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Five-Equation Model for Compressible Two-Fluid
Flow

ABSTRACT
An interface-capturing, five-equation model for compressible two-fluid flow is presented, that is
based on a consistent, physical model for the flow in the numerical transition layer. The flow
model is conservative and pressure-oscillation free. Due to the absence of an interface model in
the capturing technique, the implementation of the model in existing flow solvers is very simple.
The flow equations are the bulk-fluid equations, combined with mass and energy equations for
one of the two fluids. The latter equation contains a source term, to account for the energy
exchange between the fluids. The physical flow model enables the derivation of an exact
expression for this source term, both in continuous and in discontinuous flow. The system is
solved numerically with a limited second-order accurate finite-volume technique. Linde's HLL
Riemann solver is used. This solver is simplified here and its combination with the second-order
scheme is studied. When the solver is adapted to two-fluid flow, the source term in the flow
equations is incorporated in the Riemann solver. Further, the total source term in the cells is
integrated over each cell. Numerical tests are performed on 1D shock-tube problems and on 2D
shock-bubble interactions. The results confirm that the method is pressure-oscillation free and
show that shocks are captured sharply. Good agreement with known solutions is obtained. Two
appendices show an approximate model for shocks in physical two-phase media and a
theoretical study of the interaction of shocks with plane interfaces, which is used to analyse the
shock-bubble interactions.
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Chapter 1

Introduction

Two-fluid flow problems appear in many applications in physics and engineering. In these problems, the flow
medium consists of two or more fluids, which do not mix. Instead, a sharp interface separates the pure fluids.
A challenge in the numerical simulation of these flows is that a model for the interface must be coupled with a
fluid-flow model. If these models do not fit together, then the flow solution may contain large errors.

One class of two-fluid models is known as interface-capturing techniques. These methods do not use an
explicit interface model. Instead, the fluid is modeled as a mixture of the pure fluids everywhere, where
away from the interface, the ‘mixture’ contains only one component. The interface itself appears as a smooth,
numerically smeared transition from one fluid to the other. Thus, no special model is needed for the behaviour
of the flow in the interface cells and the interface motion follows implicitly from the flow solution.

These models have two advantages over interface-tracking methods as the volume-of-fluid [13] and level-set
[22, 28] techniques, that do have an explicit interface model. First, there is no need to implement an (often
complex) algorithm for the interface motion, the capturing flow equations are basically equivalent to single-
fluid flow equations. Therefore, capturing models can be implemented in existing flow solvers very easily. And
secondly, tracking methods are ill-suited for conservative computation of compressible flows. The interface-
motion models are usually based on a convection equation, that does not necessarily fit in with the conservation
laws on which the flow model is based. Thus, rigorous enforcement of conservation, but with the interface
in an improper location relative to the flow variables, leads to large local errors in, especially, the pressure.
Therefore, most compressible interface-tracking techniques, like the successful ghost-fluid method [9], are
locally non-conservative [8, 17]. This is a disadvantage for solving problems with strong shocks.

A conservative formulation is possible for compressible capturing models, but it depends on a proper model
for the numerical mixture. Many capturing models use the single-fluid flow equations together with one extra
transport equation for a parameter that determines the properties of the mixture, like the mass fraction of one
of the fluids. Abgrall and Karni [2] have shown that conservative formulations of these models lead to pressure
oscillations, i.e. pressure errors near the two-fluid interface that do not decrease on grid refinement. Therefore,
some capturing techniques have been developed that also, locally, abandon conservation [1, 15].

Another possibility is to base the numerical mixture model on the equations for two-phase flow, that describe
the behaviour of physical mixtures. These models use separate pressures, velocities and densities for each of
the fluids. Some researchers solve these equations directly [3, 26]. Another popular approach, introduced
by Kapila et al. [14] and extended in, e.g., [10], is to simplify the two-phase model, by taking a limit, to a
form that is suitable for numerical mixtures. A model with comparable properties is suggested by Ton [30].
Unfortunately, these models need an approximate closure for a non-conservative term, that appears when a
shock hits a two-fluid interface.

In this report, a conservative capturing method is presented, which is an extension of the method that Van
Brummelen and Koren [6] introduced for barotropic flows. The method is based on a consistent physical
model for the numerical mixture itself and all flow equations are derived directly from this mixture model.
The result is a method which is similar to the Kapila model, but the physical mixture model makes it possible
to derive an exact closure for the flow equations, in the case when a shock hits the interface. The method is
therefore fully conservative.

The current two-fluid flow model is combined with a second-order accurate finite-volume discretisation and
an adaptation of Linde’s HLL approximate Riemann solver [19]. The result is a simple and efficient numerical
method, which can be easily implemented in any existing single-fluid flow solver.
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5

The report starts with a description of the mixture model and the derivation of the flow equations, in chapter 2.
Chapter 3 analyses the source term, which appears in the flow equations, and derives the closure of the system
for discontinuous flow. The numerical method is described, with a discussion of an improved version of Linde’s
HLL solver in chapter 4 and the adaptation of this solver to two-fluid flow in chapter 5. The performance of the
method is tested on 1D and 2D problems in chapter 6.

The report contains two appendices. Appendix I describes an approximate mixture-shock model for strong
shocks, which was obtained during the development of the five-equation model, although it is not connected
with that model. Appendix II contains an analysis of the interaction of shocks with plane two-fluid interfaces.
The results are generally applicable, they are applied here to the 2D test problems from chapter 6.



Chapter 2

Flow equations

This chapter describes the physical laws underlying the flow model. A physical model for compressible two-
fluid flow without friction and heat conduction is developed and differential equations plus additional algebraic
relations, that are consistent with this physical model, are derived.

2.1. PHYSICAL MODEL FOR TWO-FLUID FLOW

The physical model used here for two-fluid flow is based on a two-phase flow model, in which the entire flow
domain is filled with a mixture of the two fluids. However, in this underlying two-phase model, the fluids are
not mixed on the molecular level: the ‘mixture’ consists of very small elements of the two pure fluids, arranged
in an irregular pattern. So the fluid is a mixture in the macroscopic sense, but on a microscopic level the two
fluids keep their own pure-fluid behaviour. Each flow element has its own density, velocity and pressure and
the elements interact by exerting forces on each other, thus exchanging work, and by exchanging heat.

For our (simpler) two-fluid model, some aspects of the above two-phase model are kept. Most importantly,
we still assume that both fluids are present everywhere in the flow domain. Only, in most parts of the domain
(away from the interface), the quantity of one of the two fluids is zero or very close to zero. The interface
between the two fluids appears as a gradual transition from fluid 1 to fluid 2. In this way, in fact, the concept of
an interface between the two fluids disappears from the model: it is replaced by the concept of a numerical tran-
sition layer. The interface region is not fundamentally different from the rest of the flow, only the concentration
of the two fluids changes faster there than in the rest of the domain. Numerically, this is a great advantage,
since no special interface model is needed to act only on the interface cells.

Each fluid still has its own density, but a single pressure and a single velocity are assumed for the two fluids,
instead of two different pressures and velocities. Thus, the fluid elements do not move relative to each other.
In this way, the model loses its physical two-phase behaviour: for instance, there are no longer two different
sound speeds. But this behaviour is not desired anyway, as two-phase phenomena like the above do not occur
in real two-fluid flow with sharp interfaces. In a numerical model, the two fluids may penetrate into each other,
but by numerical diffusion only; they cannot convect into each other.

Concerning the interaction between the fluid elements, we do allow forces that keep the velocity of the fluid
elements equal. However, we do not allow heat conduction between the elements. As the two fluids have
different densities but the same pressure, they are not necessarily in thermal equilibrium. This is physically
possible when heat conduction is absent.

Counting the unknown variables in these models, seven unknowns are found for the full two-phase model
(two densities, two velocities, two pressures and one measure for the relative concentration of the fluids). This
is consistent with the seven-equation model of Baer and Nunziato [4], used among others by Abgrall and Saurel
[3, 26]. For our two-fluid model, five unknowns remain. A state vector q could be q = [ρ1, ρ2, u, p, Y ]

T , with
Y a measure of the relative amount of fluid 1. To successfully integrate this model in time, we need five
differential equations. Models for compressible two-fluid flow, based on less than five equations, may lose
information about the flow during time integration. This may be a cause of pressure oscillations [2]. Our five
differential equations are chosen in the next section.

2.2. DIFFERENTIAL EQUATIONS

To accurately solve problems with strong discontinuities, we strive for a model that is entirely based on con-
servation laws. In this section, suitable equations are selected. For convenience, we do this in 1D.

The standard Euler equations for single-fluid flow are derived without assumptions about the microscopic

6



2.2. Differential equations 7

behaviour of the flow medium, so these equations are valid for the two-fluid model too:

(ρ)t + (ρu)x = 0, (2.1a)

(ρu)t +
(

ρu2 + p
)

x
= 0, (2.1b)

(ρE)t + (ρEu + pu)x = 0. (2.1c)

However, we have to find the correct expressions for the bulk quantities ρ and E. First α, the volume fraction
of fluid 1, is chosen as the variable Y . In our physical flow model, this means that a part α of a small volume
dV is filled with elements of fluid 1 and a part (1 − α) with elements of fluid 2. Therefore, a part α of the
volume has the properties of fluid 1 and the remaining part (1 − α) has the properties of fluid 2. We can use
this to define any bulk quantity; the bulk density ρ and bulk total energy E are

ρ = αρ1 + (1 − α)ρ2,

ρE = αρ1E1 + (1 − α)ρ2E2,
(2.2)

with the total energy for each fluid defined as

E1 = e1 + 1
2u2,

E2 = e2 + 1
2u2.

(2.3)

The symbols e denote the internal energy of the fluids.

Two more conservation laws are needed to close the system. There are no more bulk conservation laws avail-
able, so the only option is to look for conserved quantities of one of the fluids. The first one is, of course, the
conservation of mass for one fluid, since the fluids are not supposed to change into each other. Let us consider
conservation of mass for fluid 1. Using the partial density ρ1α (as ρ1α dV is the mass of fluid 1 in a volume
dV ), the corresponding equation is:

(ρ1α)t + (ρ1uα)x = 0. (2.4)

This equation implies that the fluid elements do not move relative to each other. Together with equation (2.1a),
the equation implies mass conservation for both fluids.

For the last equation, only one option remains: an equation for the energy of fluid 1. Momentum for fluid 1,
instead of energy, cannot be used: we know the bulk momentum and we know that the two fluids move at the
same speed, so we already know the momentum of fluid 1 without time integration (this is shown in detail in
section 3.1). So the energy equation for fluid 1 is the only possible choice. This equation has a special property:
the fluid elements exert forces on each other, so they exchange energy. This exchange appears as a source term
in the energy equation:

(ρ1E1α)t + (ρ1E1uα + puα)x = S. (2.5)

The remaining part of this paper is largely devoted to handling the source term. Although, in a strict mathemati-
cal sense, equation (2.5) is not in conservation form, it is a genuine conservation law for S = 0 (i.e., everywhere
outside the numerical transition layer). In the remainder of this article, for convenience and because they are
derived from physical conservation principles, we refer to our differential equations as a system of conservation
laws.

Summarizing, the 1D system of equations is:

qt + fx = s , (2.6a)

with

q =













ρ
ρu
ρE
ρ1α

ρ1E1α













, f =













ρu
ρu2 + p

ρuE + pu
ρ1uα

ρ1E1uα + puα













, s =













0
0
0
0
S













. (2.6b)



8 Chapter 2. Flow equations

This system can be extended to more dimensions by adding a bulk-momentum conservation law for each
additional dimension and fluxes in more directions.

2.3. PRIMITIVE VARIABLES

To close the system (2.6), equations are needed for the thermodynamic behaviour of the two fluids. These are
the equations of state (EOS) for the two fluids. In their most general form, these equations are

p = f1 (ρ1, e1) ,

p = f2 (ρ2, e2) .
(2.7)

To keep the equations consistent with the physical model from section 2.1, no mixed-fluid equation of state
is defined for the bulk fluid. The EOS (2.7) are valid in their respective fluid elements and, if necessary, bulk
quantities can be defined as in equation (2.2).

The system of differential equations (2.6), combined with the equations of state (2.7) and the expression for
S that is derived in the following chapter, is closed. It can be solved for the primitive variables, although this
may require an iterative method for complex EOS.

For the ideal-gas equation of state, explicit formulas can be found for the primitive variables. If both fluids
satisfy the ideal-gas law,

p = (γ − 1)ρe, (2.8)

with constant γ, then the total energies become:

ρ1E1α =
1

γ1 − 1
pα + 1

2ρ1αu2,

ρ2E2(1 − α) =
1

γ2 − 1
p(1 − α) + 1

2 (ρ − ρ1α)u2,

(2.9)

so

ρE =

(

α

γ1 − 1
+

1 − α

γ2 − 1

)

p + 1
2ρu2. (2.10)

Rewriting of equation (2.9) shows that

pα = (γ1 − 1)
(

(ρ1E1α) − 1
2 (ρ1α)u2

)

,

p(1 − α) = (γ2 − 1)
(

(ρE) − (ρ1E1α) − 1
2 (ρ − (ρ1α))u2

)

.
(2.11)

This gives as the expression for p:

p = (γ1 − 1)
(

(ρ1E1α) − 1
2 (ρ1α)u2

)

+ (γ2 − 1)
(

(ρE) − (ρ1E1α) − 1
2 (ρ − (ρ1α))u2

)

, (2.12)

and for α:

α =
(γ1 − 1)

(

(ρ1E1α) − 1
2 (ρ1α)u2

)

p
. (2.13)

All the primitive variables are now known. The energy equations are not direction-dependent, so this procedure
does not change for more dimensions. Only the kinetic energies change.

Note that for two-fluid flows with γ1 = γ2 = γ, the effect of ρ1E1α and ρ1α disappears from equation
(2.12) and this equation reduces to

p = (γ − 1)
(

ρE − 1
2ρu2

)

, (2.14)

the same expression as for single-fluid flow.



Chapter 3

That elusive source term

This chapter gives a derivation of the source term in the energy equation (2.5). For convenience, this is still
done in 1D. In the first section, the source term is derived from physical principles. A characteristic analysis in
section 3.2 shows that this source term gives the system the correct characteristic properties. The last section
extends the analysis to discontinuous flow.

3.1. DERIVATION OF THE SOURCE TERM

The source term S in the last equation of the system (2.6) has a physical meaning. In the energy equation
for fluid 1, it represents the energy that is transferred from fluid 2 to fluid 1. In Euler flow there is no heat
conduction, so the fluids can only exchange energy by means of work: the work generated by the forces on the
interfaces between the microscopic fluid elements.

There are two types of forces that act on the interfaces. The first are pressure forces, the second are a kind of
friction forces. Regular friction forces occur in viscous flow in two or three dimensions, when fluid elements
slide alongside each other. In inviscid flow, also in two-fluid flow, this force is absent. But another type of
friction occurs in two-phase flow when two fluids with different velocities, at the same location, move through
each other. This friction force does exist in our two-fluid flow model, albeit in a limit case. The two fluids have
the same velocity, they can only maintain this if any velocity difference between the fluids causes inter-fluid
friction forces that immediately make the velocities equal again. Thus, the friction forces provide instantaneous
relaxation of velocity differences.

Our model is used to approximate solutions to two-fluid flow problems with sharp interfaces. This implies
that the sum of pressure and friction forces between the elements, integrated over the transition layer, must be
the same as the pressure force on the sharp interface in the physical two-fluid flow.

The requirement that the two fluids have the same velocity makes it possible to derive the source term in the
energy equation. For this purpose, it is convenient to study the momentum equation for fluid 1 first:

(ρ1uα)t +
(

ρ1u
2α + pα

)

x
= SM . (3.1)

The source term SM in this equation is the force exerted by fluid 2 on fluid 1. The magnitude of this force
follows from the fact that fluid 1 always has the same velocity, and therefore the same acceleration, as the bulk
fluid. Consider a small section of a 1D shock tube with height 1 (see figure 3.1). For convenience, all of fluid
1 has been lumped down at the bottom of this fluid element, but this lumped model is not really different from
the microscopic-element flow model as discussed in section 2.1.

fluid 1

fluid 2SM

x + dxx

p(x + dx)p(x)
α(x)

α(x + dx)

Figure 3.1: Flow element in 1D smooth flow.

The force on the entire fluid element is p(x)−p(x+∆x). The bulk mass is ρ̄∆x, with ρ̄ the average density,

9
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so the acceleration of the entire element becomes (using Newton’s second law of motion):

ut =
p(x) − p(x + ∆x)

ρ̄∆x
. (3.2)

Now we study the fluid 1 part of the element. The force on this element is (pα)(x)− (pα)(x+ ∆x) + SM∆x.
The mass is ρ1α∆x. The acceleration of this part is equal to the acceleration of the entire element, so

p(x) − p(x + ∆x)

ρ̄∆x
=

(pα)(x)− (pα)(x + ∆x) + SM∆x

ρ1α∆x
⇒

ρ1α

ρ̄

p(x) − p(x + ∆x)

∆x
=

(pα)(x)− (pα)(x + ∆x)

∆x
+ SM ,

and thus, in the limit for ∆x ↓ 0:

SM = pαx + αpx −
ρ1α

ρ
px. (3.3)

The first term, pαx, expresses the pressure force on the interface: pressure times the projected height of the
interface. The second and third term can be combined. By introducing β, the mass fraction of fluid 1,

β =
ρ1α

ρ
, (3.4)

this force is written as (α − β)px. This is the friction force that keeps the velocities of the two fluids equal.
For example, if for a bulk fluid α > β somewhere, then the mass of its fluid 1 there is low, but its volume is
high. Therefore, fluid 1 receives a pressure force which would accelerate it faster than fluid 2, which is heavy
and dense. So fluid 1 passes some of its pressure force to fluid 2, as friction. But if the two fluids have the
same density (α = β), each fluid gets exactly enough pressure force for equal acceleration, so the friction force
vanishes. And in pure contact discontinuities (px = 0), there is no acceleration, which means that there the
friction force vanishes too.

Now the inter-fluid force SM is substituted back in the momentum equation (3.1):

(ρβu)t +
(

ρβu2 + pα
)

x
= pαx + (α − β)px.

Expansion of the left-hand side gives

ρu (βt + uβx) + β
(

(ρu)t +
(

ρu2 + p
)

x

)

= 0.

As the two fluids have the same velocity, the mass fraction is convected with the flow, so the first term is zero.
We end up with:

(ρu)t +
(

ρu2 + p
)

x
= 0. (3.5)

The bulk momentum equation is recovered! As already stated in section 2.2, it is useless to integrate the
momentum equation (3.1), since the momentum of fluid 1 in time follows from the bulk-fluid equations and
from mass conservation for fluid 1. The only function of equation (3.1) is to determine the interface force SM ,
which is used in the energy source term.

The source term S in the energy equation (2.5) is the work done by the force SM . The velocities of the fluid
elements are equal, so the velocity of the interfaces is equal to the velocity u of the elements. Therefore the
work is:

S = SMu = puαx + (α − β)upx. (3.6)

With the explicit expression (3.6) for S, the system (2.6) with (2.7) is closed. The new physical information
which the source term offers, that makes the energy equation (2.5) independent while the momentum equation
(3.1) is not, is the absence of heat transfer between the fluids. The kinetic energy of both fluids is fixed by
requiring them to have the same velocity, but an equation for the heat transfer must be incorporated in the
system to fix the internal energies of the two fluids.
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3.2. CHARACTERISTIC ANALYSIS

In this section, the characteristic properties of the system (2.6), (2.7), (3.6) are studied. An analysis of the
system in primitive variables shows that the source term (3.6), derived in the previous section, gives the system
its physically correct characteristic wave speeds. With this source term, the Riemann invariants for the system
are derived, as well as transport equations for the volume and mass fraction.

3.2.1 Five primitive equations
To facilitate analysis, the system (2.6) in conservative form is rewritten in primitive variables. Suitable primitive
variables for a characteristic analysis are ρ, u, p, β and α.

Density. Start with conservation of bulk mass (equation (2.1a)):

ρt + (ρu)x = 0.

Expansion of the last term gives

ρt + ρxu + ρux = 0. (3.7)

Velocity. Start with conservation of bulk momentum (equation (2.1b)):

(ρu)t +
(

ρu2 + p
)

x
= 0.

Expansion, subtraction of u times equation (3.7) and division by ρ gives

ut + uux +
1

ρ
px = 0. (3.8)

Mass fraction. Start with conservation of mass for fluid 1, equation (2.4) (written using ρ1α = βρ):

(βρ)t + (βρu)x = 0.

After expansion, subtraction of β times equation (3.7) and division by ρ, we find

βt + uβx = 0. (3.9)

This result was already used in the previous section.

Pressure. The derivation of a pressure equation is rather involved, as it requires two energy equations. These
are expanded first and then combined to give one equation for the pressure.

Conservation of bulk energy (equation (2.1c):

(ρE)t + (ρuE + pu)x = 0.

The total energy E can only be expressed in primitive variables with an equation of state. For this analysis, we
use the EOS in its most general form (equation (2.7)), writing it as

e1 = e1 (p, ρ1) ,

e2 = e2 (p, ρ2) .
(3.10)

Substituting this in equation (2.2), we find

ρE = ρ
(

βe1 + (1 − β)e2 + 1
2u2

)

,
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so we can define the bulk internal energy e as:

e = βe1 + (1 − β)e2. (3.11)

With this equation, the bulk energy equation becomes
(

ρe + 1
2ρu2

)

t
+

(

ρeu + pu + 1
2ρu3

)

x
= 0.

Expansion (using the chain rule on e), subtraction of
(

e + 1
2u2 + ρeρ

)

times equation (3.7), of ρu times equa-
tion (3.8) and of ρeβ times equation (3.9) gives the equation

(ρep) pt + (ρeα)αt + (ρuep) px + (ρueα) αx +
(

p − ρ2eρ

)

ux = 0. (3.12)

This is the first modified energy equation.
Conservation of energy for fluid 1 (equation (2.5)):

(ρ1E1α)t + (ρ1E1uα + puα)x = S.

Using the mass fraction β and substituting the EOS (3.10), this becomes:
(

βρe1 + 1
2βρu2

)

t
+

(

βρe1u + αpu + 1
2βρu3

)

x
= S.

Expansion, followed by subtraction of β
(

e + 1
2u2 + ρeρ

)

times equation (3.7), of βρu times equation (3.8)
and of

(

ρe1 + 1
2ρu2 + βρe1,ρ

)

times equation (3.9) gives

(βρe1,p) pt+(βρe1,α)αt+(βρue1,p + (α − β)u) px+(βρue1,α + pu)αx+
(

αp − βρ2e1,ρ

)

ux = S, (3.13)

the second energy equation (note the similarity with the bulk energy equation (3.12)).
The pressure equation is found by subtracting eα

βe1,α
times equation (3.13) from equation (3.12) and multi-

plying by e1,α

epe1,α−eαe1,p
:

pt + upx +
(βe1,α − αeα) p

βρ + (eαe1,ρ − eρe1,α) ρ

epe1,α − eαe1,p
ux =

eα

epe1,α − eαe1,p

1

βρ
(u (α − β) px + puαx − S) . (3.14)

Volume fraction. The volume fraction equation is also found from equation (3.12). Subtracting ep

βe1,p
times

equation (3.13) and multiplying by e1,p

eαe1,p−epe1,α
gives

αt + uαx +
(βe1,p − αep)

p
βρ + (epe1,ρ − eρe1,p) ρ

eαe1,p − epe1,α
ux =

ep

eαe1,p − epe1,α

1

βρ
(u (α − β) px + puαx − S) . (3.15)

3.2.2 Characteristic wave speeds
Before starting the characteristic analysis, we make an assumption about the system’s wave speeds. Away
from the interface, the system must reduce to the single-fluid Euler equations, that are hyperbolic and have
three real-valued wave speeds: information travels either with the flow or with the sound speed c relative to the
flow. In the interface region, the flow medium is not fundamentally different. It is a mixture, but the two fluids
have the same velocity, so they move just like a single fluid. And also in the mixture region, there is only one
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sound speed. So it is reasonable to assume that the two-fluid system is hyperbolic everywhere and that its five
characteristic speeds λm can have only three values: they are either u or u ± c.

At least two wave speeds are equal to u: the first is associated with the transport of the mass fraction
(equation (3.9)). The second is, in pure-fluid regions, associated with the transport of entropy (this is known
from standard gas dynamics). And although it is not yet certain that entropy is convected in the mixture region
too, it is impossible that a characteristic speed suddenly changes from u to u ± c. Now, since the number of
characteristic speeds u − c is equal to the number of characteristic speeds u + c, we know all the λ’s:

λ1 = u − c, λ2,3,4 = u, λ5 = u + c. (3.16)

If it is to be physically correct, then the system (2.6) must have eigenvalues of the form (3.16).
We will now give a second derivation of the energy exchange term S, by requiring that (3.16) holds. It is

shown that the source term found thus is equal to the source term found in section 3.1. The system is first-order
hyperbolic so S, like the rest of the equations, contains only first-order derivatives of the primitive variables.
Therefore we postulate

S = Sρρx + Suux + Sppx + Sααx + Sββx. (3.17)

The terms Sρ, · · · , Sβ contain no derivatives. We shall derive possible expressions for these terms.

Solid-body flow. For flows with a uniform pressure p0 and velocity u0, the fluid moves as a solid body. This
means that both the mass fraction and the volume fraction are convected with speed u0. So when px = 0 and
ux = 0, the α-equation (3.15) must reduce to αt + uαx = 0. This implies that

p0u0αx − Sρρx − Sααx − Sββx = 0, ∀ ρ, u0, p0, α, β.

This requirement can only be satisfied if

Sρ = 0, Sα = pu, Sβ = 0. (3.18)

Eigenvalues of the Jacobian. The system of primitive equations is written in quasilinear form:

qt + Aqx = 0, (3.19a)

with

q = (ρ, u, p, β, α)
T

, (3.19b)

and the Jacobian matrix

A =













u ρ 0 0 0
0 u 1

ρ 0 0

0 U3 u + P3 0 0
0 0 0 u 0
0 U5 P5 0 u













. (3.19c)

The abbreviations are

U3 =
1

epe1,α − eαe1,p

(

(βe1,α − αeα)
p

βρ
− ρ (eρe1,α − eαe1,ρ) +

eα

βρ
Su

)

,

U5 =
1

eαe1,p − epe1,α

(

(βe1,p − αep)
p

βρ
− ρ (eρe1,p − epe1,ρ) +

ep

βρ
Su

)

,

P3 =
eα

epe1,α − eαe1,p

1

βρ
(Sp − u (α − β)) ,

P5 =
ep

eαe1,p − epe1,α

1

βρ
(Sp − u (α − β)) .

(3.19d)
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The Jacobian (3.19c) has eigenvalues

λ1 = u + 1
2P3 −

√

U3

ρ
+

(

1
2P3

)2
, λ2,3,4 = u, λ5 = u + 1

2P3 +

√

U3

ρ
+

(

1
2P3

)2
. (3.20)

These eigenvalues correspond only to the form (3.16) if P3 = 0, i.e., if

Sp = u (α − β) . (3.21)

Sound speed. The last term to be found is Su. With the characteristic analysis, we cannot prove that Su = 0
everywhere. However, we can show that Su = 0 is a reasonable choice. We do so by considering the speed of
sound. The sound speed in the eigenvalues (3.20) is

√

U3/ρ, i.e.:

c =

√

1

epe1,α − eαe1,p

(

(βe1,α − αeα)
p

βρ2
− (eρe1,α − eαe1,ρ) +

eα

βρ2
Su

)

. (3.22)

The sound speed is a thermodynamic property; it cannot depend on the velocity u. As a consequence, Su does
not depend on u. And since Su has the dimension of pressure, given the independence of u, it cannot depend
on ρ either. Thus, Su = Su(p, α, β) at most.

For ideal gases, using e =
(

α
γ1−1 + 1−α

γ2−1

)

p
ρ and e1 = 1

γ1−1
α
β

p
ρ , equation (3.22) reduces to

c =
√

(αγ1 + (1 − α)γ2)
p
ρ + (γ2 − γ1)

Su

ρ . (3.23)

In pure fluid (α = 0 or α = 1), it must hold c = c1 =
√

γ1p/ρ1 and c = c2 =
√

γ2p/ρ2, respectively.
Moreover, if 0 < α < 1, it is reasonable to require that c lies between c1 and c2. The simplest choice that
satisfies these requirements is Su = 0. Then (3.23) reduces to

c =
√

(αγ1 + (1 − α)γ2)
p
ρ . (3.24)

The sound speed (3.22) or (3.24) is used for the characteristic speeds in (3.16).

Summarizing: assuming Su = 0, the only source term of the form (3.17) that

1. behaves correctly in solid-body flow and

2. gives characteristic speeds of the form (3.16)

is indeed (3.6).

3.2.3 Characteristic equations and Riemann invariants
Define the matrix L by choosing its rows to be the left eigenvectors Li, corresponding to the eigenvalues λi,
i = 1, · · · , 5. We find that

L =













0 −ρc 1 0 0
−c2 0 1 0 0
0 0 0 1 0
0 0 − U5

ρc2 0 1

0 ρc 1 0 0













. (3.25)

Then, replacing A by L−1ΛL, where Λ = diag(λi), i = 1, · · · , 5, equation (3.19a) can be rewritten as

Lqt + ΛLqx = 0. (3.26)
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Written out, equation (3.26) reads

(pt − ρcut) + (u − c)(px − ρcux) = 0, (3.27a)

(pt − c2ρt) + u(px − c2ρx) = 0, (3.27b)

βt + uβx = 0, (3.27c)
(

αt −
U5

ρc2 pt

)

+ u
(

αx − U5

ρc2 px

)

= 0, (3.27d)

(pt + ρcut) + (u + c)(px + ρcux) = 0. (3.27e)

These are the five characteristic equations, that define the Riemann invariants in differential form. Three of
these correspond to the Riemann invariants for the single-fluid Euler equations. However, not all of them can
be written in closed form.

Equations (3.27a) and (3.27e) imply that, as for single-fluid flow, dp ± ρcdu = 0 along characteristics
with speed dx

dt = u ± c. Along the characteristics with speed u, the particle paths, we find with (3.27b) that
dp − c2dρ = 0. This implies that the entropy s is a Riemann invariant, just like it is for single-fluid flow. The
sound speed c always satisfies c2 = ∂p

∂ρ |s (see [7]), so dp − c2dρ = 0 means that ds = 0 along particle paths.
The characteristic equations (3.27c) and (3.27d) are two-fluid flow equations, without a single-fluid equivalent.
Equation (3.27c) implies that the mass fraction β is a Riemann invariant along the particle paths, as we have
already seen. And equation (3.27d) implies that dα − U5

ρc2 dp = 0 along these paths. For an ideal gas, this
relation reads:

dα −
α(1 − α)(γ1 − γ2)

ρc2
dp = 0. (3.28)

Interpreting this, we see that the second term in the left hand side is a “two-fluid perturbation term”; for α = 0,
α = 1 or γ1 = γ2 it vanishes and the relation then states that the volume fraction α is a Riemann invariant
as well. This is also the case on particle paths along which p is constant. The same can be seen if we rewrite
(3.15) into a transport equation for α. For ideal gases:

αt + uαx = −α(1 − α)(γ1 − γ2)ux. (3.29)

This equation has a source term: in general, α is not convected with the flow. Even if elements of the two fluids
stay together (which implies that β is convected), they do not have the same change in density in reaction to
an equal change in pressure: if one of the fluids compresses easier than the other fluid, then its volume fraction
reduces with compression. This effect vanishes when the two fluids have equal thermodynamic properties
(γ1 = γ2), when one of the fluids is absent (α = 0 or α = 1) or along particle paths where p is constant and
hence ux = 0.

3.3. SOURCE TERM IN DISCONTINUOUS FLOW

The system of differential equations (2.6) is only valid in smooth flow, where the derivatives of the state
variables exist. To allow discontinuities in the solution, we need a well-posed weak formulation of the system.
From this formulation follows a jump condition, that describes the flow behaviour over a discontinuity.

The jump condition for any conservation law is the well-known Rankine-Hugoniot condition, which is found
by integrating the conservation law over a control volume around the discontinuity:

[f ] = cs [q ] , (3.30a)

with [ ] denoting the jump over the discontinuity ([q ] = qR − qL etc.), cs is the speed of the discontinuity. The
first four equations in (2.6) have jump conditions of this form. But when the fifth equation is integrated over a
discontinuity, the contribution of the source term depends on the internal structure of the discontinuity:

[f ] = cs [q ] +

∫ xR

xL

S dx. (3.30b)
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This integral is not defined over a discontinuity. Most researchers [10, 14] avoid this problem by assuming an
approximate shape for the discontinuity and integrating over this shape.

However, if we properly define the weak solution, then an exact integration of the integral in (3.30b) is
possible. We say that a flow is a weak solution of the system (2.6) if it is the inviscid limit of solutions of (2.6)
with viscous effects added. This is the normal definition of weak solutions for single-fluid flow. It guarantees
that the weak solution contains no entropy-violating expansion shocks. But for two-fluid flow, the definition
has another important implication: it guarantees that discontinuities have some internal structure. So although
we do not know this structure exactly, we can apply conservation laws to a control volume that partially lies
in the ‘discontinuity’ (figure 3.2). This gives expressions for the state variables, in terms of one of these state
variables itself, that are continuous in the ‘discontinuity’. So the source term, expressed in this variable, can be
integrated. In the following, we shall write the equations in terms of the pressure.

RL

xxRxL

control volume
discontinuity

Figure 3.2: Control volume for integration across a ‘discontinuity’ with internal structure.

Consider the 1D shock in figure 3.2. The control volume lies between the inflow state L and the shock (this
is an arbitrary choice, we can also integrate from the right). For convenience, the reference frame is fixed to the
shock. We shall first derive expressions for the energy exchange S̃s and the inter-fluid force S̃Ms

in the shock,
in this reference frame (˜denotes the quantities in the shock frame). Later, the source term in another reference
frame, in which the shock has a velocity cs, can be computed as

Ss = S̃s + csS̃Ms
. (3.31)

The last term appears because the source term is work, i.e, force times velocity, and the velocity is different in
the other reference frame.

In the shock-fixed coordinate frame the flow is steady, so the conservation laws reduce to

f̃ = f̃L. (3.32)

Substitution of the conservation laws (2.6) in equation (3.32) gives:

ρũ = ρLũL (bulk mass), (3.33a)

p + ρũ2 = pL + ρLũ2
L → ũ = ũL −

p − pL

ρLũL
(bulk momentum), (3.33b)

ρũ
(

e + 1
2 ũ2

)

+ pũ = ρLũL

(

eL + 1
2 ũ2

L

)

+ pLũL → e = eL − 1
2

p2 − p2
L

(ρLũL)
2 (bulk energy), (3.33c)

βρũ = βLρLũL → β = βL (mass fluid 1). (3.33d)

Note that the expressions (3.33) are not valid when the wave is a contact discontinuity. Then the velocity is
zero everywhere and cannot be divided out in (3.33b) – (3.33d). However, this is no problem, as integration of
(3.6) makes it immediately clear that S̃s = 0 and S̃Ms

= p [α] in a contact discontinuity. Thus, the following
derivation is for shocks only.
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Force on discontinuity. The momentum equation for fluid 1 gives

pα + βρũ2 = pLαL + βLρLũ2
L +

∫ x

xL

S̃M dx.

We substitute equation (3.33b) and rewrite the integral, using S̃∗

M = S̃M
∂x
∂p :

pα + βLρLũL

(

ũL −
p − pL

ρLũL

)

= pLαL + βLρLũ2
L +

∫ p

pL

S̃∗

M dπ. (3.34)

Differentiation with respect to p gives an expression for S̃∗

M :

S̃∗

M =
∂

∂p
(pα) − βL. (3.35)

Integration of this expression (or evaluation of (3.34) for p = pR) gives the total force on the discontinuity:

S̃Ms
=

∫ pR

pL

S̃∗

M dπ = [pα] − βL [p] . (3.36)

Energy exchange. The total energy exchange in the shock, S̃s, is:

S̃s =

∫ xR

xL

ũS̃M dx =

∫ pR

pL

ũS̃∗

M dπ =

∫ pR

pL

ũ
∂

∂p
(pα) dπ − βL

∫ pR

pL

ũ dπ. (3.37)

The first term can be integrated by parts (as ∂ũ
∂p = − 1

ρLũL
). Integration of the second term is straightforward:

S̃s = [pũα] +
1

ρLũL

∫ pR

pL

pα dπ − βLũL [p] + 1
2

βL

ρLũL
[p]2 . (3.38)

So an expression for S̃s exists, which gives a unique, exact jump condition for the fifth equation:

f̃R = f̃L + S̃s. (3.39)

But, as opposed to the single-fluid jump conditions (of the form (3.30a)), this jump condition depends directly
on the EOS of the fluids: the evaluation of the integral in (3.38) is done with help of the bulk energy equation
(3.33c), which requires an EOS to be closed.

We show this derivation for the ideal-gas law. If fluid 1 and 2 are ideal gases, then (3.33c) can be rewritten
as

(

α

γ1 − 1
+

1 − α

γ2 − 1

)

p

ρ
=

(

αL

γ1 − 1
+

1 − αL

γ2 − 1

)

pL

ρL
+ 1

2

p2 − p2
L

ρLũ2
L

, (3.40)

from which it follows, using (3.33a) and (3.33b), that:

pα(p) =





(

αL
γ2−γ1

(γ1−1)(γ2−1) + 1
γ2−1

)

pLρLũL + 1
2

(

p2 − p2
L

)

pL + ρLũ2
L − p

−
p

γ2 − 1





(γ1 − 1)(γ2 − 1)

γ2 − γ1
, (3.41)

under the constraint that γ1 6= γ2. (For the two-fluid case γ1 = γ2 = γ, equation (3.41) does not yield an
equation for pα. This case will be considered later.) Integrating (3.41), it follows:

∫ pR

pL

pα dp =

− 1
2

γ1 − 1

γ2 − γ1

[(

2

(

γ2 − γ1

γ1 − 1
αL + γ2

)

pL + (γ2 − 1)ρLũ2
L

)

ρLũ2
L ln

(

pL − pR + ρLũ2
L

ρLũ2
L

)

+
γ2 + 1

2
p2

R −
3γ2 − 1

2
p2

L + (γ2 − 1)pLpR + (γ2 − 1)(pR − pL)ρLũ2
L

]

. (3.42)
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Hence, with (3.42), S̃s can be evaluated.
When γ1 = γ2 = γ, the integration becomes much simpler. In that case, α is convected with the flow

(equation (3.29)). In the discontinuity, this means that α = αL is constant, just like β. Thus, the integral
becomes

∫ pR

pL

pα dp = 1
2αL

[

p2
]

, (3.43)

which reduces (3.38) to:

S̃s = (αL − βL)

(

ũL [p] −
1

2ρLũL
[p]

2

)

. (3.44)

To make equation (3.38) useful in practice, it must be converted to a general reference frame, in which the
shock moves. As mentioned above, this is done with equation (3.31). In the general reference frame, cs is the
shock speed and u the velocity, so

ũ = u − cs, (3.45)

in the shock frame. Upon substitution of equations (3.36), (3.38) and (3.45) in (3.31), it is found that:

Ss = [puα] +
1

ρL (uL − cs)

∫ pR

pL

pα dπ − βLuL [p] + 1
2

βL

ρL (uL − cs)
[p]2 . (3.46)

This expression is remarkably similar to (3.38).
A corresponding equation for contact discontinuities is found by substituting S̃s = 0 and S̃Ms

= p [α] in
(3.31):

Ss = csp [α] . (3.47)



Chapter 4

The HL3 Riemann solver

The five-equation system is solved with a finite-volume discretisation. At the heart of this scheme is an ap-
proximate Riemann solver, the HLL solver. This particular Riemann solver does not need much characteristic
information about the system and is therefore very practical for the complex five-equation model. This chapter
describes the version of the solver which is used here, the combination of this solver with a second-order time
integrator and the treatment of boundary conditions. For convenience, the solver is applied to single-fluid flow
in this chapter. The extension to two-fluid flow and the numerical treatment of the source term are explained in
the next chapter.

4.1. THE HL3 SOLVER

The class of HLL approximate Riemann solvers is based on an idea proposed by Harten, Lax and Van Leer
[12]. The output flux is an average of the exact fluxes in the Riemann solution, found by integrating the
flow equations over a control volume containing the waves of the exact Riemann solution. The size of this
control volume is set from estimated wave speeds. Therefore, no exact characteristic information, like Poisson
expansion curves (Godunov, Osher) or characteristic speeds (Roe) is needed for the HLL solver.

The solver described here is (a simplification of) the HLL solver proposed by Linde [19]. Therefore, it is
called the HLLL or HL3 solver here.

4.1.1 Linde’s HLL solver
Let us consider a system of conservation laws

qt + fx = 0, (4.1)

as yet without a source term. Now we postulate a control volume that is filled with four different states,
separated by three waves (figure 4.1): the outer waves λ− and λ+ and the middle wave V . The states q∗

L and
q∗

R are assumed to be constant. The four states are connected by the integral form of the governing conservation
laws (4.1):

(

λ+ − V
)

q∗

R +
(

V − λ−
)

q∗

L = λ+qR − λ−qL − fR + fL. (4.2)

x

t
V λ+λ−

∆t

qL qR

q∗

Rq∗

L

Figure 4.1: The three waves of the HL3 solver and the domain of integration for the conservation laws.
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If λ− and λ+ are chosen at least as big as the largest wave speeds in the exact solution of the Riemann problem,
then this exact solution is contained completely in the control volume and the states q ∗

L and q∗

R are both averages
over a part of the exact solution. Note that, in the general case, the three waves do not represent the actual
physical waves in the Riemann problem: they just divide the domain conveniently for the averaging process.
The number of the physical waves does not even have to be three.

Isolated discontinuities (single shocks or contact discontinuities) in the flow can be captured with the middle
wave only: in that case the outer waves have zero strength. This is a very important case, as discontinuities are
isolated most of their time: they intersect only a few times in a typical problem. Linde [19] has constructed
an HLL solver that sets the outer wave strengths to zero for isolated discontinuities and gives the middle wave
the exact speed of the discontinuity. So in this case, the middle wave does represent a real wave: it models the
isolated discontinuity exactly. The advantage of Linde’s approach (and of the original HLL scheme) is, that
all types of isolated discontinuities are captured with the middle wave and that no information whatsoever is
needed about these discontinuities. This as opposed to, for instance, HLLC solvers that capture shocks with
the outer waves and thus need exact expressions for the shock velocities [5, 31].

An isolated wave can be found because it satisfies the Rankine-Hugoniot condition

[f ] = cs [q ] , (4.3)

with [f ] = fR − fL and [q ] = qR − qL. If this relation holds for some cs, then an isolated discontinuity with
speed cs is present. To reflect the idea that V models the speed of an isolated discontinuity, Linde chooses it as
a weighted least-squares fit of the states and fluxes to this condition:

V =
([q ] , [f ])P

‖[q ]‖2
P

, (4.4)

with

([q ] , [f ])P = [q ]
T

P [f ] , ‖[q ]‖
2
P = [q ]

T
P [q ] . (4.5)

The matrix P is used to get the same dimensions in all the terms of the inner product.
The equation (4.2) is not enough to find the states q ∗

R and q∗

L. To control the strength of the middle wave,
Linde assumes a relation

q∗

R − q∗

L = α (qR − qL) . (4.6)

If α = 1, an isolated discontinuity appears, if α = 0, then the middle wave vanishes. So α indicates how
much the solution resembles an isolated discontinuity. Therefore, α is computed in a similar way to V , with a
kind of least-squares approximation. Since V [q ] is the projection of [f ] onto [q ], the difference [f ] − V [q ] is
perpendicular to V [q ]. Therefore,

‖[f ] − V [q ]‖2
P

‖[f ]‖2
P

+
V 2 ‖[q ]‖2

P

‖[f ]‖2
P

= 1.

The last term estimates the strength of the middle wave. So Linde chooses

α =
V 2 ‖[q ]‖

2
P

‖[f ]‖2
P

=
([q ] , [f ])

2
P

‖[q ]‖2
P ‖[f ]‖2

P

. (4.7)

It is easy to check, if [q ] and [f ] satisfy equation (4.3), that equation (4.4) gives V = cs and that equation (4.7)
gives α = 1.

The last choice to be made is the speeds of the outer waves; this choice is only important when α 6= 1. In
theory, the three-wave system must completely contain the exact Riemann solution, so the λ’s must be larger
than the largest wave speed in the problem. But in practice, the quality of the average decreases just as much
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when the λ’s are chosen too large as when they are chosen too small. So a reasonable approximation of the
speed of the real outer waves works fine:

λ+ = max (λmax, L, λmax, R, V ) ,

λ− = min (λmin, L, λmin, R, V ) .
(4.8)

V is added in this expression because it approximates the shock speed in a shock wave and to make sure that the
V -wave does not lie outside the λ-waves. Now all the variables in equation (4.2) are known, so the intermediate
states q∗

L and q∗

R can be computed.
The output flux follows from conservation over a half plane, either x > 0 or x < 0, depending on the signs

of V and the λ’s:

fHL3 =



















fL if λ− ≥ 0,

f ∗

L = fL + λ− (q∗

L − qL) if V ≥ 0 and λ− < 0,

f ∗

R = fR + λ+ (q∗

R − qR) if V < 0 and λ+ ≥ 0,

fR if λ+ < 0.

(4.9)

Note that we do not take f ∗

L = f (q∗

L) etc., as these fluxes do not satisfy the averaged conservation laws. Taking
f ∗

L = f (q∗

L) and f ∗

R = f (q∗

R) would generally not give f ∗

L = f ∗

R for V = 0, whereas (4.9) does, given (4.2).

4.1.2 Choice of P — a reality check
In the inner products (4.5), the different terms of the state and flux vectors have different dimensions. Therefore,
the matrix P is used in the inner product. In the literature [12, 19], the components of P are usually based on
the input states. In particular, Linde uses a convex entropy function

σ (q) = −su, (4.10)

with s the entropy of the system, and then takes the components of P as integrals over the second derivatives
of this function

P =

∫ 1

0

∂2σ

∂q2
(θqL + (1 − θ) qR) dθ. (4.11)

It is shown here that a much simpler choice for P works equally well.

When α = 1, then P must be chosen such, that the middle-wave speed V equals cs in the Rankine-Hugoniot
equation (4.3). It can be easily seen from equation (4.4) that any P with nonzero determinant gives the correct
V if α = 1. And, as shown above, α = 1 in most of the flow domain.

Remain only the few cases where α 6= 1. There, the V wave has no real physical meaning, so there is
no physical guideline for choosing P . Indeed, the whole background of equation (4.4), approximating the
dominant wave speed in the exact Riemann problem, becomes meaningless as α approaches zero and there is
no more dominant wave speed. In that case, the only thing we can require is that V is bounded somehow, so
that the flux computation does not explode.

Previous researchers [12, 19] have decided that they want P to be bounded by the eigenvalues of the Roe
matrix. Then they construct a P -matrix like (4.11), to be able to prove this boundedness. Doubtlessly, it is
nice to have such a bound, since this means that V will never be much larger than the wave speeds in the exact
Riemann problem. But a much wider range of P matrices exists, that also give a bound on V and are much
easier to implement, removing the necessity to construct and differentiate an entropy function.

The easiest choice is to choose P constant: any constant matrix P with a nonzero determinant, for which
P 1/2 exists, and with P 1/2 symmetric, gives a V which is bounded. For, if P 1/2 is symmetric, then (P 1/2)T =
P 1/2, so

V =
[q ]T

(

P 1/2
)T

P 1/2 [f ]

[q ]T
(

P 1/2
)T

P 1/2 [q ]
=

(

P 1/2 [q ]
)T (

P 1/2 [f ]
)

(

P 1/2 [q ]
)T (

P 1/2 [q ]
)

.
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Both the numerator and the denominator in the above expression are standard inner products. The numerator
satisfies the Cauchy-Schwarz inequality:

|V | =

∣

∣

∣

(

P 1/2 [q ]
)T (

P 1/2 [f ]
)

∣

∣

∣

∥

∥P 1/2 [q ]
∥

∥

2 ≤

∥

∥P 1/2 [q ]
∥

∥

∥

∥P 1/2 [f ]
∥

∥

∥

∥P 1/2 [q ]
∥

∥

2 =

∥

∥P 1/2 [f ]
∥

∥

∥

∥P 1/2 [q ]
∥

∥

. (4.12)

So V is bounded by the length of [f ], divided by the length of [q ], under the constant mapping P 1/2.

In practice, the result of a flow computation does not depend much on the choice of P . In figure 4.2, solutions
are shown for two 1D shock tube problems. The conservation laws are the single-fluid Euler equations, with
ideal gases. A first-order accurate solver is used, to get the greatest possible effect from the Riemann solver. A
solution with Linde’s P -matrix (4.11) is compared with a solution using the simplest possible constant P ,

P = I with appropriate units. (4.13)

There is almost no visible difference between the solutions. In other problems with near-vacuum conditions,
the constant P proved to be a more robust choice than Linde’s P . Therefore, the identity matrix is a practical
choice for P . It will be used later on.
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Figure 4.2: Effect of different P matrices on the solution of 1D problems. Linde’s matrix is compared with
P = I . Sod problem with 33 cells, 32 time steps (a), 123 problem with 33 cells, 16 time steps (b). ∆t/∆x =
0.2 in both cases. (For a description of the problems, see Toro [31]).

4.1.3 Entropy condition
Weak solutions of the Euler equations may contain expansion shocks, which violate the second law of thermo-
dynamics, because the entropy decreases across such a shock. Therefore, a Riemann solver must contain an
entropy condition that prevents expansion shocks. An example is the entropy condition of Harten, Lax and Van
Leer:

[ρus] − cs [ρu] ≥ 0. (4.14)

This equation states that, in a reference frame in which the shock is not moving, the entropy flux out of the
shock is equal to or larger than the flux into the shock. This condition allows contact discontinuities too: the
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flow in the neighbourhood of a contact discontinuity has a uniform speed, so the speed in the discontinuity-fixed
frame is zero. Therefore, both fluxes are zero and the entropy condition is satisfied.

Linde [19] sets α = 0 whenever condition (4.14) is violated, thus creating a large numerical viscosity which
breaks entropy-violating shocks. In principle, this is a good idea, but it has a drawback, because the jump [qi]

across a small part of a single isentropic wave satisfies the Rankine-Hugoniot relations up to O([qi]
2). This

can be seen as follows:
Consider a small jump [qi] in a single isentropic wave. From gasdynamics it is known that the difference

between this jump and a jump [qd] across a discontinuity, for which one of the components (like the velocity
jump) is the same, is small:

[qi] = [qd] + O([qi,d]
3
),

with O([qi,d]) denoting the order of magnitude of the jump, which is the same for the isentropic and the
discontinuity jump. Now consider the jump in the flux. The flux is a smooth function of the state (even in
discontinuities), so we may expand with the Jacobian matrix A:

[fd] = A [qd] + O([qi,d]
2
),

[fi] = A [qi] + O([qi,d]
2
) = A

(

[qd] + O([qi,d]
3
)
)

+ O([qi]
2
) = A [qi,d] + O([qi,d]

2
).

In both cases, we start from the same state, so the same A is valid. Substituting the Rankine-Hugoniot condition
[fd] = cs [qd] yields

[fi] = cs [qd] + O([qi,d]
2
) = cs [qi] + O([qi,d]

2
).

A more detailed analysis shows that the isentropic jump satisfies (4.3) with a cs equal to the characteristic speed
u ± c.

So on a cell face in an expansion wave, the best choice for α that the HL3 solver can make is α = 1 (isolated
wave). This is also the only choice for α that does not violate the entropy condition: in an expansion wave, the
entropy must remain constant, but in that expansion, all three waves of the HL3 solver are entropy-decreasing
expansion shocks. The output flux, however, is computed from the jump across one of the outer waves only
(equation (4.3)). So if this wave has strength zero, the HL3 flux is equal to the pure upwind flux and the entropy
in the flux is equal to the (uniform) entropy in the cells. The only way to get outer waves with strength zero is
to give the middle wave maximum strength, i.e., set α = 1.

Remains the problem of expansion shocks. Moving expansion waves cause no problems, as expansion
shocks are smeared here by the numerical viscosity in the scheme and then spread more because of the divergent
characteristics. The only problems appear when |u| = c, or when M = 1 (figure 4.3a). In that case, one of the
characteristics does not move and an expansion shock may appear. This shock can be easily broken by setting
α = 0 in a sonic point,

|u| = c, (4.15)

when the relevant characteristics diverge,

uL − cL < uR − cR for u > 0,

uL + cL < uR + cR for u < 0.
(4.16)

The effect of this choice is seen in figure 4.3b. Both the Linde technique (α = 0 in the entire expansion) and
the new condition remove the large expansion shock, although the new technique does show a small wiggle at
M = 1. An advantage of the new technique is that it does not enforce α = 0 when the expansion wave meets
a contact discontinuity, thus keeping the contact discontinuity sharp.
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Figure 4.3: Effect of entropy conditions. Sod problem with initial speed 0.5. 81 cells, 80 time steps. No entropy
condition (a), Linde and new entropy condition (b). σ = 0.2.

4.1.4 Fixes for zero state jump
In section 4.1.2 we showed that V is properly defined for [q ] 6= 0. But we still have to define V for [q ] very
close to zero. At that moment, V is not important, we just do not want a division by zero in equation (4.4). So
this equation is modified:

V =
([q ] , [f ])P

‖[q ]‖2
P + ε

, (4.17)

for a small positive constant ε. This means that V → 0 for [q ] approaching zero. Since small [q ] may appear
in weak expansion waves, we want α to be 1 for [q ] going to zero. So equation (4.7) is modified as:

α =
([q ] , [f ])2P + ε

‖[q ]‖
2
P ‖[f ]‖

2
P + ε

. (4.18)

Some care must be taken when ε is chosen: an ε that is too big causes wiggles in the solution. This problem can
be removed completely by letting α go to zero for small [q ], but this creates unnecessary smearing of stationary
interfaces.

4.2. SECOND-ORDER ACCURACY

In order to obtain accurate solutions on reasonably coarse meshes, a higher-order discretisation of the flow
equations is required. The combination of this discretisation with the HL3 solver is not straightforward: Linde
[19] reported problems with higher-order reconstructions of the cell face states. This section describes the
second-order discretisation used here and addresses some of the problems that arise when this discretisation is
combined with the HL3 solver.

4.2.1 Second-order limited scheme
The discretisation used here is a combination of a limited upwind reconstruction of the cell face states with a
two-step time integrator, comparable to Richtmyer’s scheme. It was developed by the authors [33, 34] to be
combined easily with unsteady grid adaptation techniques.

The time integration is done in two steps: starting from a state q k, a first-order accurate time step is made
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first. The resulting state is used to compute a second-order accurate flux for the second step:

qk+1
i = qk

i − ∆t
∆x

(

f k
i+ 1

2

− f k
i− 1

2

)

,

qk+2
i = qk

i − 2 ∆t
∆x

(

f k+1
i+ 1

2

− f k+1
i− 1

2

)

.
(4.19)

An advantage of this scheme is, that it does not need a different scheme for the first time step. Stability of the
scheme is proved for CFL-numbers below 0.25, but in practice, higher CFL-numbers give stable solutions too
[33].

Reconstruction of the cell face states qL and qR, the input for the Riemann solver, is done with the standard
limiting technique [29]:

qp

L,i+ 1
2

= qp
i + 1

2φ(rL)
(

qp
i − qp

i−1

)

, with rL =
qp
i+1 − qp

i

qp
i − qp

i−1

,

qp

R,i+ 1
2

= qp
i+1 + 1

2φ(rR)
(

qp
i+1 − qp

i+2

)

, with rR =
qp
i − qp

i+1

qp
i+1 − qp

i+2

.

(4.20)

The limiting is done individually for each component qp of q . Several choices are possible for the nonlinear
limiter function φ(r). Here, we use the κ = 1

3 limiter, proposed by Koren [16]. This limiter follows the
third-order accurate (in 1D) κ = 1

3 scheme of Van Leer [18] as much as possible:

φK(r) =



















0 r < 0,

2r 0 ≤ r < 1
4 ,

2
3r + 1

3
1
4 ≤ r < 5

2 ,

2 r ≥ 5
2 .

(4.21)

This limiter works well in combination with the HL3 solver. A test on the Sod problem with the second-
order scheme (figure 4.4) shows that the κ = 1

3 limiter gives lower errors than the well-known minmod (φ =

min(1, max(0, r))) and Van Albada (φ = r2+r
r2+1 ) limiters.
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Figure 4.4: L1-errors in second-order accurate solution of Sod problem, for three limiters. Different grid sizes,
∆t/∆x = 0.25. �: Minmod limiter, •: Van Albada limiter, �: κ = 1/3 limiter.

4.2.2 HL3 and limited variables
The input states that the limiter (4.20) generates for the Riemann solver do not necessarily make sense. For a
first-order method, the input states qL and qR are the states in the neighbouring cells, that follow directly from
the time integration. This means that the input states are consistent with the solution, so the resulting Riemann
problems correspond to parts of the real solution of the problem. For higher-order methods, this is no longer
true. The input states follow from component-wise interpolation between the cells. These interpolations are
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not the same for all components, so the limited states may not be consistent with the actual problem (although
they are, of course, close to the real solution).

For the HL3 solver, this results in widely oscillating values of V , combined with values of α that do not
approach 1. Figure 4.5 gives an example: V for a first- and second-order accurate solution of Sod’s problem.
The first-order V correctly resembles the local wave speeds (left to right: expansion fan, contact discontinuity
and shock), while the second-order V is a total mess.
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Figure 4.5: Solution of the Sod problem, on 80 cells, 80 time steps, ∆t/∆x = 0.25. Left to right: density, V
for first-order solution and V for second-order solution.

However, in second-order solutions, the only places where the Riemann solver is important are the discon-
tinuities. In smooth flow, the reconstructed left and right state at a cell face are more or less equal. So the
Riemann problem there consists of very weak waves, that do not cause errors, even if they are inconsistent with
the actual problem.

The limiting process does not guarantee that the discontinuities are handled well, the accuracy of the solution
greatly depends on the state variables qp that are limited. Here, three state vectors are considered. They are
(for single-fluid flow):

1. Primitive variables: q = (ρ, u, p),

2. Conservative variables: q = (ρ, ρu, ρE),

3. Riemann invariants: q = (u, c, z), with c =
√

γ p
ρ and z = ln

(

p
ργ

)

.

These three choices have a different behaviour in discontinuities.
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Figure 4.6: V in second-order solutions of Sod’s problem, with three different state vectors for limiting. Left to
right: primitive, conservative and Riemann variables. The V -values are compared with the three characteristic
speeds, which are (bottom to top): u − c, u and u + c.
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If they work properly they reconstruct, in a discontinuity, a series of Riemann problems that resembles the
discontinuity. For the HL3 solver, this means that α approaches 1 on each interface in the discontinuity and that
V is the speed of the discontinuity. So let us study the V -distribution of figure 4.5 again. Figure 4.6 gives V for
the three different sets of reconstructed variables. These V -values are compared with the computed values of
the three characteristic speeds: u− c, u and u+ c. Now we see that the chaotic behaviour mostly appears in the
regions where the flow is smooth: the smaller [q ] is, the larger the influence of small disturbances. In fact, the
discontinuities are resolved well: all methods follow the line u + c in the shock (the primitive reconstruction is
the best, the conservative reconstruction has a large overshoot). The methods approach the line u in the contact
discontinuity. Here the primitive reconstruction is clearly the best. Note, by the way, how well the Riemann
reconstruction performs in the expansion, though this is irrelevant as the flow is smooth there.

Error plots for the three different reconstructions (figure 4.7) show that the Riemann-variable reconstruction
gives the lowest errors, though not much lower than the primitive-variable reconstruction. The conservative-
variable reconstruction gives inferior performance.
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Figure 4.7: L1-errors in second-order accurate solution of Sod problem, for three sets of limited variables.
Different grid sizes, ∆t/∆x = 0.25. �: primitive variables, •: conservative variables, �: Riemann invariants.

The Riemann-variable reconstruction is generally considered to be the best choice. But this reconstruction has
one great disadvantage: it completely fails in strong contact discontinuities, independent of the choice of the
Riemann solver. The problem is that, in a flow with constant p and u, the limited states (the input for the
Riemann solver) must also have this pressure and velocity. The velocity u is limited directly, but the pressure
is a combination of c and z:

p =

(

cγ

γγez

)
1

γ−1

.

The c and z in each limited state must yield the same p always, which is impossible if they are limited indepen-
dently. A numerical test confirms this problem (figure 4.8): the pressure in a contact discontinuity, computed
with the Riemann-variable reconstruction, is not constant. Reconstruction in primitive variables, on the other
hand, works well. Here, both u and p are limited directly, so they remain constant.

Concluding: the primitive-variable reconstruction is best suited for problems with strong contact discontinu-
ities, like the two-fluid problems studied here. Therefore, it is used further on, in combination with the two-fluid
model. There, it has an additional advantage, which will be explained in section 5.2.

4.3. BOUNDARY CONDITIONS

The treatment of boundary conditions for HLL solvers is a non-trivial problem. In most high-accuracy Riemann
solvers, like Godunov or Osher, the Riemann flux is based on a physical wave pattern, so boundary conditions
can be found by studying the same physical problem, if a number of conditions are specified, e.g., inflow
pressure and velocity. But the HL3 solver, on the other hand, does not have a physical wave system, so physical
reasoning cannot be used to find relevant boundary conditions.
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Figure 4.8: Second-order solution of a moving contact discontinuity. Left to right: density and pressure with
primitive-variable reconstruction, pressure with Riemann-variable reconstruction.

However, there is a simple method to find boundary conditions: using virtual cells behind the boundary and
computing the boundary fluxes by applying the normal HL3 solver to the reconstructed inner boundary cell
face and to the virtual cell state. The only thing left to decide is the state qB in the virtual cell:

Inflow – outflow. In inflow and outflow boundaries, it is easiest to specify a full boundary state qB . Then the
Riemann solver decides for itself how much of this information it uses, from everything (supersonic inflow) to
nothing (supersonic outflow).

Wall. At a wall we want zero velocity. This can be achieved by choosing qB equal to the reconstructed state
on the inner cell face, but with the sign of the normal velocity component changed. In this way, the normal
velocity in the HL3 flux is always zero.

The advantage of this approach is that it is very easy to implement. A disadvantage is that we cannot control
which boundary conditions are prescribed on each boundary, since the Riemann solver selects these. The
actual boundary conditions may be unphysical. It appears, from numerical tests, that this makes the boundaries
sensitive to instability, especially when the velocity at the boundary is zero. Some correction is often necessary.



Chapter 5

Numerical treatment of the source term

The previous chapter described the second-order accurate numerical discretisation that is used here, for single-
fluid flow. The two-fluid flow model from the first two chapters resembles single-fluid flow so much (no
interface model is needed, etc.), that the numerical discretisation requires only one addition to solve it: a
discretisation of the source term.

By integrating equation (2.6) over a cell, a basic equation for a finite-volume discretisation is found:

∂

∂t

∫

Ωi

q dx +
(

fi+ 1
2
− fi− 1

2

)

=

∫

Ωi

s dx. (5.1)

Physically speaking, the fifth equation in (5.1) says that the increase rate of the energy of fluid 1 is equal to the
energy that flows in with fluid 1 over the boundaries (the flux), plus the energy that is passed from fluid 2 to
fluid 1 in the cell (the source term). Thus, the source term appears as an integral over the cell. A numerical
evaluation of this integral must be added in the time integration. Furthermore, the source term influences the
computation of the fluxes. Both these aspects are treated in the following sections.

5.1. HL3 FOR TWO-FLUID FLOW

In principle, the fluxes and the source term are different things. As equation (5.1) shows, the source term is
created in the cell, while the fluxes are inflow over the boundaries. But the HL3 solver defines the fluxes by
integration of the system of flow equations, which contains the source term. Therefore, some treatment of the
source is needed to find the HL3 flux. Here, we show first how the HL3 solver is modified to incorporate a
source term and then how the source term in discontinuities, from section 3.3, is treated numerically.

5.1.1 A source term in the HL3 solver
Integrating the system (2.6) over a control volume as in figure 4.1, we get an equation that is equivalent to (4.2):

(

λ+ − V
)

q∗

R +
(

V − λ−
)

q∗

L = λ+qR − λ−qL − fR + fL +
1

∆t

∫ ∆t

0

∫ λ+∆t

λ−∆t

s dx dt. (5.2)

As all the areas in figure 4.1 have a constant state, the source term is zero there. Across each wave, the source
term is a constant, so the integral reduces to a summation:

1

∆t

∫ ∆t

0

∫ λ+∆t

λ−∆t

s dx dt = sλ− + sV + sλ+ = Σs . (5.3)

We do not yet write an exact expression for Σs , this is done in section 5.1.2.
Apart from the conservation laws, the HL3 scheme is not changed. The expressions (4.4) for V and (4.7) for

α are kept, as is the estimate for the outer waves (4.8). Only, the equation (3.22) is used for the mixed-fluid
sound speed. For simplicity, we set the fifth diagonal component of P to zero,

P = diag
([

1 1 1 1 0
])

. (5.4)

In this way, no problems arise with the source term, it can be computed after V if necessary. We still capture
all waves, because shocks, expansions and contact discontinuities all show up in the first four equations. And
although this P is singular, ‖[q ]‖P can never become 0 for nonzero [q ], so V cannot blow up.
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So, combining these equations, we find the inner states:

q∗

L =
λ+qR − λ−qL − ∆f − (λ+ − V )α∆q + Σs

λ+ − λ−
,

q∗

R = q∗

L + α (qR − qL) .

(5.5)

The inner fluxes follow again from conservation over a half plane:

f ∗

L = fL + λ− (q∗

L − qL) + sλ− if V ≥ 0,

f ∗

R = fR + λ+ (q∗

R − qR) − sλ+ if V < 0.
(5.6)

Finally, the output flux is selected as in equation (4.9), i.e.,

fHL3 =



















fL if λ− ≥ 0,

f ∗

L if V ≥ 0 and λ− < 0,

f ∗

R if V < 0 and λ+ ≥ 0,

fR if λ+ < 0.

(5.7)

5.1.2 Approximate source term
To use the HL3 solver, an approximation of the source term in the three waves, i.e., sλ− , sV and sλ+ , is needed.
The HL3 solver is rather simple and contains non-physical waves, which means that two problems appear in the
numerical approximation of the source term. These are discussed below. In more advanced Riemann solvers,
based on physical waves only, these problems disappear.

First, the artificial discontinuities that appear in the HL3 solver do not always satisfy the Rankine-Hugoniot
relation (it was found in section 4.1.1, that f ∗

L is not equal to f (q∗

L)). Therefore, several relations applied in
the derivation of the source term (3.46) in discontinuities (e.g. that β is constant in a shock) are not valid in the
HL3 discontinuities. Therefore, some modifications must be made to (3.46), before it can be combined with
the HL3 solver.

The problem with this modification is that (3.46) contains terms of a completely different character, that are
supposed to cancel each other exactly in most cases (e.g. the friction contribution must be zero when α = β). It
is very hard to change the terms in (3.46) such, that they allow general discontinuities and still vanish correctly
when necessary. Numerical experiments showed that most formulations lead to instability and large errors.

And second, the inner states q∗

L and q∗

R are not necessarily physically consistent: the conservative state
vectors satisfy the conservation law (5.2), but do not always give sensible values when they are converted to
primitive variables (e.g, there is no guarantee that q ∗

L and q∗

R have 0 ≤ α ≤ 1). Therefore, it is difficult
to compute separate source terms for the three HL3 waves, since the source terms are expressed in primitive
variables.

Summarizing: the best choice for a source term to be combined with the HL3 solver is to use one equation
for the entire source term Σs and to choose an expression that is as simple and robust as possible.

The numerical source term is based on equation (3.37):

Ss =

∫ xR

xL

uSM dx = ūSMs
, (5.8)

for some average ū. For SMs
, there is the expression (3.36), for ū we simply use the upwind velocity:

Ss ≈

{

uL ([pα] − βL [p]) V ≥ 0,

uR ([pα] − βR [p]) V < 0.
(5.9)

Then the HL3 source becomes

Σs = [0, 0, 0, 0, Ss]
T . (5.10)
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For the individual waves, we assume that the strength of the source term in each wave corresponds to the
strength of the wave itself, so

sV = αΣs ,

sλ− = sλ+ =
1 − α

2
Σs .

(5.11)

Numerical tests show that this choice works well.

5.2. TIME INTEGRATION

Discretising the time derivative in the conservation law (5.1) as in (4.19), a two-step scheme is found for the
two-fluid system:

qk+1
i = qk

i − ∆t
∆x

(

f k
i+ 1

2

− f k
i− 1

2

)

+ ∆t
∆xs

k
i ,

qk+2
i = qk

i − 2 ∆t
∆x

(

f k+1
i+ 1

2

− f k+1
i− 1

2

)

+ 2 ∆t
∆xs

k+1
i .

(5.12)

The source term sk
i in this expression is the total energy passed from fluid 2 to fluid 1 in cell i, at time level k:

sk
i =

∫ xi+
∆x
2

xi−
∆x
2

s(x, tk) dx. (5.13)

For higher-order methods, the state is discontinuous near the cell faces and smooth, but non-constant, in the
cells. So the source from equation (5.13) consists of two parts:

1. Source in the discontinuities at the cell faces,

2. Source in the smooth flow in the cell.

These sources are summed to get sk
i .

The source term in the discontinuities is created in the waves of the Riemann problems at the cell faces. The
usual model for a Godunov-type discretisation is as in figure 5.1a: the flow is discontinuous at the cell faces,
at the beginning of a time step. So Riemann problems appear at the cell faces and the waves of these Riemann
problems run into the cells. As a model for these waves, we use the three waves of the HL3 solver, that were
used to compute the fluxes. Each wave produces a source term: sλ− , sV and sλ+ . These sources must be taken
into account for the time integration, the source in a wave contributes to the source of the cell in which the
wave is running. In figure 5.1a, the source in cell i comes from the V - and λ+-waves at i − 1

2 and from the
λ−-wave at i + 1

2 .
Note that these sources are not incorporated in the fluxes, even though they are computed with the Riemann

solver and appear in the flux formulas (5.6): the fluxes are the flow through the cell faces, they are the same for

a) x∆x

t

b) x∆x

qL,i+ 1
2

qi

qR,i− 1
2

q

Figure 5.1: Source term in a cell: from cell faces (a) and internal flow (b).
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the two cells of the cell face. The sources however, are produced in the cells, albeit near the interface, and are
not equal for two neighbour cells.

In higher-order methods, the state in a cell is not constant, so a source appears in the smooth flow inside the
cell. As we compute the source term at the very beginning of each time step (at time k for the first time step
and at time k + 1 for the second time step), the waves from the cell faces have only moved an infinitesimal
distance into the cell. Therefore, the state in the cell interiors is still continuous and the source term can easily
be found by integrating the differential source term (3.6):

Si, cont =

∫ xi+
∆x
2

xi−
∆x
2

(puαx + (α − β) px) dx. (5.14)

The state in a cell for the second-order scheme follows from the limiter: the resulting state variables are
piecewise linear functions (figure 5.1b). If the limiter is applied to the primitive variables ρ, u, p, α and β, then
the integration of (5.14) is easy. For three general, linear variables a, b and c,

a(x) = ai + (aj − ai)
x − xi

xj − xi
, b(x) = bi + (bj − bi)

x − xi

xj − xi
, cx =

cj − ci

xj − xi
=⇒

∫ xj

xi

abcx dx =
(

1
3 (aibi + ajbj) + 1

6 (aibj + ajbi)
)

(cj − ci) . (5.15)

Applying this integral to (5.14), we find that:

Si, cont =
(

1
3 (pRuR + piui) + 1

6 (pRui + piuR)
)

(αi − αR)

+
(

1
3 ((α − β)RuR + (α − β)iui) + 1

6 ((α − β)Rui + (α − β)iuR)
)

(pi − pR)

+
(

1
3 (piui + pLuL) + 1

6 (piuL + pLui)
)

(αL − αi)

+
(

1
3 ((α − β)iui + (α − β)LuL) + 1

6 ((α − β)iuL + (α − β)Lui)
)

(pL − pi) .

(5.16)

Here pR means pR, i− 1
2

, pL means pL, i+ 1
2

etc. This source term is added to the wave source terms to get sk
i or

sk+1
i .



Chapter 6

Numerical results

The two-fluid model from the previous chapter is applied to a series of 1D and 2D test problems. The aim of the
method is to provide conservative and pressure-oscillation free solutions. The results in this chapter show that
the method indeed gives good capturing of shock waves and continuous pressure over the two-fluid interfaces.

6.1. 1D RESULTS

The method is first tested on three 1D shock tube problems. The problems have analytical solutions, so the
numerical solutions can be compared with these exact solutions.

All tests are Riemann problems. In these problems, the shock tube is divided in two by a membrane at x = 0.
The membrane separates two gases that have different states, but the state in each gas is constant. When the
membrane is removed at t = 0, a pressure wave (either a shock or an expansion fan) runs into each gas. The
interface between the gases moves too, depending on the velocity between the pressure waves.

All fluids are ideal gases, their equation of state is (2.8). But, as the problems are two-fluid, the γ’s on each
side of the interface are not equal.

6.1.1 Contact discontinuity
The first test is a contact discontinuity of water–air density ratio. In this case, the two gases have the same
pressure and velocity, so no pressure waves appear, only the interface is convected. The solution in figure 6.1
shows that the interface is numerically smeared, but that its center lies exactly in the correct location. And,
most importantly, the pressure is constant: no pressure oscillations occur. Thus, the method treats interfaces
exactly as desired.
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Figure 6.1: 1D contact discontinuity. p = 1, u = 1, ρL = 1000, ρR = 1, γL = 1.4 and γR = 1.6. The grid has
200 cells, 80 time steps and ∆t/∆x = 0.5 (CFL = 0.5). Solid lines: exact solution.

6.1.2 High-pressure Sod
The second test is a two-fluid variation of Sod’s problem: the two gases are at rest, the left gas has a higher
pressure and density than the right gas. The current problem has a ten times higher left pressure and density than
the original Sod problem, giving it a pressure ratio of 100:1. The solution consists of a left-running expansion
fan, a right-running shock and the, right-moving, two-fluid interface.

Figure 6.2 shows that the discontinuities (shock and two-fluid interface) are in the proper locations. Note that
the pressure is constant over the contact discontinuity and that the volume fraction is constant over the shock
and over the expansion fan. Even in this difficult case, no pressure oscillations appear.
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A convergence study for this particular problem, on five grids, shows that the L1-errors in ρ, u and p converge
approximately with the power 0.96 of the mesh width (see table 6.1). The volume fraction converges with the
power 0.78 of the mesh width. This rate of convergence is comparable with that for single-fluid solutions with
limited second-order schemes.
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Figure 6.2: High-pressure, two-fluid Sod problem. (ρ, u, p)L = (10, 0, 10), (ρ, u, p)R = (0.125, 0, 0.1),
γL = 1.4 and γR = 1.6. The grid has 200 cells, 160 time steps, ∆t/∆x = 0.2 (CFL = 0.56). Solid lines: exact
solution.

n eρ eu ep eα

50 0.0804 0.0306 0.0538 0.0237
100 0.0426 0.0230 0.0264 0.0160
200 0.0221 0.0079 0.0124 0.0079
400 0.0117 0.0062 0.0068 0.0049
800 0.0062 0.0021 0.0032 0.0029

Conv. order 0.93 0.96 1.01 0.78

Table 6.1: High-pressure Sod problem: L1-errors in four state variables on five different grids and average
order of convergence for these errors.

6.1.3 No-reflection problem
The last problem is the hardest. This Riemann problem is equivalent to a strong shock wave (pressure ratio
1:100) in the left gas, hitting the interface at t = 0. The pressure and velocity jump over the shock are chosen
such, that the shock continues in the right gas, without creating a reflection wave. So the left pressure wave in
the Riemann problem has strength zero.

In the results (figure 6.3) we see the effect of the numerical approximation to the source term (see section
5.1.2). A wiggle is visible in the pressure plot, a small wave that is reflected to the left. But unlike a real
pressure oscillation, this wiggle reduces in size on grid refinement. The other flow features, the transmitted
shock and the two-fluid interface, are captured very well. And note that the pressure wiggle has no effect at all
on the volume fraction, which is still exactly 1 away from the interface.

A convergence test in table 6.2 confirms the gradual disappearance of the pressure wiggle. The solution
converges normally, with an order of approximately 1. This is exactly as expected for a problem with very
heavy shocks.

6.2. 2D SHOCK–BUBBLE INTERACTION

To test the method for 2D problems, two related test cases are considered: the impact of a shock in air on
a bubble of a lighter and a heavier gas. These tests are based on experiments by Haas and Sturtevant [11],
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Figure 6.3: Strong shock hitting an interface, without creating a reflection wave. (ρ, u, p)L =
(3.1748, 9.4350, 100), (ρ, u, p)R = (1, 0, 1), γL = 1.667 and γR = 1.2. The grid has 400 cells, 320
time steps, ∆t/∆x = 0.04 (CFL = 0.42). Solid lines: exact solution.

n eρ eu ep eα

100 0.2579 0.1638 1.3904 0.0220
200 0.1722 0.1126 1.0183 0.0119
400 0.0860 0.0604 0.5684 0.0053
800 0.0375 0.0218 0.2121 0.0029
1600 0.0246 0.0146 0.1422 0.0018

Conv. order 0.90 0.93 0.88 0.93

Table 6.2: No-reflection problem: L1-errors in four state variables on five different grids and average order of
convergence for these errors.

who also give an excellent analysis of the flow phenomena that appear. Numerical computations are reported,
among others, by Quirk and Karni [23], Marquina and Mulet [20] and Schroll and Svensson [27].

The test setup is drawn schematically in figure 6.4. It is a shock tube with a square cross-section, in which a
cylinder of a very thin cellulose film is placed. The cylinder is filled with some gas and then a shock wave is
sent through the tube. When it reaches the cylinder, the shock tears the microfilm apart and then interacts with
the cylindrical gas bubble. This interaction happens so fast (for a 343 m/s sound speed, the shock passes the
bubble in about 10−4s) that the gases do not mix much during the interaction. Therefore, the problem can be
treated as a two-fluid problem.

The wave pattern depends strongly on the density of the gas in the bubble. However, some waves always
appear. Initially, the shock coming from the air just continues to travel in the bubble, we call this the refracted
shock wave. Another wave, the reflected wave, travels from the interface back in the air. At later times,
the interaction becomes more complicated: the refracted wave leaves the bubble and continues in air as the
transmitted wave, causing secondary reflected waves in the bubble as it hits the bubble interface.

The two bubble gases used in the test are helium and Refrigerant R22, a heavy gas. Both these and the air
are modeled as ideal gases. Their gas properties are given in table 6.3, together with the initial conditions for
the problem. These are chosen such, that the undisturbed air has a sound speed 1 (instead of 343 m/s in the
experiment, but that is just a scaling matter). The shock has a Mach number of 1.22.

The experimenters observed that the helium in their cylinder was contaminated with air, because of air
leakage through the microfilm, prior to the experiment. They estimated this contamination at 28 mass % air.
Following Quirk and Karni, this mixture is modeled as a single ideal gas, with a higher density than pure helium
(0.25463 instead of 0.19317) and a lower γ (1.648 instead of 1.667). Contamination of the R22 was considered
negligible.
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air0

air1

helium / R22

Figure 6.4: Shock in air in a shock tube, hitting a cylinder of helium or R22. The computational domain is
drawn dashed.

All tests were computed on a half bubble (figure 6.4). The grid has square cells, 400 in x-direction and 200 in
y-direction. The time step is ∆t = 2.5 × 10−5 for the R22 case and ∆t = 1.25 × 10−5 for the helium case,
because the wave speeds in helium are higher than in R22.

γ ρ u v p α
air0 1.4 1.40000 0.00000 0.00000 1.00000 1
air1 – 1.92691 0.33361 0.00000 1.56980 1
helium 1.648 0.25463 0.00000 0.00000 1.00000 0
R22 1.249 4.41540 0.00000 0.00000 1.00000 0

Table 6.3: Shock hitting bubble: gas properties and initial conditions.

6.2.1 R22 bubble
Refrigerant R22 (CHClF2) is an HCFC, commonly used in air conditioners and heat pumps. It was introduced
to replace the ozone-depleting CFC’s, but is now considered to cause unacceptable ozone-depletion itself and
is scheduled for phaseout in 2020. It is a heavy gas, with a low sound speed of 0.532 in the current test.

Because of the low sound speed in R22, the refracted wave travels slowly too, lagging behind the incoming
shock in air (see figure 6.5). Thus, the refracted wave becomes curved inwards. The reflected wave is initially
a shock wave; after some time it starts ‘climbing’ up the incoming shock. An analytical analysis ascertaining
almost all aspects of this initial interaction is found in appendix II. The two vertical waves behind the incoming
shock are startup waves caused by the shock. These waves are not physical and may be ignored, as they are
very weak and do not influence the rest of the solution. At later times, the shock in air curves inwards too,
while the refracted wave is curved even further. In the last picture, the refracted wave has developed a sharp
bend, with an expansion fan originating from it. Another interesting feature in the last picture is the reflected
shock, which reflects from the top of the shock tube and hits the bubble again, from above.

Pressure and volume fraction plots (figure 6.6) confirm the conclusions from the 1D tests. The flow pattern
seen in the density plots is split perfectly in a pressure part and the interface. Apart from some very small
wiggles that disappear on grid refinement, the pressure is continuous over the interface. The two-fluid interface
itself is sharp and the pressure waves are not visible in the volume fraction. One problem is visible in the last
picture: there is a split in the two-fluid interface. This is probably caused by the troubles that the Riemann-
solver approach has in coping with shear layers.

The speeds of the waves at the centerline of the bubble (y = 0) can be measured from a series of pictures
of the flow. Three quantities were measured and compared with results from the experiment [11] and from the
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Figure 6.5: Shock hitting R22 bubble, density at t = 7.74 × 10−3, t = 17.74 × 10−3, t = 32.74 × 10−3, and
t = 47.74 × 10−3.
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Figure 6.6: Shock hitting R22 bubble, pressure (above) and volume fraction (below) at t = 17.74 × 10−3 and
t = 47.74 × 10−3.
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numerical computations of Quirk and Karni [23], obtained on a very fine, adapted grid (see table 6.4). The
present results were scaled with a sound speed in air of 343 m/s, valid in air at sea level and at 293 K. The
measured velocities are the speed of the incoming shock cs, the speed of the refracted shock cr, and the speed
of the two-fluid interface at the right-hand side of the bubble uri. The similarity with the other data is good,
considering among others the difficulty of defining the location of a smeared shock. Especially the similarity
with the experiment is remarkably good.

cs (m/s) cr (m/s) uri (m/s)
Present method 419 – 241 – 75 –
Quirk & Karni 420 (0.2) 254 (5.4) 70 (6.7)
Experiment 415 (1.0) 240 (0.4) 73 (2.7)

Table 6.4: Centerline wave speeds in R22 bubble test: comparison of present method with computations by
Quirk and Karni [23] and experiment by Haas and Sturtevant [11]. The difference with the present method in
% is given in brackets. cs: incident shock speed, cr: shock speed in bubble, uri: right side of interface speed.

6.2.2 Helium bubble
Helium, even if it is contaminated with air, has a much higher sound speed than air itself (2.544 in this test).
Therefore, the refracted wave runs ahead of the incoming wave, curving outwards (see figure 6.8). At some
point, the refracted wave moves so fast, that it runs ahead of the point where the incoming shock hits the
interface. An oblique shock appears in the air, behind the refracted shock: the transmitted shock. This shock
interacts with the incoming shock and crosses it, continuing on the right of the incoming shock. Finally,
an expansion fan appears at the point where the incoming shock hits the interface: this expansion ‘eats’ the
transmitted shock, turning it into an expansion wave. The flow pattern is sketched in figure 6.7.

interface
refracted shock

transmitted shock

incoming shock

sec. reflected shock

expansion

Figure 6.7: Wave pattern of the shock – helium interaction.

A secondary reflected shock starts in the corner between the refracted and the transmitted shock. This shock
develops into a cusp-like shock and increases in size when the refracted shock has fully left the bubble. Then
the transmitted shock has become a curved shock in a semi-circle around the bubble. The initial part of this
shock–bubble interaction can be explained well with an analytical approach. Appendix II gives the analysis for
the air–helium bubble as well.

The pressure and volume fraction plot, figure 6.9, shows again a perfect splitting of the pressure waves and
the interface. The shocks and the interface remain very sharp. And it is interesting to see that the right side of
the interface is bending inwards in the last picture. This phenomenon continues at later times, until the bubble
is totally split in two vortices.

Centerline wave speeds were measured in the same way as for the R22 bubble, they are given in table 6.5.
The agreement with the other data is here even closer than in the R22 case. The only noticeable exception is
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Figure 6.8: Shock hitting helium bubble, density at t = 2.74 × 10−3, t = 10.74 × 10−3, t = 17.54 × 10−3.
and t = 22.74 × 10−3.
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the speed of the refracted wave. The lower value for the experiment could mean that the equation of state, that
is used for the helium–air mixture, is not very accurate. Also, the contamination in the experimental bubble
is probably not uniform, but concentrated near the interface. Still, the agreement with the Quirk and Karni
computation (that uses the same mixture EOS) is very good.

cs (m/s) cr (m/s) uri (m/s)
Present method 419 – 950 – 173 –
Quirk & Karni 422 (0.7) 943 (0.7) 178 (2.9)
Experiment 410 (2.1) 900 (5.3) 170 (1.7)

Table 6.5: Centerline wave speeds in helium bubble test: comparison of present method with computations by
Quirk and Karni [23] and experiment by Haas and Sturtevant [11]. The difference with the present method in
% is given in brackets. cs: incident shock speed, cr: shock speed in bubble, uri: right side of interface speed.



Chapter 7

Conclusion

7.1. CURRENT WORK

A conservative surface-capturing method is developed for compressible two-fluid flow. The method is based on
a physical model for numerical mixture flow. From this model, five flow equations are derived: three bulk-fluid
equations and mass and energy equations for one of the pure fluids. It is also found, that pure-fluid equations
of state can be used for the thermodynamic behaviour of the mixture flow.

A source term in the last, energy equation models the exchange of energy between the fluids. This exchange
happens only through work: the fluids do not exchange heat. The source term can be integrated exactly through
a shock wave, thus giving an exact closure for the system, in the case of discontinuous flow.

The numerical discretisation uses Linde’s HLL approximate Riemann solver. This solver can be easily adapted
to different flow equations and is therefore very useful for the two-fluid model. Simplified expressions for the
wave speeds in Linde’s solver appear to work well. The HLL solver can be used in combination with a second-
order accurate limited flux discretisation. However, the choice of the limited variables has a large influence on
the performance of the Riemann solver. It is found that the limiter has to be applied to primitive state variables
for the best performance.

The energy exchange source term must be added to the Riemann solver and to the time integration of the
solution. An approximate version of the source term greatly simplifies the computations this involves.

Results of 1D shock tube problems show that the method is indeed pressure-oscillation free: the solutions are
continuous over the interface. Shock waves and interfaces are captured very well. Only for some very strong
shocks, the approximate source term produces some small wiggles. These disappear on grid refinement.

Two shock-bubble interaction problems confirm that the method is easily extended to 2D. Shocks and inter-
faces are captured sharply and there are no pressure oscillations. Implementation of the method in an existing
2D code proved to be very simple.

7.2. FUTURE RESEARCH

The method described here works fine. However, possibilities for refinement exist, especially concerning the
Riemann solver.

Godunov solver. The analytical expression for the source term in discontinuities can be used in Riemann
solvers that are based on real, physical waves, like the exact Riemann solver of the Godunov scheme or a
simplification of that solver.

Osher solver. With the Riemann invariants for the system known, it is possible to construct an Osher solver.
The advantage of the Osher solver is that it is very accurate, yet does not contain shock waves, so the shock-
version of the discontinuity source term is not even needed. However, the solver is expected to require numer-
ical integration in determining the Riemann invariants.

HLL boundary conditions. It is worthwhile to study the possibility of applying more sophisticated boundary
conditions to the HLL solver, that fit in with the integral approach of the HLL scheme and enforce the right
number of conditions for each boundary. Possible boundary conditions are suggested by Van der Vegt and Van
der Ven [32].

Multi-D upwinding. The resolution of curved contact discontinuities in the present method may be improved
by using cell face state reconstructions that depend on the local direction of the flow.
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42 Chapter 7. Conclusion

Fluctuation splitting. A very good spatial discretisation of the current flow equations can probably be achieved
with fluctuation splitting schemes [24]. They allow simultaneous and consistent treatment of the convective
terms and the source terms, as well as multi-D upwinding [25].
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Appendix I

Approximate model for mixture-fluid shocks

“It is striped, what about ze panties? (5)”1

The relations given for mixed-fluid shocks in section 3.3 are rather involved. Earlier in the current project, an
approximate model was derived for shocks running into two-fluid mixtures with a constant state. It is included
here for completeness. The difference with the model from chapters 2 and 3 is, that the current model is meant
to compute shocks in physical mixtures, that can have different pressures in the two fluids. The other model is
primarily aimed at modeling the interface region, where the mixture is supposed to behave like a single fluid.

I.1. THE ‘ZEBRA’ MODEL

We consider a shock, running into a mixture as described in section 2.1. The state of the mixture is constant in
the entire pre-shock region and it is a real mixture (0 < α < 1). The shock consists of many small shocks in
the pure-fluid elements, running with the local pure-fluid shock speed (which is well defined) and a complex
pattern of adaptation waves appears behind the shocks, to make the pressure and velocity of all elements equal.
This leveling-out is called ‘relaxation’. The sum of all these waves appears as one shock wave. Examples of
the adaptation waves can be found in Saurel and Abgrall [26] and Quirk and Karni [23], for a bubble.

The wave pattern described above is too difficult to model exactly. Therefore, we compute a shock speed
for a simplified distribution of the two fluids. The simplest distribution is that of a shock tube with the fluids
in two layers, one fluid above and the other below, with the shock running simultaneously into both of them.
Unfortunately, this model is wrong, as a slow shock could run slower than the sound speed in the material with
the highest sound speed. This is clearly impossible.

A much better model is the ‘zebra’ model: the shock tube is filled with many thin discs of the two fluids in
a row and the shock runs alternately in fluid 1 and 2. The mixture-fluid shock speed is then simply the average
travel speed of the shock. This average is found by considering two discs, one of each fluid, with a total length
l (see figure I.1). The time it takes for the shock to cross this length is:

τ =
αl

cs1

+
(1 − α)l

cs2

,

with cs1
and cs2

the pure-fluid shock speeds. Therefore, the average shock speed is:

cs =
l

τ
=

1
α

cs1

+ 1−α
cs2

. (I.1)

l αl (1 − α)l

x

Figure I.1: ‘Zebra’ fluid distribution.

1Colin Dexter, The Way Through the Woods, quoting from a crossword puzzle.
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We need a compatibility condition that relates the shock speeds cs1
and cs2

in the pure fluids to each other.
The condition that makes most sense is that the fluid velocities behind the shock are equal. In reality, the
velocities and pressures are probably both unequal and they relax after the shock has passed. Pressure relaxation
can happen by compression and expansion in the up-down direction and we can imagine that the same happens
in the zebra model, with some bypass between the fluids. But if the fluids have different velocities, then
adaptation waves appear that travel backward, each time the shock crosses an interface. However, a shock
moving through a nicely mixed two-fluid medium does not create backward-moving waves. The only way to
eliminate those waves is to make the velocities of the fluids equal.

All that is needed now, is an expression for the shock speeds in pure fluids, which is readily found from the
single-fluid Rankine-Hugoniot relations. If the gas satisfies the ideal-gas EOS (2.8), then the pure-fluid shock
speed for a shock moving into a gas at rest (u = 0) is:

cs =
γ + 1

4
[u] +

√

(

γ + 1

4
[u]

)2

+ γ
ppre

ρpre
. (I.2)

This expression is combined with equation (I.1):

cs =
1

α

γ1+1

4
[u]+

r

( γ1+1

4
[u])

2
+γ1

ppre
ρ1, pre

+ 1−α

γ2+1

4
[u]+

r

( γ2+1

4
[u])

2
+γ2

ppre
ρ2, pre

. (I.3)

This equation relates the shock speed and the velocity change for a shock running into a mixture ideal fluid at
rest.

I.2. ALLOY TEST

Experimental data for shocks in mixtures as described above are difficult to obtain, because that kind of mixture
does not often appear in nature. One example are metal alloys. Two mixed metals do not really blend up to atom
level, but one metal forms small elements in the other. The alloy can thus be seen as a two-fluid mixture and
for strong shocks, it behaves like a compressible fluid. Furthermore, shock speed data for alloys are available,
e.g., from Marsh [21], so they can be used to test the shock-speed relations given above (Saurel and Abgrall
[26] use this test for their numerical method).

Three alloys are studied here, uranium / rhodium, epoxy / spinel (not a metal alloy, probably spinel powder
in epoxy) and gold / germanium. Properties of these alloys are given in table I.1. The equation of state which
is used for the pure fluids is the stiffened-gas equation of state,

p = (γ − 1)ρe − γπ. (I.4)

For this equation, the stiff-gas parameters γ and π for the pure fluids are needed. These are determined experi-
mentally and given in table I.2.

Alloy α ρ (kg/m3)
Uranium / Rhodium 0.809 17204
Epoxy / Spinel 0.600 2171
Gold / Germanium 0.730 15536

Table I.1: Material properties for three alloys (from Marsh [21]). α refers to the first material.

For the stiffened-gas EOS, the pure-fluid shock-speed relation is

cs =
γ + 1

4
[u] +

√

(

γ + 1

4
[u]

)2

+ γ
ppre + π

ρpre
, (I.5)
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Material ρ (kg/m3) c (m/s) γ π (GPa)
Uranium 18930 2510 3.52 33.9
Rhodium 12492 4790 3.61 79.0

Epoxy 1185 2823 2.45 5.6
Spinel 3622 7954 1.50 157.1

Gold 19204 3250 3.57 15.6
Germanium 5328 ? 2.92 12.5

Table I.2: Stiff-gas parameters for the six pure materials (from Marsh [21]).

so the mixture shock speed becomes

cs =
1

α

γ1+1

4
[u]+

r

( γ1+1

4
[u])

2
+γ1

ppre+π1
ρ1, pre

+ 1−α

γ2+1

4
[u]+

r

( γ2+1

4
[u])

2
+γ2

ppre+π2
ρ2, pre

. (I.6)

The results from this equation can be compared with measurements of the relation between shock speed and
material speed for the alloys. The tests are done with the alloys in initial conditions as given in table I.1, with
an initial pressure p = 105 Pa and velocity zero. Results are given in figure I.2. Curves are plotted for the
pure fluids (equation (I.5)) and for the mixture fluid (equation (I.6)). The mixture curve is compared with
experimental data.

We see that equation (I.6) gives an excellent fit to the experimental data for the first two alloys. The prediction
of the uranium-rhodium shock speed is good over the entire speed range, even though the alloy does not consist
of pure-fluid elements. Instead, uranium and rhodium can dissolve a bit in each other, so the elements consist
of uranium with a little rhodium and rhodium with a little uranium. This does not appear to influence the
shock-speed prediction. The epoxy-spinel shock speed is especially good for strong shocks. This is not caused
by the mixture-fluid model but by the stiffened-gas EOS, which gives an inaccurate prediction of the epoxy
shock speed for weak shocks. If the stiffened-gas parameters are tuned to give the correct shock speeds for
weak shocks, then the mixture-model performs much better for these shocks.

A caveat: the model does not work for all alloys. Gold-germanium is a particularly striking example. There,
the mixture shock speed does not even lie in between the pure-fluid speeds, so the shock speed prediction is
obviously wrong. Apparently, this alloy has some physical properties that do not agree with the zebra model.

Concluding: the model suggested in the previous section appears to be a reasonable approximation of the
behaviour of shocks in most alloys. If used with care, it can be very useful for alloy simulation.
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Figure I.2: Shock speed versus material velocity for three alloys.



Appendix II

Oblique shock–interface interaction

In the initial phase, the shock–bubble interaction problems from section 6.2 show an interaction that is a very
local phenomenon. It takes place at one point only: the point where the incoming shock hits the interface.
Because the interaction is local and does not (yet) depend on the flow in the rest of the domain, it is equivalent
to the problem of a shock hitting an oblique plane interface. This problem can be solved analytically.

In this appendix, we study the interaction of the shock from the bubble problem, with plane air–helium and
air–R22 interfaces. The results are compared with the shock–bubble interactions and are used to interpret the
phenomena that appear in the shock–bubble problems.

II.1. PROBLEM SETUP

Consider a problem as in figure II.1a, a vertical shock impacting on an inclined two-fluid interface. Both the
shock and the interface have an infinite length, so the shape of the solution does not change in time. It is
convenient to use a coordinate system that is attached to the point of impact of the shock, as the flow is steady
in that coordinate system (see figure II.1b). The figure shows the incoming shock s, running into region I and
impacting on the interface. Two waves originate from the impact point: the refracted shock running into the
undisturbed fluid below the interface and the adaptation wave a running into the region II behind the incoming
shock.

The flow in the region II can be determined from geometrical considerations only, this is done in the current
section. The flow in the region III and the waves r and a depend on the aerodynamic properties of the two
fluids, they are different for different fluids on both sides of the interface. The following two sections treat this
part of the flow for the specific air–helium and air–R22 cases considered. When examples are given, the initial
conditions are always those of the shock–bubble problems from section 6.2: the incoming shock has a Mach
number Ms = 1.22 and the gas states are as given in table 6.3.

θs

cs

un = 0 un = ∆us
y

x

uI

uII

vII

θs θa

δIII

θr

s a

r

III

II

I

a) b)

Figure II.1: Shock hitting an oblique interface (a) and transformation of this flow into shock-fixed coordinates
(b).

In front of the shock, the region I is divided in two by the interface. This region has a pressure pI , the density
is ρ1,I above the interface and ρ2,I below. The velocity is:

uI = cs/ sin θs. (II.1)
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As both parts of region I have equal velocities and constant sound speeds, the ratio of the Mach numbers above
and below the interface is constant:

M1,I =
uI

√

γ1pI/ρ1,I

,

M2,I =
uI

√

γ2pI/ρ2,I

= M1,I

√

γ1

γ2

ρ2,I

ρ1,I
.

(II.2)

We see, from equation (II.1), that the Mach numbers decrease from ∞ as θs increases. For θs = 90o, the Mach
number M1,I is equal to the Mach number of the normal shock Ms = cs/

√

γ1pI/ρ1,I .
The region II lies behind the incoming shock s. Note that, whatever the value of θs is, this is always the

same shock, so the pressure pII and density ρII do not change with θs. They are always found with the relations
for normal shocks, using a shock speed cs and a velocity jump ∆us. So the velocity components in II are:

uII = cs/ sin θs − ∆us sin θs,

vII = ∆us cos θs.
(II.3)

The flow angle δII is:

δII = arctan
vII

uII
. (II.4)

This function is plotted in figure II.2a, for Ms = 1.22 (the Mach number for the shock-bubble tests). It is
seen from this figure that δII has a maximum, somewhere between θs = 0o and θs = 90o. Another important
transition occurs for some θs above the θ for maximum deflection: the Mach number MII behind the shock,

MII =

√

u2
II + v2

II
√

γ1pII/ρII

, (II.5)

drops below 1 (see figure II.2b). For higher θs, the flow behind shock s is subsonic.
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Figure II.2: Flow angle behind the incoming shock (a) and Mach number before / behind the incoming shock
(b). Normal-shock Mach number Ms = 1.22.

When the shock hits the two-fluid interface, it continues in fluid 2 as the refracted shock r. An adaptation wave
a runs back into fluid 1. The refracted wave r is always a shock, a can be either a shock or an expansion fan.
Their strengths are such, that the pressures and the flow angles behind the waves are equal. Both wave strengths
depend on the angle θs and on the properties of the two gases. The computation of the wave properties can be
found in any text book on gas dynamics, see e.g. [7]. It is not treated in detail here.

When θs is increased, a point appears where the flow pattern as in figure II.1 breaks up. Both the type of
this break-up and the type of the adaptation wave a for smaller values of θs depend on the ratio of the Mach
numbers in the unperturbed flow in I . Two cases are possible: M1,I > M2,I or M2,I > M1,I . The air–helium
and air–R22 interfaces are examples of these two cases. They are treated separately below.
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II.2. AIR – REFRIGERANT R22
When the fluid below the interface has a high density, then its sound speed is low, so the resulting Mach number
M2,I is high: M2,I > M1,I . In the simulation of the air–R22 bubble problem in section 6.2, we saw that the
shock wave in the dense R22 runs slower than in air.

The state III and the strength of the waves r and a are found by writing expressions for the two waves,
given the pre-conditions I, 2 and II and some post-pressure pIII , which is the same for both fluids. Then pIII

is varied until a value is found for which the δ’s of the fluids are equal too. This will be done numerically.
The shape of the shock–interface interaction and the type of the adaptation wave a can already be seen from

figure II.3. This (general) figure gives the flow turning angle δ for an oblique shock, as a function of the initial
Mach number and of the pressure ratio across the shock, for air. We shall use it to compare the shocks s and r.
The different values of δII , the turning angle behind s, are easily found in this figure: the pressure jump across
wave s is constant, so all the states II for 0o ≤ θs ≤ 90o lie on a straight line of constant pressure, which is
dotted in figure II.3.

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

Mpre

p p
os

t/p
pr

e

5o

10o

15o

II III*

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

Mpre

p p
os

t/p
pr

e

5o

10o

15o

II III*

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

Mpre
p p

os
t/p

pr
e

5o

10o

15o

II III*

a) b) c)

Figure II.3: An example diagram of the flow angle δ for an oblique shock in air, depending on the pre-shock
Mach number and the pressure ratio over the shock. The symbol H denotes the shock s, the symbol • the shock
that appears when fluid 2, I is brought to pII . This diagram applies when M2,I > M1,I .

Now we can find the type of the adaptation wave a by looking at r, especially at what happens if r brings
fluid 2 to the same pressure as s does to fluid 1. Figure II.3a gives an example for a low θs. (For simplicity,
the fluid 2 is supposed to be air too, so the same curves are valid for fluids 1 and 2. But for air and R22, the
principle is the same.) We know that M2,I is larger than M1,I . So if the fluid 2 were compressed to the pressure
pII , then its deflection δ∗III would be less than δII (see figure II.3a). Therefore, the fluid 2 is compressed more
than that: the actual angle δIII is higher than δ∗III and the pressure pIII is higher than pII . Fluid 1 must get
this same, higher pressure, which means that a must be an oblique shock wave. This is nice, as a shock wave
deflects the fluid 1 back upwards, which reduces the required deflection angle for fluid 2. Thus, the fluids 1 and
2 are adapted to each other in the domain III .

However, we see that δII has a maximum somewhere on the dotted line. So as M1,I decreases below the
Mach number for that maximum, we find a point somewhere, where δII and δ∗III are the same (figure II.3b).
The oblique shocks in fluid 1 and 2 are different, but they deflect the fluids to the same angle at the same
pressure. In that case, no adaptation wave is needed in fluid 1, so wave a vanishes. For even lower M1,I , the
angle δ∗III is higher than δII , so the fluid 2 is compressed to a lower pressure than pII , reducing δIII (figure
II.3c). Then the adaptation wave a is an expansion! This wave deflects the fluid 1 further than δII , so, again,
the pressures and deflection angles are matched.

So the character of the adaptation wave is not constant: as θs is increased, the adaptation wave changes from
a shock into an expansion fan somewhere.

Another important phenomenon is the breakdown of the flow pattern. For high θs, the flow as in figure II.1
cannot exist anymore. Instead, a more complex wave system appears that has some length scale and is thus not
local anymore. Let us study what happens when θs increases. For a heavy fluid 2, the breakdown always starts
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in fluid 1, but the cause of the breakdown differs. If the adaptation wave is an expansion fan, the breakdown
starts when MII drops below 1 (see figure II.2). In the resulting subsonic flow, an expansion wave is no longer
possible, so the flow pattern breaks up. In this case, the angle θs for breakdown does not depend on the fluid 2,
as MII depends only on θs.

On the other hand, if the breakdown occurs when a is still a shock wave, then it has another cause. It can be
seen from figure II.3 that at each Mach number M1, the flow has a maximum possible δ, occurring for some
pressure ratio. This maximum deflection decreases to zero as M1 approaches 1. So when MII comes close to
1, a moment appears where the wave a is unable to create a δ that is big enough to match fluid 1 to fluid 2. This
happens when MII is still larger than 1.

But whatever the cause, the result of the breakdown is the same: the adaptation wave cannot remain attached
to the point where the shock hits the two-fluid interface. Its starting point ‘climbs’ up the incoming shock wave
and it gets a curved shape. This phenomenon can be clearly seen in the bubble simulation, figure 6.5.
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Figure II.4: Oblique shock hitting air–R22 interface: shock angles, flow angles and post-shock pressures as
functions of the incoming shock angle θs. The figures end on flow breakdown.

Let us now study the air–R22 case (figure II.4), with flow parameters as in section 6.2. As MII is lower than
M2,I , it is not surprising that we find θa > θr. Also, δIII is smaller than δII , which corresponds to a shock
wave a. The pressure pIII starts high, but decreases with increasing θs, which means that r and a become
weaker. Flow breakdown starts just before the adaptation wave would vanish. (This is accidental: if the R22
density is lowered from 4.4 to 4.0, then the breakdown occurs when a has become an expansion). The Mach
number MII at breakdown is 1.0033, indeed more (though not much more) than 1.
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Figure II.5: Shock wave hitting a plane, oblique air–R22 interface: density profiles. The conditions are the
same as for the bubble experiments in section 6.2, the grid has 100 × 200 cells.

Figure II.5 shows some actual simulations of a shock hitting a plane air–R22 interface. The shock strength
and the simulation settings are the same as in the bubble simulations. As the impact angle θs increases, the
adaptation wave becomes weaker until it has all but vanished at θs = 60o. At θs = 70o, we recognize the first
part of a curved shock wave, behind the incoming shock and above the interface. This corresponds well with
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Figure II.6: Shock hitting air–R22 interface: comparison of analytic results from figure II.4 with plane-interface
simulations (∗, see figure II.5) and the shock–bubble simulation (3).

the analytical breakdown angle of 64o from figure II.4. The reflection of the refracted shock r on the lower, wall
boundary is not relevant here, it does not influence the first interaction. Figure II.6 shows that these simulations
correspond very well with the theory described above, especially considering the measurement error of about
1o in the simulation angles. Also, the correspondence to the angles measured in the bubble simulation is good.

So in the air–R22 case, the local flat interface approximation is useful to study the phenomenology and the
qualitative behaviour of the shock–bubble interaction.

II.3. AIR – HELIUM

When the fluid below the interface is lighter than above the interface, then it has a higher sound speed, so the
Mach number M2,I is lower than M1,I . We see in the bubble simulation, depicted in figure 6.8, that shock
waves in helium run faster than in air.

The type of the adaptation wave is exactly the opposite of the previous case (see figure II.7): for low θs, the
δ∗III is higher than δII , so δIII is lower than δ∗III and the adaptation wave a is an expansion. Again, we find
one Mach number where no adaptation wave is needed. For higher θs, the δ∗III is too low, so a is a shock wave.
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Figure II.7: An example diagram as in figure II.3, but now for M2,I < M1,I .

The breakup phenomenon for M2,I < M1,I is totally different from the previous case. As M2,I is the lower
Mach number, the breakup happens below the interface. The refracted wave r is always a shock wave, so the
breakup is always initiated like the second type of breakup in the previous case: it starts when M2,I is so low
that r is no longer able to produce the required δIII to match fluid 2 to fluid 1. Consequently, the breakup
occurs always at M2,I > 1. When breakdown starts, the shock r moves forward. But in this case, it does not
meet the incoming shock s, so it runs ahead of the point where s reaches the interface. Where the curved shock
r hits the interface, an oblique shock is created in fluid 1, which runs backward until it crosses the incoming
shock s. There, a complex λ-shock pattern is formed. The wave pattern can be seen very well in the bubble
simulation, figure 6.8.
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Figure II.8: Oblique shock hitting air–helium interface: shock angles, flow angles and post-shock pressures.

Looking at the actual air–helium case (figure II.8), we see indeed an initial expansion: the pressure pIII is
lower than pII and δIII is higher than δII . But a changes to a shock, less than a degree below breakdown.
Note the small line that indicates θa for this shock, in the first picture of figure II.8. Breakdown occurs at
θs = 22.4o.

Results from plane-interface simulations (figure II.9) show two things. First, the breakup happens indeed
between θs = 20o and θs = 25o, but it does not change the flow much. At θs = 25o, an oblique shock above
the interface starts from the curved refracted shock, but this shock is quickly absorbed by the expansion fan
behind it. Only at a very high angle (θs = 40o) do we see two really distinct waves behind each other.
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Figure II.9: Shock wave hitting a plane, oblique air–helium interface: density profiles.

And second: in this case, the wall at y = 0 does influence the shock–interface interaction above it. The
refracted wave is curved, meeting the lower (wall) boundary at right angles. This curvature has some effect on
the density distribution near the impact point. So the phenomenon is not strictly local anymore and, in principle,
the analysis given above does not apply. In spite of this, the correspondence between the experiments and the
analysis is quite good (see figure II.10). But also in the bubble case (figure 6.8) the interaction is not strictly
local. And the angles measured here differ significantly from the analysis: the effect of the curved interface is
to lower the deflection angle δIII and to postpone the breakup to θs ≈ 30o. At this angle, the oblique shock
above the interface is hardly noticeable, even less than in the plane-interface case.

So concluding, the local plane-interface approximation gives the qualitative behaviour of the air–helium
shock–bubble interaction correctly. But the interaction is influenced by the curved interface so, quantitatively,
it is not predicted accurately by the analysis.
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Figure II.10: Shock hitting air–helium interface: comparison of analytic results from figure II.8 with plane-
interface simulations (∗, see figure II.9) and the shock–bubble simulation (3).




