v)). 

Table 6.1: Problem (6.1) with time-dependent Dirichlet boundary conditions. The ob­
served temporal orders of convergence measured in the global L2-norm reveal p = 2.25 
for RODAS3 and ROWDA3, and p = 3 for ROS3P. 

RODAS3 ROWDA3 ROS3P 

T ll£ll12 (P) qnum 11£111 2 (£2) qnum 11£11zicPl qnum 

1 6.59107 9.03107 3.02107 100 
1 13~-7 2.26 1.8816 2.26 4.23108 2.84 200 . 110 
1 2.86108 2.26 3.93108 2.26 5.69109 2.89 400 
1 5.99109 2.25 8.22109 2.26 7.391010 2.95 800 

Table 6.2: Problem (6.1) with time-dependent Dirichlet boundary conditions. The ob­
served temporal orders of convergence measured in the global H 1-norm reveal p = 1.75 
for RODAS3 and ROWDA3, and p = 3 for ROS3P. 

RODAS3 ROWDA3 ROS3P 

T llfllP(H 1 ) qnum ll£ll12 (H1 ) qnum ll£ll12(H 1 ) qnum 

1 4.02105 5.18105 4.91106 100 
1 1.19105 1.76 1.53105 1.76 7.50107 2.71 200 
1 3.54106 1.75 4.56106 1.75 1.05107 2.83 400 
1 1.05106 1.75 1 3--5 1.76 1.38108 2.93 800 . 0 10 

\Ve set v = 0.1 and solve the equation with the finite element code Kardos for 
a sequence of time steps TN = T/N with N = 10,20,40,80. Standard 4th-order 
Lagrange finite elements and a uniform grid consisting of 16384 triangles are used 
to keep the spatial discretization to a nearly insignificant level. 

The global error is measured in the discrete norms 

where V = L2(!1) and V = H 1(!1) equipped with the norms 
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The numerically observed temporal order of convergence is computed by 

qnum = log2 \\f\\1~+ 1 (V) - log2 l\£1\1~N+iCV)· 

We have compared ROS3P with RODAS3 [10] and ROWDA3 [8], which are also 
third-order accurate for differential-algebraic equations, but do not satisfy condi­
tions (3.2) which avoid order reduction. The test case chosen is critical with respect 
to the attainable order due to the time-dependent Dirichlet boundary conditions. 
The results given in Table 6.1 and Table 6.2 reveal that RODAS3 and ROWDA3 
suffer from severe order reductions whereas the full order three of ROS3P clearly 
shows up. The fractional order p = 2.25 for the l2(L2 )-norm was explained the­
oretically by Lubich and Ostermann ([4, Theorem 5.2]). A discussion about the 
order p = 1.75 for the l2(H 1 )-norm can be found in Lang ([3, VI.§1, Example l]). 

7 Efficiency test. 

Now we use the Kardos software to check the efficiency of ROS3P, involving an 
automatic stepsize control and adaptively generated grids which evolves with the 
solution. First we choose once again equation (6.1) and perform a sequence of 
different computations in order to find well-balanced temporal and spatial toler­
ances. The left picture of Figure 7.1 shows the corresponding computing times 
necessary to obtain a certain accuracy measured in the l2(H1 )-norm with variable 
time steps. 
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Figure 7.1: Comparison of errors and computing times for problem (6.1) (left) and com­
bustion problem (right) solved with variable stepsizes and adaptive spatial grids. The 
results clearly show that ROS3P performs best with respect to achieved accuracies. 

In a second test, we consider a more practically relevant combustion problem 
fully described in Lang ([3, VII.§2.l]). The underlying equations are of reaction­
diffusion type with a highly nonlinear reaction term arising from an Arrhenius 
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law. A freely propagating laminar flame is disturbed by a heat absorbing obstacle 
modeled by an inhomogeneous solution-dependent boundary condition. Since this 
heat flux condition mainly influences the flame speed, the accuracy and efficiency 
of a method can be judged by the reached deviation from the exact flame position 
after leaving the obstacle. The right picture of Figure 7.1 shows the deviation 
expressed in percentages versus computing time for the methods compared here. 

In both cases ROS3P outperforms the other third-order methods, where its 
potential is more evident for the flame problem. We mention that RODASP, the 
method of Steinebach [13], gives comparable good results for problem (6.1), but 
becomes too expensive and therefore inefficient for the combustion problem. 
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