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1 Introduction

The Dutch passenger railway operator NS Reizigers runs a number of train units
in order to carry out its timetable services. These units need regular preventive
maintenance checks, say every 30,000 km: units that travelled that far since
their last maintenance check must go to the maintenance facility. These checks

are arranged by maintenance routing planners. They modify the rolling stock



schedule so that the units that need maintenance in the next couple of days
arrive in time at a maintenance facility.

As yet, NS Reizigers does not use a decision support system for this main-
tenance routing. The goal of this research is to provide mathematical program-
ming models and solution methods that can serve as basis for such a decision
support system. In this paper, we present an integer programming model for
maintenance routing. Implementations for test data give promising results: we
find good solutions fast.

The description of the maintenance routing problem is given in Section 2
and our integer programming model is presented in Section 3. In Section 4 we
prove some complexity results and propose a heuristic solution method. Section

5 contains computational results.

2 The maintenance routing problem

2.1 The planning in practice

NS Reizigers uses train units; each train consists of one or more train units. The
regular plan contains all rolling stock movements between different stations but
does not involve movements inside stations. These are described by shunting
plans created by local shunting crew.

A task is a smallest indivisible movement in the regular plan to be carried
out by a single train unit. So, if a movement is carried out by a train with more
than one unit, it corresponds to several tasks. A regular duty is the sequence of
tasks planned to be carried out by the same train unit. Two consecutive tasks
in a regular duty form a regular transition.

Some of the tasks in the regular plan are maintenance tasks. If a train unit
carries out such a task, it undergoes a maintenance check. (Maintenance checks
can only take place at specialised stations.) The regular plan assigns mainte-
nance tasks arbitrarily, irrespective of which unit needs to be maintained and
when. The actual maintenance routing is handled shortly before execution. NS
Reizigers uses a fixed planning horizon for maintenance routing, usually 3 days.
Input is the regular plan and a list of urgent train units: those that need a
maintenance check within the planning horizon. They may have different ur-
gencies, expressed by a deadline (for instance saying that the unit should be
maintained within 2 days). The part of the regular plan that lies within the
planning horizon must be adjusted so that each urgent unit is routed to a main-



tenance facility while still being used for timetable services. This maintenance
planning process is carried out daily, with a rolling horizon.

The maintenance planners work as follows. They consider a (small) number
of regular transitions (t¢;,t;) (that is, pairs of consecutive tasks) such that the
arrival station of the tasks t; is the same, and replace these transitions simulta-
neously by a collection of new transitions between the ¢;’s and the t’s. We call
such a simultaneous interchange a changing scenario. The maintenance plan-
ners look for changing scenarios that lead each urgent unit to a maintenance
task within its deadline. Figure 1 shows a small example for a single urgent
train unit. The thick lines represent the tasks, the dashed lines indicate the
regular transitions. The arrows show the new transitions that route the urgent

train unit to the maintenance task.

maintenance

Figure 1

The changing scenarios may require adjusted shunting plans at the stations.
Generating shunting plans is a difficult problem in itself, even for just a single
middle-sized station. So, the maintenance routing planners themselves cannot
decide the practical feasibility of a modified plan. Therefore, they check with
the local shunting crew if the preferred changing scenarios can be carried out.

If the maintenance planners do not find a solution, they may decide that
one or more urgent train unit goes from omne station to another as an extra
empty train. This is quite expensive and may conflict with the schedules of the
train drivers or with the capacity of the infrastructure. Therefore, this is to be
avoided as much as possible.

Communication between the maintenance planners and the local shunting
crew takes time, so the maintenance routing planners cannot test too many
possibilities. Therefore they are usually satisfied with the first feasible solution

found.



2.2 Previous work

Several related papers can be found in the literature. Lingaya et al. [7] describe
a model for operational management of locomotive-hauled railway cars. They
seek for a maximum expected profit schedule that satisfies various constraints,
among them also maintenance requirements.

Some other papers focus on aircraft maintenance routing. For example,
Barnhart et al. [2], Clarke et al. [3], Feo and Bard [5], Gopalan and Talluri [6]
and Talluri [8] deal with this problem. Anderegg et al. [1] describe models for
railway applications that are similar to the aircraft routing models.

These models cannot be applied directly to maintenance routing at NS
Reizigers. The models consider maintenance routing as a part of the medium-
and long-term vehicle scheduling problem, and specify the duties of the indi-
vidual vehicles during the entire planning period. The models above create
the vehicle schedule from scratch, without taking shunting issues into account.
Therefore in our railway application there is no guarantee that the output of
these models can be carried out in practice.

Furthermore, disturbances and delays make it unlikely that the rolling stock
schedule can be carried out exactly as planned in a period longer than a couple of
days. On the other hand, the Dutch railway network contains a large number of
frequently operated relatively short train lines. This provides many exchanging
possibilities for the train units, therefore a couple of days is mostly enough to
route an urgent train unit to a maintenance facility. This explains why the
maintenance planners consider planning periods of length 1-3 days, and only a

small number of train units to be routed.

2.3 Our approach

In a decision support system for maintenance routing, we should be able to
determine the difficulty of the solutions it creates. We cannot instantly check
whether the modifications in the regular plan can be implemented in practice.
Yet, we can rely on the practical feasibility of the regular plan. If we apply
only a small number of changes, the modified plan will be close to the regular
(feasible) plan and we may hope that the local shunting crew will be able to
carry out the new plan.

The set of all possible changing scenarios can be very large. In our model we
have a (relatively small) set of “elementary changing scenarios” and use these as
building blocks for the entire solution. We assume that each elementary chang-



ing scenario is feasible in itself and that we know a cost value that estimates the
difficulty to carry it out. These cost values are used to predict the feasibility
of a certain combination of elementary changing scenarios. As measure of how
hard it is to carry out a combination, we basically use the sum of the costs of
the scenarios in it.

Mind that whatever method for maintenance planning is used, in practice
each solution needs approval of the local shunting crew before it can be imple-
mented. Therefore the final goal of this research is to develop an interactive
decision support system that proposes changing scenarios to the maintenance
planner. The planner can accept the proposal or run the system again with
modified specifications. Results on single instances can also be used to update

the allowed changing scenarios or the associated costs.

2.4 Formalising maintenance routing

In this section, we formalise the data that describe the maintenance routing

problem.

Timetable data

We denote the set of tasks during the planning period by 7. For each task
t € T, the arrival time, arrival station, departure time and departure station
are denoted by Arr_time(t), Arr_stat(t), Dep_time(t) and Dep_stat(t). The regular
plan is described by the functions next() and prev(). For a task ¢ € T', next(t)
is a task in T such that (¢, next(t)) is a regular transition. Similarly, prev(t) is
a task in 7' such that (prev(t),t) is a regular transition. Let duty(¢) denote the
regular duty containing task t. The set of urgent train units is denoted by U.
For any u € U, let M(u) be the set of those maintenance tasks that can be

assigned to u.

Transitions, changing scenarios

Now we formalise the options the planner can choose from. Some regular tran-
sitions have to be replaced by other transitions. In order to reserve time for
the necessary shunting operations and to protect against spreading of delays,

we require some buffer time: A pair (¢,¢') of tasks is a transition if it either is



a regular transition, or if

Arr_stat(t) = Dep_stat(t') and
Arr_time(t) < Dep_time(t') — Buffer_time.

The buffer time might depend on ¢ and #'. For simplicity, we set it uniformly
to 10 minutes, based on discussions with the planners. If we wish to allow
some empty train movements as well, we can do this by introducing some more
general transitions between tasks at different stations; the buffer time for such a
transition then also has to account for the travel time between the two stations.

A changing scenario is a set S = {(t;,t}) : i € I} of transitions with distinct
tasks t; such that {t} : i € I'} = {next(¢;) : i € I'}. It is meant as a candidate to
simultaneously replace the collection of regular transitions {(¢;, next(¢;)) : i € I'}.
We may well assume that none of the transitions (¢;,t}) in a changing scenario is
regular and that all tasks ¢; in it arrive at the same station (unless the scenario
involves empty train rides). The simplest kind of a changing scenario has the
form {(t1, next(t2)), (t2, next(t1))}, it interchanges two train units.

Elementary scenarios

The notion of changing scenario is still a bit too unstructured to be of much
use; for instance if you consider a potential solution, then the collection of its
new transitions at a single station over the entire planning period is a changing
scenario. Therefore we will restrict ourselves to elementary changing scenarios
and use these as building blocks for our solutions.

For changing scenario S = {(¢;,t;) : i € I}, we denote max; Arr_time(t;) by
«(S) and min; Dep_time(t;) by w(S). We say that S is an elementary scenario if
w(S) — a(S) > Buffer_time. That is, if the train units spend at least Buffer_time
minutes together at the given station.

A large part of the changing scenarios that turned out to be important in
practice is in fact elementary. We note that the notion of elementariness can
be extended in order to cover some other changing scenarios. Then the graph
representation in Section 3 and the correctness proof of the heuristic approach
in Section 4.2 must be adjusted accordingly.

By confining ourselves to elementary changing scenarios we limit our scope:
not every changing scenario is decomposable into elementary ones. Still in our
study we will only consider solutions that are composed from a given list of
elementary changing scenarios which are assumed to be feasible individually.



Two elementary changing scenarios can be chosen simultaneously in a solution
when they can be carried out at such times that they do not interfere with each

other.

Shunting difficulty

The shunting difficulty of a changing scenario S is measured by a non-negative
value associated with S. In real-life applications, the list of changing scenarios
as well as the cost evaluation should be created or at least approved by the local
shunting planners. The following factors play an important role when defining

the cost values:

1. The number of extra shunting movements, the physical distance between
the tracks, whether or not extra storage tracks are required for carrying
out the changing scenario; these parameters depend on the positions of
the units in the train compositions as well as on the infrastructure of the

stations.

2. The length of the time interval between the arrival and departure events:

the shorter this interval, the higher the cost.
3. Stations with heavy traffic provide less changing possibilities.

4. It is very hard to apply changes during morning and evening rush hours;
changes at night and during off-peak hours are easier.

3 The Scenario Model

The input to our model contains the set T" of tasks together with the functions
Arr_time(), Arr_stat(), Dep_time(), Dep_stat(), next(), prev() and duty(), more-
over, a list S of elementary changing scenarios with the cost values estimating
the shunting difficulty of each changing scenario S € S.

The graph representation

We give a flow-type model for the maintenance routing problem, thus we first
need a graph. We create a node for every pair of a duty d and a minute
m in the planning such that m does not lie strictly inside any of the inter-
vals [Dep_time(t), Arr_time(t)] where ¢ is a task in duty d. For a node v =

(d,m), let time(v) = m. We identify each maintenance task ¢ with the node



(duty(t), Dep_time(t)). We call the nodes corresponding to the begin and the
end of the planning period first and last nodes, respectively.

For any task v, we insert a task arc between (duty(v), Dep_time(v)) and
(duty(v), Arr_time(v)). Moreover, for each duty d and for each minute m in the
planning period, we join the node (d,m) to (d,m + 1) if these nodes exist and
if they are not joined by a task arc. We call them regular arcs. So far, we have
a collection of disjoint directed paths consisting of task arcs and regular arcs.

Carrying out a changing scenario takes Buffer_time minutes. So, an elemen-
tary scenario S = {(¢;,t}) : ¢ € I} can be carried out at several time moments.
Therefore we implement the scenario S by several changes, one for each integer
m in [a(S),w(S) — Buffer_time]. A change is a set of arcs containing an arc
from the node (duty(t;),m) to the node (duty(t}), m + Buffer_time), for every
i € I. A change is thus a changing scenario plus an exact time specification
when the scenario should be carried out. An example is given in Figure 2. The
left hand side of the figure shows a schematic representation of the tasks and
the transitions in the scenario. The corresponding part of the graph is shown

on the right hand side of the figure. The scenario is represented by the changes
{e, f} and {¢', f'}.

< oA

Elementary scenario Two changes

Figure 2

The arcs occurring in the changes are called change arcs. Note that when
a transition belongs to more than one scenario, it corresponds to more than
one change arc, so the graph may have parallel arcs. We denote the graph by
Gscen = (V, A) and the set of changes by C.

The cost of a change is the cost of the corresponding changing scenario.
Define the function ¢: A — Ry as follows. Let ¢(a) = 0 for regular arcs and
task arcs. For a change arc a that belongs to the change C, let ¢(a) be the cost
of the changing scenario from which C was derived. That is, the cost of each
change arc fully represents the difficulty of the corresponding scenario.

Executing a change C = {(v;,w;) : i € I} means replacing the regular arc

paths that connect the nodes v; to the nodes w; by the change arcs (v;, w;).



We pointed out in Section 2.4 that elementary changing scenarios can only be
combined in a solution if their shunting operations do not interfere. We can take
care of that in our model as follows. Suppose that a change C' contains an arc
leaving the node (d,m) and an arc entering the node (d,m’). When executing
C, no train unit is present in duty d during the time interval Ic(d) = [m, m/'].
So we cannot combine the change C with another change C’ at the same station
if Ic(d) and Ic/(d) meet. Other pairs of changes can be combined. Therefore
we call changes C and C’ independent if they take place at different stations,
or if I¢(d) and Ic/(d) are disjoint for each duty d.

According to the regular plan, the train units follow the regular arcs. Execut-
ing some pairwise independent changes yields a system of node-disjoint paths,
each path indicating the route of a train unit.

Now we formulate the

Scenario Model: Select a collection of pairwise independent changes such that,
when executing these changes, the urgent units are routed to a node rep-
resenting an appropriate maintenance task. Minimise the total cost of the
solution, defined as the sum of the individual costs of those arcs that are

used by the urgent train units until they reach a maintenance task.

By inserting the changing scenarios multiple times, the Scenario Model has
the possibility to carry out several changes for a train unit between two con-
secutive tasks. That is, the model can use all those more complex changing
scenarios in the solutions that are built up from the elementary changes in S. A
small example is given in Figure 3. The left hand side shows a non-elementary
changing scenario, that can yet be obtained by using two changes after each

other.

N

Figure 3: A non-elementary scenario

The integer programming formulation

We formulate the model as a binary linear program.



The variables are:

y: C = {0,1},z: A — {0,1}, and, for each u € U, x,,: A — {0,1}. (1)

The variables yo are binary decision variables for the changes: yo = 1 if and

ounly if change C' € C is selected in the solution. The functions z, are network

flows, indicating the paths of the urgent units to the maintenance tasks, while

the flow z is the collection of the paths of all train units.

The constraints are:

1.

flow conservation for z at every node v except for the first and last nodes;
moreover, the nodes have capacity 1 in order to obtain node-disjoint paths

(6™ and §°U* denote the set of entering and leaving arcs, resp.):

z (6“‘(1})) =z (60“(1))) <1 (2)

flow conservation for each flow z, at every node v except for the first node
in the duty of w and for the end nodes of the tasks in M (u):

y (6™(v)) = 2y (6°(v)) ; (3)
the flows z, must form a subsystem of the paths defined by z:

for every arc a: Z zy(a) < z(a); 4)
uelU

for every w € U, the first node v in the duty of u has out-flow 1 in x,;
every first node v’ has out-flow 1 in z:

Ty (69 (0)) = 1; z (67" (v)) = 1; (5)

a maintenance node v has neither any out-going flow in any of the urgent
flows, nor any in-going flow in a flow z,, with v ¢ M (u):

Z 2, (6°" (v)) = 0; Z Ty (5in(v)) =0; (6)

uelU ueU:vg M (u)

for any change C' and any arc a € C, the arc a is used by z if and only if
C has been selected:

10



z(a) = yo- (7)

The objective function is:
minimise Z c(a) - Z zy(a). (8)
a€A uelU

Note that the objective function is not the sum of the costs of the selected
changes. If more than one urgent train unit use a change, the cost of the change
is counted multiple times in (8). The strategy that several urgent train units
should not appear in the same train composition may increase the robustness
of the solution against disturbances.

Several other objective functions could be supported by practical arguments.
We shall see in Section 5 that our choice enables us to compute good lower
bounds for measuring the performance of heuristic solution methods.

To see that the binary linear program is in fact a formulation of the Scenario
Model, we prove the following proposition.

Proposition 1. Consider any feasible solution to the Scenario Model, let C' be
a change with yo = 1. Let {v; : i € I} and {w; : i € I} denote the sets of tails
and heads of the arcs in C, respectively, so that v; and w; belong to the same
duty. Then there does not exist any node v such that v lies on the interior of
the regular arc path between v; and w; for some i, and such that v is traversed
by the flow z.

Proof. Suppose there exists such a change C and a node v lying between v; and
w; (see Figure 4). Choose them so that time(v) is as small as possible. Then
the nodes strictly between v; and v have no throughput in z. Let e be the arc
entering v with z(e) = 1. The arc e cannot be a regular arc or a task arc, so
e € C' for some change C'. This change must contain an arc f with z(f) =1
that leaves a node on the duty of v earlier than time(v). The tail of f is traversed
by z, therefore time(tail(f)) < time(v;). Then C' and v; form a counterexample,

thereby contradicting the choice of C' and v. (]

Therefore in each feasible solution to the binary linear program, the set of
arcs with z(a) = 1 arises from the regular transitions by executing the changes
with yo = 1, and these changes are pairwise independent. That is, every feasible
solution to the binary linear program has a corresponding feasible solution to
the Scenario Model with the same objective value. One can easily prove the
other direction: every solution to the Scenario Model corresponds to a solution

to the binary linear program.

11
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4 Complexity results for the Scenario Model

4.1 NP-completeness of the model

First we show that the feasibility problem of the Scenario Model is NP-complete.
The size of the graph depends on the number of tasks and on the size of the
list C of changes. The construction shows that the problem is NP-complete if
IC] = O(d) where d denotes the number of duties (i.e. train units) and the
longest path in our acyclic graph has length 3.

Theorem 2. It is NP-complete to decide whether or not the Scenario Model

has a feasible solution.

Proof. We show that 3SAT can be polynomially reduced to our problem.

Consider a conjunctive normal form

k

€a; Ep,; Ee:

Y= /\(:I,'gliZ \/:L'biZ V:I:cil)
i=1

in the Boolean variables x1, ..., x; where g; € {£1} and
mg'j _ &€ if gj = +1,
J Ty if g5 = —1.

It is well known that deciding whether or not ¢ can be satisfied is NP-complete
(Cook [4]).

For any conjunctive normal form ¢, we build up an instance of the Sce-
nario Model such that the required paths in the graph exist if and only if ¢ is
satisfiable. The construction is polynomial in the size of .

Let d = 6k. We start from an empty graph and an empty list C. For each

€a; Eb; Ec;
clause zq;' Vx," Vxc;', we create the nodes s;, s}, s and t;,t;, ;.

12



For every occurrence of a literal «; or —z; (say, in the clause i), we create a
box consisting of 6 new nodes u, v, w, z,a,b and the arcs uv, wz,uz,aw. We also
draw the arcs s;u, siu, su. If the non-negated literal x; appears in clause i, we
also draw the arcs vt;, vt}, vt} , zb. If ~x; appears in clause i, we insert the arcs
zt;, zt;, 2t vb (see Figure 5). We declare aw as well as vb or zb “horizontal”.

Figure 5

We join the boxes corresponding to the same Boolean variable by fixing any
cyclic ordering on them and drawing an arc from the w-node of any box to
the v-node of the next box in the ordering. Then we obtain a graph like in
Figure 6. In this figure, the dashed rectangles contain the u, v, w, and z-nodes

of the boxes, while the a and b-nodes are omitted.

S1
ty

!
81 t’
1

"
51 "
1

Figure 6 : ¢ = (w1 Voo V nx3) A ...
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For each variable z;, we create a change C € C consisting of the arcs of type
uz and wv in the xj-boxes. We also declare uv and wz “horizontal”.

! "

i»s; and the 3 u-nodes they are

For every clause ¢, consider the nodes s;, s
connected to. These 6 nodes span a complete bipartite subgraph. Decompose
these 9 arcs into 3 disjoint perfect matchings, declare the arcs in one of the
matchings to be “horizontal”, and add the other two matchings as arc sets of
cardinality 3 to C. Then do the same at the other side: at ¢;,t},t and their
neighbours.

This gives a possible instance of the Scenario Model. Everything happens
at the same station, each node represents a task with a length of zero minutes.
The “horizontal” arcs are the regular transitions, the nodes s; are the first tasks
for the urgent train units, ¢; is the (unique) maintenance task assigned to s;,
and C is the list of changes. Note that the longest path in this graph contains
3 arcs, and that C has £ + 4k members.

We claim that the Scenario Model for this graph has a feasible solution if
and only if ¢ can be satisfied.

Suppose there exists an assignment of the Boolean variables making ¢ true.
If z; = 1, select the horizontal arcs inside all the z;-boxes, otherwise select the
uz and wv arcs inside or between the x;-boxes. For every clause i, choose a
literal making it true, and consider the box corresponding to this occurrence of
the variable. If the arc e from s; to the u-node of this box is not “horizontal”,
select e as well as the two other arcs that appear in the same member of C as
e does. If e is horizontal, select the horizontal arcs incident to s;, s5, s. Select
also the arc leading from the box to ¢; together with the other two arcs defined
similarly.

Finally, select for every box the arc leaving the a-node of the box, and the
arc entering the b-node of the box. Then the selected arcs form a required path
system: we only use horizontal (i.e. regular) arcs and all arcs of some changes.

Conversely, suppose there exists such a path system. Assign the value “true”
to a variable if and only if the horizontal arcs are used in the z;-boxes. Then

for any i, the s; — t; path shows that the ¢th clause is satisfied. O

4.2 The case of one urgent train unit

Each feasible solution to the Scenario Model contains a path from the first node
of each urgent unit to a maintenance node. We show that such a path can

always be extended to a solution to the Scenario Model. That is, the case of

14



one urgent train unit is reduced to a shortest path problem.

Theorem 3. An optimal solution to the Scenario Model with one urgent train

unit can be found in O (|A]) time.

Proof. Let P be a shortest path from the first node of the urgent unit to a
maintenance node w.r.t. the cost function ¢. Then ¢(P) is a lower bound for
the objective value of any solution to the Scenario Model. Let Cy,C> be changes
containing the change arcs a;,as € P, respectively. Then Cy and C5 correspond
to disjoint time intervals. Therefore C7 and Cs are independent. Applying all
the changes that contain a change arc in P, we obtain a feasible solution to
the Scenario Model, and its cost is ¢(P). Since Gyeen does not contain directed
cycles (the arcs are directed according to the time), the shortest path algorithm
can be implemented very efficiently, the running time being proportional to the

number of arcs. O

4.3 A heuristic algorithm

We have seen in Section 4.2 that the case of one urgent train unit is easy to solve.
The following Iterated Shortest Path Heuristic (ISPH) is a natural approach to

find solutions for more than one urgent unit.

We fix an order of the set U of urgent units. We iterate on U, applying
the following steps for the actual u € U.

1. We look for a shortest path P from the first node in the duty of
u to the maintenance nodes that are allowed for u. We stop with
an error if there is no path from u to M (u).

2. We delete the arcs that are incident to the nodes in P except for
the arcs of P. For each change arc a in P, let C' = {(v;,w;) : i € I'}
be the change that contains a. Consider the regular arc paths
that join the nodes v; and w;. We delete all their internal nodes
together with the arcs incident to these internal nodes. Moreover,
we delete the arcs leaving the nodes v; or entering the nodes w;,
except for the arcs (v;,w;). In any case when a change arc a' is
to be deleted, we also remove those arcs that occur in the same
change with a'. Having updated the graph, we continue iterating
onU.

15



Theorem 3 implies that, in each iteration of the algorithm ISPH, the path for
the actually considered urgent unit can be obtained by applying independent
changes. Afterwards we explicitly forbid all those changes that are in conflict
with the already selected changes. Therefore the algorithm ISPH provides a
feasible solution to the Scenario Model if it terminates without an error.

It is not specified yet in which order the algorithm ISPH should process the
urgent units. We can simply run the process we described so far on several
different orders, and select the best solution.

We can compare the cost values of the heuristic solutions to the following
natural lower bound. Let S; be the set of first nodes of those urgent units that
have maintenance on day i, let T; be the set of maintenance nodes on day i. Let
MF(i) denote the minimum cost of a network flow of value |S;| in Gyeen With
sources S;, sinks T; and with node capacities 1. Then

k
FlowBound = » ~ MF(i)

i=1

is a lower bound on the cost of any feasible solution.

5 Computational results

5.1 The test case

We implemented the model for the train unit type ‘Sprinter’. There are 47
train units serving about 800 tasks per day. The typical length of the train
compositions is 1 or 2 units, there are only a few exceptional trains with 3 units,
this makes the cost estimates for the changes easier. The regular plan contains
two maintenance tasks per day, all taking place at Leidschendam station starting
in the early morning.

For our test, we collected and evaluated the changing scenarios by applying
some simple rules to the regular plan. We computed about 800 elementary
changing scenarios per day. The cost values of the scenarios have been chosen
between 0 and 1000. An arc with cost value higher than 100 corresponds to a
changing scenario which is considered to be quite difficult in practice.

We also allowed empty train movements with cost value of 1000 since without

using such movements, some test instances turned out to be infeasible.

16



5.2 Experiments

We generated 1000 instances each containing randomly chosen urgent units. We
assumed that the urgent units had already been assigned to the maintenance
tasks. We set the planning horizon to £ = 2, 3, 4, and 5 days. We always
start on Monday morning, so depending on k, the planning period lasts till the
late evening of Tuesday, Wednesday, Thursday, or Friday. We have 2k urgent
train units: 2 units assigned to the maintenance tasks starting early morning
on Tuesday, 2 starting early morning on Wednesday, etc. The cases k = 2 and
3 correspond to the most frequently used planning periods in the maintenance
planning process at NS Reizigers.

We applied two solution methods: (é) running the heuristic algorithm in
Section 4.3, implemented in C++, and (i) solving the binary linear program
by the modelling software ILOG OPL Studio 3.7 and the integer programming
solver ILOG Cplex 9.0. The computation has been carried out on a PC with an
Intel P4 3.0 GHz processor and 512 MB internal memory. As mentioned above,
we can choose any order in the ISPH algorithm for processing the urgent train
units. In our implementation we ran ISPH for each instance with 24-52 orders,
depending on the planning horizon k, and we selected the best solutions. We
refer to the solution methods and their solution values as ‘Opt’ and ‘ISPH’.

Since the graph Ggeen we defined in Section 3 is quite large, the binary linear
program could not be solved at all. We obtained a much smaller representation
as follows. An elementary changing scenario has been represented as changes
starting at every minute between a(S) and w(S) — Buffer_time. However, if

this interval is very long, like 1 — 2 hours, we insert only changes that start at

10
scen

minutes divisible by 10. The size of this new graph G, , is dramatically smaller,
as Table 1 shows. Nevertheless, when solving the same instances on both graphs
by the heuristic method, the solutions turned out almost identical. We found in
less than 1% of the test instances any difference between the objective function

values in Ggeen and G0

scen- The largest difference was 6, it occurred once among

the 1000 test instances, and this difference is less than 5% of the corresponding

objective function value. So we do not loose substantial information by working
with G0

scen- Therefore in what follows, we only present the results for this smaller

graph.
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graph | # nodes | # arcs

Ggcen | 111,892 | 692,706

G, 21,358 88,351

Table 1

k | # inst. | avg. gap | max. gap | avg. abs. gap | max. abs. gap
2 1000 1.9% 1% 1.1 39
3 1000 5.6% 89% 4.9 54
4 | 1000 8.2% 85% 8.9 70
5 1000 14.3% 82% 19.1 103

Table 2: ISPH vs. FlowBound

5.3 Performance of the algorithms

The ISPH gave a feasible solution for every test instance and for every planning
horizon k = 2, 3, 4, and 5.

First we compare the flow bounds to the heuristic solutions. The abso-

lute gap is defined by ISPH — FlowBound, while the relative gap is defined by

ISPH—FlowBound
FlowBound

absolute gaps are presented in Table 2. Observe that the largest absolute gap

. The average and maximum value of the relative gaps and of the

is never higher than the cost of just one considerably expensive arc, although
we computed paths for up to 10 urgent train units.

The test instances could also be solved by Cplex, despite the large size of
the binary linear programs (see Table 3). The solution process required very
few nodes in the branch and bound tree, quite often the linear programming
relaxation turned out to have an integral optimal solution. Some instances
required, however, a longer solution process taking up to 2 hours for proving
optimality. Even in those cases, an almost optimal solution was found after a
couple of branchings.

For comparing the heuristic solutions to the optimal solutions, we used the

absolute gap ISPH — Opt and the relative gaps W. Table 4 shows the
k=2 k=3 k=4 k=5
Number of variables | 265,053 | 353,404 | 441,755 | 530,106
Number of constraints | 74,961 | 125,850 | 183,213 | 250,976

Table 3 : Size of the binary linear programs
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k | # inst. | avg. gap | max. gap | avg. abs. gap | max. abs. gap
2 1000 0.83% 42.19% 0.51 27
3 1000 2.53% 56.60% 2.37 37
4 1000 3.79% 53.42% 4.39 44
5 1000 6.04% 48.05% 8.70 54
Table 4: ISPH vs. Opt
k | # inst. | avg. gap | max. gap | avg. abs. gap | max. abs. gap
2 1000 0.82% 30.77% 0.61 39
3 1000 2.43% 40.00% 2.57 39
4 1000 3.52% 36.36% 4.53 44
5 1000 6.66% 36.09% 10.42 50

Table 5 : FlowBound vs. Opt

average and maximum values of these performance indicators. The quality of

the flow bounds is examined in Table 5, the measures being the absolute gap

Opt—FlowBound
Opt

Table 6 shows the average running times for computing the flow bounds, for

Opt — FlowBound and the relative gap

the heuristic algorithm, and for solving the binary linear programs by Cplex.
We can see that the heuristic method is in fact very fast. The solution times
of Cplex were also acceptable for the practically important planning horizons
k = 2 and 3 (though a bit longer than convenient in an interactive decision
support application). We expect that for other train unit types, which are
much larger than our test case, solving the binary linear program becomes very

difficult while the heuristic method still performs well.

k=2 | k=3 | k=4 | k=5

FlowBound - — — 491 s
ISPH: 1 order 0.08 s 0.13 s 0.21s 0.27 s
# orders 24 28 36 92

ISPH: all orders 2.23 s 3.97s 7.43 s 15.03 s
Binary program | 20.41s | 87.36 s | 296.44 s | 1062.99 s

Table 6 : Average running times (in seconds)
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5.4 Conclusions

The good performance of the heuristic solution method can be explained by the
structure of the problem. The number of urgent train units is small compared
to the total number of train units (especially in the case of a shorter planning
horizon, such as k& = 2 or 3), so the urgent train units do not have too much
interaction with each other. On the other hand, the rolling stock schedule
provides a large enough number of changing possibilities, yielding several almost
optimal paths for an urgent unit.

The most critical problem is to route the two most urgent train units to the
maintenance station till Tuesday morning when the planning is carried out on
Monday morning. In the test instances this was the only reason to use very
expensive arcs. The lower bound proved in any of these cases that there is no
solution without empty train movements.

The computational results indicate that when solving a sequence of prob-
lems every day, and using each day’s output for the next day, then the system
would very rarely use expensive arcs. However, disturbances and delays may
prevent the local shunting crew to carry out the desired changes. This may
lead in practice to using more expensive changes, sometimes even empty train

movements.

6 Summary

In this paper we described the Scenario Model for supporting the routing of
passenger train units towards a maintenance facility. We analysed the compu-
tational complexity of this maintenance routing problem, and we suggested a
heuristic solution method. In our computational tests optimal or nearly optimal
solutions could be found in short running times.

The model takes a lot of details about the shunting process into account.
This increases the chance that the solutions are acceptable in practice. Reli-
able technical information is, however, difficult to collect. Moreover, it is time-
consuming to maintain the data if the timetable and the rolling stock schedule
changes. Therefore, in our future research we focus on developing alternative
models dealing with less details of the technical possibilities, but yet providing

solutions that help the work of the maintenance routing planners.
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