CWI

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Modelling, Analysis and Simulation

Modelling, Analysis and Simulation

Numerical simulations and conformal analysis of growing and branching negative discharge streamers

C. Montijn, B.J. Meulenbroek, U.M. Ebert, W.H. Hundsdorfer

REPORT MAS-E0409 AUGUST 2004

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the Netherlands Organization for Scientific Research (NWO).

CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica P.O. Box 94079, 1090 GB Amsterdam (NL) Kruislaan 413, 1098 SJ Amsterdam (NL) Telephone +31 20 592 9333 Telefax +31 20 592 4199

ISSN 1386-3703

Numerical simulations and conformal analysis of growing and branching negative discharge streamers

ABSTRACT

The dynamics of an anode-directed streamer can be described by advection-diffusion equations for the charged particles, including a local field-dependent impact ionization term, and coupled to the Poisson equation for the electric field. We present the results of new simulations that use a local uniform grid refinement strategy. Even on very fine grids, provided the electric field is high enough, the streamer appears to branch spontaneously. These results are supported by new analytical solutions based on a moving boundary approximation.

2000 Mathematics Subject Classification: 65M12; 65M20; 65M50

Keywords and Phrases: Negative streamers; minimal streamer model; local grid refinement; moving boundary approximation

Note: Financial support for C. Montijn is provided by NWO in the Computational Science program. This research was further supported by the Dutch government through the national program BSIK: knowledge and research capacity, in the ICT project BRICKS, theme MSV1.

1

Numerical simulations and conformal analysis of growing and branching negative discharge streamers

Carolynne Montijn, Bernard Meulenbroek, Ute Ebert and Willem Hundsdorfer

Abstract—The dynamics of an anode-directed streamer can be described by advection-diffusion equations for the charged particles, including a local field-dependent impact ionization term, and coupled to the Poisson equation for the electric field. We present the results of new simulations that use a local uniform grid refinement strategy. Even on very fine grids, provided the electric field is high enough, the streamer appears to branch spontaneously. These results are supported by new analytical solutions based on a moving boundary approximation.

Index Terms—Negative streamers, minimal streamer model, local grid refinement, moving boundary approximation

Discharge streamers can emerge when a strong potential is applied to a sufficiently large sample of nonconducting matter like a gas. They consist of channels of nonequilibrium plasma that is generated at the channel tip. The rapid propagation of the tip is characterized by local self-induced enhancement of the electric field.

For anode directed streamers, essential properties of the process can be analyzed within a minimal model which contains only two charged species (electrons and positive ions), an impact ionization reaction and the Poisson equation of electrostatics. The model can be applied to non-attaching gases like nitrogen or argon. In dimensionless units, it is [1]:

$$\partial_t \sigma = \nabla \cdot (\sigma \mathbf{E}) + D \nabla^2 \sigma + \sigma |\mathbf{E}| e^{-1/|\mathbf{E}|}, \quad (1)$$

$$\partial_t \rho = \sigma |\mathbf{E}| e^{-1/|\mathbf{E}|}, \qquad (2)$$

$$\nabla \cdot \mathbf{E} = -\nabla^2 \phi = \rho - \sigma \,, \tag{3}$$

where σ and ρ are the electron or positive ion density, respectively, D is the diffusion coefficient of the electrons, and E and ϕ the electric field and potential, respectively. The positive ions can be assumed to be immobile on the short time scales considered here because their mobility is at least two orders of magnitude smaller than that of the electrons [2]. The dimensionless quantities have been defined by scaling the corresponding dimensional quantities with the most natural scales for the length l_0 , time t_0 , electric field E_0 and charge q_0 . For N_2 under normal conditions, they are:

$$l_0 = 2.3 \,\mu\text{m}$$
, $t_0 = 3 \cdot 10^{-12} \,\text{s}$,
 $E_0 = 200 \,\text{kV/cm}$, $q_0 = 4.7 \cdot 10^{14} \,\text{e/cm}^3$, (4)

where e is the elementary charge.

Up to now, all simulations [2]–[6] performed on this model have been carried out on uniform grids, and some of them [4]–[6] show that, provided the background electric field is

Manuscript received July 1, 2004. This work was supported by the Dutch funding agency NWO and by CWI Amsterdam. The authors are with the Center for Mathematics and Computer Science (CWI), P.O.Box 94079, 1090GB Amsterdam, The Netherlands. U.E. has also a part time appointment with the physics faculty of Eindhoven Univ. Techn., The Netherlands.

high enough, the streamer tends to grow into an unstable state, leading to spontaneous branching. The simulations show very steep ionization fronts around the propagating channel, next to wide inert space where only the Poisson equation in the absence of space charges has to be solved.

We therefore have implemented a simulation code with local uniform grid refinement in order to be able to use finer grids [7], to investigate the nature of the instablities in detail and to be able to deal with larger system sizes. The computational domain is three dimensional with radial symmetry, where r and z are the radial and axial coordinates, respectively. The cathode is planar, situated at z=0, and the distance between the electrodes is L=2000, corresponding to $4.6\mu m$. The finest grid size is 1/2. The initial condition is a Gaussian ionization seed at the cathode,

$$\sigma(r, z, t = 0) = \rho(r, z, t = 0) = \sigma_0 e^{-(r^2 + z^2)/R_0^2}$$
 (5)

where σ_0 corresponds to a maximum density of $10^{14} {\rm cm}^{-3}$, and R_0 is the 1/e radius, corresponding to $25\mu m$. The background electric field is set to $E_{bq} = -0.4\hat{z}$, \hat{z} being the unit vector in the axial direction, which corresponds to 80kV/cm. Figure 1 shows the temporal evolution of the initial ionization seed under these conditions. We used a Neumann boundary condition for the electrons at the cathode, which corresponds to a net flux of electrons into the computational domain. Therefore the particle densities at the cathode will always grow, and in the figures the densities at the cathode have been cut off in such a way that the front of the channel is well reproduced. The plot of the total charge density at t = 100 show already space charge effects. A charged layer appears, strongly affecting the electric field, which becomes relatively low in the body of the streamer and very high at the outside of the streamer front. The ratio of layer thickness over channel radius decreases and approaches an interfacial limit, after which the streamer becomes unstable and branches, as can be seen at t = 500.

The physical nature of the instability is illustrated in Fig. 2. Here a simplification of the streamer problem is considered as first suggested by Lozansky and Firsov: the interior of the streamer is assumed to be equipotential, the ionization front to be infinitely thin and the interface velocity to be the local electron drift velocity. New analytical solutions of this problem can be found in [8]. We here illustrate that this model indeed can show the same evolution as the numerical solutions of Eqs. (1)–(3): the propagating tip becomes flatter and eventually branches.

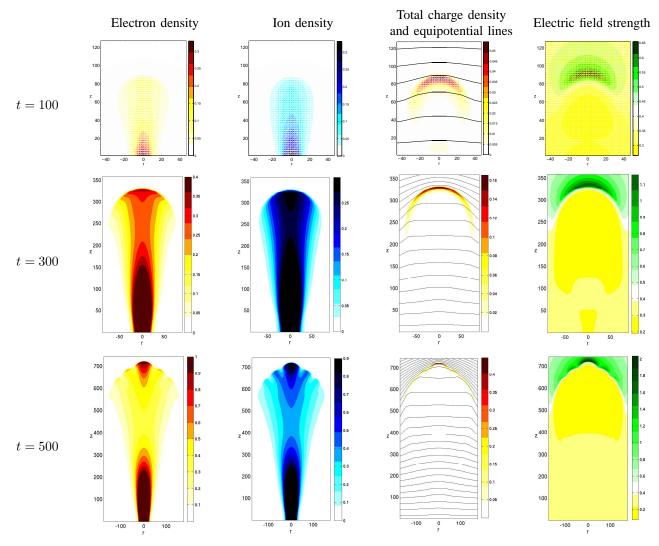


Fig. 1. Temporal evolution of the electron density σ (first column), positive ion density ρ (second column), total charge density $\sigma - \rho$ and equipotential lines ϕ (third column) and the electric field strength $|\mathbf{E}|$ (last column). The background electric field always corresponds to the white level. The rows correspond to t = 100, 300, 500, respectively.

REFERENCES

- [1] U. Ebert and W. van Saarloos, "Propagation and structure of planar streamer fronts", *Phys. Rev. E*, vol. 55(2), pp. 1530-1549, Feb. 1997.
- [2] S.K. Dhali and P.F. Williams, "Two-dimensional studies of streamers in gases", J. Appl. Phys., vol. 62(12), pp.4696-4707, Dec. 1987.
- [3] P.A. Vitello, B.M. Penetrante and J.N. Bardsley, "Simulation of negative-streamer dynamics in nitrogen", *Phys. Rev. E*, vol. 49(6), pp. 5574-5598, June 1994.
- [4] M. Arrayás, U. Ebert, W. Hundsdorfer, "Spontaneous branching of anode-directed streamers between planar electrodes", *Phys. Rev. Lett.* vol. 88, pp. 174502 [4 pages], Apr. 2002.
- [5] A. Rocco, U. Ebert, and W. Hundsdorfer, "Branching of negative streamers in free fight", *Phys. Rev. E* vol. 66, pp. 035102(R) [4 pages], Sep. 2002.
- [6] N. Liu and V.P. Pasko, "Effects of photoionization on propagation and branching of positive and negative streamers in sprites", *Jour. of Geophys. Res.* vol. 109, pp. A04301 [17 pages], Apr. 2004.
- [7] C. Montijn, W.Hundsdorfer, U. Ebert and J. Wackers, "Numerical simulations of growing and branching ionization channels using local grid refi nements", in preparation.
- [8] B. Meulenbroek, A. Rocco, U. Ebert, "Streamer branching rationalized by conformal mapping techniques", *Phys. Rev. E* vol. 69, pp. 067402, June 2004.

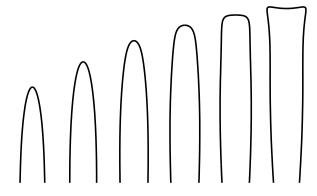


Fig. 2. Temporal evolution of a streamer in the moving boundary approximation. The convex streamer becomes fatter and eventually concave.