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Abstract

We review and describe several results regarding integer program-
ming problems in fixed dimension. First, we describe various lattice
basis reduction algorithms that are used as auxiliary algorithms when
solving integer feasibility and optimization problems. Next, we review
three algorithms for solving the integer feasibility problem. These algo-
rithms are based on the idea of branching on lattice hyperplanes, and
their running time is polynomial in fixed dimension. We also briefly
describe an algorithm, based on a different principle, to count integer
points in an integer polytope. We then turn the attention to integer
optimization. Again, we describe three algorithms: binary search, a
linear algorithm for a fixed number of constraints, and a randomized
algorithm for a varying number of constraints. The topic of the next
part of our chapter is how to use lattice basis reduction in problem
reformulation. Finally, we review cutting plane results when the di-
mension is fixed.

1 Introduction

Integer programming problems have offered, and are still offering, many
challenging theoretical and computational questions. We consider two in-
teger programming problems. Given is a set of rational linear inequalities
Ax < d. The first problem is the integer feasibility problem: Does there
exist an integer vector x satisfying Ax < d? The second problem is the
integer optimization problem: Determine an integer vector & that satisfies

Az < d, and also maximizes or minimizes a given linear function c¢'z.

*The research of the first author has been funded in part by the Dutch BSIK/BRICKS
project.



The feasibility problem was proved to be NP-complete in 1976, but an
interesting complexity question remained: Is the feasibility problem solvable
in polynomial time if the the number of variables, i.e., the number of compo-
nents of x, is fixed? The predominantly used algorithm, branch-and-bound,
is not a polynomial time algorithm in fixed dimension, but in 1983 H.W.
Lenstra, Jr. developed an algorithm with a polynomial running time if the
dimension is fixed. His algorithm is based on results from number theory;
in particular on properties of lattices and lattice bases. Since then we have
seen several results built on knowledge about lattices, and also many other
results for integer programming problems in fixed dimension.

In our chapter we will illustrate some of these results. Since lattices
and lattice bases play an important role we will present three algorithms
for finding “good” lattice bases in Section 3. In this section we also review
algorithms to compute a shortest vector of a lattice. In Section 4 we fo-
cus on the integer feasibility problem and describe three algorithms built
on the fundamental result that if a polytope does not contain an integer
vector, then there exists a nonzero integer direction in which the polytope
is intersected by at most f(n) so-called lattice hyperplanes, where f(n) is
a function depending on the dimension n only. The integer optimization
problem is treated in Section 5. Again three algorithms are described; first
binary search, second a more involved algorithm that solves the problem in
linear time when the number of constraints is fixed, and finally a randomized
algorithm which reduces the dependence of the complexity on the number of
constraints. In Section 6 we take another view of solving integer feasibility
problems. Here we try to construct a lattice in which we can prove that
solutions to the considered problems are short vectors in that lattice. Solu-
tions, if they exist, can then be found by considering bases of the lattice in
which the basis vectors are short. Finally, in Section 7 we review various re-
sults regarding cutting planes if, again, the dimension is fixed. Even though
little explicit use is made of lattices in this section, the results tie in well
with the results discussed in Sections 4-6, and address several complexity
questions that are naturally raised in the context of integer programming in
fixed dimension.

2 Notation and basic definitions

To make our chapter more accessible we present some basic notation and
definitions in the following two subsections.



2.1 Numbers, vectors, matrices, and polyhedra

The set of real (integer, rational) numbers is denoted by R (Z, Q). If we
require nonnegativity we use the notation R>q, Z>0, and Q>( respectively.
The set of natural numbers is denoted by N and if we consider positive
natural numbers we use the notation N.o. When we write x; we mean the
j-th vector in a sequence of vectors. The i-th component of a vector & will
be denoted by x;, and the i-th component of the vector x; is written a:; The
Euclidean length of a vector € R" is denoted by ||z|| and is computed as
||| = V&Tx, where T is the transpose of the vector . An m x n matrix
A has columns (ai,...,ay), and element (¢,j) of A is denoted by a;;. We
use (¢)(™*™) to denote an m x n matrix in which all elements are equal to c.
The n x n identity matrix is denoted by I ("), and when it is clear form the
context the superscripts of (c)(mX") and I™ are dropped. Given an m X n
matrix A, the inequality

y/det(ATA) < lai] - - [|an]] (1)

is known as the Hadamard inequality. An integer nonsingular matrix U is
unimodular if det(U) = £1. A matrix of full row rank is said to be in Her-
mite Normal Form, (HNF), if it has the form (C, (0)(™*("=™))) where C'is a
lower triangular nonnegative m X m matrix in which the unique row maxima
can be found along the diagonal. A rational m X n matrix A of full row rank
has a unique Hermite normal form, HNF(A) = (C, (0)(™*(»~m)) = AU,
where U is unimodular.

We use the notation |z | and [z] for the round down and round up of the
number z. We define [z] := [z — 3]. The size of an integer 2 is the number
size(z) = 1+ [logy(|z| +1)]. Likewise, the size of a matrix A € Z™*" is the
number of bits needed to encode A, i.e., size(A) = mn + 3, ; size(a;;), see
[99, p. 29].

A polyhedron P is a set of vectors of the form P = {x € R" | Az < d},
for some matrix A € R™*™ and some vector d € R™. We write P = P(A, d).
If P is given as P(A,d), then size(P) = size(A) + size(d). The polyhedron
P = P(A,d) is rational if both A and d can be chosen to be rational. If P
is bounded, then P is called a polytope. The integer hull Pr of a polyhedron
P is the convex hull of the integer vectors in P. If P is rational, then Pr
is a rational polyhedron again. The dimension of P is the dimension of the
affine hull of P.

A rational halfspace is a set of the form H = {x € R* | ¢T'z < §},
for some non-zero vector ¢ € Q" and some 6 € Q. The halfspace H is
then denoted by (¢’x < §). The corresponding hyperplane, denoted by



(cTx = §), is the set {x € R" | ¢'x = 6}. A rational half space always has
a representation in which the components of ¢ are relatively prime integers.
That is, we can chose ¢ € Z™ with ged(eq, ..., c,) = 1.

An inequality ¢’z < § is called valid for a polyhedron P, if (cz < §) D
P. A face of P is a set of the form F = (c'xz = §) N P, where ¢’z < §
is valid for P. The inequality c’@ < § is a face-defining inequality for F.
Clearly F is a polyhedron. If P D F D (), then F is called proper. A maximal
(inclusion wise) proper face of P is called a facet of P, i.e., a proper face F'
is a facet if and only if dim(F') = dim(P) — 1. If the face-defining inequality
cl'x < § defines a facet of P, then ¢’z < § is a facet-defining inequality. A
proper face of P of dimension 0 is called a vertez of P. A vertex v of P(A, d)
is uniquely determined by a subsystem A%z < d° of Ax < d, where A”
is nonsingular and v = (A%)"'d". If P is full-dimensional, then P has a
unique (up to scalar multiplication) minimal set of inequalities defining P,
which correspond to the facets of P. A polytope P can be described as the
convex hull of its vertices. A d-simplex is a polytope, which is the convex
hull of d 4+ 1 affinely independent points.

Let P C R™ be a rational polyhedron. The facet complezity of P is the
smallest number ¢ satisfying

e ¢ >n,and

e there exists a system Ax < d of rational linear inequalities defining P
such that each inequality in Ax < d has size at most .

The vertex complexity of P is the smallest number v, such that there exist
rational vectors qq,...,q, €1, ..., Ct, each of size at most v, with

P =conv({qy,...,q;}) + cone({cy,...,ct}).

Let P C R™ be a rational polyhedron of facet complexity ¢ and vertex
complexity v. Then (see Schrijver [99])

v < 4n’p and ¢ < 4n’v. (2)

We refer to Nemhauser and Wolsey [85] and Schrijver [99] for further basics
on the topics treated in this subsection.

2.2 Lattices and lattice bases

Let by, ..., b; be linearly independent vectors in R™. The set

!
L={xcR"|z=> \bj,);€Z 1<j<1} (3)
j=1



is called a lattice. The set of vectors {by,...,b;} is called a lattice basis. The
vectors of a lattice L form an additive group, i.e., 0 € L, and if  belongs
to L, so does —x, and if &,y € L, then * + y € L. Moreover, the group L
is discrete, i.e., there exits a real number » > 0 such that the n-dimensional
ball with radius r, centered at the origin, does not contain any other element
from L except the origin.

The rank of L, rk L, is equal to the dimension of the Euclidean vector
space generated by a basis of L. The rank of the lattice L in expression (3)
is I, and we have [ < n. If [ = n we call the lattice full-dimensional. Let
B = (by,...b;). If we want to emphasize that we are referring to a lattice
L that is generated by the basis B, then we use the notation L(B). Two
matrices By, By € R**! are bases of the same lattice L C R™, if and only
if B; = ByU for some ! x [ unimodular matrix U. The shortest nonzero
vector in the lattice L is denoted by SV(L) or SV(L(B)).

We will frequently make use of Gram-Schmidt orthogonalization. The
Gram-Schmidt process derives orthogonal vectors b;-, 1 <5 <, from lin-
early independent vectors b;, 1 < j <[. The vectors b;‘-, 1 <7<, and the
real numbers pji, 1 < k < j <, are determined from b;, 1 < j <1, by the
recursion

bl =b;
j—1
b =b; — Y mubp, 2<j<l,
k=1
where .
M'k:ﬁ 1<k<j<l
T

The Gram-Schmidt process yields thus a factorization of the matrix (by, ..., by)
as

(bi,...,b,) =(b],...,b}) R, (4)
where R is the matrix
1 p2 Hn1
R— 0 1 - fno 5)
6 ...... 0. . 1

The vector b; is the projection of b; on the orthogonal complement of
SUIRb, = {0 imgbe 0 omy, € R, 1 < k < j— 1}, ie, b) is the
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component of b; orthogonal to the real subspace spanned by b1,...,b; 1.
Thus, any pair b;, b}, of the Gram-Schmidt vectors are mutually orthogonal.
The multiplier pjj gives the length, relative to by, of the component of the
vector b; in direction by,. The multiplier yj is equal to zero if and only if b;
is orthogonal to bj. Notice that the Gram-Schmidt vectors corresponding
to b1, ...,b; do not in general belong to the lattice generated by b, ..., by,
but they do span the same real vector space as by, ..., b;.

Let W be the vector space spanned by the lattice L, and let By be
an orthonormal basis for W. The determinant of the lattice L, d(L), is
defined as the absolute value of the determinant of any nonsingular linear
transformation W — W that maps By onto a basis of L. This is the I-
dimensional volume of the parallelepiped spanned by the vectors of any basis
of L. Below we give three different formulae for computing d(L). Let B =
(b1,...,b;) be a basis for the lattice L C R", with | < n, and let bj,...,b]
be the vectors obtained from applying the Gram-Schmidt orthogonalization
procedure to by, ..., b;.

d(L) = [jbal| - ||b3]| - -~ - [[67 ],

d(L) = \/det(BTB) ,

. Hzel:|=|| <rj
dl) = =By (©)
where vol(By(r)) is the volume of the [-dimensional ball with radius r. If L
is full-dimensional, then d(L(B)) can be interpreted as the volume of the
parallelepiped 2?21[0, 1)b;. In this case the determinant of the lattice can
be computed straightforwardly as d(L(B)) = |det(B)|. The determinant
of Z" is equal to one. It is clear from Expression (6) that the determinant
of a lattice depends only on the lattice and not on the choice of basis, see
also Section 3. We will often use Hadamard’s inequality (1) to bound the
determinant of the lattice, i.e.,

d(L(B)) = y/det(B"B) < |[by]| - ---- 1], (7)

where equality holds if and only if the basis B is orthogonal.

A convex set K € R" is symmetric about the origin if © € K implies
that —x € K. We will refer to the following theorem by Minkowski later in
the chapter.

Theorem 1 (Minkowski’s convex body theorem [83]). Let K be a
compact convex set in R™ of volume vol(K) that is symmetric about the



origin. Let m be an integer an let L be a lattice of determinant d(L). Sup-
pose that vol(K) > m2"d(L). Then K contains at least m pairs of points
tx;, 1 < j < m that are distinct from each other and from the origin.

Let L be a full-dimensional lattice in R™. Its dual lattice L* is defined as
L*={xcR" |zlycZforallyec L}.

For a lattice L and its dual we have d(L) = d(L*)"L.
For more details about lattices, see e.g. Cassels [22], Grotschel, Lovasz,
and Schrijver [55], and Schrijver [99].

3 Lattice basis reduction

In several of the sections in this chapter we will use representations of lattices
using bases that consist of vectors that are short and nearly orthogonal. In
Section 3.1 we motivate why short lattice vectors are interesting objects,
and we describe the basic principle of obtaining a new basis from a known
basis of a given lattice. In Section 3.2 we describe Lovész’ basis reduction
algorithm, and some variants. The first vector in a Lovész-reduced basis is
an approximation of the shortest non-zero lattice vector. In Section 3.3 we
introduce Korkine-Zolotareff-reducedness and present Kannan’s algorithm
for computing the shortest non-zero lattice vector. We also discuss the
complexity status of the shortest and closest lattice vector problem. In
Section 3.4 we describe the generalized basis reduction algorithm by Lovész
and Scarf, which uses a polyhedral norm instead of the Euclidean norm as
in Lovasz’ algorithm. Finally, in Section 3.5 we discuss fast basis reduction
algorithms in the bit model.

3.1 Reduced bases, an informal introduction

A lattice of rank at least two has infinitely many bases. Some of these bases
are more useful than others, and in the applications we consider in this
chapter we use bases whose elements are “nearly orthogonal”. Such bases
are called reduced. There are several definitions of reducedness, and some
of them will be discussed in the following sections. Having a reduced basis
makes it possible to obtain important bounds on both algorithmic running
times and quality of solutions when lattice representations are used in integer
programming and related areas. The study of reduced bases appears as
early as in work by Gauf} [49], Hermite [59], Minkowski [82], and Korkine
and Zolotareff [72].



In many applications it becomes essential to determine the shortest
nonzero vector in a lattice. In the following we motivate why an “almost
orthogonal basis” helps us to find this vector. Suppose that L C R™ is gen-
erated by the basis by, ..., b, and assume that the vectors b; are pairwise
orthogonal. Consider a nonzero element v = 2?21 Ajb; of the lattice, where
Aj € Z for j =1,...,n. One has

T
lol> = D Asb; > oAb
=1 j=1

= > Xyl
j=1

> wmin{||b;|*|j=1,....,n},

where the last inequality follows from the fact that the \; are integers and
not all of them are zero. Therefore the shortest vector of L is the shortest
vector of the basis by, ..., b,.

How do we determine the shortest vector of L if the basis by, . . ., b, is not
orthogonal but “almost orthogonal”? The Gram-Schmidt orthogonalization
procedure, see Section 2.2, computes pairwise orthogonal vectors b7, ..., b}
and an upper triangular matrix R € R"*™ whose diagonal entries are all one
such that

(bi,....b) = (b%,....b})- R

holds. Furthermore one has ||b;[| > |bj]| for j = 1,...,n. This implies
the Hadadmard inequality (7): d(L) = ||b]]|-- - ||b)|| < [|b1]| - - - [|bn||, where
equality holds if and only if the by,...,b, are pairwise orthogonal. The
number ¢ = ||by|| - - - ||by||/d(L) is called the orthogonality defect of the lattice
basis by,...,b,. By “almost orthogonal” we mean that the orthogonality
defect of a reduced basis is bounded by a constant that depends on the
dimension 7 of the lattice only.

How does the orthogonality defect ¢ come into play if one is interested
in the shortest vector of a lattice? Again, consider a vector v = Z?:l Ajbj
of the lattice L generated by the basis by, ..., b, with orthogonality defect
c. We now argue that if v is a shortest vector, then |A;| < ¢ for all j.
This means that, with a reduced basis at hand, one only has to enumerate
all (2¢+ 1)" vectors (Aq,...,\,) with |\;| < ¢, compute the corresponding
vector v = 2?21 Ajbj, and choose the shortest among them.

So suppose that one of the A\; has absolute value strictly larger than
c. Since the orthogonality defect is invariant under permutation of the



basis vectors, we can assume that j = n. Consider the Gram-Schmidt
orthogonalization bj,...,b; of bi,...,b,. Since [[b|| < ||bj|| and since

[Ba]] -+ llbn | < cl|bT]] - - ||by, || one has [|by[| < c[[by,|| and thus
n—1
ol = IAaba + D Abyll
j=1
= [ Anby, +ul],
where w is a vector in the subspace generated by by, ..., b, 1. Since v and

b, are orthogonal we obtain

ol = [Aal ]| + [l
> all,

which shows that v is not a shortest vector. Thus, a shortest vector of L
can be computed from a basis with orthogonality defect ¢ in O(c***1) steps.

In the following sections we present various reduction algorithms, and we
begin with Lovész’ algorithm that produces a basis with orthogonality defect
bounded by 2("~1/4, Lovész’ algorithm runs in polynomial time in varying
dimension. This implies that a shortest vector in a lattice can be computed
from a Lovasz-reduced basis by enumerating (2 - 27("~1/4 4 1)n = 20(n?)
candidates, and thus in polynomial time if the dimension is fixed.

Before discussing specific basis reduction algorithms we describe the ba-
sic operations that are used to go from one lattice basis to another.

The following operations on a matrix are called elementary column op-
erations:

e exchanging two columns,
e multiplying a column by —1,

e adding an integer multiple of one column to another column.

It is well known that a unimodular matrix can be derived from the identity
matrix by elementary column operations.

To go from one basis to another is conceptually easy; given a basis B
we just multiply B by a unimodular matrix, or equivalently, we perform a
series of elementary column operations on B, to obtain a new basis. The
key question is of course how to do this efficiently such that the new basis
is reduced according to the definition of reducedness we are using. In the
following subsections we will describe some basis reduction algorithms, and
highlight results relevant to integer programming.



3.2 Lovasz’ basis reduction algorithm

In Lovéasz’ [75] basis reduction algorithm the length of the vectors are mea-
sured using the Euclidean length, and the Gram-Schmidt vectors corre-
sponding to the current basis are used as a reference for checking whether
the basis vectors are nearly orthogonal. Let L C R™ be a lattice, and
let by,...,b;, | < n, be the current basis vectors for L. The vectors
b;f, 1 < 7 <1, and the numbers i, 1 < k < j < [ result from the
Gram-Schmidt process as described in Section 2.2. A basis by, bo, ..., b; is
called reduced in the sense of Lovasz if

for1<k<j<l, (8)

N | =

x| <

|03 +M.7'7]'*1bj—1||2 > Z||bj—1||2 for1 <y <UL 9)

The constant % in inequality (9) is arbitrarily chosen and can be replaced by
any fixed real number % < y < 1. In a practical implementation one chooses
a constant close to one. Below we explain why vectors satisfying Conditions
(8) and (9) are relatively short and nearly orthogonal.

b;

b;
‘ b; — b}
Hik Hijk
(a) pjr < 1/2, since b; is (b) pjr < 1/2 since by is short
almost orthogonal to by. compared to by. If k =5 -1,

Condition (7) is violated.

Figure 1: Cases for which Condition (8) are satisfied.

Condition (8) is satisfied in two cases. The first case, see Figure 1(a), is
if b; is almost orthogonal to bj. Then, clearly, if we project b; on by, the
absolute value of the length of this projection is going to be short relative
to the length of b;,. The second possibility for (8) to be satisfied, see Figure
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1(b), is if b; is short relative to by. Even if b; and b}, are not close to being
orthogonal, the length of the projection of b; on b, will still be small relative
to the length of bj,. If we would accept this case we would also accept a basis
in which ||b1|| >> ||b2|| >> --- >> ||by||, and where the vectors are far from
being orthogonal. To prevent this, Condition (9) is enforced. Here we relate
to the interpretation of the Gram-Schmidt vectors above, and notice that
the vectors b; +;/,j7j,1b;f_1 and' b;-_l are the projections of b; and b;_; on the
orthogonal complement of ngj Rby. Consider the case where k = j — 1,
i.e., suppose that b; is short compared to b;-_l, which implies that b;f is
short compared to b;_; as [|bj[| < ||bj||. Suppose we interchange b; and
bj—1. Then the new b;_; will be the vector b} + p; ;-1b;_;, which will be
short compared to the old b;_;, i.e., Condition (9) will be violated.

Given a basis by, ..., b, one can apply a sequence of elementary col-
umn operations to obtain a basis satisfying (8) in the following way. Recall
(see (4)) that the Gram-Schmidt process yields a factorization of the matrix
(b1,...,by) as (b1,...,b,) = (b],...,b}) - R, where R is upper triangular,
with all diagonal entries being equal to one. By subtracting integer multi-
ples of column 7; from the columns 7;11,...,7,, one can achieve that the
elements R(7,j) for ¢ < j are at most 1/2 in absolute value. By doing so
for i =n —1,...,1, in that order, one obtains a matrix R, which is upper
triangular, with all diagonal elements equal to one, and all the elements
above the diagonal being at most 1/2 in absolute value. This yields a new
basis (b],...,b),) = (b},...,b)- R, which satisfies (8). The replacement of
the basis (by,...,b,) by (b),...,bl) is called size reduction. Notice that the
Gram-Schmidt orthogonalization of (b],...,b),) is given by (b,...,b})  R'.

If Condition (9) is violated for a certain index j, then the vectors b; and
b;_1 are interchanged to prevent us from accepting a basis with long non-
orthogonal vectors as described in the previous paragraph. Lovasz’ basis
reduction algorithm now performs size reductions and interchangings until

the basis satisfies (8) and (9).
Algorithm 1 (Lovasz’ algorithm).
1. While Conditions (8) and (9) are not satisfied

(a) Perform size reduction on the basis

(b) If j is an index which violates (9), then interchange basis elements
j—1and j.

The key to the termination argument of Lovasz’ algorithm is the follow-
ing potential function ®(by, ..., by) of a lattice basis B = (by,...,by,), bj €

11



Z*, 1<j<mn,
®(B) = ||y | [1b3]*" Y - - |[b7>.

The potential of an integer lattice basis is always an integer. Furthermore,
an interchange step in Lovdsz’ algorithm decreases the potential by a factor
of 3/4 or a smaller number. Thus, if B; and By are two subsequent bases
after an interchange step in Lovasz’ algorithm, then

B(B») < Z@(Bl).

The potential of the input basis B can be bounded by ®(B) < (||b1]| - - - || b ).
Therefore, the number of iterations of Lovasz’ algorithm is bounded by
O(n(log||b1]|+...4]/bx]])). In order to conclude that Lovasz’ algorithm runs

in polynomial time, one has further to show that the binary encoding lengths

of the rational numbers representing the basis and the Gram-Schmidt or-
thogonalization remain polynomial in the input. For this, we refer to [75],
where the following running time bound is given.

Theorem 2 ([75]). Let L C 7" be a lattice with basis by,...,by,, and let
B €R, B> 2, be such that ||b;||*> < B for 1 < j < n. Then the number of
arithmetic operations needed by the basis reduction algorithm as described in
[75] is O(n*log B), and the integers on which these operations are performed
each have binary length O(nlogf3).

In terms of bit operations, Theorem 2 implies that Lovész’ basis reduction
algorithm has a running time of O(n®(log 5)?) using classical algorithms for
addition and multiplication.

Example 1. Here we give an example of an initial and a reduced basis for
a given lattice. Let L be the lattice generated by the vectors

=(1) »=(1)

The Gram-Schmidt vectors are b = by and b3 = by — pa1bf = (1,1)7 —
2b} = -(—3,12)7, see Figure 2a. Condition (8) is satisfied since by is short
relative to b]. However, Condition (9) is violated, so we exchange b; and

o-(1) o (1)

We now have b] = by, pg1 = % and by = %(3, —3)7, see Figure 2b.

bo, giving

12



T

Figure 2:

Condition (8) is now violated, so we replace by by by — 2b; = (2, —1)7.
Conditions (8) and (9) are satisfied for the resulting basis

(1) »=( 1)

and hence this basis is reduced, see Figure 3.

T2

Figure 3: The reduced basis.

Next we will present some useful bounds on reduced basis vectors.

Proposition 1 ([75]). Let by,...,b, be a reduced basis for the lattice L C
R™. Then,

d(L) < IIG4[|bj]| < e1 - d(L), (10)

13



where ¢; = 2n(n—1/4,

The first inequality in (10) is Hadamard’s inequality (7) that holds for any
basis of L. Recall that we refer to the ratio I17_,[|b;[|/d(L) as the orthog-
onality defect. Hermite [58] proved that each lattice L C R™ has a basis
bi,...,b, such that II7_,[|b;[|/d(L) < c¢(n), where ¢(n) is a constant de-
pending only on n. The upper bound in (10) implies that the orthogonality
defect of a Lovasz-reduced basis is bounded from above by c;. Better con-
stants than c; are possible, but the question is then whether the basis can
be obtained in polynomial time.

A consequence of Proposition 1 is that if we consider a basis that satisfies
(10), and if b, is the longest of the basis vectors, then the distance of b, to
the hyperplane generated by the basis vectors by, ..., b,—_1 is not too small
as stated in the following corollary.

Corollary 1 ([76]). Assume that by, ..., by, is a basis such that (10) holds,
and that, after possible reordering, ||b,|| = maxi<j<n{||b;||}. Let H =
Z;:ll Rb; and let h be the distance of basis vector b, to H. Then

e [[bnll < b < |lball, (11)
where ¢1 = on(n—1)/4,
Proof: Let L' = Z;le Zbj. We have

d(L) = h-d(L"). (12)
Expressions (10) and (12) give

byl < e1-d(D) = e+ d(Z) < 1 - T 1, (13
where the first inequality follows from the second inequality of (10), and
where the last inequality follows from the first inequality of (10). From (13)
we obtain h > ¢;'||b,||. From the definition of h we have h < ||b,||, and

this bound holds with equality if and only if the vector b,, is orthogonal to
H. O

The lower bound on A given in Corollary 1 plays a crucial role in the
algorithm of H. W. Lenstra, Jr., which is described in Section 4.1.

Proposition 2 ([75]). Let L C R™ be a lattice with reduced basis by, . .., by, €
R™. Let xy,...,x: € L be linearly independent. Then we have

l|b1]? < 2" Y|z||> forallz e L, x # 0, (14)

16,117 < 2" max{[a1 |7, [|@a] %, |2l P} for1<j<t.  (15)
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Inequality (14) implies that the first reduced basis vector b; is an approxi-
mation of the shortest nonzero vector in L.

Just as the first basis vector is an approximation of the shortest vector
of the lattice (14), the other basis vectors are approximations of the suc-
cessive minima of the lattice. The j-th successive minimum of || || on L is
the smallest positive value v; such that there exists j linearly independent
elements of the lattice L in the ball of radius v; centered at the origin.

Proposition 3 ([75]). Let vy,...,1v denote the successive minima of || ||
on L, and let by,...,b; be a reduced basis for L. Then

20=0)/2y < ||bj|| < 2U=Y/2y;  for1<j<I.

In recent years several new variants of Lovasz’ basis reduction algorithm
have been developed and a number of variants for implementation have
been suggested. We mention a few below, and recommend the paper by
Schnorr and Euchner [93] for a more detailed overview. Schnorr [91] ex-
tended Lovész’ algorithm to a family of polynomial time algorithms that,
given € > 0, finds a non-zero vector in an n-dimensional lattice that is no
longer than (1 + €)" times the length of the shortest vector in the lattice.
The degree of the polynomial that bounds the running time of the family
of algorithms increases as € goes to zero. Seysen [101] developed an algo-
rithm in which the intermediate integers that are produced are no larger
than the input integers. Seysen’s algorithm performs well particularly on
lower-dimensional lattices. Schnorr and Euchner [93] discuss the possibil-
ity of computing the Gram-Schmidt vectors using floating point arithmetic
while keeping the basis vectors in exact arithmetic in order to improve the
practical performance of the algorithm. The drawback of this approach is
that the basis reduction algorithm might become unstable. They propose
a floating point version with good stability, but cannot prove that the al-
gorithm always terminates. Their computational study indicates that their
version is stable on instances of dimension up to 125 having input numbers
of bit length as large as 300. Our experience is that one can use basis re-
duction for problems of larger dimensions if the input numbers are smaller,
but once the dimension reaches about 300-400, basis reduction will be slow.
Another version considered by Schnorr and Euchner is basis reduction with
deep insertions. Here, they allow for a vector b; to be swapped with a vec-
tor with lower index than k — 1. Schnorr [91], [92] also developed a variant
of Lovasz’ algorithm in which not only two vectors are interchanged during
the reduction process, but where blocks b;, bj;1,...,b;45_1 of B consecutive
vectors are transformed so as to minimize the j-th Gram Schmidt vector b;-.
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This so called block reduction produces shorter basis vectors but needs more
computing time. The shortest vector b}f in a block of size 3 is determined
by complete enumeration of all short lattice vectors. Schnorr and Hoérner
[94] develop and analyze a rule for pruning this enumeration process.

For the reader interested in using a version of Lovasz’ basis reduction
algorithm there are some useful libraries available on the Internet. Two of
them are LiDIA - a C++ Library for Computational Number Theory [77]
and NTL - a Library for doing Number Theory, developed by V. Shoup
[102].

3.3 Korkine-Zolotareff reduction and fast algorithms for the
shortest vector problem

As we have mentioned in Section 3.1, one can compute a shortest vector of
a lattice that is represented by a Lovasz-reduced basis by,...,b, in 20(n?)
steps via enumerating the candidates > 7, A; bj, where [);] < 2n(n=1)/4 and
choosing the shortest nonzero vector from this set.

Kannan [64, 66] provided an algorithm for the shortest vector problem,
whose dependence on the dimension is 20("1°€™)  Helfrich [57] improved
Kannan’s algorithm. Recently, Ajtai, Kumar and Sivakumar [8] presented
a randomized algorithm for the shortest vector problem, with an expected
dependence of 2°("). In the following, we briefly review the main idea of
Kannan’s algorithm and the improvement by Helfrich, see also [65]. Recall
the Gram-Schmidt orthogonalization b7, ..., b}, of a lattice basis by, ..., b,
from Section 2.2.

A lattice basis by,...,b, is Korkine-Zolotareff reduced, or K-Z reduced
for short, if the following conditions hold.

1. The vector b; is a shortest vector of the lattice generated by by, ..., by,.

2. The numbers p;, in the Gram-Schmidt orthogonalization of by, ..., b,
satisfy |p;k| < 1/2, cf. Section 3.2, Expression (8).

3. If b, ...,b], denote the projection of by,...,b, onto the orthogonal
complement of the space generated by by, then b),..., b/, is Korkine-
Zolotareff reduced.

A two-dimensional lattice basis that is K-Z reduced is also called Gaufs
reduced, see [49]. The algorithm of Kannan computes a Korkine-Zolotareff
reduced basis in dimension n by first computing a partially Korkine-Zolotareff
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reduced lattice basis, from which a shortest vector is among 2°(*1°67) can-

didates. The basis is partially Korkine-Zolotareff reduced with the help of
an algorithm for Korkine-Zolotareff reduction in dimension n — 1.

With a shortest vector at hand, one can then compute a fully K-Z re-
duced basis by K-Z reducing the projection along the orthogonal comple-
ment of this shortest vector. A lattice basis by, ..., b, is partially Korkine-
Zolotareff reduced or partially K-Z reduced for short, if it satisfies the fol-
lowing properties.

1. If b),...,bl denotes the projection of by,..., b, onto the orthogonal
complement of the space generated by by, then b),. .., b/, is Korkine-
Zolotareff reduced.

2. The numbers ji; in the Gram-Schmidt orthogonalization of by, ..., b,
satisfy |pj| < 1/2.

3. [lball = 1/2 |-

Notice that, once Conditions 1 and 3 hold, Condition 2 can be satisfied,
as explained in Section 3.2, via a size reduction step. Size reduction does
not destroy Conditions 1 and 3. Condition 1 can be satisfied by applying
Kannan’s algorithm for full K-Z reduction to bj,...,b., and applying the
transformation to the original vectors bo,...,b, If then Condition 3 is not
satisfied, then Helfrich [57] has proposed to replace by and by with the Gauf-
reduction of this pair, or equivalently its K-Z reduction. Clearly, if by, bs is
Gauf-reduced, which means that ||b;|| < ||b2]| and the angle enclosed by b;
and bs is at least 60° and at most 120°, then Condition 3 holds.

The following algorithm computes a partially K-Z reduced basis from a
given input basis by,...,b,. It uses as a subroutine an algorithm to K-Z

reduce the lattice basis b),...,b.,.

Algorithm 2 (Partial K-Z reduction).

1. Apply Lovasz’ basis reduction algorithm to by,...,b,.

2. K-Z reduce b),...,b!, and apply the corresponding transformation to
bo, ..., bn.
3. Perform size reduction on by, ..., b,.

4. If ||by|| < 1/2||b1||, then replace by, be by its Gaul reduction and go
to Step 2.
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We show in a moment that we can extract a shortest vector from a
partially K-Z reduced basis in 20(nlogn) gtens hut before, we analyze the
running time of the algorithm.

Theorem 3 ([57]). Step 4 of Algorithm 2 is executed at most logn + 6
times.

Proof. Let v be a shortest vector and let bq,...,b, be the lattice basis
immediately before Step 4 of Algorithm 2 and let b5,...,b! denote the
projection of bs, ..., b, onto the orthogonal complement of by.

If Step 4 is executed, then v is not equal to by. Then clearly, the projec-
tion of v onto the orthogonal complement of by is nonzero. Since b}, ..., b/,
is K-Z reduced it follows that ||v| > ||by]| holds. Denote the Gauf reduction
of by, by by by, by. The determinant of L(by, be) is equal to ||by|| ||bS||. After
the Gaufl reduction in Step 4, we have therefore

lorll < 2/ liball 183 (16)
< 2V/|buff{o]- (17)

Dividing this inequality by ||v|| gives

[orll o /110l

loll =V ol

Thus, if bgi) denotes the first basis vector after the i-th execution of Step 4,
one has

(i) 01\ /2
16 §4(nb1 ||> | (18)

]l ]l

Since we start with a Lovasz reduced basis, we know that ||b§0)||/||'v|| <
2(n=1)/2 holds, and consequently that ||b§1°gn)||/||’v|| < 8. Each further Gaufl
reduction decreases the length of the first basis vector by at least 3/4. There-
fore the number of runs through Step 4 is bounded by logn + 6. O

We now argue, that with such a partially K-Z reduced basis by, ..., b,
at hand, one only needs to check O(n)™ candidates for the shortest vector.
Let v = Z;L:1 Ajb; be a shortest vector. After rewriting each b; in terms of
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the Gram-Schmidt orthogonalization one obtains

v o= Z Z()\jujkb;ﬁ)

j=1k=1

= > O Nju)by

k=1 j=k

The length of v satisfies

lll =1 ymg 1B (19)

k=1 j=k

Consider the coefficient ¢, = |Appinn| = |An| of ||b}|| in (19). We can
bound this absolute value by |A,| < ||[v||/||b5]] < ||b1]|/]|b;||- This leaves us
1+2]|b1]|/||by,|| possibilities for A,,. Suppose now that we picked A, ..., \j11
and inspect the coefficient ¢; of [|bj]| in (19), which is

n

¢ = 1Y etk

k=j

n
= |Aj+ Z (Akhirg)]-
k=j+1
Since the inequality ¢; < [|b1||/||b} || must hold, this leaves only 1+2(|b1 || /|| ||
possibilities to pick A\;. Thus by choosing the coefficients Ay, ..., A; in this
order, one has at most [[7_; (1 + 2[[b1]|/|[b]]|) candidates.

Suppose ||bj|| > ||by1]| for some j. Then b; can never have a nonzero
coefficient \; in a shortest vector representation v = Z?Zl Ajb;. Because
in that case, v has a nonzero component in its projection to the orthogonal
complement of bjR + ...+ b;_1R and since b),...,b!, is K-Z reduced, this
implies that [|v|[ > ||} > ||b1]|, which is impossible. Thus we can assume
that [|b7|| < ||b1]| holds for all j = 1,...,n. Otherwise, b; can be discarded.
Therefore the number of candidates N for the tuples (A1,...,\,) satisfies

N < H1+2||b1||/||b*||)

IN

H 3161 l[/11051)

= 3"Ilblll /d(L).
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Next we give an upper bound for ||bi||. If b; is a shortest vector, then
Minkowski’s theorem, (Theorem 1 in Section 2.2) guarantees that ||b| <
/n d(L)Y/™ holds. If by is not a shortest vector, then the shortest vector
v has a nonzero projection onto the orthogonal complement of b; R. Since

5y ..., bl is K-Z reduced, this implies that ||v| > ||bS| > 1/2]|by]|, since
the basis is partially K-Z reduced. In any case we have ||by | < 2+/n d(L)'/™
and thus that N < 6" n"/2,

Now it is clear how to compute a K-Z reduced basis and thus a shortest
vector. With an algorithm for K-Z reduction in dimension n — 1, one uses
Algorithm 2 to partially K-Z reduce the basis and then one checks all pos-
sible candidates for a shortest vector. Then one performs K-Z reduction on
the basis for the projection onto the orthogonal complement of the short-
est vector. Kannan [66] has shown that this procedure for K-Z reduction
requires O(n)™ ¢ operations, where ¢ is the binary encoding length of the
initial basis and where the operands during the execution of the algorithm
have at most O(n?¢p) bits.

Theorem 4 ([66]). Let by,...,b, be a lattice basis of binary encoding
length . There exists an algorithm which computes a K-Z reduced ba-
sis of L(b1,...,by) with O(n)"™ ¢ arithmetic operations on rationals of size

O(n%y).

Further notes. Van Emde Boas [45] proved that the shortest vector prob-
lem with respect to the /o, norm is NP-hard, and he conjectured that it is
NP-hard with respect to the Euclidean norm. In the same paper he proved
that the closest vector problem is NP-hard for any norm. Recently substan-
tial progress has been made in gaining more information about the com-
plexity status of the two problems. Ajtai [7] proved that the shortest vector
problem is NP-hard for randomized problem reductions. This means that
the reduction makes use of results of a probabilistic algorithm. These re-
sults are true with probability arbitrarily close to one. Ajtai also showed
that approximating the length of a shortest vector in a given lattice within
a factor 1+1/ 27° is NP-hard for some constant ¢. The non-approximability
factor was improved to (1+1/n€) by Cai and Nerurkar [21]. Micciancio [81]
improved this factor substantially by showing that it is NP-hard to approxi-
mate the shortest vector in a given lattice within any constant factor less that
V/2 for randomized problem reductions, and that the same result holds for
deterministic problem reductions (the “normal” type of reductions used in
an NP-hardness proof) under the condition that a certain number theoretic
conjecture holds. Micciancio’s results hold for any /, norm. Goldreich and
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Goldwasser [51] proved that it is not NP-hard to approximate the shortest
vector, or the closest vector, within a factor y/n unless the polynomial-time
hierarchy collapses. Goldreich et al. [52] show that, given oracle access to a
subroutine that returns approximate closest vectors in a given lattice, one
can find in polynomial time approximate shortest vectors in the same lattice
with the same approximation factor. This implies that the shortest vector
problem is not harder than the closest vector problem. From the other side,
Kannan [65] showed that any algorithm producing an approximate short-
est vector with approximation factor f(n), where f(n) is a nondecreasing
function, can be used to produce an approximate closest vector to whithin
n3/2f(n)%. For a recent overview on complexity results related to lattice
problems, see for instance Cai [20], and Nguyen and Stern [87].

Kannan [66] also developed an exact algorithm for the closest vector
problem, see also Helfrich [57] and Blomer [14].

3.4 The generalized basis reduction algorithm

In the generalized basis reduction algorithm a norm related to a full-dimen-
sional compact convex set C is used, instead of the Euclidean norm as in
Lovész’ algorithm. A compact convex set C C R™ that is symmetric about
the origin gives rise to a norm F(c) = inf{t > 0 | ¢/t € C}. Lovész and
Scarf [79] call the function F' the distance function with respect to C. As in
Lovasz’ basis reduction algorithm, the generalized basis reduction algorithm
finds short basis vectors with respect to the chosen norm. Moreover, the first
basis vector is an approximation of the shortest nonzero lattice vector.
Given the convex set C we define a dual set C* = {y | yTc < 1 forall c €
C'}. We also define a distance function associated with a projection of C.
Let b1,...,b, be a basis for Z", and let C; be the projection of C' onto the
orthogonal complement of by, ..., b;_1. We have that ¢ = 8;b;+---+5,b, €
C}; if and only if there exist a1, ..., a1 such that c+a1b1+---+oj_1bj_1 €
C. The distance function associated with C; is defined as:
Fj(c) = min F(C+a1b1 -+ .- —|—Oz]‘_1b]‘_1). (20)
Qs QG —1
Using duality, one can show that Fj(c) is also the optimal value of the
maximization problem:

Fj(c) =max{c'z |z€ C*, bT2=0,.. .,b?,lz = 0}. (21)

In Expression (21), note that only vectors z that are orthogonal to the basis
vectors by, ...,b;_1 are considered. This is similar to the role played by the
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Gram-Schmidt basis in Lovasz’ basis reduction algorithm. Also, notice that
if C' is a polytope, then (21) is a linear program. The distance function F
has the following properties:

e F' can be computed in polynomial time,
e [F'is convex,

o F(—x) = F(x),

o F(tx) =tF(x) for t > 0.

Lovasz and Scarf use the following definition of a reduced basis. A basis
bi,...,b, is called reduced in the sense of Lovasz and Scarf if

Fj(bj_H —f—ubj) > Fj(bj+1) for 1 <7 <n—1 and all integers u, (22)

Fi(bjs1) > (1 Fj(b;) for 1<j<n—1, (23)

where € satisfies 0 < € < % A Dbasis by, ..., b,, not necessarily reduced, is
called proper if

Fk(bj + ,ubk) > Fk(bj) for1<k<j<n. (24)
The algorithm is called generalized basis reduction since it generalizes Lovasz’
basis reduction algorithm in the following sense. If the convex set C is an
ellipsoid, then a proper reduced basis is precisely a Lovasz-reduced basis.

An important question is how to check whether Condition (22) is satisfied
for all integers p. Here we make use of the dual relationship between For-
mulations (20) and (21). We have the following equality: min,cpr Fj(bj+1 +
ab;) = Fj11(bj41). Let a* denote the optimal a in the minimization. The
function F} is convex, and hence the integer p that minimizes Fj(b;j41+ ub;)
is either |a* | or [a*]. If the convex set C is a rational polytope, then a* € Q
is the optimal dual variable corresponding to the constraint b]Tz =0 in the
optimization problem Fjii(bjy1), cf. (21), which implies that the integer
that minimizes Fj(b;11 + pub;) can be determined by solving two additional
linear programs, unless a* is integral.

Condition (24) is analogous to Condition (8) of Lovéasz’ basis reduction
algorithm, and is violated if adding an integer multiple of by to b; yields
a distance function value Fj(b; + pby) that is smaller than Fj(b;). In the
generalized basis reduction algorithm we only check whether the condition
is satisfied for kK = j — 1 (cf. Condition (22)), and we use the value of y that
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minimizes F};(b;41+ pub;) as mentioned above. If Condition (22) is violated,
we do a size reduction, i.e., we replace bj1 by b; 1 + ub;.

Condition (23) corresponds to Condition (9) in Lovéasz’ algorithm, and
ensures that the basis vectors are in the order of increasing distance function
value, aside from the factor (1—e). Recall that we want the first basis vector
to be an approximation of the shortest lattice vector. If Condition (23) is
violated we interchange vectors b; and b; 1.

The algorithm works as follows. Let C be a compact convex set, and let
bi,...,b, be an initial basis for Z". Typically b; = e;, where e; is the j-th
unit vector in R™. Let j be the first index for which Conditions (22) or (23)
are not satisfied. If (22) is violated, we replace b;y1 by bj;1 + ub; with the
appropriate value of p. If Condition (23) is satisfied after the replacement,
we let j := j + 1. If Condition (23) is violated, we interchange b; and
bjt1,and let j := 7 —11if 7 > 2. If 5 = 1, we remain at this level. The
operations that the algorithm performs on the basis vectors are elementary
column operations as in Lovéasz’ algorithm. The vectors that we obtain
as output from the generalized basis reduction algorithm can therefore be
written as the product of the initial basis matrix and a unimodular matrix,
which implies that the output vectors form a basis for the lattice Z™. The
question is how efficient the algorithm is.

Theorem 5 ([79]). Let € be chosen as in (23), let v =2+ 1/log(1/(1 —
€)), and let B(R) be a ball with radius R containing C. Moreover, let
U = maxi<j<n{Fj(bj)}, where by,..., b, is the initial basis, and let V =
1/(R(nRU)™1).

The generalized basis reduction algorithm runs in polynomial time for
fired n. The maximum number of interchanges performed during the execu-
tion of the algorithm is

(7=1) (=)

It is important to notice that, so far, the generalized basis reduction algo-
rithm has been proved to run in polynomial time for fized n only, whereas
Lovész’ basis reduction algorithm runs in polynomial time for arbitrary n
(cf. Theorem 2).

We now give a few properties of a Lovéasz-Scarf reduced basis. If one
can obtain a basis by,..., b, such that Fy(by) < F(by) < --- < F,(by,),
then one can prove that by is the shortest integer vector with respect to
the distance function. The generalized basis reduction algorithm does not
produce a basis with the above property, but it gives a basis that satisfies
the following weaker condition.
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Theorem 6 ([79]). Let 0 < € < %, and let by,...,b, be a Lovdsz-Scarf
reduced basis. Then

1 .
Fj+1(bj41) 2 (5 — ) Fj(bj)  forl<j<n-—1.
We can use this theorem to obtain a result analogous to (14) of Proposition

2.

Proposition 4 ([79]). Let 0 < e < 3, and let by,...,b, be a Lovdsz-Scarf
reduced basis. Then

F(by) < (% _O'""F(z) forallwe x40,

We can also relate the distance function Fj(b;) to the j-th successive
minimum of F on the lattice Z™ (cf. Proposition 3). vi,...,v, are the
successive minima of F' on Z" if there are vectors xi,...,x, € Z" with
vj = F(x;), such that for each 1 < j < n, x; is the shortest lattice vector
(with respect to F') that is linearly independent of 1,..., ;1.

Proposition 5 ([79]). Let v1,...,v, denote the successive minima of F' on
the lattice Z™, let 0 < € < %, and let by, ..., b, be a Lovdsz-Scarf reduced
basis. Then

(- —€) ty <Fi(bj) < (5 —€f ™ forl<j<n.

The first reduced basis vector is an approximation of the shortest lattice
vector (Proposition 4). In fact the generalized basis reduction algorithm
can be used to find the shortest vector in the lattice in polynomial time
for fixed n. This algorithm is used as a subroutine of Lovasz and Scarf’s
algorithm for solving the integer programming problem “Is X N7Z" # (77
described in Section 4.3. To find the shortest lattice vector we proceed as
follows. If the basis by,...,b, is Lovéasz-Scarf reduced, we can obtain a
bound on the coordinates of lattice vectors ¢ that satisfy Fi(c) < Fi(by).
We express the vector ¢ as an integer linear combination of the basis vectors,
ie., ¢ = Aby + -+ Ayby, where \; € Z. We have

Fi(b1) = Fi(c) = Fu(c) = Fu(Anbn) = [An|Fr(bn), (25)

where the second inequality holds since F},(c¢) is more constrained than Fi(c)
(cf. (21)), the first equality holds due to the constraints b} z = 0, 1 < i <
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n — 1, and the second equality holds as F(tx) = tF(x) for ¢ > 0. We can
now use (25) to obtain the following bound on |A,|:

Fi(by) 1
Fp(bn) = (% — et

[An| <

where the last inequality is obtained by applying Theorem 6 iteratively.
Notice that the bound on )\, is a constant for fixed n. In a similar fashion
we can obtain a bound on \; forn—1 > j > 1. Suppose that we have chosen
multipliers A,,...,\j;1 and that we want to determine a bound on A;. Let
v* be the value of v that minimizes Fj(A,by + - - - + X\j11bj41 + vbj). If this
minimum is greater than Fij(b;), then there does not exist a vector ¢, with
Ans---;Aj41 fixed such that Fi(c) < Fi(bi), since in that case Fi(b1) <
Fj(Anbn + -+ + Aj1bjt1 +77b5) < Fj(Anbn + -+ Ajbj) = Fj(c) < Fi(e),
which yields a contradiction. If the minimum is less than or equal to F;(b1),
then we can obtain the bound:

|)\j_'7*|§2F1(b1)§ - 2 —
o) = G-y
Hence, we obtain a search tree that has at most n levels, and, given the
bounds on the multipliers A;, each level consists of a constant number of
nodes if n is fixed.

The generalized basis reduction algorithm was implemented by Cook,
Rutherford, Scarf, and Shallcross [29], and by Wang [104]. Cook et al. used
generalized basis reduction to derive a heuristic version of the integer pro-
gramming algorithm by Lovédsz and Scarf (see Section 4.3) to solve difficult
integer network design instances. Wang [104] solved both linear and non-
linear integer programming problems using the generalized basis reduction
algorithm as a subroutine. For an small example on how to use the gener-
alized basis reduction algorithm, we refer to Section 4.3, Example 2.

3.5 Fast algorithms in the bit model

The running times of the algorithms for lattice basis reduction depend on
the number of bits that are necessary to represent the numbers of the input
basis. The complexity model that reflects the fact that arithmetic operations
on large numbers do not come for free is the bit-complexity model. Addition
and subtraction of ¢-bit integers takes O(¢p) time. The current state of the
art method for multiplication [97] shows that the bit complexity M (yp) of
multiplication and division is O(plog ¢ log log ¢), see [6, p. 279].
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The use of this complexity model is best illustrated with algorithms
to compute the greatest common divisor of two integers. The Fuclidean
algorithm for computing the greatest common divisor ged(ag,a;) of two
integers ag,a; > 0 computes the remainder sequence ag,a,...ar 1,0, €
Nso, where a;, 7 > 2 is given by a;_ 2 = a;_1¢;—1 + a;, with ¢; € N, 0 <
a; < aj_1, and where ay divides ax_1 exactly. If a9 = F,, and a1 = F,_1,
were F; denotes the i-th Fibonacci number, then the remainder sequence,
generated by the Euclidean algorithm, is the sequence of Fibonacci numbers
F,,F,_1,...,Fp. Since the size of the n-th Fibonacci number is O(n), it
follows that the Euclidean algorithm requires Q(¢?) bit-operations on an
input of size . It can be shown, that the Euclidean algorithm runs in time
O(p?) even if one uses the naive algorithms for basic arithmetic operations,
see [71]. However, a gcd can be computed in O(M (¢)log ¢) bit operations
with the algorithm of Schénhage [95].

The greatest common divisor of two integers a and b is the absolute value
of the shortest vector of the 1-dimensional lattice aZ + bZ. Thus shortest
vector computation and lattice basis reduction form a natural generaliza-
tion of greatest common divisor computation. In this section we treat the
dimension n as a constant and consider the bit-complexity of the shortest
vector problem and lattice basis reduction in fixed dimension.

Schonhage [96] and Yap [105] proved that a 2-dimensional lattice basis
can be K-Z reduced (or Gaufl reduced) with O(M (¢)log ¢) bit-operations.
In fact, 2-dimensional K-Z reduction can be solely based on Schonhage’s [95]
classical algorithm on the fast computation of continued fractions and the
original reduction algorithm of Gau8 [49], see [39].

Theorem 7 ([96, 105]). Let B € Z?*? be a two dimensional lattice basis
with size(B) = ¢. Then B can be K-Z reduced with O(M (p)log ) bit-
operations.

Eisenbrand and Rote [43] showed that a lattice basis B = (b1, ..., by) €
2™ of binary encoding length ¢ can be reduced in O(M (p) log™ ! ¢) bit-
operations. In this section we describe how this result can be obtained
with the algorithm for partial K-Z reduction, presented in Section 3.3. For
the three-dimensional case, van Sprang [103] and Semaev [100] provided an
algorithm which requires O(?) bit-operations, using the naive quadratic
algorithms for multiplication and division.

Theorem 8. Let B € Z™*™ be a lattice basis with size(B) = ¢. Then B
can be K-Z reduced with O(M (p)(log¢)"~1) bit-operations.
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To prove this theorem, recall Algorithm 2 for partial K-Z reduction. We
modify this algorithm as follows.

e Instead of computing a Lovédsz reduced basis in Step 1, compute the
Hermite normal form of B

e The stopping condition in Step 4 is modified, such that we go to Step 2
as long as ||by|| > 8 /n d(L)'/™.

We assume that a (n—1)-dimensional rational lattice basis B’ € Z(»~1x*(n=1)

of size ¢ can be K-Z reduced with O(M (¢)(log )" 2) bit operations.

We now analyze this modified algorithm. Recall that the HNF can
be computed with a constant number of extended-gcd computations and
a constant number of arithmetic operations, thus with O(M (¢)logy) bit-
operations. If by, ..., b, is in Hermite normal form, then b; is a vector which
has zeroes in its n — 1 first components, and a factor of the determinant in
its last component. Thus, by swapping b; and b,, one has a basis, whose
first vector b; satisfies ||b1|| < d(L).

Minkowski’s theorem (Theorem 1 in Section 2.2) implies that the length
of the shortest vector v of L is bounded by |v|| < v/n d(L)'/". Thus in the
proof of Theorem 3 we can replace inequality (17) by the inequality

1Bull < 2/16u v/ (L)

Following the proof, we replace inequality (18) by

i (1/2)
164 2
S| s | Y (N s | B . (26)
Vn d(L)t/n Vn d(L)t/n

This means that after O(loglog(d(L)) iterations of the outer loop of the
modified Algorithm 2, one has ||by|| < 8+/n d(L)'/". Tt follows that the
number of runs through the outer loop is bounded by a O(logy). Thus
using the assumption that an (n — 1)-dimensional lattice basis can be K-
Z reduced in O(M (p)(log )" ~2), we see that the modified Algorithm 2 runs
with O(M (¢)(log )" !) bit-operations.

How quickly can the shortest vector be determined from the returned
basis? Following the discussion preceding Theorem 4 we obtain the upper
bound N < 3*(8-8-/n - d(L)/™)/d(L) = 24"n™/?, which is a constant in
fixed dimension. This proves Theorem 8.

It is currently not known whether a shortest vector can be computed in
O(M (p) log ¢) bit-operations.
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4 Algorithms for the integer feasibility problem in
fixed dimension

Let A be a rational m x n-matrix and let d be a rational m-vector. Let
X ={x € R" | Az < d}. We consider the integer feasibility problem in the
following form:

Does there exist an integer vector © € X7 (27)

Karp [69] showed that the zero-one integer feasibility problem is NP-complete,
and Borosh and Treybig [17] proved that the integer feasibility problem (27)
belongs to NP. Combining these results implies that (27) is NP-complete.
The NP-completeness of the zero-one version is a fairly straightforward con-
sequence of the proof by Cook [26] that the satisfiability problem is NP-
complete. An important open question was still: Can the integer feasibility
problem be solved in polynomial time in bounded dimension? If the dimen-
sion n = 1, the affirmative answer is trivial. Some special cases of n = 2
were proven to be polynomially solvable by Hirschberg and Wong [60], and
by Kannan [63]. Scarf [90] showed that (27), for the general case n = 2, is
polynomially solvable. Both Hirschberg and Wong, and Scarf conjectured
that the integer feasibility problem could be solved in polynomial time if the
dimension is fixed. The proof of this conjecture was given by H. W. Lenstra,
Jr. [76].

Let K be a full-dimensional closed convex set in R given by integer
input. The width of K along the nonzero integer vector v is defined as

wy(K) = max{vTe : z € K} —min{vlz: = c K}. (28)

The width of K, w(K), is the minimum of its widths along nonzero integer
vectors v € Z" \ {0}. Notice that this is different from the definition of the
geometric width of a polytope (see p 6 in [54]). Khinchine [70] proved that
if K does not contain a lattice point, then there exists a nonzero integer
vector ¢ such that we(K) is bounded from above by a constant depending
only on the dimension.

Theorem 9 (Khinchine’s flatness theorem [70]). There exists a con-
stant f(n) depending only on the dimension n, such that each convex body
K CR™ containing no integer points has width at most f(n).

Currently the best asymptotic bounds on f(n) are given in [9]. Tight bounds
seem to be unknown already in dimension 3.

28



To appreciate Khinchine’s results we first have to interpret what the
width of K in direction v means. To do that it is easier to look at the
integer width of K in the nonzero integer direction v, wl(K) = |max{vTz :
x € K}|—[min{vTz : £ € K}]+1. The integer width of K in the direction
v is the number of lattice hyperplanes intersecting K in direction v. The
width w, (K) is an approximation of the integer width, so Khinchine’s results
says that if K is lattice point free, then there exists an integer vector ¢ such
that the number of lattice hyperplanes intersecting K in direction ¢ is small.
The direction c is often referred to as a “thin” direction, and we say that K
is “thin” or “flat” in direction c.

The algorithms we are going to describe in this section do not directly use
Khinchine’s flatness theorem, but they do use ideas that are related. First,
we are going to find a point &, not necessarily integer, that lies approximately
in the center of the polytope X. Given the point * we can quickly find a
lattice point y reasonably close to x. Either y is also in X, in which case
our feasibility problem is solved, or it is outside of X. If y € X, then we
know X cannot be too big since & and y are close. In particular, we can
show that if we use a reduced basis and branch in the direction of the longest
basis vector, then the number of lattice hyperplanes intersecting X is going
to be bounded by a constant depending only on n. Then, for each of these
hyperplanes we consider the polytope formed by the intersection of X with
that polytope. This is a polytope in dimension less than or equal to n — 1.
For the new polytope we repeat the process. We can illustrate the algorithm
by a search tree that has at most n levels, and a number of nodes at each
level that is bounded by a constant depending only on the dimension on
that level.

In the following three subsections we describe algorithms, based on the
above idea, for solving the integer feasibility problem (27) in polynomial
time for fixed dimension. Lenstra’s algorithm is presented in Section 4.1.
In Section 4.2 we present a version of Lenstra’s algorithm that follows from
Lovész’ theorem on thin directions. Both of these algorithms use Lovész’
basis reduction algorithm. In Section 4.3 we describe the algorithm of Lovasz
and Scarf [79], which is based on the generalized basis reduction algorithm.
Finally, in Section 4.4 we give an outline of Barvinok’s algorithm to count
integer points in integer polytopes. This algorithm does not use “width”
as the main concept, but exponential sums and decomposition of cones.
Barvinok’s algorithm runs in polynomial time if the dimension is fixed, so
his result generalizes Lenstra’s result.
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4.1 Lenstra’s algorithm

If one uses branch-and-bound for solving problem (27) it is possible, even
in dimension 2, to create an arbitrarily deep search tree for certain thin
polytopes, see e.g. [5]. Lenstra [76] suggested to transform the polytope
using a linear transformation 7 such that the polytope 7X becomes “round”
according to a certain measure. Assume without loss of generality that
the polytope X is full-dimensional and bounded, and let B(p,z) = {x €
R™ : ||z — p|| < z} be the closed ball with center p and radius z. The
transformation 7 that we apply to the polytope is constructed such that
B(p,r) C 7X C B(p, R) for some p € 7X, with r, R satisfying

R
—< 29
r = C2, ( )

where ¢y is a constant that depends only on the dimension n. Relation (29)
is the measure of “roundness” that Lenstra uses. For an illustration, see
Figure 4. Once we have transformed the polytope, we need to apply the

&)

(a) (b)
Figure 4: (a) The original polytope X is thin, and the ratio R/r is large.
(b) The transformed polytope 7X is “round”, and R/ is relatively small.

same transformation to the lattice, which gives us the following feasibility
problem that is equivalent to problem (27):

IstZ" Nn1tX # 07 (30)
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The vectors 7e;j, 1 < j < n, where e; is the j-th unit vector in R”, form a
basis for the lattice 7Z". If the polytope X is thin, then this will translate
to the lattice basis vectors T7ej, 1 < 7 < n in the sense that these vectors are
long and non-orthogonal. This is where lattice basis reduction becomes use-
ful. Once we have the transformed polytope 7X, Lenstra uses the following
lemma to find a lattice point quickly.

Lemma 1 ([76]). Let by,...,b, be any basis for L. Then for all x € R™
there exists a vector y € L such that

1
[l —yl[* < Z([ba]* + - + [[ba] ).

The proof of this lemma suggests a fast construction of the vector y € L
given the vector .

Next, let L = 77", and let by,...,b, be a basis for L such that (10)
holds. Notice that (10) holds if the basis is reduced. Also, reorder the
vectors such that ||b,|| = maxi<;j<n{||b;||}. Let = p where p is the center
of the closed balls B(p,r) and B(p,R). Apply Lemma 1 to the given x.
This gives a lattice vector y € 7Z" such that
(1a]2 + -+ [ba][?) <

lp —ylI” < -1 [ (31)

RN
ANy

in polynomial time. We now distinguish two cases. Either y € 7X or
y ¢ 7X. In the first case we are done, so assume we are in the second case.
Since y ¢ 7X we know that y is not inside the ball B(p,r) as B(p,r) is
completely contained in 7X. Hence we know that ||p — y|| > 7, or using
(31), that

1
r< sVl (32)

Below we will describe the tree search algorithm and argue why it is poly-
nomial for fixed n. The distance between any two consecutive lattice hyper-
planes, as defined in Corollary 1, is equal to h. We now create t subproblems
by considering intersections between the polytope 7.X with ¢ of these paral-
lel hyperplanes. Each of the subproblems has dimension at least one lower
than the parent problem and they are solved recursively. The procedure of
splitting the problem into subproblems of lower dimension is called “branch-
ing”, and each subproblem is represented by a node in the enumeration tree.
In each node we repeat the whole process of transformation, basis reduction
and, if necessary, branching. The enumeration tree created by this recursive
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process is of depth at most n, and the number of nodes at each level is
bounded by a constant that depends only on the dimension. The value of ¢
will be computed below.

Let H, h and L' be defined as in Corollary 1 of Section 3.2, and its proof.
We can write L as

L=1L+7b, C H+7Zb, =Ugcz(H + kb,). (33)

So the lattice L is contained in countably many parallel hyperplanes. For
an example we refer to Figure 5. The distance between two consecutive

IRb; + Oby ]Rbl + b2 IRbl + 2b2

b1

| | | |
I I I I
>/ /

Figure b:

hyperplanes is h, and Corollary 1 says that h is bounded from below by
1 Y|bn||, which implies that not too many hyperplanes intersect 7X. To
determine precisely how many hyperplanes intersect 7.X, we approximate
7X by the ball B(p,R). If t is the number of hyperplanes intersecting
B(p, R) we have

2R
t—1< —.
~ h

Using the relationship (29) between the radii R and 7 we have 2R < 2rcy <
cav/1| by |, where the last inequality follows from (32). Since h > ¢; *||by||,

we get the following bound on the number of hyperplanes that we need to
consider:

2R
t—1< 7 <0102\/ﬁ,

which depends on the dimension only. The values of the constants ¢; and
co that are used by Lenstra are: ¢; = on(n=1)/4 and cy = 2n3/2. Lenstra
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discusses ways of improving these values. To determine the values of k£ in
expression (33), we express p as a linear combination of the basis vectors
bi,...,b,. Recall that p is the center of the ball B(p, R) that was used to
approximate 7X.

So far we have not mentioned how to determine the transformation 7 and
hence the balls B(p,r) and B(p, R). We give the general idea here without
going into detail. First, determine an n-simplex contained in X. This can
be done in polynomial time by repeated calls to the ellipsoid algorithm.
The resulting simplex is described by its extreme points vg,...,v,. By
again applying the ellipsoid algorithm repeatedly we can decide whether
there exists an extreme point  of X such that if we replace v; by = we
obtain a new simplex whose volume is at least a factor of % larger than
the current simplex. We stop the procedure if we cannot find such a new
simplex. The factor % can be modified, but the choice will affect the value
of the constant ca, see [76] for further details. We now map the extreme
points of the simplex to the unit vectors of R**! so as to obtain a regular
n-simplex, and we denote this transformation by 7. Lenstra [76] shows that
7 has the property that if we let p=1/(n+1) Z?:o e;, where e; is the j-th
unit vector of R**! (i.e., p is the center of the regular simplex), then there
exist closed balls B(p,r) and B(p, R) such that B(p,r) C 7X C B(p,R)
for some p € 7X, with r, R satisfying R/r < ca.

Kannan [66] developed a variant of Lenstra’s algorithm. The algorithm
follows Lenstra’s algorithm up to the point where he has applied a linear
transformation to the polytope X and obtained a polytope 7X such that
B(p,r) C 7X C B(p,R) for some p € 7X. Here Kannan proceeds as fol-
lows. He applies a reduction algorithm to a basis of the lattice 7Z" that
produces a “reduced” basis defined differently to a Lovéasz’ reduced basis.
In particular, in Kannan’s reduced basis the first basis vector is the shortest
nonzero lattice vector. As in Lenstra’s algorithm two cases are considered.
Either 7.X is relatively large which implies that 7.X contains a lattice vector,
or 7X is small, which means that not too many lattice hyperplanes can in-
tersect 7.X. Each such intersection gives rise to a subproblem of at least one
dimension lower. Kannan’s reduced basis makes it possible to improve the
bound on the number of hyperplanes that has to be considered to O(n®/2).
Lenstra’s algorithm has been implemented by Gao and Zhang [47], and a
heuristic version of the algorithm has been developed and implemented by
Aardal et al. [1], and Aardal and Lenstra [4]
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4.2 Lovasz’ theorem on thin directions

Let E(z,D)={x ¢ R" | (x—2)"D '(x—2) < 1}. E(z, D) is the ellipsoid
in R™ associated with the vector z € R™ and the positive definite n xn matrix
D. The vector z is the center of the ellipsoid. Goffin [50] showed that for
any full-dimensional rational polytope X it is possible, in polynomial time,
to find a vector p € Q" and a positive definite n X n matrix D such that
1
E(p, mD) CXCE([,D). (34)
Grotschel, Lovasz and Schrijver [54] showed a similar result for the case
where the polytope is not given explicitly, but by a separation algorithm.
The norm // // defined by the matrix D! is given by //x// = VaD 'x.
Lovész used basis reduction with the norm // //, and the result by Goffin
to obtain the following theorem.

Theorem 10 (see [99]). Let Az < d be a system of m rational inequalities
in n variables, let X = {x € R" | Ax < d}, and let wc(X) be defined as
in Ezxpression (28). There exists a polynomial algorithm that finds either an
integer vector y € X, or a vector ¢ € Z" \ {0} such that

we(X) < n(n+ 1)2nn—1/4

We will sketch the proof of the theorem for the case that X is full-
dimensional and bounded. For the not full-dimensional case, and the case
where P is unbounded we refer to the presentation by Schrijver [99]. Notice
that the algorithm of Theorem 10 is polynomial for arbitrary n.

Proof of the full-dimensional bounded case: Assume that dim(X) = n. Here
we will not make a transformation to a lattice 7Z"™, but remain in the lattice
7". First, find two ellipsoids E(p, mD) and E(p, D), such that (34)
holds, by the algorithm of Goffin. Next, we apply basis reduction, using the
norm // // defined by D!, to the unit vectors ey, ..., e, to obtain a reduced
basis by, ..., b, for the lattice Z" that satisfies (cf. the second inequality of

(10))

I, //b; /] < 22 D/4 [det (DY), (35)

Next, reorder the basis vectors such that //b,// = maxi<j<n{//b;//}. After
reordering, inequality (35) still holds. Write p = Z;L:1 a;bj, and let y =
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2?21 [a;|bj. Notice that y € Z". If y € X we are done, and if not we know
that y ¢ E(p, (1/(n +1)*) D), so

1

g WP D - =Pl = //Z =[5 1)b;//*

From this expression we obtain

n

<Z — la;])//bi/] < //bn//

J=1

SO

2

onl] > ey

(36)

Choose a direction ¢ such that the components of ¢ are relatively prime
integers, and such that ¢ is orthogonal to the subspace generated by the
basis vectors by,...,b,—1. One can show, see Schrijver [99], pp 257258,
that if we consider a vector & such that £’ D'z < 1, then

cTz| < \/det(D)//b1//- -+ //bu_r/) < 2" VA b, )7t < 7”("; D) gn(n-1)/4
(37)

where the second inequality follows from inequality (35), and the last in-
equality follows from (36). If z € E(p, D), then

(2 =l < M O
which implies
we(X) = max{c’z|zc X} —min{clz|zec X} (38)

< max{c'z |z € E(p,D)} —min{c'z | x € E(p, D)}
< n(n+1)2n(nfl)/4,

which gives the desired result. O

Lenstra’s result that the integer feasibility problem can be solved in poly-
nomial time for fixed n follows from Theorem 10. If we apply the algorithm
implied by Theorem 10, we either find an integer point y € X or a thin di-
rection ¢, i.e., a direction ¢ such that equation (38) holds. Assume that the
direction c is the outcome of the algorithm. Let p = [min{c’z | x € X}].
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All points in X NZ" are contained in the parallel hyperplanes ¢! @ = ¢t where

t=p,...,p+n(n+ 1)2"(”_1)/4, so if n is fixed, then the number of hyper-
planes is constant, and each of them gives rise to a subproblem of dimension
less than or equal to n— 1. For each of these lower-dimensional problems we
repeat the algorithm of Theorem 10. The search tree has at most n levels
and the number of nodes at each level is bounded by a constant depending
only on the dimension.

Remark. The ingredients of Theorem 10 are actually present in Lenstra’s
paper [76]. In the preprinted version, however, the two auxiliary algorithms
used by Lenstra; the algorithm to make the set X appear round, and the ba-
sis reduction algorithm, were polynomial for fixed n only, which was enough
to prove his result that the integer programming feasibility problem can be
solved in polynomial time in fixed dimension. Later, Lovasz’ basis reduction
algorithm [75] was developed, and Lovész also pointed out that the “round-
ing” of X can be done in polynomial time for varying n due to the ellipsoid
algorithm. Lenstra uses both of these algorithms in the published version
of the paper.

4.3 The Lovasz-Scarf algorithm

The integer feasibility algorithm of Lovdsz and Scarf [79] determines, in
polynomial time for fixed n, either a certificate for feasibility, or a thin
direction of X. If a thin direction is found, then one needs to branch,
i.e., divide the problem into lower-dimensional subproblems, in order to
determine whether or not a feasible vector exists, but then the number of
branches is bounded by a constant for fixed n. If the algorithm indicates
that X contains an integer vector, then one needs to determine a so-called
Korkine-Zolotareff basis in order to construct a feasible vector. The Lovasz-
Scarf algorithm avoids the approximations by balls as in Lenstra’s algorithm,
or by ellipsoids as in the algorithm implied by Lovész’ result. Again, we
assume that X = {& € R® | Ax < d} is bounded, rational, and full-
dimensional.

Let (X —X) ={(zx—y) | z € X, y € X)} be the difference set
corresponding to X. Recall that (X —X)* denotes the dual set corresponding
to (X — X), and notice that (X — X)* is symmetric about the origin. The
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distance functions associated with (X — X)* are:

Fj(c) = min F(c+a1b1 —f—---—f—Ozj_lbj_l)

Qi,...,05 1€

= max{cT(:n—y)|cceX, yGX, b,{(m_y):07---71)?71(:1:_?/):0}7

(cf. expressions (20) and (21)). Here, we notice that F(c) = Fi(c) is the
width of X in the direction ¢, we(X) (see Expression (28) in the introduction
to Section 4). From the above we see that a lattice vector ¢ that minimizes
the width of the polytope X is a shortest lattice vector for the polytope
(X —X)*

To outline the algorithm by Lovasz and Scarf we need the results given
in Theorem 11 and 12 below, and the definition of a generalized Korkine-
Zolotareff basis. Let bj, 1 < j < n be defined recursively as follows. Given
bi,...,bj_1, the vector b; minimizes F;(x) over all lattice vectors that are
linearly independent of by, ...,bj_1. A generalized Korkine-Zolotareff (KZ)
basis is defined to be any proper basis bj,...,b], associated with b;, 1 <
j < n (see Expression (24) for the definition of a proper basis). The notion
of a generalized KZ basis was introduced by Kannan and Lovész [67], [68].
Kannan and Lovész [67] gave an algorithm for computing a generalized KZ
basis in polynomial time for fixed n. Notice that b} in a generalized KZ
basis is the shortest non-zero lattice vector.

Theorem 11 ([68]). Let F(c) be the length of the shortest non-zero lattice
vector ¢ with respect to the set (X — X)*, and let pxz = > 74 F;(b}), where
b;-, 1 < 5 < n is a generalized Korkine-Zolotareff basis. There exists a
universal constant co such that

F(e)pkz <co-n-(n+1)/2.

To derive their result, Kannan and Lovész used a lower bound on the product
of the volume of a convex set C' C R" that is symmetric about the origin,
and the volume of its dual C*. The bound, due to Bourgain and Milman
[18], is equal to CE—}}’[, where cpy is a constant depending only on n. In

Theorem 11 we have ¢y = C];lM, see also the remark below.

Theorem 12 ([68]). Let by,...,b, be any basis for Z", and let X be a
bounded convex set that is symmetric about the origin. If p = Z?Zl F;(b;) <
1, then X contains an integer vector.

The first step of the Lovasz-Scarf algorithm is to compute the shortest
vector ¢ with respect to (X — X)* using the algorithm described in Section
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34. If F(e) > ¢p-n-(n+ 1)/2, then pkz < 1, which by Theorem 12
implies that X contains an integer vector. If F(c) < ¢p-n - (n+ 1)/2,
then we need to branch. Due to the definition of F(¢) we know in this
case that we(X) < ¢p-n - (n+ 1)/2, which implies that the polytope X
in the direction ¢ is “thin”. As in the previous subsection we create one
subproblem for every hyperplane ¢’z = p,...,¢’x = p+co-n-(n+1)/2,
where 1 = [min{c’x | £ € X}]. Once we have fixed a hyperplane ¢!z = t,
we have obtained a problem in dimension less than or equal to n — 1, and
we repeat the process. This procedure creates a search tree that is at most
n deep, and that has a constant number of branches at each level when n
is fixed. The algorithm called in each branch is, however, polynomial for
fixed dimension only. First, the generalized basis reduction algorithm runs
in polynomial time for fixed dimension, and second, computing the shortest
vector ¢ is done in polynomial time for fixed dimension. An alternative
would be to use the first reduced basis vector with respect to (X — X)*,
instead of the shortest vector c. According to Proposition 4, F(by) < (3 —
€)1 ""F(c). In this version of the algorithm we would first check whether
F(by) > co-n-(n+1)/(2(3—€)'™™). If yes, then X contains an integer vector,
and if no, we need to branch, and we create at most co-n-(n+1)/(2(3—€)" 1)
hyperplanes.

If the algorithm terminates with the result that X contains an integer
vector, then Lovész and Scarf describe how such a vector can be constructed
by using the Korkine-Zolotareff basis (see [79], proof of Theorem 10).

Lagarias, Lenstra, and Schnorr [73] derive bounds on the Euclidean
length of Korkine-Zolotareff reduced basis vectors of a lattice and its dual
lattice. The bounds are given in terms of the successive minima of L and
the dual lattice L*. Later, Kannan and Lovéasz [67], [68] introduced the
generalized Korkine-Zolotareff basis, as defined above, and derived bounds
of the same type as in the paper by Lagarias et al. These bounds were used
to study covering minima of a convex set with respect to a lattice, such as
the covering radius, and the lattice width. An important result by Kannan
and Lovasz is that the product of the first successive minima of the lattices
L and L* is bounded from above by cg - n. This improves on a similar result
of Lagarias et al. and implies Theorem 11 above. There are many inter-
esting results on properties of various lattice constants. Many of them are
described in the survey by Kannan [65], and will not be discussed further
here.

Example 2. The following example demonstrates a few iterations with the
generalized basis reduction algorithm. Consider the polytope X = {x €
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R2>0 | x1 4 Txe > 7, 201+ Txe < 14, —5x1 + 429 < 4}. Let j =1 and e = i.
Assume we want to use the generalized basis reduction algorithm to find a
direction in which the width of X is small. Recall that a lattice vector ¢
that minimizes the width of X is a shortest lattice vector with respect to
the set (X — X)*. The first reduced basis vector is an approximation of the
shortest vector for (X — X)* and hence an approximation of the thinnest
direction for X. The distance functions associated with (X — X)* are

Fj(c) =max{c’(z —y) |z € X, ye X, bl (x —y)=0,1<i<j—1}.

-(1) o (1)

We obtain Fi(by) = 7.0, Fi(b2) = 1.8, =0, and Fi(ba + 0b;) = 1.8, see
Figure 6. Here we see that the number of lattice hyperplanes intersecting X
in direction b; is 8. The hyperplanes are 1 =0, 1 =1,..., 1 = 7. The
number of hyperplanes intersecting X in direction bs is 2: 2 =0, z9 = 1.

The initial basis is

T2

Figure 6: The unit vectors form the initial basis.

Checking Conditions (22) and (23) shows that Condition (22) is satisfied
as Fi(bz + 0b1) > Fi(b2), but that Condition (23) is violated as Fi(b2) #
(3/4)F1(b1), so we interchange by and bz and remain at j = 1.

Now we have j =1 and

(1) »=(2)

F]-(bl) = 187 Fl(bQ) - 70, m = 4, and Fl(b2 +4b1) =39
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Condition (22) is violated as Fj(bz2 + 4b1) 2 Fi(b2), so we replace by by
by + 4b; = (1,4)T. Given the new basis vector by we check Condition (23)
and we conclude that this condition is satisfied. Hence the basis

o=(1) n- (1)

is Lovész-Scarf reduced, see Figure 7. In the root node of our search tree we
would create two branches corresponding to the lattice hyperplanes o = 0
and zo = 1.

Z2
» b2 . ° (] . (] .
bl 1 ° ° ° o ° ° ]

Figure 7: The reduced basis yields thin directions for the polytope.

4.4 Counting integer points in polytopes

Barvinok [12] showed that there exists a polynomial time algorithm for
counting the number of integer points in a polytope if the dimension is
fixed. Barvinok’s result therefore generalizes the result of Lenstra [76]. Be-
fore Barvinok developed his counting algorithm, polynomial algorithms were
only known for dimensions n = 1,2,3,4. The cases n = 1,2 are relatively
simple, and for the challenging cases n = 3,4, algorithms were developed
by Dyer [37]. On the approximation side, Cook, Hartmann, Kannan, and
McDiarmid [28] developed an algorithm that for a given rational number
€ > 0 counts the number of points in a polytope with a relative error less
than € in time polynomial in the input size and 1/e.
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Barvinok based his algorithm on an identity by Brion for exponential
sums over polytopes. Later, Dyer and Kannan [38] developed a simplifica-
tion of Barvinok’s algorithm in which the step of the algorithm that uses
the property that the exponential sum can be continued to define a mero-
morphic function over C" (cf. Proposition 1) is unnecessary. In addition,
Dyer and Kannan observed that Lenstra’s algorithm is no longer needed as
a subroutine of Barvinok’s algorithm. See also the paper by Barvinok and
Pommersheim [11] for a more elementary description of the algorithm. De
Loera et al. [36] introduced further practical improvements over Dyer and
Kannan’s version, and implemented their version of the algorithm, which
uses Lovész’ basis reduction algorithm. De Loera et al. report on the first
computational results from using an algorithm to count the number of lattice
points in a polytope. These results are encouraging.

To describe Barvinok’s algorithm in detail would require the introduction
of quite a lot of new material, which would take us outside the scope of this
chapter. The results is so important though that we still want to give a
high-level presentation here.

Barvinok’s algorithm counts integer points in an integer simplex; given
k+1 integer vectors such that their convex hull is a k-dimensional simplex A,
compute the number of integer points in A. Dyer [37] had previously shown
that the problem of counting integer points in a polytope can be reduced
to counting integer points in polynomially many integer simplices. See also
Cook et al. [28], who proved that if P; is the integer hull of the rational
polyhedron P C R™ given by m inequalities whose size is at most ¢, then
for fixed n an upper bound on the number of vertices of Py is O(m"¢"1).

The main tools of Barvinok’s algorithm are decompositions of rational
cones in so-called primitive cones, and exponential sums over polytopes. The
decomposition of cones will be treated very briefly. For details we refer to
Section 5 of Barvinok’s paper. For an exponential sum over a polytope P
we write

Z exp{c’z}, (39)
xe(PNZ™)

where P is a polytope in R, and c is an n-dimensional real vector.
Before giving an outline of the algorithm we need to introduce new nota-
tion. A convex cone K € R" is rational if it is the conic hull of finitely many

integer generators, i.e., K = cone{uy,...,ur}, u; € Z", 1 <i < k. A cone
K is simple if it can be generated by linearly independent vectors. A simple
rational cone K is primitive if K = cone{u1, ..., u}, where uy, ..., u; form

a basis of the lattice Z" N lin(K'), where lin(K) is the linear hull of K. A
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meromorphic function f(z) is a single-valued function that can be expressed
as f(z) = g(z)/h(z), where g(z) and h(z) are functions that are analytic
at all finite points of the complex plane C. We can associate a meromorphic
function with each rational cone.

Proposition 6. Let K be a simple rational cone. Let ¢ € R™ be a vector
such that the inner product (¢'-) decreases along the extreme rays of K.
Then the series

Z exp{c’x}

xze(KNZ")

converges and defines a meromorphic function in ¢ € C*. This function is
denoted by o(K;c). If ui,...,u; € Z" are linearly independent generators
of K, then for all ¢ € C" the following holds,

1

o(K;c) = pi(exp{ci},...,exp{cp}) - Hlem, (40)

where px s a Laurent polynomial in n variables.

We observe that the set of singular points of o(K; ¢) is the set of hyper-
planes H; = {c € R* | ¢Tu; =0}, 1 <i < k. The question now is how we
can obtain an explicit expression for the number of points in a polytope from
the result above. The key to such an expression is the following theorem by
Brion.

Theorem 13 ([19]). Let P C R" be a rational polytope, and let V be the
set of vertices of P. For each verter v € V, the supporting cone K, of P at
v is defined as K, = {u € R" | v+du € P for all sufficiently small 6 > 0}.
Then

Z exp{c’z} = Z exp{cTv} - 0(Ky; c) (41)

xe(PNZ™) veV
for all ¢ € R™ that are not singular points for any of the functions o(K,;c).

Considering the left-hand side of expression (41), it seems tempting to
use ¢ = 0 in expression (41) for P = A, since this will contribute 1 to the sum
from every integer point, but this is not possible since 0 is a singular point for
the functions o (Ky; ¢). Instead we take a vector ¢ that is regular for all of the
functions o(K,; c), v € V, and a parameter ¢, and we compute the constant
term of the Taylor expansion of the function >, xqzn €xp{t - (c'z)} in
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the neighborhood of the point ¢ = 0. Equivalently, due to Theorem 13
we can instead compute the constant terms of the Laurent expansions of
the functions exp{t - (c'v)} - 0(Ky;t - ¢) for all vertices v of A. These
constant terms are denoted by R(Ky,v,c). In general there does not exist
an explicit formula for R(K,,v,¢), but if K, is primitive, then such an
explicit expression does exist, and is based on the fact that the function
o(K;c) in expression (40) looks particularly simple if K is a primitive cone,
namely, the polynomial px is equal to one.

Proposition 7. Assume that K C R"™ is a primitive cone with primitive
generators {uy,...ui}. Then

k 1

Kie)=1I | —————.
U( ,C) Z_ll—exp{cTui}

A simple rational cone can be expressed as an integer linear combina-
tion of primitive cones in polynomial time if the dimension n is fixed (see
also Section 5 in [12]) as is stated in the following important theorem by
Barvinok.

Theorem 14 ([12]). Let us fit n € N. Then there exists a polynomial algo-
rithm that for any given rational cone K constructs a family K; C R*, i € 1
of rational primitive cones and computes integer numbers €;, © € I such that

K = Z &K and o(K;c) = ZGiU(Ki; c) (42)
icl icl
for all c € R™ that are regular points for the functions o(K;c), o(K;;c), i €
1.

Notice that the numbers ¢;, i € I, in expression (42) are either equal to
+1 or —1.

Barvinok’s decomposition of rational cones leads to a polynomial algo-
rithm for fixed n for computing the constant term R(K, v, ¢) for an arbitrary
rational cone K and an arbitrary vector v. Lenstra’s algorithm is used as a
subroutine in the decomposition. As mentioned earlier, Lenstra’s algorithm
is not necessary in the algorithm presented by Dyer and Kannan.

The only component of the overall algorithm that we are missing is how
to construct a generic vector ¢ that is not a singular point for o(Ky; ). This
can be done in polynomial time as is stated in the following lemma.

Lemma 2 ([12]). There exists a polynomial time algorithm that for any
gwenn € N, for any given m € N, and for any rational vectors uy, ..., Uy, €
Q" constructs a rational vector ¢ such that ¢’ u; #0 for1<i<m.
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To summarize, a sketch of Barvinok’s algorithm is as follows. First,
for each vertex v of the simplex A, compute the integer generators of the
supporting cone K,. Each cone K, is then expressed as an integer linear
combination of primitive cones Kj;, i.e., K, = Zielv A K for integer A;. By
using Lemma 2 we can now construct a vector ¢ that is not orthogonal to
any of the generators of the cones K;, i € Uy, which means that ¢ is not
a singular point for the functions o(Kj;c). Next, for all v and I, compute
the constant term R(K;,v,c) of the function exp{t - (c'v)} - o(K;;t - c) as
t — 0. Let #(A NZ") denote the number of integer points in the simplex
A. Through Brion’s expression (41) we have now obtained

#ANZ") =D X+ R(Ki,v,¢0).

veViel,

5 Algorithms for the integer optimization problem
in fixed dimension

So far we have only dealt with the integer feasibility problem in fixed di-
mension n. We now come to algorithms that solve the integer optimization
problem in fixed dimension. Here one is given an integer matrix A € Z™*"
and integer vectors d € Z™ and ¢ € Z", where the dimension n is fixed.
The task is to find an integer vector x* € Z" that satisfies Az < d, and
that maximizes ¢/x. Thus the integer feasibility problem is a subproblem
of the integer optimization problem. Let ¢ be the maximum size of ¢ and
a constraint a;x < d; of Axz < d. The running time of the methods de-
scribed here will be estimated in terms of the number of constraints m and
the number ¢.

The integer optimization problem can be reduced to the integer feasibil-
ity problem (27) via binary search, see, e.g. [54, 99]. This approach yields
a running time of O(m ¢ + ¢?), and is described in Section 5.1.

There have been many efficient algorithms for the 2-dimensional inte-
ger optimization problem. Feit [46], and Zamanskij and Cherkasskij [106]
provided an algorithm for the 2-dimensional integer optimization problem
that runs in O(m logm + m ) steps. Other algorithms are by Kanamaru
et al. [62] (O(m logm + ¢)), and by Eisenbrand and Rote [42] (O(m +
(logm)ep)). Eisenbrand and Laue [41] recently provided a linear time algo-
rithm (O(m + ¢)).

A randomized algorithm for arbitrary fixed dimension was proposed by
Clarkson [25], which we present in Section 5.3. His result can be stated
in the more general framework of LP-type problems. Applied to integer
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programming, the result is as follows. An integer optimization problem
that is defined by m constraints can be solved with expected number of
O(m) basic operations and O(logm) calls to another algorithm that solves
an integer optimization problem with a fixed number of constraints, see
also [48]. In the description of Clarkson’s algorithm here, we ignore the
dependence of the running time on the dimension. Clarkson’s algorithm
has played an important role in the search for faster algorithms in varying
dimension for linear programming in the ram-model of complexity. For more
on this fascinating topic, see [80] and [48].

We also sketch a recent result by Eisenbrand [40] in Section 5.2, which
shows that an integer optimization problem of binary encoding size ¢ with
a fixed number of constraints can be solved with O(y) arithmetic opera-
tions on rationals of size O(y). Thus with Clarkson’s result one obtains an
expected running time of O(m + (logm)y) arithmetic operations for the
integer optimization problem.

First we will transform the integer optimization problem into a more
convenient form. If U € Z™*" is a unimodular matrix, then by substituting
y = U 'z, the integer optimization problem above is the problem to find
a vector y* € Z" that satisfies AU y* < d and maximizes ¢ Uy. With a
sequence of extended-greatest common divisor operations, one can compute
a unimodular U € Z"*™ of binary encoding length O(¢) (n is fixed) such
that ¢'U = (ged(c1,...,¢n),0...,0). Therefore we can assume that the
objective vector ¢ is the first unit vector.

The algorithms for the integer feasibility problem (27), which we dis-
cussed in Section 4, require O(m + ¢) arithmetic operations to be solved.
This is linear in the input encoding. Therefore we can assume that the
system Ax < d is integer feasible.

Now, there exists an optimal &* € Z" whose binary encoding length
is O(yp), see, e.g. Schrijver [99, p. 239]. This means that we can assume
that the constraints Ax < d describe a polytope. This polytope can be
translated with an integer vector into the positive orthant.

Notice that the above described transformation can be carried out with
O(m + ¢) basic operations. Furthermore the number of constraints of the
transformed system is O(m) and the binary encoding length of each con-
straint remains O(y). Thus given A, d and ¢, we can in O(m + ¢) steps
check whether the system Ax < d is integer feasible and carry out the
above described transformation. We therefore define the integer optimiza-
tion problem as being the following:

Given an integer matrix A € Z™*"™ and an integer vector d € Z™ defining
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a polytope P = {z € R" | Az < d} such that P C R%;, and P NZ" #

Find an integer vector * € Z", with maximal first (43)

component, satisfying Az* < d.

5.1 Binary Search

We first describe and analyze the binary search technique for the integer
optimization problem. As we argued, we can assume that P C [0, M]",
where M € N and that M is part of the input. In the course of binary
search, one keeps two integers [,u € N such that [ < z7 < u. We start with
Il =0 and u = M. In the ¢-th iteration, one checks whether the system
Az <d, z1 > [(I +u)/2] is integer feasible. If it is feasible, then one sets
I =[(l+u)/2]. If the system is integer infeasible, one sets u = [ (I + u)/2].
After O(size(M)) steps one has either | = w or [ + 1 = u and the optimum
can be found with at most two more calls to an integer feasibility algorithm.

The binary encoding length of M is at most O(y), see, e.g. [99, p. 120].
Therefore the integer optimization problem can be solved with O(p) queries
to an integer feasibility algorithm.

Theorem 15. An integer optimization problem (43) in fized dimension de-
fined by m constraints, each of binary encoding length at most ¢, can be
solved with O(m ¢ + ?) basic operations on rational numbers of size O(¢p).

5.2 A linear algorithm

In this section, we outline a recent algorithm by Eisenbrand [40] that solves
an integer optimization problem with a fixed number of constraints in linear
time. Thus, the complexity of integer feasibility with a fixed number of vari-
ables and a fixed number of constraints can be matched with the complexity
of the Euclidean algorithm in the arithmetic model.

As in the algorithms in Sections 4.2 and 4.3 one makes use of the lattice
width concept, see Expression (28) and Theorem 9 in the introduction of
Section 4.

The first step of the algorithm is to reduce the integer optimization prob-
lem over a full-dimensional polytope to a disjunction of integer optimization
problems over two-layer simplices. A two layer simplex is a full-dimensional
simplex, whose vertices can be partitioned into two sets V' and W, such that
the first components of the elements in each of the sets V and W agree, i.e.,

for all v1,vs € V one has v{ = vi and for all wy, ws € W one has wi = wj.
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How can one reduce the integer optimization problem over a polytope
P to a sequence of integer optimization problems over two-layer simplices?
Simply consider the hyperplanes 1 = wv; for each vertex v of P. If the
number of constraints defining P is fixed, then these hyperplanes partition
P into a constant number of polytopes, whose vertices can be grouped into
two groups, according to the value of their first component. Thus we can
assume that the vertices of P itself can be partitioned into two sets V and
W, such that the first components of the elements in each of the sets V'
and W agree. Carathéodory’s theorem, see Schrijver [99, p. 94|, implies
that P is covered by the simplices that are spanned by the vertices of P.
These simplices are two-layer simplices. Therefore, the integer optimization
problem in fixed dimension with a fixed number of constraints can be reduced
in constant time to a constant number of integer optimization problems over
a two-layer simplex.

The key idea is then to let the objective function slide into the two-layer
simplex, until the width of the truncated simplex exceeds the flatness bound.
In this way, one can be sure that the optimum of the integer optimization
problem lies in the truncation, which is still flat. Thereby one has reduced
the integer optimization problem in dimension n to a constant number of
integer optimization problems in dimension n — 1 and binary search can be
avoided.

How do we determine a parameter 7w such that the truncated two-layer
simplex ¥ N (x1 > 7) just exceeds the flatness bound? We explain the idea
with the help of the 3-dimensional example in Figure 8. Here we have a
two-layer simplex 3 in 3-space. The set V' consists of the points 0 and v,
and W consists of w; and ws. The picture on the left describes a particular
point in time, where the objective function slid into . So we consider the
truncation N (z1 > m) for some m > w%. This truncation is the convex hull
of the points

Oa Vi1, pwi, pwa2, (1 - ,U,)’Ul + pwy, (]- - :u’)vl + pwa, (44)

where p = m/w}. Now consider the simplex Yv,uw, which is spanned by the
points 0, v1, pwi, pwe. This simplex is depicted on the right in Figure 8. If
this simplex is scaled by 2, then it contains the truncation XN (x; > m). This
is easy to see, since the scaled simplex contains the points 2(1—u) v, 2 pw;
and 2 pws. So we have the condition Yy,w C XN (z1 > 7) C 2Xy,,w.
From this we can infer the important observation

w(Syw) < w(S N (@(1) > 7)) < 20(Syuw). (45)
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(1= p)vr + paw, (1= p)vr + paw;

(1 —p)v1 + pw e (1 —p)vr + pw

wa w2

Figure 8: Solving the parametric lattice width problem.

This means that we essentially determine the correct m by determining
a p > 0, such that the width of the simplex Yy, just exceeds the flatness
bound. The width of Xy, is roughly (up to a constant factor) the length
of the shortest vector of the lattice L, = L(A) , where A is the matrix
pw]
A= | pw?
V1

Thus we have to find a parameter y, such that the shortest vector of L, is
sandwiched between f(n)+ 1 and 7 - (f(n) + 1) for some constant . This
problem can be understood as a parametric shortest vector problem.

To describe this problem let us introduce some notation. We define for

1 — .. .. 1 K .. wk
an n X n-matrix A = (as;)vi,j, the matrix A" = (ai;)y; >, as
wk  Jm-aig,  ifi <k,
a;; = . (46)
aij, otherwise.

In other words, the matrix A** results from A by scaling the first k rows
with pu. The parametric shortest vector problem is now defined as follows.

Given a nonsingular matrix A € Z"*"™ and some U € N, find a
parameter p € N such that U < SV(L(APF)) < 27t1/2. U or
assert that SV(L) > U.
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It turns out that the parametric shortest vector problem can be solved in
linear time when the dimension is fixed. From this, it follows that the integer
optimization problem in fixed dimension with a fixed number of constraints
can be solved in linear time.

Theorem 16 ([40]). An integer program of binary encoding length ¢ in
fized dimension which is defined by a fivred number of constraints can be
solved with O(p) arithmetic operations on rational numbers of binary en-
coding length O(yp).

5.3 Clarkson’s random sampling algorithm

Clarkson [25] presented a randomized algorithm for problems of linear pro-
grammang type. This algorithm solves an integer optimization problem that
is defined by m constraints with an expected number of O(m) basic arith-
metic operations and O(logm) calls to an algorithm that solves an integer
optimization problem defined by a fixed-size subset of the constraints. The
expected running time of this method for an integer optimization problem
defined by m constraints, each of size at most ¢, can thus be bounded by
O(m + (logm)yp) arithmetic operations on rationals of size O(yp).

Let P be the polytope defined by P = {x € R* | Az < d,0 < z; <
M, 1 < j < n}. The integer vectors * € Z" N P satisfy 0 < z; < M
for 1 < j < n, where M is an integer of binary encoding length O(y).
A feasible integer point & is optimal with respect to the objective vector
c=((M+1D)" 1 (M+1)"2,... (M+1)%7T if and only if it has maximal
first component. Observe that the binary encoding length of this perturbed
objective function vector ¢ is is O(yp). Moreover, for each pair of distinct
points Z1, %2 € [0, M|*NZ", &1 # To, we have ¢! &1 # cT'Zs.

In the sequel we use the following notation. If H is a set of linear
integer constraints, then the integer optimum defined by H is the unique
integer point *(H) € Z" N [0, M]" which satisfies all constraints h € H
and maximizes ¢/ . Observe that, due to the perturbed objective function
¢z, the point *(H) is uniquely defined for any set of constraints H. The
integer optimization problem now reads as follows:

Given a set H of integer constraints, find «*(H). (47)

A basis of a set of constraints H, is a minimal subset B of H such that
x*(B) = x*(H). The following is a consequence of a theorem of Bell [13]
and Scarf [89], see Schrijver [99, p. 234].
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Theorem 17. Any set H of constraints in dimension n has a basis B of
cardinality |B| < 2" — 1.

In the following we use the letter D for the number 2" — 1. Clarksons
algorithm works for many LP-type problems, see Gartner and Welzl [48] for
more examples. The maximal cardinality of a basis is generally referred to
as the combinatorial dimension of the LP-type problem.

Now we are ready to describe the algorithm. It comes in two layers
that we call Clarkson 1 and Clarkson 2 respectively. The input of both
algorithms is a set of constraints H and the output is *(H). The algorithm
Clarkson 1 keeps a constraint set GG, which is initially empty and grows in
the course of the algorithm. In one iteration, one draws a subset R C
H of cardinality |R| = [Dy/m] at random and computes the optimum
x*(GUR) with the algorithm Clarkson 2 described later. Now one identifies
the constraints V' C H that are violated by *(G U R). We will prove below
that the expected cardinality of V' is y/m. In Step (2c), the constraints V'
are added to the set G, if the cardinality of V' does not exceed twice its
expected cardinality. In this case, i.e., if |V| < 24/m, then an iteration of
the REPEAT-loop is called successful.

Algorithm 3 (Clarkson 1).

1.r+ [Dym], G+ 0

2. REPEAT
(a) Choose random R € (I:)
(b) Compute =* = *(G U R) with Clarkson 2
(c) V< {h € H|z* violates h}
(d) IF |V| < 2y/m, THEN G+ GUV

3. UNTILV =0

4. RETURN z*

How many expected iterations will Clarkson 1 perform? To analyze this,
let B C H be a basis of H. Observe that, if the set V', which is computed
in Step (2c), is nonempty, then there must be a constraint b € B that also
belongs to V. Because, if no constraint in B is violated by «*(G U R),
then one has z*(GUR) = *(GU RU B) = *(H) and V must be empty.
Thus at each successful iteration, at least one new element of B enters the
set G. We conclude that the number of successful iterations is bounded
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by D. The Markov inequality, see, e.g. Motwani and Raghavan [84] says
that the probability that a random variable exceeds k-times its expected
value is bounded by 1/k. Therefore the expected number of iterations of
the REPEAT-loop is bounded by 2 D. The additional arithmetic operations of
each iteration is O(m) if n is fixed, and each iteration requires the solution of
an integer optimization problem in fixed dimension with O(y/m) constraints.

Theorem 18 ([25]). Given a set H of m integer linear constraints in fixved
dimension, the algorithm Clarkson 1 computes *(H) with a constant num-
ber of expected calls to an algorithm which solves the integer optimization
problem for a subset of O(y/m) constraints and an expected number of O(m)
basic operations.

We still need to prove that the expected cardinality of V' in Step (2c) is
at most /m. Following the exposition of Gartner and Welzl [48], we do this
in the slightly more general setting where H can be a multiset of constraints.

Lemma 3 ([25, 48]). Let G be a set of integer linear constraints and let
H be a multiset of m integer constraints in dimension n. Let R € (Ij) be
a random subset of H of cardinality r. The expected cardinality of the set
Vr ={h € H | z*(GU R) violates h} is at most D(m —r)/(r + 1).

This lemma establishes our desired bound on the cardinality of V in
Step 2c, because there we have r = [Dy/m] and thus

D(m —r)/(r+1) < Dm/r < /m. (48)

Proof of Lemma 3. The expected cardinality of Vg is equal to the sum of
all the cardinalities of Vg, where R is an r-element subset of H, divided by
the number of ways that r elements can be drawn from H,

Bvih = | X wal | /(7): (49)

Re(Y)

Let xg(Q,h), @ C H, h € H be the characteristic function for the event
that «*(G U Q) violates h. Thus

xa(@,h) = (50)

0 otherwise.

{1 if *(G U Q) violates h,
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With this we can write

(") pwve) = X % xetrn (51)

Re(¥) heH\R

= Y Y xw@-hh) (52)

QE(TIII) hGQ

< Y D (53)

Qe(rfl)

- <TT1>D. (54)

From (51) to (52) we used the fact that the ways in which we can choose a set
R of cardinality r from H and then a constraint h from H \ R are exactly the
ways in which we can choose a set ) of cardinality r+ 1 from H and then one
constraint h from Q. To justify the step from (52) to (53), consider a basis
Bg of QUG. If his not from the basis Bg, then *(GUQ) = *(GU(Q\{h})).
Therefore ;o xc(Q — h,h) < D. O

The algorithm Clarkson 2 proceeds from another direction. Instead of
randomly sampling large sets of constraints and augmenting a set of con-
straints G, one at the time, a set R of cardinality 6 D? is drawn and the
optimum z*(R) is determined in each iteration with the algorithm out-
lined in Section 5.2. As in Clarkson 1 one determines the constraints
V ={h € H | z*(R) violates h}. If this set is nonempty, then there must be
constraints of a basis B of H that are in V. One then doubles the probability
of each constraint h € V' to be drawn in the next round. This procedure is
repeated until V = (). Instead of explicitly speaking about probabilities of a
constraint h € H, we follow again the exposition of Gartner and Welzl [48],
who assign a multiplicity p(h) € N to each constraint of H. In this way one
can think of H as being a multiset and apply Lemma 3 in the analysis. Let
@ C H be a subset of the constraints, then u(Q) denotes the sum of the
multiplicities of @, u(Q) = Xpegu(h). In the beginning p(h) = 1 for each
h e H.

Algorithm 4 (Clarkson 2).
1. 7 < 6D?
2. REPEAT:

(a) Choose random R € (I:)
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(b) Compute * = *(R)
(c) V+{h € H|x* violates h}
(d) IF u(V) < p(H)/(3D) THEN for all h € V do pp, < 2 up,

3. UNTILV =)
4. RETURN z*

An iteration through the REPEAT-loop is called a successful iteration, if
the condition in the IF-statement in Step (2d) is true. Using Lemma 3 the
expected cardinality of V' (as a multiset) is at most p(H)/(6D). Again with
the Markov inequality, the expected number of total iterations is at most
twice the number of the successful iterations of the algorithm.

Let B C H be a basis of H. In each successful iteration, the multiplicity
of at least one element of B is doubled. Since |B| < D, the multiplicity of
at least one element of B will be at least 2% after k& D successful iterations.
Therefore one has 2% < u(B) after k D successful iterations.

The number u(B) is bounded by p(H). In the beginning pu(H) = m.
After Step (2d) one has p(H) := p(H) + p(V) < u(H)(1+1/(3D)). Thus
after k D successful iterations one has u(B) < m (1 + 1/(3D))*P. Using
the inequality e’ > (1 +¢) for t > 0, we obtain the following lemma on the
number of successful iterations.

Lemma 4. Let B be a basis of H and suppose that H has at least 6 D?
elements. After k D successful iterations of Clarkson 2 one has

2k < (B) < meF/3,

This implies that the number of successful iterations is bounded by
O(logm). The expected number of iterations is therefore also O(logm).
In each iteration, one computes one integer optimization problem with a
fixed number of constraints. If ¢ is the maximal binary encoding length of a
constraint in H, this costs O(¢) basic operations with the linear algorithm
of Section 5.2. Then one has to check each constraint in H, whether it is
violated by «*(R). This costs O(m) arithmetic operations. Altogether we
obtain the following running time.

Lemma 5 ([25]). Let H be a set of integer linear constraints and let ¢
be the mazximal binary encoding length of a constraint h € H. Then the
integer optimization problem (47) can be solved with the randomized algo-
rithm Clarkson 2 with an expected number of O(mlogm + (logm)y) basic
operations.
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Now we estimate the running time of Clarkson I where we plug in the
running time bound for Step (2b). We obtain a expected constant number
of calls to Clarkson 2 on O(y/m) constraints and an additional cost of O(m)
basic operations for the other steps. Thus we have a total amount of O(m +

vmlog /m + (log v/m)p) = O(m + (log m)yp) basic operations.

Theorem 19 ([25]). Let H be a set of integer linear constraints and let
@ be the maximal binary encoding length of a constraint h € H. Then the
integer optimization problem (43) can be solved with a randomized algorithm
with an expected number of O(m + (logm)yp) basic operations.

6 Using lattices to reformulate the problem

Here we will study some special types of integer feasibility problems that
have been successfully solved by the following approach. Create a lattice L
such that we can say that feasible solutions to our problem are short vectors
in L. Once we have L, we write down an initial basis B for L, we then apply
basis reduction to B, which produces B’. The columns of B’ are relatively
short and some might be feasible for our problem. If not, do a search for a
feasible solution, or prove than none exists.

In Section 6.1 we present results for subset sum problems arising in
knapsack cryptosystems. In cryptography, researchers have made extensive
use of lattices and basis reduction algorithms to break cryptosystems; their
computational experiments were among the first to establish the practical
effectiveness of basis reduction algorithms. On the “constructive side” re-
cent complexity results on lattice problems have also inspired researchers
to develop cryptographic schemes based on the hardness of certain lattice
problems. Even though cryptography is not within the central scope of this
chapter, and even though knapsack cryptosystems have long been broken,
we still wish to present the main result by Lagarias and Odlyzko [74], since
it illustrates a nice application of lattice basis reduction, and since it has in-
spired the work on integer programming presented in Section 6.2. There, we
will see how systems of linear diophantine equations with lower and upper
bounds on the variables can be solved by similar techniques.

For comprehensive surveys on the topic of lattices in cryptography we
refer to the surveys of Joux and Stern [61], and of Nguyen and Stern [86, 87].
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6.1 Cryptosystems — solving subset sum problems

A sender wants to transmit a message to a receiver. The plaintext message
of the sender consists of a 0-1 vector & = (x1,...,2,), and this message
is encrypted by using integer weights aq,...,a, leading to an encrypted
message ag = Z?:l a;z;. The coefficients a;, 1 < j7 < n, are known to
the public, but there is a hidden structure in the relation between these
coeflicients, called a trapdoor, which only the receiver knows. If the trapdoor
is known, then the subset sum problem:

n
Determine a 0-1 vector  such that Z a;T; = ag (55)
j=1

can be solved easily. For an eavesdropper who does not know the trapdoor,
however, the subset sum problem should be hard to solve in order to obtain
a secure transmission.

The density of a set of coefficients aj, 1 < j < n is defined as

n

logy (maxi<j<nf{a;})

5(0,) = d({al, e an}) =

The density, as defined above, is an approximation of the information rate
at which bits are transmitted. The interesting case is d(a) < 1, since for
d(a) > 1 the subset sum problem (55) will in general have several solutions,
which makes it unsuitable for generating encrypted messages. Lagarias and
Odlyzko [74] proposed an algorithm based on basis reduction that often finds
a solution to the subset sum problem (55) for instances having relatively low
density. Earlier research had found methods based on recovering trapdoor
information. If the information rate is high, i.e., d(a) is high, then the
trapdoor information is relatively hard to conceal. The result of Lagarias
and Odlyzko therefore complements the earlier results by providing a method
that is successful for low-density instances. In their algorithm Lagarias and
Odlyzko consider a lattice in Z" ! consisting of vectors of the following form:

Loa, ={(z1,...,2n, (ax — aof))T} (56)

where £ is a variable associated with the right-hand side of ax = ag. Notice
that the lattice vectors that are interesting for the subset sum problem all
have £ = 1 and ax — apé = 0. It is easy to write down an initial basis B for
La,a():

(n) (nx1)
B:(I 0 ) (57)

a —a
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To see that B is a basis for Lg q,, we note that taking integer linear com-
binations of the column vectors of B generates vectors of type (56). Let
x € Z" and & € Z. We obtain

(o Zome )=B(7):

The algorithm SV (Short Vector) by Lagarias and Odlyzko consists of
the following steps.

1. Apply Lovész’ basis reduction algorithm to the basis B (57), which
yields a reduced basis B.

2. Check if any of the columns by, = (?)/Ilc, . ,EZH) has all EIQ =0 or « for
some fixed constant v, for 1 < j7 < n. If such a reduced basis vector
is found, check if the vector z; = gfc/% 1 < j < n, is a solution to
Z?:l a;T; = ag, and if yes, stop. Otherwise go to Step 3.

3. Repeat Steps 1 and 2 for the basis B with ag = Z?Zl aj — ap, which
corresponds to complementing all x;-variables, i.e., considering 1 — x;
instead of ;.

Algorithm SV runs in polynomial time as Lovész’ basis reduction algorithm
runs in polynomial time. It is not certain, however, that algorithm SV
actually produces a solution to the subset sum problem. As Theorem 20
below shows, however, we can expect algorithm SV to work well on instances
of (55) having low density. Consider a 0-1 vector «, which we will consider
as fixed. We assume that Z?:l zj < 5. The reason for this assumption is
that either D7, ; < §, or 330, #; < 7, where 2, = (1 — z;), and since
algorithm SV is run for both cases, one can perform the analysis for the
vector that does satisfy the assumption. Let & = (z1,...,2,,0). Let the
sample space A(A,Z) of lattices be defined to consist of all lattices Lq q,
generated by the basis (57) such that

1<a; <A, forl1<j<n, (58)

and
n
ag = Z a;x;.
7=1

There is precisely one lattice in the sample space for each vector a satisfying
(58). Therefore the sample space consists of A™ lattices.
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Theorem 20 ([74]). Let & be a 0-1 vector for which 3% _,%; < 3. If
A =2P" for any constant B > 1.54725, then the number of lattices Lq g, in
A(A, &) that contain a vector v such that v # kx for all k € Z, and such

that ||v]|* < 2 is
O(a"= 2P (log 4)%), (59)
where c1(f) =1 — % > 0.

For A = 26" the density of the subset sum problems associated with the
lattices in the sample space can be proved to be equal to 8~!. This implies
that Theorem 20 applies to lattices having density 6(a) < (1.54725)71 ~
0.6464. Expression (59) gives a bound on the number of lattices we need
to subtract from the total number of lattices in the sample space, A", in
order to obtain the number of lattices in A(A, Z) for which & is the shortest
non-zero vector. Here we notice that the term (59) grows slower than the
term A" as n goes to infinity, and hence we can conclude that “almost all”
lattices in the sample space A(A,Z) have Z as the shortest vector. So, the
subset sum problems (55) with density d(a) < 0.6464 could be solved in
polynomial time if we had an oracle that could compute the shortest vector
in the lattice Lq q,. Lagarias and Odlyzko also prove that the algorithm SV
actually finds a solution to “almost all” feasible subset sum problems (55)
having density 6(a) < (2 — ¢€)(log(3)) 'n~" for any fixed € > 0.

Coster, Joux, LaMacchia, Odlyzko, Schnorr, and Stern [34] proposed
two ways of improving Theorem 20. They showed that “almost all” subset
sum problems (55) having density d(a) < 0.9408 can be solved in polynomial
time in presence of an oracle that finds the shortest vector in certain lattices.
Both ways of improving the bound on the density involve some changes in the
lattice considered by Lagarias and Odlyzko. The first lattice L;’ao c Qrtt
considered by Coster et al. is defined as

Lil,a[) = {(Il - %55 <oy Tn — %65 N(GCB - aog))T}a

where N is a natural number. The following basis B spans Liwoz

_ ([ I™ (_%)(nxl)
B = ( Na  —Nay ) (60)

As in the analysis by Lagarias and Odlyzko, we consider a fixed vector

x € {0,1}", and we let & = (x1,...,2,,0). The vector & does not belong
to the lattice Ly, ., but the vector w = (wy,...,wy,0), where w; = z; —

o7



%, 1 < j < n does. So, if Lovasz’ basis reduction algorithm is applied
to B and if the reduced basis B’ contains a vector (wi,...,wp,0) with
w; = {—%, %}, 1 < j < n, then the vector (w; + %), 1 < j < n solves the
subset sum problem (55). By shifting the feasible region to be symmetric
about the origin we now look for vectors of shorter Euclidean length. Coster
et al. prove the following theorem that is analogous to Theorem 20.

Theorem 21 ([34]). Let A be a natural number, and let ay, ..., a, be ran-
dom integers such that 1 < a; < A, for 1 < j <mn. Letx = (z1,...,Zp),
zj € {0,1}, be fized, and let ag = Y_7_; ajx;. If the density 5(a) < 0.9408,
then the subset sum problem (55) defined by a1, ...,a, can “almost always”
be solved in polynomial time by a single call to an oracle that finds the short-

est vector in the lattice Ly, 4 .

Coster et al. prove Theorem 21 by showing that the probability that the
lattice Ly, ,, contains a vector v = (v1,...,vn41) satisfying

v#kw forall k € Z, and ||v|? < ||w]||?

is bounded by
con

A

n(4dny/n + 1) (61)

for co = 1.0628. Using the lattice L], , , note that |[w]||*> < %. The number
N in basis (60) is used in the following sense. Any vector in the lattice L’
is an integer linear combination of the basis vectors. Hence, the (n + 1)-
st element of a such a lattice vector is an integer multiple of N. If N
is chosen large enough, then a lattice vector can be “short” only if the
(n 4 1)-st element is equal to zero. Since it is known that the length of
w is bounded by %\/ﬁ, then it suffices to choose N > % n in order to
conclude that for a vector v to be shorter than w it should satisfy v, 11 = 0.
Hence, Coster et al. only need to consider lattice vectors v in their proof
that satisfy v,4+1 = 0. In the theorem we assume that the density d(a)
of the subset sum problems is less than 0.9408. Using the definition of
d(a) we obtain 6(a) = n/logy(maxi<j<n{a;}) < 0.9408, which implies that
max;<j<n{a;} > 2709408 oiving A > 297, For A > 2%" the bound (61)
goes to zero as n goes to infinity, which shows that “almost all” subset
sum problems having density d(a) < 0.9408 can be solved in polynomial
time given the existence of a shortest vector oracle. Coster et al. also gave
another lattice L € 7Z"2 that could be used to obtain the result given

a,ag
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in Theorem 21. The lattice Ly ,, consists of vectors

(Rt Dar ==y ok —§
E#1
Loy = m+1Dx, —> g1 ap—¢&
k#n
n
(n+1)§— Zj:l Tj
N(az — ap)
and is spanned by the basis
(n+1) -1 -1 e -1
-1 (n+1) -1 e -1
: : (62)
-1 e -1 (n+1) -1
Nal Na,2 Nan —N(J,O
Note that the lattice Ly ,, is not full dimensional as the basis consists of
n + 1 vectors. Given a reduced basis vector b = (b1,...,by41,0), we solve

the system of equations

bj = (n+lzj— Y ap—§ 1<i<n,
k=
k#j
n
boyt = (n+1)E- D
j=1

and check whether £ = 1, and the vector @ € {0,1}". If so, & solves the
subset sum problem (55). Coster et al. show that for & € {0,1}", £ = 1,
we obtain ||b||? < ”73, and they indicate how to show that most of the time

there will be no shorter vectors in L, , .

6.2 Solving systems of linear Diophantine equations

Aardal, Hurkens, and Lenstra [2], [3] considered the following integer feasi-
bility problem:

Does there exist a vector & € Z" such that Az =d, | <z <u? (63)

Here A is an integer m X m-matrix, with m < n, and the integer vectors
d, l, and u are of compatible dimensions. Problem (63) is NP-complete,
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but if we remove the bound constraints I < & < w, it is polynomially
solvable. A standard way of tackling problem (63) is by branch-and-bound,
but for the applications considered by Aardal et al. this method did not
work well. Let X = {x € 2" | Az = d, | < « < u}. Instead of using a
method based on the linear relaxation of the problem, they considered the
following integer relaxation of X, Xig = {x € Z" | Ax = d}. Determining
whether Xig is empty can be carried out in polynomial time for instance
by generating the Hermite normal form of the matrix A. Assume that Xig
is nonempty. Let x; be an integer vector satisfying Ax; = d, and let B°
be an n x (n —m)-matrix consisting of integer, linearly independent column
vectors b?, 1 < j <n —m, such that Ab? =0for 1 <j<mn—m. Notice
that the matrix B is a basis for the lattice Ly = {x € Z" | Az = 0}. We
can now rewrite Xg as

Xip={zxecZ"|z=2;+B°X AeZ" ™}, (64)

Since a lattice has infinitely many bases if the dimension is greater than 1,
reformulation (64) is not unique if n —m > 1.

The intuition behind the approach of Aardal et al. is as follows. Suppose
it is possible to obtain a vector @y that is short with respect to the bounds.
Then, we may hope that x; satisfies | < &y < u, in which case we are done.
If ;s does not satisfy the bounds, then one can observe that A(xs+\y) =d
for any integer multiplier A and any vector y satisfying Ay = 0. Hence, it
is possible to derive an enumeration scheme in which we branch on integer
linear combinations of vectors b? satisfying Ab? = 0, which explains the
reformulation (64) of Xig. Similar to Lagarias and Odlyzko, Aardal et
al. choose a lattice, different from the standard lattice Z™, and then apply
basis reduction to the initial basis of the chosen lattice. Since they obtain
both &y and the basis B° by basis reduction, 7 is relatively short and the
columns of B are near-orthogonal.

Aardal et al. [3] suggested a lattice L4 g € Z"™™! that contains vectors
of the following form:

(mTa N1£7 NZ(alm - dlg)a L) NZ(amm - dmé.))T’ (65)

where a' is the i-th row of the matrix A, where N; and N, are natural
numbers, and where &, as in Section 6.1, is a variable associated with the
right-hand side vector d. The basis B given below spans the lattice L 4 4:

™ o(nx1)
B=| oxn) pn; . (66)
N2 A  —Nad
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The lattice La g C Z™™™*! is not full-dimensional as B only contains n + 1
columns. The numbers N; and N2 are chosen so as to guarantee that certain
elements of the reduced basis are equal to zero (cf. the similar role of the
number N used in the bases (60) and (62)). The following proposition states
precisely which type of vectors one wishes to obtain.

Proposition 8 ([3]). The integer vector x5 satisfies Axy = d if and only
if the vector

(@@ 00 =5 () (67)

belongs to the lattice L, and the integer vector y satisfies Ay = 0 if and
only if the vector

0.0ty =B (Y ) (68)

belongs to the lattice L.

Let B be the basis obtained by applying Lovéasz’ basis reduction algorithm
to the basis B, and let b; = (b}, .. .,b}HmH) be the j-th column vector

of B. Aardal et al. [3] prove that if the numbers N; and Ny are chosen
appropriately, then the (n — m + 1)-st column of B is of type (67), and the
first n — m columns of B are of type (68), i.e., the first n — m + 1 columns
of B are of the following form:

B0 Zf
o(1x(n=m)) N, : (69)
O(mx(nfm)) O(mxl)

This result is stated in the following theorem.

Theorem 22 ([3]). Assume that there exists an integer vector x satisfying
the system Ax = d. There exist numbers Ng1 and Nyg such that if N1 >
No1, and if No > 2”"‘le2 4+ Ny2, then the vectors Bj e zrtm+l of the
reduced basis B have the following properties:

LB =0for1<j<n-—m,
2.0 =0forn+2<i<n+m+landl<j<n—m+l,

in+l
3. |bzim+1| = N1
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Moreover, the sizes of Ng1 and Nyo are polynomially bounded in the sizes of
A and d.

In the proof of Properties 1 and 2 of Theorem 22, Aardal et al. make use of
inequality (15) of Proposition 2.

Once we have obtained the matrix B® and the vector @ #, we can derive
the following equivalent formulation of problem (63):

Does there exist a vector A € Z" ™ such that I < z; + B°X < u? (70)

Aardal, Hurkens, and Lenstra [3], and Aardal, Bixby, Hurkens, Lenstra, and
Smeltink [1] investigated the effect of the reformulation on the number of
nodes of a linear programming based branch-and-bound algorithm. They
considered three sets of instances: instances obtained from Philips Research
Labs, the Frobenius instances of Cornuéjols, Urbaniak, Weismantel, and
Wolsey [33], and the market split instances of Cornuéjols and Dawande [31].
The results were encouraging. For instance, after transforming problem (63)
to problem (70), the size of the market split instances that could be solved
doubled.

Aardal et al. [1] also investigated the performance of integer branching.
They implemented a branching-on-hyperplanes search algorithm, such as
the algorithms in Section 4. Instead of finding provably good directions
they branched on hyperplanes in the directions of the unit vectors e;, 1 <
J <n —m in the space of the A-variables.

Their computational study indicated that integer branching on the unit
vectors taken in the order j = n — m,...,1, was quite effective, and in
general much better than the order 1,...,n —m. This can be explained as
follows. Due to Lovész’ algorithm, the vectors of B® are more or less in
order of increasing length, so typically, the (n — m)-th vector of B is the
longest one. Branching on this vector first should generate relatively few
hyperplanes intersecting the linear relaxation of X, if this set has a regular
shape, or equivalently, the polytope P = {A e R* ™ | [ < :I:f—i—BO)\ <wu}is
relatively thin in the unit direction e, _,, compared to direction e;. In this
context Aardal and Lenstra [4] studied infeasible instances of the knapsack
problem

Does there exist a vector & € Z% such that ax = ap?

Write a; as a;j = p; M + r; with p;, M € Ny, and r; € Z. Aardal and
Lenstra showed the following:

Theorem 23 ([4]). Let b2 | be the last vector of the basis matriz B as
obtained in (69). The following holds:
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b d(LO) = ||a'T||7

0 a”
o 110 ]| > s
If M is large, then d(Lo) = ||a”]|| will be large, and if p and 7 are short
compared to a the vector bg_l is going to be long, so in this case the value
of d(Lg) essentially comes from the length of the last basis vector. In their
computational study it was clear that branching in the direction of the last
basis vector first gave rise to extremely small search trees.

Example 3. Let a = (12223, 12224, 36671). We can decompose a as
ag = M+0

aa = M+1
a3 = 3M+2
with M = 12223. For this example we obtain
—4075 —1 14261
oy = | 4074 B=| -2 -8149
4074 1 —-2037

The polytope P is:
P={ye R? | —A1+14261)\g > 4075, —2X1—8149\9 > —4074, A\1—2037Ag > —4074} .

The constraints imply that that 0 < Ay < 1, so branching first in the
direction of ey immediately yields a certificate of infeasibility. Searching in
direction e; first yields 4752 search nodes at the first level of our search tree.
Solving the instance using the original formulation in @-variables requires
1,262,532 search nodes using CPLEX 6.5 with default settings. [

Recently, Louveaux and Wolsey [78] considered the problem: “Does there
exist a matrix X € ZZ;" such that XA = C, and BX = D?”, where
A € Z"P and B € Z9*™. Their study was motivated by a portfolio plan-
ning problem, where variable x;; denotes the number of shares of type j
included in portfolio 7. This problem can be written in the same form as
problem (63), so in principle the approach discussed in this section could
be applied. For reasonable problem sizes Louveaux and Wolsey observed
that the basis reduction step became too time consuming. Instead they de-
termined reduced bases for the lattices Ly = {y € Z" | yT A = 0}, and
L8 = {2z € Z" | Bz = 0}. Let B4 be a basis for the lattice L, and let
Bpg be a basis for the lattice LOB . They showed that taking the so-called
Kronecker product of the matrices Bﬂ and Bp yields a basis for the lattice
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Lo={X e€Z™" | XA =0, BX = 0}. The Kronecker product of two
matrices M € R™*™, and N € RP*? is defined as:

m11N s mlnN
M®N = .
mmlN cee mmnN
Moreover, they showed that the basis of Lg obtained by taking the Kronecker
product between B£ and Bpg is reduced, up to a reordering of the basis

vectors, if the bases B 4 and Bp are reduced. Computational experience is
reported.

7 Integer hulls and cutting plane closures in fixed
dimension

An integer optimization problem max{c’x | Az < b, © € Z"}, for integral
A and b, can be interpreted as the linear programming problem max{c’z |
Az <V, x € R"}, where A’z < b is an inequality description of the integer
hull of the polyhedron {x € R® | Az < b}. We have seen that the integer
optimization problem in fixed dimension can be solved in polynomial time.
The question now is, how large can the integer hull of a polyhedron be if
the dimension is fixed? Can the integer hull be described with a polynomial
number of inequalities and if the answer is yes, can these inequalities be
computed in polynomial time? It turns out that the answer to both questions
is “yes”, as we will see in the following section.

One of the most successful methods to attack an integer optimization
problem in practice is branch-and-bound combined with the addition of
cutting planes. Cutting planes are valid inequalities for the integer hull,
which are not necessarily valid for the linear relaxation of the problem. A
famous family of cutting planes, also historically the first ones, are Gomory-
Chvétal cutting planes [53]. In the second part of this section, we consider
the question, whether the polyhedron that results from the application of all
possible Gomory-Chvéatal cutting planes, the so-called elementary closure,
has a polynomial representation in fixed dimension. Furthermore we address
the problem of constructing the elementary closure in fixed dimension.

7.1 The integer hull

In this section we describe a result of Hayes and Larman [56] and its gen-
eralization by Schrijver [99] which states that P; can be described with a
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polynomial number of inequalities in fixed dimension, provided that P is
rational.

We start by proving a polynomial upper bound on the number of vertices
of the integer hull of a full-dimensional simplex ¥ = conv{0, vy, ...,v,}. Let
¢ denote the maximum binary encoding length of a vertex ¢ = max;—1, 5 size(v;).
A full dimensional simplex in R” is defined by n+1 inequalities. Each choice
of n inequalities in such a definition has linearly independent normal vectors,
defining one of the vertices of ¥. Since 0 is one of the vertices, ¥ is the set
of all ¢ € R" satisfying Bz > 0, ¢’z < 3, where B € Z"*" is a nonsingular
matrix, and ¢'x < 3 is an inequality. It follows form the Hadamard bound
that we can choose B such that size(B) = O(y) . The inequality ¢!z < 8
can be rewritten as al’ Bz < 8, with a¥ = ¢’B~! € Q". Let K be the
knapsack polytope K = {x € R" | £ > 0, a’'z < B}. The vertices of X
correspond exactly to the vertices of conv(K N L(B)).

Proposition 9. Let K C R"” be a knapsack polytope given by the inequalities
x >0 and a’z < B. Let L(B) be a lattice with integer and nonsingular
B C 7™, then:

1. A vector B& € L(B) is a vertex of conv(K N L(B)) if and only if &
is a vertex of the integer hull of the simplex ¥ defined by Bx > 0 and
a’ Bz < 3;

2. if v1 and vy are distinct vertices of conv(K N L(B)), then there exists
an index i € {1,...,n} such that size(v}) # size(v}).
Proof. The convex hull of K N L(B) can be written as
conv(KNL(B)) = conv({z|z>0,a’z<p, =By, ycZ)
= conv({By| By >0,a’By <3, ycZ"}).

If one transforms this set with B!, one is faced with the integer hull of the
described simplex ¥. Thus Point (1) in the proposition follows.

For Point (2) assume that v; and vs are vertices of conv(K N L(B)),
with size(vi) = size(v}) for all 4 € {1,...,n}. Then clearly 2v; — vy > 0
and 2v9 —v; > 0. Also

a’ (2v] — vy + 2vy —v1) = a’ (vy + v2) < 28,

therefore one of the two lattice points lies in K. Assume without loss of
generality that 2v; — vo € K N L(B). Then v; cannot be a vertex since

v = 1/2 (2’01 —’Ug) + 1/2’02.
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If K={xcR" | x>0 a’c < f} is the corresponding knapsack
polytope to the simplex ¥, then any component Z;, j = 1,...,n of an ar-
bitrary point & in K satisfies 0 < Z; < (/a;. Thus the size of a vertex
Z of conv(K N L(B)) is of O(size(K)) = O(size(X)) in fixed dimension.
This is because size(B ') = O(size(B)) in fixed dimension. It follows from
Proposition 9 that ¥; can have at most O(size(X)™) vertices.

By translation with the vertex —vg, we can assume that ¥ = conv(vy, ..., v,)
is a simplex whose first vertex vg is integral.

Lemma 6 ([56, 99]). Let ¥ = conv(vy,...,v,) be a rational simplex with
vg €EZ", v; € Qi =1,...,n. The number of vertices of the integer hull
X1 is bounded by O(¢"), where ¢ = max;—o,...n size(v;).

A polynomial bound for general polyhedra can then be found by trian-
gulation.

Theorem 24 ([56, 99]). Let P = {x € R" | Az < d}, where A € Z™*"
and d € 7™, be a rational polyhedron where each inequality in Ax < d has
size at most . The integer hull P; of P has at most O(m™ 1om) wertices.
The following upper bound on the number of vertices of P; was proved
by Cook et al. [28]. Barany et al. [10] showed that this bound is tight if P

is a simplex.

Theorem 25. If P C R"™ is a rational polyhedron that is the solution set
of a system of at most m linear inequalities whose size is at most ¢, then
the number of vertices of Py is at most 2m?(6n%p)?~1, where d = dim(P;)
1s the dimension of the integer hull of P.

Tight bounds for varying number of inequalities m seem to be unknown.

7.2 Cutting planes

Rather than computing the integer hull P; of P, the objective pursued by
the cutting plane method is a better approximation of P;. Here the idea is
to intersect P with the integer hull of halfspaces containing P. These will
still include Pr but not necessarily P.

In the following we will study the theoretical framework of Gomory’s
cutting plane method [53] as given by Chvétal [23] and Schrijver [98] and
derive a polynomiality result on the number of facets of the polyhedron that
results from the application of all possible cutting planes.

If the halfspace (c'x < §), ¢ € Z*, with ged(cy,...,c,) = 1, contains
the polyhedron P, i.e. if ¢’z < § is valid for P, then ¢’z < [§] is valid
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for the integer hull P; of P. The inequality ¢« < |§] is called a cutting
plane or Gomory-Chvdtal cut of P. The geometric interpretation behind
this process is that (c’'x < §) is “shifted inwards” until an integer point of
the lattice is in the boundary of the halfspace.

Figure 9: The halfspace (—z1 + z2 < §) containing P is replaced by its
integer hull (—z1 + 22 < |4]). The darker region is the integer hull P of P.

The idea, pioneered by Gomory [53], is to apply these cutting planes to
the integer optimization problem. Cutting planes tighten the linear relax-
ation of an integer program and Gomory showed how to apply cutting planes
successively until the resulting relaxation has an integer optimal solution.

7.2.1 The elementary closure

Cutting planes ¢’z < |§| of P(A,d), A € R™*" obey a simple inference
rule. Clearly max{c’x | Az < d} < ¢ and it follows from duality and
Carathéodory’s theorem that there exists a weight vector A € QF, with at

most n positive entries such that AT A = ¢’ and ATd < §. Thus ¢’z < 4]
follows from the following inequalities by weakening the right-hand side if
necessary:

M Az < [ATd], A e QZ), \TA 7" (71)

Instead of applying cutting planes successively, one can apply all possi-
ble cutting planes at once. P intersected with all Gomory-Chvatal cutting
planes

P= ] (z<3)) (72)
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is called the elementary closure of P.

The set of inequalities in (71) that describe P’ is infinite. However, as
observed by Schrijver [98], a finite number of inequalities in (71) imply the
rest.

Lemma 7. Let P be the polyhedron P = {x € R" | Ax < d} with A €
7™ ™ and d € Z™. The elementary closure P’ is the polyhedron defined by
Az < d and the set of all inequalities AT Az < |ATd], where X € [0,1)™
and XA € 7.

Proof. An inequality A" Az < |A"d] with A € Q7; and ATA € Z" is
implied by Az <d and (A — |A)TAz < | (A — [A])Td], since

AMAx = (A AT Az+ A TAz < |[(A= | ADTd]+ A |Td = |ATd]. (73)
O

Corollary 2 ([98]). If P is a rational polyhedron, then P’ is a rational
polyhedron.

Proof. P can be described as P(A, d) with integral A and d. There is only
a finite number of vectors AT A € Z* with A € [0,1)™. O

This yields an exponential upper bound on the number of facets of the
elementary closure of a polyhedron. The infinity norm ||¢||o of a possible
candidate ¢« < |§] is bounded by ||AT||w, where the matrix norm || - ||oc
is the row sum norm. Therefore we have an upper bound of O(||A”||%) for
the number of facets of the elementary closure of a polyhedron. We will
later prove a polynomial upper bound of the size of P’ in fixed dimension.

7.2.2 The Chvatal-Gomory procedure

The elementary closure operation can be iterated, so that successively tighter
relaxations of the integer hull P; of P are obtained. We define P(©) = P
and P0+Y) = (P@W) for i > 0. This iteration of the elementary closure
operation is called the Chwvdtal-Gomory procedure. The Chuvdtal rank of a
polyhedron P is the smallest ¢ € Ny such that P) = P;. In analogy, the
depth of an inequality ¢@ < ¢ which is valid for P; is the smallest t € Ny
such that (¢’x < §) D P®),

Chvatal [23] showed that every bounded polyhedron P C R™ has finite
rank. Schrijver [98] extended this result to rational polyhedra. The main
ingredient of his result is the following result.
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Lemma 8 ([98]). Let F be a face of a rational polyhedron P. If ckx < |5F]
1s a cutting plane for F, then there exists a cutting plane cgaz < |dp]| for P
with

Fn(che < [0p]) = Fn(cha < |6F)).

Intuitively, this result means that that a cutting plane of a face F' of a
polyhedron P can be “rotated” so that it becomes a cutting plane of P and
has the same effect on F. This implies that a face F' of P behaves under its
closure F' as it behaves under the closure P’ of P.

Corollary 3. Let F' be a face of a rational polyhedron P. Then
F'=PNF.

From this, one can derive that the Chvatal rank of rational polyhedra is
finite.

Theorem 26 ([98]). If P is a rational polyhedron, then there exists some
t € N such that P = P;.

Figure 10: After a finite number of iterations F'is empty. Then the halfspace
defining F' can be pushed further down. This is basically the argument why
every inequality, valid for Pj, eventually becomes valid for the outcome of
the successive application of the elementary closure operation.

Already in dimension 2, there exist rational polyhedra of arbitrarily large
Chvétal rank [23]. To see this, consider the class of polytopes

Py, = conv{(0,0), (0,1)(k,3)}, k € N. (74)
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Figure 11: The polytope P.

One can show that Py 1) C P|. For this, let c'z < § be valid for P,
with 6 = max{c''z | * € P;}. If ¢; < 0, then the point (0,0) or (0,1)
maximizes ¢!z, thus (¢’x = §) contains integer points. If ¢; > 0, then
cT(k, %) > eT'(k—1,1) +1. Therefore the point (k—1, ) is in the halfspace
(c’z < 6 —1) C (c'z < |§]). Unfortunately, this lower bound on the
Chvatal rank of Py is exponential in the encoding length of Py which is
0(log(k)).

Bockmayr et al. [16] have shown that the Chvatal rank of polytopes in
the 0/1 cube is polynomial. The current best bound [44] on the Chvétal rank
of polytopes in the 0/1 cube is O(n?logn). Lower bounds on the Chvatal
rank for polytopes stemming from combinatorial optimization problems have
been provided by Chvatal, Cook and Hartmann [24]. Cook and Dash [30]
provided lower bounds on the matrix-cut rank of polytopes in the 0/1 cube.
In particular they provide examples with rank n and so do Cornuéjols and
Li [32] for the split closure in the 0/1 cube.

7.2.3 Cutting plane proofs

An important property of polyhedra is the following rule to derive valid
inequalities, which is a consequence of linear programming duality. If P is
defined by the inequalities Az < d, then the inequality ¢’z < § is valid for
P if and only if there exists some A € R, with

c=A"Aand 6§ > \'d. (75)

This implies that linear programming (in its decision version) belongs to the
class NP Nco — NP, because max{c’z | Az < d} < § if and only if ¢’z < §
is valid for P(A,d). A “No” certificate would be some vertex of P which
violates e’z < 6.

In integer programming there is an analogy to this rule. A sequence of
inequalities

clngél, cgwgég,...,cﬁmgém (76)
is called a cutting-plane proof of c'x < & from a given system of linear

inequalities Az < d, if ¢y, ..., ¢y, are integral, ¢, = €, 8y, = §, and if ] © <
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4/ is a nonnegative linear combination of Az < d, cr{w < 4y,.. .,c;{la: <
8;—1 for some &} with |d!] < §;. In other words, if ¢/ z < §; can be obtained
from Ax < d and the previous inequalities as a Gomory-Chvétal cut, by
weakening the right-hand-side if necessary. Obviously, if there is a cutting-
plane proof of ¢’z < § from Az < d then every integer solution to Az < d
must satisfy ¢/ < 6. The number m here, is the length of the cutting plane
proof.

The following proposition shows a relation between the length of cutting
plane proofs and the depth of inequalities (see also [24]). It comes in two
flavors, one for the case P; # () and one for P; = (). The latter can then be
viewed as an analogy to Farkas’ lemma.

Proposition 10 ([24]). Let P(A,d) CR", n > 2 be a rational polyhedron.

1. If P; # 0 and cTx < § with integer ¢ has depth t, then cTa < § has a
cutting plane proof of length at most (n'™t —1)/(n —1).

2. If P = 0 and rank(P) = t, then there exists a cutting plane proof of
07x < —1 of length at most (n + 1)(nt —1)/(n — 1) + 1.

We have seen for the class of polytopes Py (74) that, even in fixed di-
mension, a cutting plane proof of minimal length can be exponential in the
binary encoding length of the given polyhedron.

Yet, if Pr =0 and P C R", Cook, Coullard and Turéan [27] showed that
there exists a number #(n), such that P*(™) = ¢,

Theorem 27 ([27]). There exists a function t(d), such that if P CR" is a
d-dimensional rational polyhedron with empty integer hull, then P = (.

Proof. If P is not full dimensional, then there exists a rational hyperplane
(cz = §) with ¢ € Z" and ged(cy, ..., cn) = 1 such that P C (c'x = §).
If § ¢ Z, then P' = (). If § € Z, then there exists a unimodular matrix,
transforming c into the first unit vector e;. Thus P can be transformed via
a unimodular transformation into a polyhedron where the first variable is
fixed to an integer.

Thus we can assume that P is full-dimensional. The function ¢(d) is
inductively defined. Let ¢(0) = 1. For d > 0, let ¢ € Z", ¢ # 0 be a direction
in which P is flat (c.f. Theorem 9), i.e., max{c’z | z € P} — min{c 'z |
x € P} < f(d). We “slice off” in this direction using Corollary 3. If
cl'z <45, 6 €Zis valid for P, then ¢z < § — 1 is valid for Pt(@-1D+1) gince
the face F = PN (c'x = §) has at most dimension d — 1. Thus ¢!z <J§—k
is valid for P(:t(d=1)+1)  Since the integer vector ¢ is chosen such that
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max{clz | x € P}—min{c'z | x € P} < f(d), t(d) = (f(d)+2)(t(d—1)+1)
satisfies our needs. O

The validity of an inequality ¢f@ < § for P; can be established by
showing that P N (¢’x > § + 1) is integer infeasible. A cutting plane proof
for the integer infeasibility of PN (c’'x > § + 1) is called an indirect cutting
plane proof of ¢’z < §. Combining Proposition 10 and Theorem 27 one
obtains the following result.

Theorem 28 ([27]). Let P be a rational polyhedron in fized dimension n
and let cTx < § be a valid inequality for P, then cTx < & has an indirect
cutting plane proof of constant length.

In varying dimension, the length of a cutting plane proof of infeasibility
of 0/1 systems can be exponential. This was shown by Pudlék [88]. Ex-
ponential lower bounds for other types of cutting-plane proofs provided by
lift-and-project or Lovasz-Schrijver cuts were derived by Dash [35].

7.3 The elementary closure in fixed dimension

In this section we will show that the elementary closure of rational poly-
hedra in fixed dimenison can be described with a polynomial number of
inequalities.

7.3.1 Simplicial cones

Consider a rational simplicial cone, i.e., a polyhedron P = {x € R" | Ax <
d}, where A € Z™*" d € Z™ and A has full row rank. If A is a square
matrix, then P is called pointed.

Observe that P, P’ and P; are all full-dimensional. The elementary
closure P’ is given by the inequalities

(AT A)x < [ATd], where A € [0,1]™, and AT A € 7", (77)

Since P’ is full-dimensional, there exists a unique (up to scalar multiplica-
tion) minimal subset of the inequalities in (77) that suffices to describe P’.
These inequalities are the facets of P’. We will derive a polynomial upper
bound on their number in fixed dimension.

The vectors A in (77) belong to the dual lattice L*(A) of the lattice L(A).
Recall that each element in L*(A) is of the form p/dy,, where d, = d(L(A))
is the lattice determinant. It follows from the Hadamard inequality that
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size(dr) is polynomial in size(A), even for varying n. Now (77) can be
rewritten as
prA
dr,

p'd
x < { 7 J , where € [0,...,d™, and T A € (dr, - Z)". (78)
L

Notice here that u”'d/dy, is a rational number with denominator dy,. There
are two cases: either pu’'d/dy, is an integer, or u?'d/d;, misses the nearest
integer by at least 1/dj. Therefore |u”d/dy| is the only integer in the
interval

uld—dp+1 pld
dr, "dp |

These observations enable us to construct a polytope ), whose integer
points will correspond to the inequalities (78). Let @ be the set of all (u, y, z)
in R?"*1 satisfying the inequalities

>0
wi < dp, i1=1,...,n
ul'A = dpy? (79)
(/J,Td)—dL—{—l < drz
(ufd) > dp =

If (i, y, 2) is integral, then p € [0,...,d]™, y € Z" enforces u* A € (d-Z)"
and z is the only integer in the interval [(u'd +1 —dy)/d, uTd/dg]. Tt is
not hard to see that @ is indeed a polytope. We call @) the cutting plane
polytope of the simplicial cone P(A, d)

The correspondence between inequalities (their syntactic representation)
in (78) and integer points in the cutting plane polytope @ is obvious. We
now show that the facets of P’ are among the vertices of Q.

Proposition 11 ([15]). Each facet of P’ is represented by an integer vertex
of Qr.

Proof. Consider a facet ¢’z < § of P'. If we remove this inequality (possibly
several times, because of scalar multiples) from the set of inequalities in (78),
then the polyhedron defined by the resulting set of inequalities differs from
P, since P’ is full-dimensional. Thus there exists a point £ € Q" that is
violated by ¢!’z < §, but satisfies any other inequality in (78) (see Figure 12).
Consider the following integer program:

max{(pl A/dL) & — 2 | (1, y,2) € Qr}. (80)
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Since & ¢ P’ there exists an inequality (u’ A/dp)x < |u'd/dy| in (78)
with

(" A/dL)E — |u"d/dL] > 0.

Therefore, the optimal value will be strictly positive, and an integer optimal
solution (u,¥,z) must correspond to the facet ¢’z < & of P’. Since the
optimum of the integer linear program (80) is attained at a vertex of Qjp,
the assertion follows. O

Figure 12: The point Z lies “above” the facet ¢’z < § and “below” each
other inequality in (78).

Not each vertex of Q represents a facet of P'. In particular, if P is
defined by nonnegative inequalities only, then 0 is a vertex of 7 but not a
facet of P'.

Lemma 9 ([15]). The elementary closure of a rational simplicial cone P =
{x € R" | Ax < d}, where A and d are integral and A has full row rank,
is polynomially bounded in size(P) when the dimension is fized.

Proof. Each facet of P’ corresponds to a vertex of Q; by Proposition 11.
Recall from the Hadamard bound that d, < |lai]|---||@x|, where a; are
the columns of A. Thus the number of bits needed to encode dj, is in
O(nsize(P)). Therefore the size of @ is in O(nsize(P)). It follows from
Theorem 25 that the number of vertices of Qr is in O(size(P)") for fixed n,
since the dimension of @ is n + 1. O

It is possible to explicitly construct, in polynomial time, a minimal in-
equality system defining P’ when the dimension is fixed.
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Observe first that the lattice determinant dz, in (79) can be computed
with some polynomial Hermite normal form algorithm. If H is the HNF of
A, then L(A) = L(H) and the determinant of H is simply the product of its
diagonal elements. Notice then that the system (79) can be written down.
In particular its size is polynomial in the size of A and d, even in varying
dimension, which follows from the Hadamard bound.

As noted in [28], one can construct the vertices of Q7 in polynomial
time. This works as follows. Suppose one has a list of vertices vq,..., vk
of Q7. Let Q denote the convex hull of these vertices. Find an inequality
description of i, Cx < d. For each row-vector ¢; of C, find with Lenstra’s
algorithm a vertex of Q; maximizing {c'x | ¢ € Q}. If new vertices are
found, add them to the list and repeat the preceding steps, otherwise the list
of vertices is complete. The list of vertices of @ yields a list of inequalities
defining P’. With the ellipsoid method or your favorite linear programming
algorithm in fixed dimension, one can decide for each individual inequality,
whether it is necessary. If not, remove it. What remains are the facets of
P

Proposition 12. There exists an algorithm which, given a matric A €
Zm*" of full row rank and a vector d € 7™, constructs the elementary
closure P' of P(A,d) in polynomial time when the dimension n is fized.

7.3.2 Rational polyhedra

Let P = {x € R* | Ax < d}, with integer A and d, be a rational poly-
hedron. Any Gomory-Chvétal cut can be derived from a set of rank(A)
inequalities out of Ax < d where the corresponding rows of A are linear in-
dependent. Such a choice represents a simplicial cone C' and it follows from
Theorem 9 that the number of inequalities of C’ is polynomially bounded
by size(C') < size(P).

Theorem 29 ([15]). The number of inequalities needed to describe the
elementary closure of a rational polyhedron P = P(A,d) with A € Z™*"
and d € Z™, is polynomial in size(P) in fized dimension.

Following the discussion at the end of Section 7.3.1 and using again
Lenstra’s algorithm, it is now easy to come up with a polynomial algorithm
for constructing the elementary closure of a rational polyhedron P(A,d) in
fixed dimension. For each choice of rank(A) rows of A defining a simpli-
cial cone C, compute the elementary closure C' and put the corresponding
inequalities in the partial list of inequalities describing P’. At the end,
redundant inequalities can be deleted.
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Theorem 30. There exists a polynomial algorithm that, given a matriz
A € Z™*" and a vector d € Z™, constructs an inequality description of the
elementary closure of P(A,d).
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