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1. INTRODUCTION
This report describes a finite-element method for the heat equation with convection. It describes both the
solver itself and the results for a realistic physical problem, obtained with the solver. The report is written as an
assignment for a course studying the notes by Hemker [1]. It concentrates on those aspects of the finite-element
method that are needed for the present method, but not treated in-depth in these notes. The new points are:

1. High-order triangular elements and accurate quadrature in 2D,

2. Computing integrals over a master element, instead of over the real elements,

3. Isoparametric elements, with curved edges.

The basics of the finite-element method and the theoretical error estimates for this method are assumed to be
known to the reader. A theoretical basis for the finite-element method is found in [2].
The physical problem studied is the heat distribution in the fluid flow past an airfoil, which is cooled from a

duct within, and in the airfoil itself. The problem is a model for the flow in a gas turbine, where hot air from
the combustion chamber passes the internally cooled first stages of the turbine.

2. HEAT EQUATION
In this paper, we seek the temperature distribution in an incompressible fluid flow. For these flows, the velocity
field is independent of the temperature. The temperature is given by the heat equation with convection, which
does depend on the flow field. This equation is:

−k∆T + ρCpu(x) · ∇T = 0. (2.1)

The heat conduction coefficient k, the density ρ and specific heat Cp are constant, the velocity u varies through
the domain. So we may write, for a closed domain Ω with boundary ∂Ω,

−ε∆T + u(x) · ∇T = 0 in Ω,

B(T ) = 0 on ∂Ω,
(2.2)
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with ε = k
ρCp

. For the problems studied here, the boundary condition B is a combination of inhomogeneous
Dirichlet conditions,

T (x) = TB(x), (2.3a)

and homogeneous Neumann conditions,

∂T

∂n
= 0. (2.3b)

The domain may consist of two subdomains Ω1 and Ω2 with different ε. Then the solution is given by equa-
tion (2.2) in each of the domains, with the appropriate boundary conditions and an inhomogeneous Dirichlet
condition on the boundary between the domains:

TΩ1 = TΩ2 on ∂Ω1 ∩ ∂Ω2. (2.3c)

3. GALERKIN FORMULATION

Multiply equation (2.2) with a test function ψ ∈ H1
0 (Ω̄) and integrate overΩ. After partial integration, we find:

ε

∫∫
Ω

Txψx dΩ + ε

∫∫
Ω

Tyψy dΩ +
∫∫

Ω

uTxψ dΩ +
∫∫

Ω

vTyψ dΩ = 0. (3.1)

Now divideΩ inm elementsΩk, k ∈ [1, m] and define n basis functions φi, i ∈ [1, n]. Then T is approximated
with a linear combination of these basis functions,

Th =
n∑

i=1

Tiφi. (3.2)

The Ti are the values of T in n control points, distributed over the elements. If we use the same functions φ as
test functions, then equation (3.1) becomes, ∀j ∈ [1, n]:

n∑
i=1

Ti

m∑
k=1

(
ε

∫∫
Ωk

φix
φjx

dΩ + ε

∫∫
Ωk

φiy
φjy

dΩ +
∫∫

Ωk

uφix
φj dΩ +

∫∫
Ωk

vφiy
φj dΩ

)
= 0. (3.3)

This is a system of n equations

ATh = 0, (3.4)

which is solved for Th, the vector containing Ti, i = 1, · · · , n. The integrals are first computed per element
and grouped in element matrices Ae, which are then summed to form A.
To incorporate the boundary conditions (2.3), some control points must be placed on the boundary. In case

of Dirichlet boundary conditions, the Ti at the boundary must get the prescribed value, so the rows in A for
these Ti contain only a 1 on the main diagonal and the value TB is placed in the right hand side vector. For
Neumann boundary conditions, an extra boundary integral appears in equation (3.1), as the result of the partial
integration of the first terms. But for homogeneous Neumann boundary conditions, this boundary integral has
the value 0. Or, in other words, homogeneous Neumann boundary conditions are applied by doing absolutely
nothing, they are natural boundary conditions.
The internal boundary condition (2.3c) is implemented by placing some degrees of freedom on the internal

boundary and by computing equations for these degrees of freedom in the normal way. Only, these equations
have contributions from elements on both sides of the boundary. The diffusion parameter ε is constant in each
element, so the element-wise integration gives no special problems. When summing the contributions from
elements in two different domains, it is important to realise that we really solve equation (2.1), instead of (2.2).
The domains may have different ρ and Cp, so we must sum (ρCp)1 times the contribution from the elements in
domain 1, plus (ρCp)2 times the contributions from domain 2.
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4. ELEMENTS, BASIS FUNCTIONS AND QUADRATURE

For convenience and to simplify theoretical error estimation, we use elements that are equivalent to a single
‘master’ element. Thus, each element has the same degrees of freedom and the basis functions on each element
are the same. The elements are triangular, so the master element is the triangle (0,0) (1,0) (0,1).
A number of control points xi is defined on each element. The basis functions are the Lagrangian polyno-

mials, that have the value 1 in one of the control points and 0 in all the other points. In order to span the 2D
polynomial space of degree p, a total of ne = (p + 1)(p + 2)/2 basis functions are needed. Thus, an element
with linear functions has 3 basis functions and 3 control points per element, a quadratic element has 6 basis
functions, etc. The linear, quadratic and cubic master elements used in this paper are drawn in figure 1, with
their respective control points. Full properties of the elements are found in appendix A.

a) b)c)

Figure 1: Linear (a), quadratic (b) and cubic (c) element.

To evaluate an integral of a function f over Ωk approximately, a quadrature rule is used: the function is
approximated by the basis functions on Ωk and this approximation is integrated. For f ∈ Cp+1(Ωk), we have

f(x) =
ne∑
i=1

f(xi)φi(x) + O(hp+1).

Integrating this expression, we get

∫∫
Ωk

f(x) dΩ =
ne∑
i=1

f(xi)
∫∫

Ωk

φi dΩ + O(h2) · O(ht+1), with t ≥ p.

So the quadrature rule becomes

∫∫
Ωk

f(x) dΩ =
ne∑
i=1

wif(xi) + O(h2) · O(ht+1), with wi =
∫∫

Ωk

φi dΩ, (4.1)

the weight functions are the integrals of the basis functions.
The order of accuracy of the quadrature rule t + 1 is at least as good as the order p + 1 of the basis function

polynomials, meaning that the quadrature rule integrates polynomials of degree p exactly. But, by choosing the
locations of the control points properly, even polynomials of a higher degree can be integrated exactly.

It is proved in [1] for the 1D case, that the order of the quadrature rule must satisfy t + 1 ≥ 2p− 1, to preserve
the order of accuracy of the finite-element method. This required order is not higher than p + 1 for the linear
and quadratic elements, that can thus have arbitrary locations for the control points. But the cubic element can
have only one control point distribution, to get a fifth-order accuracy for the quadrature rule. This distribution
is non-equidistant, see figure 1. A full description is given in appendix A.
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5. TRANSFORMATION TO THE MASTER ELEMENT

As all elements are topologically equivalent, the element-wise integrals are not computed directly. Instead, the
integrands are transformed to the master element and integrated there.
Usually, the elements are triangles. In that case, the transformation is linear and the integration is rather

simple. But if the elements have a more complex shape, then an isoparametric transformation must be used.
Both are explained here.

5.1 Linear transformation
Consider an element Ω, with coordinates x and y and basis functions φi (the subscripts k are dropped for
convenience). This element has a master element Ω̂, with coordinates x̂ and ŷ and basis functions φ̂i. We
define the correspondence of a function on Ω and Ω̂ as:

f(x) = f̂(x̂), (5.1)

for any function f . If both elements are triangular, then there is an affine transformation F :

x = F (x̂) = Bx̂ + b, (5.2)

with constant B and b, such that Ω = F (Ω̂). If we call the leftmost corner of the elements 1, the lowest of the
remaining two corners 2 and the last corner 3 (figure 2), then the transformation becomes:

b =
(

x1

y1

)
, B =

(
∆x2 ∆x3

∆y2 ∆y3

)
. (5.3)

x̂

ŷ

0 1
0

1

∆x2

∆y2

∆y3

∆x3
y

x

1

2

3

Figure 2: Linear transformation, from master element Ω̄ to Ω.

The determinant of B gives the ratio of the areas of Ω and Ω̂:

D = ∆x2∆y3 − ∆x3∆y2. (5.4)

Thus dΩ = D dΩ̂ and∫∫
Ω

f dΩ = D

∫∫
Ω̂

f̂ dΩ̂. (5.5)

The derivatives of f follow from the chain rule, applied to equation (5.1):

∂f

∂x
=

∂f̂

∂x̂

∂x̂

∂x
+

∂f̂

∂ŷ

∂ŷ

∂x
,

∂f

∂y
=

∂f̂

∂x̂

∂x̂

∂y
+

∂f̂

∂ŷ

∂ŷ

∂y
.
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And as

dx̂ = B−1dx =
1
D

(
∆y3 −∆x3

−∆y2 ∆x2

)
dx,

we find that

∂x̂

∂x
=

∆y3

D
,

∂ŷ

∂x
= −∆y2

D
,

∂x̂

∂y
= −∆x3

D
,

∂ŷ

∂y
=

∆x2

D
.

So

∂f

∂x
=

1
D

(
∆y3

∂f̂

∂x̂
− ∆y2

∂f̂

∂ŷ

)
,

∂f

∂y
=

1
D

(
−∆x3

∂f̂

∂x̂
+ ∆x2

∂f̂

∂ŷ

)
.

(5.6)

Combining equations (5.1), (5.5) and (5.6), we can write the finite-element equation (3.3) as integrals over the
master element. The entry ij in the element matrix Ak then becomes:

ε

∫∫
Ωk

φix
φjx

dΩ + ε

∫∫
Ωk

φiy
φjy

dΩ +
∫∫

Ωk

uφix
φj dΩ +

∫∫
Ωk

vφiy
φj dΩ =

ε

D

((
∆x2

3 + ∆y2
3

) ∫∫
Ω̂

φ̂ix̂
φ̂jx̂

dΩ̂ − (∆x2∆x3 + ∆y2∆y3)
∫∫

Ω̂

(
φ̂ix̂

φ̂jŷ
+ φ̂iŷ

φ̂jx̂

)
dΩ̂+

(
∆x2

2 + ∆y2
2

) ∫∫
Ω̂

φ̂iŷ
φ̂jŷ

dΩ̂
)

+

∆y3

∫∫
Ω̂

ûφ̂ix̂
φ̂j dΩ̂ − ∆y2

∫∫
Ω̂

ûφ̂iŷ
φ̂j dΩ̂ − ∆x3

∫∫
Ω̂

v̂φ̂ix̂
φ̂j dΩ̂ + ∆y3

∫∫
Ω̂

v̂φ̂iŷ
φ̂j dΩ̂.

(5.7)

The first three integrals are the same for every element. Therefore, they are computed only once and multiplied
with the correct (∆x2

3 + ∆y2
3) etc. for each element, to get the element matrices Ak. The second group of

integrals is not the same for each element, but simplifies greatly when a quadrature rule is used, since φ̂j is
only nonzero in its own control point. Therefore∫∫

Ω̂

ûφ̂ix̂
φ̂j dΩ̂ ≈ u(xj)ŵjφ̂ix̂

(x̂j), (5.8)

etc. All but the velocity in this expression has to be computed only once.

5.2 Isoparametric transformation
The linear transformation can only be used for triangular elements. This means that the control point locations
in each element are fully determined by the location of the triangle corner points. Thus, the control points on
the element edges are always on a straight line. In some cases, like on curved boundaries, this is undesirable.
Other distributions of the control points can be obtained with a more complex transformation. A polynomial

transformation of the same degree p as the element makes it possible to place all points in arbitrary positions,
since the number of element points equals the number of parameters in those polynomials. So the transforma-
tion F is:

x = F (x̂) =
∑
i,j

bi,j x̂
iŷj , i, j ≥ 0, i + j ≤ p. (5.9)

The most convenient way to compute this transformation polynomial is to express it in terms of the element
basis functions:

x =
ne∑
i=1

xiφ̂i(x̂). (5.10)
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The basis polynomials are 1 in their own control points and 0 in all other control points, so this transformation
gives the desired position for the control points (see figure 3). As both the solution and the elements are based
on the same polynomial basis, we call these elements isoparametric.

x̂

ŷ

0 1
0

1

y

x

Figure 3: Isoparametric transformation, from master element Ω̄ to Ω.

Integration over isoparametric elements is more involved than over normal elements. However, we can
follow the same steps as in the previous section. Writing out equation (5.10) gives:

x =
ne∑
i=1

xiφ̂i(x̂, ŷ), y =
ne∑
i=1

yiφ̂i(x̂, ŷ).

Differentiating these expressions with respect to x and y, we get:

1 =

(
ne∑
i=1

xiφ̂ix̂

)
∂x̂

∂x
+

(
ne∑
i=1

xiφ̂iŷ

)
∂ŷ

∂x
,

0 =

(
ne∑
i=1

xiφ̂ix̂

)
∂x̂

∂y
+

(
ne∑
i=1

xiφ̂iŷ

)
∂ŷ

∂y
,

0 =

(
ne∑
i=1

yiφ̂ix̂

)
∂x̂

∂x
+

(
ne∑
i=1

yiφ̂iŷ

)
∂ŷ

∂x
,

1 =

(
ne∑
i=1

yiφ̂ix̂

)
∂x̂

∂y
+

(
ne∑
i=1

yiφ̂iŷ

)
∂ŷ

∂y
.

Solving this system gives:

∂x̂

∂x
=

Syŷ

D
,

∂ŷ

∂x
= −Syx̂

D
,

∂x̂

∂y
= −Sxŷ

D
,

∂ŷ

∂y
=

Sxx̂

D
, (5.11a)

with

Sxx̂ =
ne∑
i=1

xiφ̂ix̂
, Sxŷ =

ne∑
i=1

xiφ̂iŷ
, Syx̂ =

ne∑
i=1

yiφ̂ix̂
, Syŷ =

ne∑
i=1

yiφ̂iŷ
, (5.11b)

and

D = Sxx̂Syŷ − SxŷSyx̂. (5.11c)
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This gives an equivalent for equation (5.6):

∂f

∂x
=

1
D

(
Syŷ

∂f̂

∂x̂
− Syx̂

∂f̂

∂ŷ

)
,

∂f

∂y
=

1
D

(
−Sxŷ

∂f̂

∂x̂
+ Sxx̂

∂f̂

∂ŷ

)
.

(5.12)

Linearising the transformation (5.10) around (x, y),

x + dx = x + Sxx̂dx̂ + Sxŷdŷ,

y + dy = y + Syx̂dx̂ + Syŷdŷ,

shows that the determinant D from equation (5.11c) is indeed the area ratio between Ω and Ω̂. But now, this
ratio depends on the location. Writing out the integrals in equation (3.3), we obtain an equation like (5.7),

ε

∫∫
Ωk

φix
φjx

dΩ + ε

∫∫
Ωk

φiy
φjy

dΩ +
∫∫

Ωk

uφix
φj dΩ +

∫∫
Ωk

vφiy
φj dΩ =

ε

(∫∫
Ω̂

S2
yŷ

D
φ̂ix̂

φ̂jx̂
dΩ̂ −

∫∫
Ω̂

SyŷSyx̂ + Sxx̂Sxŷ

D

(
φ̂ix̂

φ̂jŷ
+ φ̂iŷ

φ̂jx̂

)
dΩ̂ +

∫∫
Ω̂

S2
xx̂

D
φ̂iŷ

φ̂jŷ
dΩ̂

)

+
∫∫

Ω̂

ûSyŷφ̂ix̂
φ̂j dΩ̂ −

∫∫
Ω̂

ûSyx̂φ̂iŷ
φ̂j dΩ̂ −

∫∫
Ω̂

v̂Sxŷφ̂ix̂
φ̂j dΩ̂ +

∫∫
Ω̂

v̂Sxx̂φ̂iŷ
φ̂j dΩ̂.

(5.13)

These integrals can be evaluated by quadrature. The requirements on the accuracy of the quadrature rule are
given in the next section.

In practice, linear and isoparametric elements can be mixed, since the linear transformation itself gives exactly
the same results as the isoparametric transformation, applied to element control points that are distributed as
for the linear transformation.
And finally, an interesting remark: the linear transformation, applied to elements with linear basis functions,

is an isoparametric transformation. Indeed, the formulas given above simplify to the linear formulas when the
basis functions have constant derivatives.

6. ACCURACY OF THE METHOD

In order to study the accuracy of the finite-element method, different ways to measure the error are possible,
and of interest. This section defines the error norms used here, recalls the theoretical accuracy results found in
[1, 2] and extends this analysis to isoparametric elements.

6.1 Error norms
All error norms are based on the local error:

e = T − Th. (6.1)

Two integral norms for this error are studied. The first is the Sobolev H1-norm ‖ · ‖1,Ω, a natural norm for
second-order elliptic problems, the second is the L2-norm ‖ · ‖L2(Ω). For test problems, we usually know the
exact solution only in the control points. In that case, the integrals in the error norms are approximated with
the interpolation based on the known basis functions on the elements, using

e ≈
∑

eiφi. (6.2)
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Then the error norms are approximated as:

‖e‖L2(Ω) ≈
⎛
⎝ n∑

i=1

n∑
j=1

m∑
k=1

eiej

∫∫
Ωk

φiφj dΩ

⎞
⎠

1
2

, (6.3)

and

‖e‖1,Ω ≈
⎛
⎝ n∑

i=1

n∑
j=1

m∑
k=1

eiej

(∫∫
Ωk

φiφj dΩ +
∫∫

Ωk

φix
φjx

dΩ +
∫∫

Ωk

φiy
φjy

dΩ
)⎞

⎠
1
2

. (6.4)

The integrals in these expressions can either be computed exactly or by quadrature. The last two integrals in
equation (6.4) also appear in (3.3).

6.2 Accuracy with linear transformation
When the elements are triangles and equation (5.7) is used to compute the integrals over the elements, then
the order of the solution error can be estimated using the analysis in [1]. In this case, the transformation to
the master element is not taken into account for the error estimate: even with the transformation, the basis
functions on the elements φi are polynomials of degree p and the integrals over the elements themselves or
over the master element differ only by constant factors. Thus, the error estimate can be made as if polynomial
basis functions were integrated over the elements themselves.
The results of this error analysis are, that if the basis and test functions are polynomials of degree p, then:

‖e‖1,Ω ≤ Chp‖T‖p+1,Ω, (6.5)

with C a constant. Under mild further assumptions, the L2-error is an order of accuracy better:

‖e‖L2(Ω) ≤ Chp+1‖T‖p+1,Ω. (6.6)

These results are derived assuming exact evaluation of the integrals.
When a quadrature rule is used, an extra error is made. Suppose a quadrature rule of order t + 1 is used. If

we denote the solution with quadrature by T̃h, the bilinear functional by Bh and the right-hand side functional
by fh, then it can be found that:

|f(ψh) − fh(ψh)| ≤ Cht+1‖ψh‖p,∆h, (6.7a)

|B(T̃h, ψh) − Bh(T̃h, ψh)| ≤ Cht+1‖T̃h‖p,∆h‖ψh‖p,∆h. (6.7b)

From this result, it is found that:

‖Th − T̃h‖1,Ω = O(hp) when t ≥ 2p − 2. (6.8)

See also the remarks at the end of section 4.

These results are summarized in table 1. It gives the expected order of the error and the requirement on the
accuracy of the quadrature, for the three elements that are used here.

6.3 Accuracy with isoparametric transformation
Isoparametric elements are mostly used to model curved boundaries. This implies that the transformation (5.10)
is not different for each element: it is a global transformation that follows the curved boundary and does not
change when the grid is refined. We can also say that the isoparametric transformation transforms the problem
on the real domain to an equivalent problem on a computational domain with straight boundaries, which is then
discretised and solved with normal elements. Thus, the conclusions drawn for the linear transformation in the
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Degree of Order of the error Req. on quadrature
basis functions H1 L2 Min. order Min. degree

1 1 2 1 0
2 2 3 3 2
3 3 4 5 4

Table 1: Order of the errors and quadrature requirement for three types of elements. The degree of the quadra-
ture rule is the degree of the polynomials that it can integrate exactly.

previous section apply to the isoparametric transformation too, the error estimates and the requirements on the
quadrature are the same.
It is important to consider what happens with the shape of the cells when the grid size is reduced. When

the cells become smaller, the influence of the higher-order terms in the transformation is reduced, so the cells
resemble normal, triangular cells more and more when they become smaller. It is this reduction of the influence
of the higher-order terms in the isoparametric transformation that causes the error norms to converge in the same
way as with the linear transformation.
On the other hand, in the hypothetical case where the transformation is different for each cell, the accuracy

of the solution is greatly reduced. It can be shown that, in this case, theH1-error is of O(h), irrespective of the
degree of the elements and of the quadrature rule.

In practice, it appears that the error for the isoparametric transform is reduced much when a very accurate
quadrature rule is used (although the order of convergence is not changed). Therefore, all integrals on isopara-
metric elements are computed here with a quadrature rule based on 6th-degree polynomials and on Fekete points
[3], that are optimised to approximate the locations for minimal integration errors. This quadrature rule is also
given in appendix A.

7. INITIAL TEST CASES
Before using the method on the main test case, two simpler test problems with known exact solutions are
studied. The first is a pure diffusion problem, the second a 1D convection-diffusion problem with a boundary
layer.

7.1 Diffusion on a square
This problem is the solution of the 2D Laplace equation on the unit square, with both Dirichlet and Neumann
boundary conditions.

∆T = 0, x ∈ [0, 1], y ∈ [0, 1],
T = − cos(2πx), y = 0,

T = cos(2πx), y = 1,

Tx = 0, x = 0 and x = 1.

(7.1)

This problem has a known solution,

T =
cos

(
2π(x − 1

2 )
)
sinh

(
2π(y − 1

2 )
)

sinh(2π)
, (7.2)

all very smooth and friendly. The solution is plotted in figure 4.
The problem is solved on two different types of meshes (see figure 5): regular, structured triangular meshes

and the same type of meshes with a small, random displacement of the triangle corner points (max. 0.2 times
the average point distance). The size of the mesh h is the average distance between two control points lying
next to each other in x- or y-direction. So meshes with the same size have the same number of DOF. Thus, a
mesh with the same size as another mesh, but with higher-order elements, has less elements.
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Figure 4: Solution of the diffusion problem (7.1).
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Figure 5: Diffusion problem: an example of a fully structured (left) and a semi-unstructured (right) grid, with
quadratic elements.
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Figure 6: Diffusion problem: L2- and H1-error for three types of elements, on fully structured (—) and semi-
structured (- - -) grids.
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Plots of the errors for five different grid sizes are given in figure 6. These errors were determined with exact
evaluation of the integrals in (6.4) and (6.3). Most of the orders of convergence agree with those given in table
1. Only, the H1-error for linear regular elements and both errors for quadratic elements are one order of h too
small (bad, isn’t it). But luckily, for fine irregular grids, the quadratic elements show the proper convergence
rate. Generally, the difference in the error on structured and unstructured grids is small.
The effect of quadrature is investigated with cubic elements. The error for the fifth-order Lobatto quadrature

elements is compared with the error for cubic elements with equidistributed points, in figure 7. These last
elements have only fourth-order accurate quadrature, an order less than required. Thus, their errors are an order
of h larger than those for Lobatto elements.
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Figure 7: Diffusion problem: L2- and H1-error for cubic elements with equidistributed and Lobatto control
points.

Isoparametric elements were investigated on two types of grids (see figure 8. The first type is the random-
displacement grid that was used before, but now the internal points get a random displacement too (of course,
this type of grid will never be used in practice). The second grid type has a global deformation that is indepen-
dent of the mesh size:

xi = xi,reg + 0.2 sin(3xi,reg) sin(yi,reg),
yi = yi,reg + 0.2 sin(xi,reg) sin(3yi,reg),

with xi,reg and yi,reg the control points for the fully structured grid. This grid is a model for a grid with a curved
boundary. As predicted in the previous section, the H1-errors on the random irregular grids are first-order,
independent of the order of the elements (see figure 9). But on the sine-perturbed grids, the accuracy of the
regular grids is almost fully recovered. Note that the errors on the regular grids differ a bit from those in figure
6, since all the errors for isoparametric elements are computed with quadrature.

7.2 1D convection-diffusion with boundary layer
The second test problem is used to test the convection part of the method and its behaviour for solutions with
boundary layers. This is important because the airfoil problem in the next section also has a boundary layer
structure. The problem is one-dimensional, so the solution on a 2D mesh must be constant in y-direction. The
velocity field is constant.

−εTxx + UTx = 0, x ∈ [0, 1], y ∈ [0, 1],
T = T0, x = 0,

T = T1, x = 1,

Ty = 0, y = 0 and y = 1.

(7.3)



12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: Diffusion problem: isoparametric grids. Semi-structured (left) and sine-perturbed (right) grid with
quadratic elements.
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Figure 9: Diffusion problem: L2- and H1-error for isoparametric elements, on fully structured (—), semi-
structured (-·-) and sine-perturbed (- - -) grids.
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Figure 10: Solution of the diffusion problem (7.3).
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The analytical solution is

T =
T0e

U
ε − T1

e
U
ε − 1

+
T1 − T0

e
U
ε − 1

e
U
ε x. (7.4)

The thickness of the boundary layer decreases with U/ε. Here we choose ε = 1
20 , U = 1, T0 = 1 and T1 = 2.

The solution is given in figure 10.
For fine grids, the error behaviour is the same as for the previous diffusion-only problem, both for normal

elements (figure 11) and for isoparametric elements (figure 12). For very coarse grids, some small irregularities
appear. These are caused by wiggles in the solution, that appear when the control points are placed so far away
from each other that they cannot capture the boundary layer. So for a smooth solotion in a boundary layer,
there must be enough degrees of freedom in the layer. It appeared that this number does not depend much on
the order of the elements.
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Figure 11: Convection-diffusion problem: L2- and H1-error for three types of elements, on fully structured
(—) and semi-structured (- - -) grids.
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Figure 12: Convection-diffusion problem: L2- and H1-error for isoparametric elements, on fully structured
(—), semi-structured (-·-) and sine-perturbed (- - -) grids.
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8. FLOW PAST A COOLED AIRFOIL

In gas turbines very hot air from the combustion chamber is led to the turbine, which drives the compressor in
front of the combustor and, possibly, a shaft which leads to the external device powered by the engine. The
turbine is spinning very fast, so the loads on the turbine blades are high. The blade material loses its strength
at the high temperature of the exhaust gas (about 1700 K at the turbine inlet), so the blades are cooled with
internal channels and by blowing cool air out over the blade surface.
A simple model for such a flow is studied here. As said in section 1, we assume incompressible, irrotational

flow. This means that the velocity field is given by the potential equation and the temperature by the convection-
diffusion heat equation. The turbine is modeled in 2D by an infinite row of airfoils placed above each other.
Thus, the problem is symmetric and the flow over half an airfoil only is studied (see figure 13). The top and
bottom of the domain are symmetry planes, hence the Neumann boundary conditions. The cooling in the blade
is modeled by a single canal with a constant wall temperature. Cooling air blown out is not modeled. The
airfoil is a NACA 0012 profile.

-0.5 0 0.08 0.7 1 2 x

0

0.02

0.5

y

T = 2

Ty = 0

Ty = 0 Ty = 0

Tx = 0

εa

εf

T = 1

Figure 13: Domain and boundary conditions for cooled-airfoil problem (not to scale).

The problem has two domains: the flow and the airfoil, which are linked with a boundary condition (2.3c).
The velocity in the airfoil is zero, so the heat equation (2.2) there reduces to ∆T = 0. Therefore, the effect
of different ρCp in the flow and the airfoil (see section (3)) can be taken into account by using a corrected
diffusion coefficient in the airfoil: εa = ka

(ρCp)f
. So from a mathematical point of view, we just solve equation

(2.2) with different values of ε in the two domains.
The flow field is computed with a dipole distribution on the airfoil centerline, to make it independent of the

mesh. The meshes used are H-type meshes that follow the streamlines and equipotential lines of the flow field.
The velocity computation and mesh generation are described in appendix B. The basic mesh has 47690 degrees
of freedom in 10432 cubic cells. This mesh can be coarsened up to eight times for a convergence study. The
four times coarsened mesh is shown in figure 14, the flow field in figure 15.
An estimate of the convergence behaviour is found in table 2. The exact solution is not known, so we

cannot compute the local error exactly. Instead, as a very rough indicator for the convergence of the error, the
convergence of the norm of the solution is studied. Convergence of this norm does not indicate the order of
convergence of the error, but it gives a rough indication that the solution does, in fact, converge.

Now, the physical behaviour of the temperature is studied. The temperature field depends on two parameters
only. The problem is linear, so the shape of the temperature distribution depends neither on the inflow temper-
ature Ti, nor on the difference between Ti and the temperature Tp in the cooling duct. The only parameters of
interest are:
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Figure 14: Grid for cooled-airfoil problem (coarsening factor 4), with close-ups of the leading edge and trailing
edge.
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Figure 15: Velocity components u and v. u has minima near the leading and trailing edge and a maximum
above the airfoil. Far away from the airfoil, it has the undisturbed value 1. v is positive near the leading edge,
negative near the trailing edge and zero far away from the airfoil.
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Grids ∆L2 ∆H1

8 – 4 3.073·10−4 1.265·10−2

4 – 2 -2.256·10−5 4.550·10−3

2 – 1 -3.518·10−6 -3.086·10−4

Table 2: Convergence of the difference in L2- and H1-norms of the solution on consecutive grids, with coars-
ening factors from 8 to 1.

1. The ratio of convection and diffusion velocity in the flow,

2. The ratio of diffusion in the flow and in the airfoil.

The first ratio is expressed in the Péclet number1:

Pe =
U0c

εf
, (8.1)

with U0 the undisturbed velocity and c the airfoil chord. For a typical turbine blade, Pe is of the order 105 –
106. The second ratio is εa/εf . For a typical metal airfoil, this is of the order 103 – 104 (see [4]).
Three properties of the temperature field are of interest:

1. The highest temperature in the airfoil, important for the material strength,

2. The heat flow from the cooling duct, the total cooling power required, which is the integral over the duct
boundary of the heat flux εa

∂T
∂n ,

3. The thickness of the temperature boundary layer, defined here as the place where T−Ta = 0.95(Ti−Ta),
at x = 1.

In the plots that give the dependence of the tempreature on the Péclet number (figure 16 and 18), we see that
the boundary layer thickness decreases with the square root of Pe, as expected. The heat flow from the channel
decreases more or less in the same way. This is explicable: for high values of εa/εf , the temperature of the
airfoil is almost 1. So the temperature gradient in the flow at the airfoil surface is more or less proportional
to the boundary layer thickness. And the heat flow from the cooling duct equals the heat flow into the flow
domain, that depends on this gradient.
The maximum temperature in the airfoil appears at the leading edge. As Pe increases, the temperature

gradient seems to move into the airfoil, so the maximum temperature in the airfoil increases.
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Figure 16: Cooled airfoil: dependence of Tmax on the airfoil, heat flow Qc and boundary layer thickness δ on
the Peclet number for εa/εf = 100.

1For the fluid dynamicists, Pe = Re Pr.
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Figure 17: Cooled airfoil: dependence of Tmax on the airfoil, heat flow Qc and boundary layer thickness δ on
the ratio εa/εf for Pe = 1000.

Fgures 17 and 19 give the dependence of the temperature field on εa/εf . There are two regions: for low
εa/εf , the temperature gradient region lies mostly in the airfoil, the boundary layer is thin and its thickness
varies strongly with εa/εf . But when εa/εf is high (above 100), the temperature in the airfoil is more or less
constant, so the temperature in the flow does not depend much on εa/εf . This is the region where the boundary
layer depends only on Pe and varies as the square root of Pe.
So, for a real turbine blade (εa/εf = 1000, Pe = 100.000), the temperature in the airfoil is mostly constant

and the heat flux and boundary layer do not depend much on the airfoil material or the place of the cooling.
However, there may be a hot region near the leading edge that requires attention. The boundary layer is thin,
much less than the thickness of the airfoil itself.

9. CONCLUSION
A finite-element method is developed for the 2D convection-diffusion heat equation. For high-order elements,
the accuracy of the quadrature rule is important: accurate quadrature rules are presented for triangular elements
with up to cubic basis functions. Curved boundaries are handled with isoparametric elements. It is shown that,
for smooth curves, the isoparametric elements do not spoil the order of convergence of the error.
Two tests, using simple test problems, show that the norms of the errors converge on grid refinement with

the theoretically obtained order for each of the elements. In practice, quadratic elements often show an order
of convergence that is even better than the order predicted by theory.
The computation of the temperature around an internally cooled airfoil shows the use of the method for

practical problems. For normal airfoils, the temperature gradient is the largest in a thin boundary layer outside
the airfoil. However, some regions in the airfoil may still get hot.
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Figure 18: Cooled airfoil: variation of temperature profile with Péclet number. Constant εa/εf = 100.
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Figure 19: Cooled airfoil: variation of temperature profile with Péclet number. Constant εa/εf = 100.
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A. THE ELEMENTS
This appendix gives data for the three types of elements that were used. For each element the control points,
the quadrature weights, the basis functions and the derivatives of these basis functions are given. Figures show
the shape of the basis functions.

A.1 Linear element

point xi yi wi basis function

1 0 0 1
6 φ1 = −(x + y − 1)

2 1 0 1
6 φ2 = x

3 0 1 1
6 φ3 = y

Table 3: Control point coordinates, quadrature weights wi and the basis functions φi corresponding to each
control point.

point φ1x
φ2x

φ3x
φ1y

φ2y
φ3y

1 -1 1 0 -1 0 1
2 -1 1 0 -1 0 1
3 -1 1 0 -1 0 1

Table 4: The values of the basis function derivatives in each control point.

φ1 φ2 φ3

Figure 20: The basis functions.
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A.2 Quadratic element
The quadratic basis functions are products of the linear basis functions.

point xi yi wi basis function

1 0 0 0 φ1 = 2(x + y − 1)(x + y − 1
2 )

2 1
2 0 1

6 φ2 = −4x(x + y − 1)

3 1 0 0 φ3 = 2x(x − 1
2 )

4 0 1
2

1
6 φ4 = −4y(x + y − 1)

5 1
2

1
2

1
6 φ5 = 4xy

6 0 1 0 φ6 = 2y(y − 1
2 )

Table 5: Control point coordinates, quadrature weights wi and the basis functions φi corresponding to each
control point.

point φ1x
φ2x

φ3x
φ4x

φ5x
φ6x

φ1y
φ2y

φ3y
φ4y

φ5y
φ6y

1 -3 4 -1 0 0 0 -3 0 0 4 0 -1
2 -1 0 1 0 0 0 -1 -2 0 2 2 -1
3 1 -4 3 0 0 0 1 -4 0 0 4 -1
4 -1 2 -1 -2 2 0 -1 0 0 0 0 1
5 1 -2 1 -2 2 0 1 -2 0 -2 2 1
6 1 0 -1 -4 4 0 1 0 0 -4 0 3

Table 6: The values of the basis function derivatives in each control point.

φ1 φ2 φ3 φ4 φ5 φ6

Figure 21: The basis functions.
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A.3 Cubic ‘Lobatto’ element
In this element, the control points are not equidistant. Therefore, not all basis functions are products of linear
functions. The derivatives in each control point were not computed analytically and are not given here.

point xi yi wi basis function

1 0 0 − 1
120 φ1 = (−6x2 − 15xy − 6y2 + 6x + 6y − 1)(x + y − 1)

2 1
2 − 1

6

√
3 0 1

20 φ2 = 6
√

3x
(
x + ( 1

2 + 1
2

√
3)y − ( 1

2 + 1
6

√
3)

)
(x + y − 1)

3 1
2 + 1

6

√
3 0 1

20 φ3 = −6
√

3x
(
x − ( 1

2 − 1
2

√
3)y − ( 1

2 − 1
6

√
3)

)
(x + y − 1)

4 1 0 − 1
120 φ4 = x(6x2 − 3xy − 3y2 − 6x + 3y + 1)

5 0 1
2 − 1

6

√
3 1

20 φ5 = 6
√

3y
(
( 1
2 + 1

2

√
3)x + y − ( 1

2 + 1
6

√
3)

)
(x + y − 1)

6 1
3

1
3

9
40 φ6 = −27xy(x + y − 1)

7 1
2 + 1

6

√
3 1

2 − 1
6

√
3 1

20 φ7 = (9 + 3
√

3)xy
(
x + (2 −√

3)y − (1 − 1
3

√
3)

)
8 0 1

2 + 1
6

√
3 1

20 φ8 = −6
√

3y
(−( 1

2 − 1
2

√
3)x + y − ( 1

2 − 1
6

√
3)

)
(x + y − 1)

9 1
2 − 1

6

√
3 1

2 + 1
6

√
3 1

20 φ9 = (9 + 3
√

3)xy
(
(2 −√

3)x + y − (1 − 1
3

√
3)

)
10 0 1 − 1

120 φ10 = y(−3x2 − 3xy + 6y2 + 3x − 6y + 1)

Table 7: Control point coordinates, quadrature weights wi and the basis functions φi corresponding to each
control point.

φ1 φ2 φ3 φ4 φ5 φ6

φ7 φ8 φ9 φ10

Figure 22: The basis functions.
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A.4 Sixth-degree Fekete quadrature points
This high-order quadrature rule, based on sixth-degree polynomials and with 28 control points, is used for
isoparametric elements. It is taken from [3].

point xi yi wi

1 0.000000 0.000000 0.000101
2 0.084885 0.000000 0.004824
3 0.265565 0.000000 0.006809
4 0.500000 0.000000 0.008973
5 0.734435 0.000000 0.006809
6 0.915115 0.000000 0.004824
7 1.000000 0.000000 0.000101
8 0.000000 0.084885 0.004824
9 0.106335 0.106335 0.027605
10 0.316270 0.117181 0.044284
11 0.566549 0.117181 0.044284
12 0.787329 0.106335 0.027605
13 0.915115 0.084885 0.004824
14 0.000000 0.265565 0.006809
15 0.117181 0.316270 0.044284
16 0.333333 0.333333 0.054464
17 0.566549 0.316270 0.044284
18 0.734435 0.265565 0.006809
19 0.000000 0.500000 0.008973
20 0.117181 0.566549 0.044284
21 0.316270 0.566549 0.044284
22 0.500000 0.500000 0.008974
23 0.000000 0.734435 0.006809
24 0.106335 0.787329 0.027605
25 0.265565 0.734435 0.006809
26 0.000000 0.915115 0.004824
27 0.084885 0.915115 0.004824
28 0.000000 1.000000 0.000101

Table 8: Control point coordinates and quadrature weights wi.

Figure 23: Control points for Fekete quadrature.
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B. FLOW FIELD AND GRID GENERATION

The flow field u in the problem from section 8 is a solution of the potential equation ∆φ = 0, with u = φx

and v = φy . So, in principle, the velocity field can be computed with the same finite-element method as the
temperature field. However, to avoid non-linear effects in the temperature error, it is desirable to have a velocity
field that does not depend on the mesh. Therefore, the velocity field is solved with a boundary integral method:
the airfoil is represented by a dipole distribition on its centerline, the strength of these dipoles is computed by
specifying that the velocity in control points on the wing surface is tangential to the wing.
The flow field here is computed using 150 dipole panels of equal length and constant dipole strength. The

150 control points are placed above the middles of the panels. Symmetry around the lines y = 0 and y = 0.5
is obtained (approximately) by mirroring the dipole distribution four times in these lines. Thus, the velocity in
the control points depends on the airfoil itself and eight others.
To set up the equations for the dipole strength, we need to know the ecffect of a single panel. One dipole

panel of constant strength µ, with length ∆x, creates in a point (xc, yc) a potential φ, a stream function value
ψ and velocities u and v:

φ = −1
2µ ln

(
y2

c + (xc − xb − ∆x)2

y2
c + (xc − xb)2

)
, (B.1)

ψ = µ

(
arctan

(
xc − xb − ∆x

yc

)
− arctan

(
xc − xb

yc

))
, (B.2)

u =
∂φ

∂xc
= µ

(
xc − xb

(xc − xb)2 + y2
c

− xc − xb − ∆x

(xc − xb − ∆x)2 + y2
c

)
, (B.3)

v =
∂φ

∂yc
= −µ

(
yc

(xc − xb)2 + y2
c

− yc

(xc − xb − ∆x)2 + y2
c

)
. (B.4)

The total value of any parameter in a point is found by summing the contributions of all panels. The equations
for the dipole strengths µ are found by requiring that ψ = 0 in each control point, which means that the flow is
tangential to the airfoil.

y

xxb xb + ∆x

xp, yp

Figure 24: Dipole panel and control point.

Once the potential is found, it can be used in a convenient way to construct a finite-element grid: we can take
streamlines and equipotential lines as grid lines. These lines divide the flow domain in a rectangular H-type
grid, which is not distorted much, since the streamlines and equipotential ines are orthogonal to each other.
This grid generating procedure proved to be very successful. Only very close to the leading and trailing edge

(about 0.001 away) does the potential solution display small wiggles, requiring some smoothing of the grid.


