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Abstract 

We consider a linear sequence of 'nodes', each of which can be in state 0 ('off') or I ('on'). 
Signals from outside are sent to the rightmost node and travel instantaneously as far as possible 
to the left along nodes which are ·on'. These nodes are immediately switched off, and become 
on again after a recovery time. The recovery times are independent exponentially distributed 
random variables. We present results for finite systems and use some of these results to con­
struct an infinite-volume process (with signals 'coming from infinity'), which has some peculiar 
properties. This construction is related to a question by Aldous and we hope that it sheds some 
light on, and stimulates further investigation of, that question. @ 2001 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

Let X 1 ( t ), .. ., X,i( t) be 0-1-valued random processes described as follows: When 
X; equals 0 it becomes I at rate p;, independently of the other X/s. If each of 
X;,X;+ 1,. • .,X,1 equals 1, then at rate p they all become simultaneously 0. We start 
at time t = 0 with all X;'s equal to 0. The p;'s and p are parameters of the model, 
called recover.v rates and the input rate, respectively. 

This system can be interpreted as a simple model of a communication line, and we 
will frequently use terminology motivated by this interpretation: the indices I, 2, ... , n 
correspond to nodes which can be 'on' (have value 1) or "off' (have value 0 ). Signals 
from outside are sent at rate p to the rightmost node n and are transmitted instanta­
neously as far as possible to the left until they are blocked by an off-node. The nodes 
passed by the signal are switched off immediately. When a node i is 'off', it becomes 
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'on' after an exponentially distributed (with mean l/p;) recovery time. Recovery times 
are completely independent. 

Another interpretation is in terms of forest fires (or infections): the numbers 1, ... , n 
are possible locations of trees. At the rightmost location ignition attempts are made at 
rate p, and an attempt succeeds if that position is occupied. When a tree is on fire, it 
immediately sets the tree on the next location to its left (if that location is occupied) 
on fire and disappears (i.e. its position becomes empty). If position i is empty, a new 
tree appears there at rate p;. Since in a real forest the growth of new trees is much 
slower than the propagation of fire, the instantaneous spread of fire (or infection) in our 
model is not unrealistic. The one-dimensionality is of course a serious simplification 
in this context. However, even this one-dimensional system turns out to be interesting 
and this study hopefully leads to a better understanding of the (from a practical point 
of view) more relevant cases where the underlying network of nodes is a square grid 
or a tree (and with 'signals' arriving at the boundary, respectively the leaves). 

In the above description the incoming signals correspond to a Poisson process. More 
generally, we will consider signals corresponding to a renewal process. The distribution 
function of the intervals between consecutive incoming signals will be denoted by 
pCn+I)_ (The reason for this notation, with the superscript n + I, will become clear 
later.) 

So, more precisely, this more general model is as follows: The parameters of the 
model are pCn+I) (a distribution function with pCn+Il(O) = 0), and the recovery rates p;, 
i = 1, ... , n. Introduce i.i.d. random variables -r1, -r2, ••. with distribution function F(n+I), 

and call the values T; := I:~=I -r1, i = 0, I, 2, ... input times. At the zeroth input time 
To= 0 we set each X;, i = 1, ... , n equal to 0. When X; = 0 it becomes 1 at rate p;, 
independent of the other X/s and of the r:/s. If, at time t, X; =X;+1=···=Xn=1, then 
each J0, j;;::: i becomes 0 at the smallest input time larger than t. We call this model 
a (size n) on-off system with recovery rates p1, • • • Pn and input interval distribution 
function pcn+IJ. The case mentioned in the first paragraph, when the input signals 
arrive according to a Poisson process of intensity p, corresponds to p(n+ 1 l = EP, where 
EP(t) = l - e-pt denotes the exponential distribution function with expectation l/ p. 

As said before, we will frequently use terminology inspired by the signal interpreta­
tion. Although this terminology is practically self-explanatory, we want to define some 
of these terms more precisely, to avoid confusion: we say that a signal is sent to node 
i at time t, if X;+i switches from on to off at time t (or, in case i is the rightmost 
node, if t is an input time), and we say that a signal is received by i at time t, if X; 
itself switches from on to off at time t. 

Finally, we will also consider the case that input signals are generated 'permanently'. 
By this we mean that the rightmost node, n, after each recovery immediately receives 
a signal (and hence is switched off again). In this case we say (with some abuse of 
notation, since there are no proper input intervals anymore) that pCn+J) = [O]. It is easy 
to see that this case is (when we only 'observe' the behaviour of the nodes 1,. . .,n-1) 
equivalent to the earlier mentioned case with n - 1 nodes and with Poisson (intensity 
Pn) input signals, i.e., with input interval distribution function pCnl = EP•. 

Several interesting questions arise. Suppose the input is Poissonian, and all recovery 
rates are equal (say 1 ), and we start with all nodes empty. What is the asymptotic 
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behaviour (as n -+ oo) of the expectation of the first time a signal arrives at node 0. 
This appears to be of order log n. (As we will show, it is straightforward to obtain a 
lower bound of order log n, but this bound looks intuitively extremely rough and it is 
somewhat surprising that it is in fact of the right order). This is done in Section 2. 
Several arguments in that section are of key importance for Section 3, which deals with 
the question whether there are interesting extensions of this model to infinite systems, 
with signals 'coming fron1 infinity'. The answer, as stated in Theorem 1, is positive 
and is related to a question posed by Aldous. We hope the result sheds some more 
light on that question. The proof of Theorem 1 is presented in Section 4. 

2. Properties of the finite system 

Consider a size non-off system (as defined in Section 1) with input interval distri­
bution function p(n+ 1 > and recovery rates p 1, ••• , Pn· As stated before, the input signals 
correspond to a renewal process. It is easy to see that the times at which signals are 
received by n (i.e. the times at which Xn switches from 'on' to 'off') also fom1 a 
renewal process (because, whenever Xn switches from 'on' to 'off', the process, as far 
as node n is concerned, starts afresh). Since each signal received by n is sent instan­
taneously to n - 1, we can repeat the above argument and conclude that the reception 
times of signals at n - 1 also form a renewal process, etc. We call the distribution 
function of the difference between consecutive times at which node i receives a signal, 
its interreception time distribution function. 

The following lemma relates the interreception time distributions of two consecutive 
nodes: 

Lemma 1. Let, for 1 ~ i ~ n, pUJ be the interreception time distribution function 
of node i and F(n+i l the input interval distribution. Define 

<f/i\'>)= 1- f 00 e-sxdFU\x), i= 1,2, ... ,n +I. Jo 
Then 

Proof. Let r be the first time node i switches from 'off' to 'on', and let Y be the first 
time it receives a signal. Further, let Zk be the kth time node i + 1 receives a signal, 
and let ~k = Zk - Zk- t, k = I, 2, .... The random variable r is exponentially distributed 
with parameter p;. Furthermore, the random variables ~b k = 1, 2, ... are i.i.d. and also 
independent of -r. So we have 

00 

<f>U\s)= 1 - E(e-sY) = 1 - LE(e-s2H 1ll{rE[Zk,Zk+iJ}) 

k=O 
00 

=I_ LE(e-szk+i(e-p;Zk _ e-p;Zk+i )) 

k=O 



180 J. van den Berg, B. TOth!Stochastic Processes and their Applications 96 (2001) 177-190 

00 

= 1 _ LE(e-<s+p;)Zk(e-s~k+i _ e-<s+p;)ek+1 )) 

k=O 
E(e-s~i) - E(e-ls+p;)~i) 

= 1 - ------...,.-,---! _ E(e-(s+p1)~1) 

- cjJU+ll(s) 
- cjJU+ll(p; + s) · 

D (1) 

By repeated application of the above Lemma 1, and using induction, we get 

Lemma 2. For 1 ~ i ~ j ~ n + 1: 

TI (j) " </J(i)( )= AC{i, ... ,J-l}:IAI even cP (s + L..JkEA Pk) 

s IlAc{i, ... ,J-I}:IAI odd cf>Ul(s + L:kEA Pk)' 
(2) 

where IAI denotes the number of elements of A. 

This immediately gives the following result: 

Lemma 3. The interreception time distribution of node i, F(il, is invariant under 
permutations of the sequence of recovery rates p;, Pi+1 •... , Pn· 

Remark. In spite of its apparent simplicity, this observation is rather surprising: it eas­
ily follows from identity (2) but we do not see any simple direct 'pathwise' argument 
for its proof. 

Lemma 3 is important in the construction of an infinite-volume system in the next 
section. We will illustrate its strength in the remainder of the present section. We con­
sider the special case when all p;'s are equal, say 1, and the inputs come permanently 
(that is, F<n+Il = [O]). As already mentioned, this is equivalent to a system of n - 1 
nodes with recovery rates 1 and Poissonian input with rate 1, so that cjJ<nl(s)=s/(l+s). 
Using the identity C=:) + (n7 1 ) = C ), from (2) we get 

TI <"l c/>(1\s) = O.;;k.;;n:keven (s + k): . 
Tio.;;k.;;n:kodd (s + k)(k) 

We denote here by Tn the first time a signal is received by node l. (As we are interested 
in the asymptotics for long chains of nodes, we denote explicitly by the subscript n the 
length of the string of identical nodes considered.) Thus cjJO )(s) = 1 - E( exp( -sTn) ). 
By evaluating the derivative of the above expression at s = 0, we get 

TI k<Zi 
E(T ) = 1.;;k.;;n:k even 

n TI k<Zi 
l.;;k.;;n:kodd 

(3) 
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Lukacs (1999) drew our attention to the survey article by Flajolct and Sedgewick 
(1995), about the use of contour integrals (and Mellin transforms) to study the asymp­
totic behaviour as 11-+ oo of expressions of the form l::Z=i (-I)k(Z).f(k) for a wide 
range of fi.mctions f. The case f ( k) = log k is one of the examples they handle (see 
their Theorem 4 ), and according to their paper the expression in the r.h.s. of (3) is 
asymptotic to eY log 11. So 

1. E(Tn) ,, 
1111 -- =e' 

11.-00 logn ' 
(4) 

where }' = 0.577 ... is Euler's constant. Although the following quite elementary prob­
abilistic argument, based on Lemma 3 above, does not give the precise value of the 
limit in ( 4 ), it does give the correct order of magnitude of E( T11 ). One of our reasons 
for working this out here is that a similar argument is used in the construction of the 
infinite-volume system in Section 4. Another reason is that from the paper by Flajolet 
and Sedgewick ( 1995), one gets the impression that no elementary way is known to 
obtain the order of magnitude of the r.h.s. of (3). 

Proposition 1. Consider,for each n, a.finite on-off system with nodes {l,. .. ,n}, where 
all recovery rates are 1, and with permanent input signals. Let T11 denote the first time 
node 1 receives a signal. Then there exist constants C1, C2 > 0 such that for all n 

E(Tn) 
C1 <--<Co. 

logn -
(5) 

Proof. We use stochastic domination in proving both bounds. 
The lower bound is easy. Note that before the first receival time at node I all nodes 

I, 2,. . ., n must recover at least once. So Tn stochastically dominates max { r;: 1 ,,;; i ,,;; n}, 
where i- 1, i-2,. . ., 'L'n are i.i.d. exponentially distributed random variables with mean I. 
It follows that 

II I 
E(T,,) ~ E(max{-r;: 1,,;; i,,;; n})= L-=- =logn + (!:(!), 

l 
i=l 

which proves the lower bound. 
The upper bound uses a little trick. Suppose we add an extra node 0 at the left of 

node 1, with recovery rate 1 /log 11. Denote this new system by II and the old system 
by I. Let t be the first time in system II that node 0 receives a signal. It is clear that 
system II is an extension of the old one, in the sense that the nodes 1, ... , n 'do not 
feel the change', so that obviously Tn ::'( T. Finally consider the system, denoted III, 
obtained from system I by putting an extra node n + 1 at the right of n, with recovery 
rate Pn+i = 1 /(log n). (So, in system III the input signals are sent to n + 1 which, if it 
is 'on', sends them to n, etc.) Let f denote the first time node I receives a signal in 
system III. By Lemma 2, f has the same distribution as f. So we have 

E(Tn) ::'( E(T)=E(T). 

The following computation is for system III. Let k be a non-negative integer. Let A 
be the event that an input signal is sent in the time interval ( 4k log n, ( 4k + 1) log n), 
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B the event that node n + l has no recovery in the interval ( 4k log n, ( 4k + 2) log n ), 
but does have a recovery in ( ( 4k + 2) log n, ( 4k + 3) log n ), C the event that each 
of the nodes l, ... , n which is off at time ( 4k + I) log n has a recovery before time 
( 4k + 2) log n, and D the event that an input signal is sent to n + I in the interval 
( ( 4k + 3) log n, ( 4k + 4) log n). It is easy to see that the conditional probability of 
A n B n C n D given all information up to time 4k log n is at least 

which is larger than ix := e-3(1 - e- 1 )/2 > 0, uniformly in k, for sufficiently large 
n. Moreover, if all the events A-D happen, node 1 will receive a signal in the in­
terval ((4k + 3)logn,(4k + 4) logn) (and hence in (4klogn,4(k + l)logn)). So, for 
each integer k ~ I, we have P( T > 4k log n) ~ ixk, from which the required result 
follows. D 

3. Infinite-volume models 

Note that a finite on-off system, as introduced in Section 1, could be described as 
a collection X1(t), ... ,Xn(t) of 0-1-valued processes with the property that the time 
intervals during which a process has value 0 are independent, exponentially distributed 
(those for X; with mean l/p;), and that, after independent time intervals with distri­
bution p<n+1>, the string of 1 's connected to node n is turned into O's. In this section 
we investigate the question whether there are suitable infinite-volume systems with 
such properties. There are several cases to distinguish, depending on the asymptotic 
behaviour of the p;'s and the nature of the input signal 'at infinity' (which will be 
made precise later). The most interesting appears to be the case where 

00 

Le-tp; < oo Vt > 0 
i=l 

(6) 

and with 'permanent input signals at infinity'. In the present paper we consider only 
this case in detail. However, see Remark (iii) after Theorem 1 stated below for a 
concise description of the other possibilities. 

The above condition (6) on the p;'s means, by Borel-Cantelli, that if we start with 
all nodes in state 0, and there would be NO input signals, there is an infinite connected 
string of l 's at any positive time t > 0. So, when we do take into account permanent 
input signals at infinity we expect, intuitively, that in every time interval, no matter 
how small, infinite connected strings of l 's are formed and immediately destroyed 
(i.e. turned into O's). It is not at all clear at this stage that a dynamics with such 
kind of behaviour exists; see Remark (i) below about existence problems for so-called 
frozen-percolation models, and Remark (ii). 

The main result of the present paper is a proof that such a system does indeed exist. 
More precisely, we prove the following theorem. 
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Theorem l. Let p;, i= 1,2, ... be positive numbers satisfying (6). There exist 0-l­
valued processes X; : IR+ f-t {O, 1},iE1\1, defined jointly on the same probability space, 
with the following properties. 

(a) Almost surely,for all iEl\I, X;(O)=O. 

(b) Almost surely, for all i E 1\1, t r--t X;(t) is continuous from the right having left 
limits (c.a.dl.a.g.). 

( c) Let T£ denote the length of the kth interval during which X;( ·) equals 0. Then 
each Tt is exponentially distributed with mean l/p;, and the random variables 
(Tt)i,kEN are independent. 

( d) Almost surely,for all t E IR+ and k E 1\1 with Xk(t-) = 1: if for all ! ;:.:?; k, X1(t-) = 1 
then Xk(t)=O, else Xk(t)= 1. 

Moreover, the collection of processes t r--t X;(t), i = 1, 2, ... has the following addi­
tional properties. 

(e) Almost surely, there are not and k such that X1(t)= 1 for all!;:.:?; k. 
( c) Almost sure~v, the reception times of signals are dense. That is, for all t ;:.:?; 0 and 

e > 0 there exist i E 1\1 and s E (t, t + e ), such that for all j ;:.:?; i, 'Xj(s-) = I and 
J0(s)= 0. 

Remarks. (i) The following remark illustrates why the existence of such a process 
is not obvious: Aldous (2000) has introduced a percolation model in which infinite 
clusters are 'frozen' (we will refer to this model as 'frozen-percolation'). Informally, 
that model is as follows. Each vertex (or, for bond percolation, each edge) of a 
countably infinite, locally finite connected graph G can have state 0 or 1. At time 0 
they are all in state 0. Now, assign to each vertex i a time<;. The(<;) are i.i.d. random 
variables with a continuous distribution. Each vertex i remains 0 until time <;. Then 
it switches to 1 (and stays 1 forever), unless some neighbour of i already belongs 
to an infinite cluster of 1 's, in which case i remains 0 forever. Aldous constructed 
such a process for the case where G is the regular binary tree, and posed the question 
whether it exists for 71.d. Benjamini and Schramm (1999) have pointed out that it does 
not exist for l.2 . The following simple, deterministic, one-dimensional example, due to 
J iirai (1999) shows very clearly the essence of the difficulty: 

Observation (Jiirai (1999)). Let t 1,t2, ••• be a sequence of distinct, strictly positive 
numbers which tends to 0. There is no sequence of functions w; : IR+ r--t { 0, I}, 
i = I, 2, ... with the following properties: 

{ 
0 if t < t; or w1(t;-) = I for all j > i, 

w;(t) := 
I otherwise. 

Proof. Suppose such a sequence does exist. There are two possibilities: either there 
exist t and i with w1(t) = I for all j;:.:?; i or there exist no such t and i. In the latter 
case we have (by the rules above) that wj(t) = 1 for all j and all t ;:,:?; t1. Since all t1 
are smaller than some number fmax. every WJ equals 1 at time tmax, a contradiction. As 
to the former case, let t and i be as stated there. Let j be the smallest number larger 
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than i with tk < t; for all k ~ j. From the rules given above (and the assumption for 
this case) it follows that wk(t1-=_ 1) = 1 for all k ~ j and so w1_, = 0 at every time, in 
particular at time t: again a contradiction. Since both cases lead to a contradiction, the 
proposition has been proved. D 

Note that, when the t; are not deterministic but independent, exponentially distributed 
random variables with mean 1/p;, i= 1,2, ... , with the (p;) as in Theorem 1 (i.e., in 
our terminology, when they are the first recovery times of the nodes in the system 
Theorem 1 deals with) the condition in Jarai's example is satisfied with probability 
1. This shows that the frozen-percolation model does not exist for the half-line with 
p;'s as in Theorem 1. Although the situation for '11..2 looks more complicated than for 
the half-line, the reason why frozen percolation does not exist is essentially the same: 
Consider frozen percolation on '11..2, with identically (say: exponentially) distributed 
holding times !;, i E '11..2• At the critical time Uust before an infinite cluster is formed), 
there are infinitely many separate (not connected with each other) open circuits around 
the origin. If we then consider the sequence (t;), i = 1,2, ... of (random) times needed 
to connect consecutive circuits, we are exactly in the situation of Jarai's example. 
This illustrates how study of the half-line can give more insight on what happens 
on '11..2 • 

(ii) In Section 5 of his paper, Aldous poses some open questions related to the 
frozen-percolation model. One of them is whether a dynamics exists where vertices 
(or, for bond percolation, edges) become open (in state 1) at rate 1 and where infinite 
clusters of l's are destroyed (i.e. turned into O's) immediately. Although this question 
was formulated for graphs which have critical percolation probability less than 1, like 
the binary tree or zd, d ~ 2, we think, based on the previous Remark, that results for 
analogous problems on the half-line, like our Theorem I, can help to better understand 
these problems. 

(iii) Now, returning to the set-up of the present paper: given the recovery rates p;, 
i = 1, 2, ... define 

e :=sup {r E IR+: f e-p;t = oo} =inf {1 E IR+: f e-p;r < oo}. 
!=] 1=! 

There are four essentially different cases with essentially different behaviour of the 
infinitely extended system. Theorem 1 refers to Case 4, the only really interesting one. 
The claims below for Cases 1-3, which are formulated in a quite informal way, can 
be stated more precisely, and proved by straightforward applications of Borel-Cantelli 
lemmas. 

Case 1: If () = oo, then by a simple Borel-Cantelli argument one can see, that in the 
infinitely extended system no signals coming from infinity will penetrate the system. 
This is the case when Pk ~log k, as k -7 oo. The system with constant recovery rates, 
p; = 1, belongs to this case. 

Case 2: If () < oo and I;;':1 e-p;e = oo then one can construct an infinite dynamics 
which satisfies properties (a)-(c) stated in Theorem 1, but not properties (d)-(f) 
(inclusion of property (d) in this case leads to the same kind of problems as in Jarai's 
example (see Remark (i) above)). In particular, there will be non-empty time intervals 
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during which infinite connected strings of l 's are present in the system. This makes 
the dynamics uninteresting for us. Typical example is Pk= e- 1 1ogk. 

Case 3: If 8 < oo and :z=:1 e-p;IJ < oo then one can construct an infinitely extended 
dynamics with moderately interesting behaviour. Namely: in this case, if at some time 
to all but finitely many nodes are in state 0, then exactly at time to + 8 an infinite 
connected string of l 's emerges (Borel-Cantelli), which is instantaneously erased by a 
signal penetrating from infinity and sweeping through the system, down to the rightmost 
node in state 0. So, one can construct with 'bare hands' a dynamics where periodically, 
with period 8, signals penetrate from infinity and erase an infinite connected string of 
l 's, just emerging. Typical example is Pk= e-11ogk + cdog logk, with o: > 1. 

Case 4: The only really interesting case is B = 0. In this case infinite connected 
strings of l 's try to emerge 'in no time' and are immediately swept away by signals 
penetrating from infinity. So the constructed system is in a permanent state of excitation. 
This behaviour is intuitively somewhat related to the so-called self-organized criticality 
phenomenon which receives a lot of attention in the physics literature. This case is the 
subject of Theorem 1. 

(iv) A very natural question to ask is whether properties (a)-(d) listed in Theorem 1 
determine uniquely the process. Under the extra condition that the signal reception times 
at each node form a renewal process, we can prove uniqueness. This uses very similar 
ideas to the ones presented in the proof of Theorem 1 in the next section. We do not 
include this proof in the present note. We cannot answer this question in full generality, 
without the extra assumption mentioned above. 

4. Proof of Theorem 1 

To prove the main theorem we will first revisit the finite case studied in Sections 
and 2, and introduce some more terminology and notation. So consider a finite 

on-off system with nodes { 1, ... , n}, recovery rates P1,. . ., Pn. and input interval dis­
tribution function F(n+I)_ Suppose at time 0 all nodes are off. Let, for 1 ~ i ~ n and 
k = 1, 2, ... , R~ denote the kth recovery time at node i, i.e., the kth time it switches 
from 'off' to 'on'. Also, let Si be the kth time a signal is received by node i. For 
convenience, we will define Sb= 0. Let µ(F(n+ll; Pn, Pn-1, ... , P1) denote the joint dis­
tribution ofthe collection ((RLSk), 1 ~i~n,k=l,2,. .. ). 

Lemma 4. Let F and F m, m = 1, 2,. . . be probability distribution functions with 
F(O) = 0 and Fm(O) = 0 for all m = 1,2,. ... If Fm converges weakly to F then 
µ(Fm; Pn,- . ., P1) also converges weakly to µ(F; Pn, ... , P1 ), as m -+ oo. 

Sketch of proof. The most natural (and rather standard) way to see this is by use of 
a space-time diagram. This enables us to couple two on-off systems with the same 
recovery rates but different input interval distributions, say F and F'. We give a short 
outline of the argument: Let 0 < 11 < h < h < · · · denote the points of a renewal 
process with interval distribution F. (That is, (h+1 -h )k=l,2, ... are i.i.d. random variables 
with distribution function F). Now assign to each node i, independently of the other 
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nodes and of the above renewal process, a Poisson point process with intensity p;. 
These Poisson points are interpreted as potential recovery points. This means that if t 

is such a point for node i, and node i is in state 0 just before time t, it switches to 
state 1 at time t (otherwise the point is ignored). The R~ and Sk can be defined in a 
natural way in terms of the above Poisson processes and the renewal process. If we 
now replace F by F', we can compare the new situation with the old one with the 
help of a suitable natural coupling: use the same realization of the above mentioned 
Poisson point processes and take an obvious coupling of F and F'. Details are left to 
the reader. D 

We will need the following notation. If F is the input interval distribution function 

at node n, then let, for i ~ n, F(f!n ... .,p,) denote the probability distribution function of 
the intervals between successive signals received at node i, i.e. the distribution of Sl­
It is clear from the description of the system that for i ~ k ~ n 

(F(pn,. .. ,pk) )(Pk-J , ... ,pi) = F(p,,, .. .,p, )· 

If F and G are two probability distribution functions, we write F ~ G (or G ?= F) if 
for any x we have F(x) ~ G(x ), i.e., if the distribution G stochastically dominates the 
distribution F. We have the following lemma: 

Lemma 5. For any Pk, ___ , Pn, Pn+i > 0 and any probability distribution function F, 

Proof. Using Lemma 3 we have F(Pn+i,f'n,. . .,f!k) = F(Pn-··.,f'k,f!nH) = (F(f!n,. . .,f'k) )(Pn+il' which 
obviously stochastically dominates F(Pn-··.,f'k )· D 

Remarks. (i) This lemma is not as obvious as it looks. For instance, it is not true 
in general that if F ?= G, then Ftp) ?= G(p)- The above argument essentially relies on 
Lemma 3. 

(ii) Although, strictly speaking, Lemma 3 has not been proved for the case with 
permanent input (i.e. the case where the input interval distribution function is [O]), 
its analogue for that case follows easily from the fact that, as remarked earlier, for 
such input signals the sequence of signals received at node n (and sent to node n - 1) 

corresponds to a Poisson process with rate p,,, so that fom1ally 

(7) 

with £Pn the exponential distribution with mean 1/ p,,. In the sequel we shall use this 
notation for the exponential distribution. Using (7), and the (easy to check) fact that, 
if EP and £P1 are exponential distributions with parameter p and p', respectively, then 

(£P)(p') = £P * Ep' = (EP1 
)(p), 

one can easily extend Lemma 3 to the case F = [O]. 
The following lemma is a deterministic statement. First we give some more defini­

tions and terminology. 
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A collection of non-negative numbers sL 1, rk, 1 ~ i ~ n, k = 1, 2,... is called a 
(volume-n) signal/recovery sequence if the following hold: 

(i) For each i, O=si <r\ <s~ <r~ <s~ < ···. 
(ii) For each i the set {s~_ 1 ,rk: k= 1,2, ... } is discrete. 

(iii) For each i < n, and k ~ l 

s~ = min{s~+l: s~+l > rk}. 

The motivation for this definition is that the rk 's and s~ 's can be interpreted as a 
realization of the recovery and reception times in an on-off system. 

We denote Yi := {s~: k ~ O}. Property (iii) above is clearly equivalent to saying 
that ( iiia) and ( iiib) below hold for all i < n. 

(iiia) Yi c yi+l 

(iiib) yi+i \ y; c u:,1csk_ 1,rkJ. 
We now give a natural infinite version of this definition. A collection of non-negative 
numbers Sk_ 1, rk, i = 1, 2, ... , k = 1, 2, ... is called an infinite signal/recovery sequence 
if for each n the collection si_1,ri, i= 1,2 ... ,n, k= 1,2, ... is a volume-n signal/ 
recovery sequence. We say that the sequence has dense signals if for every interval 
V C IR+ there exist i, k s.t. s~ E V. When CsL1, rk) is a, finite or infinite, signal/ 
recovery sequence, we define its corresponding on-off sequence as the following 
sequence of functions wi : R+ t-t { 0, 1}, i E 1\1. 

! 0 if t E LJ [sL1,rk), 
k=l 

Wi(t) := 00 

1 if t E LJ H, s~ ). 
k=l 

Lemma 6. Let sL 1, rl, i = 1, 2, ... , k = 1, 2, ... be an infinite signal/recovery sequence 
with dense signals. Let w;( · ), i = 1, 2 ... be the corresponding on-off sequence. Then 

(a) for each i= 1,2, ... , the function t t-t w;(t) is c.a.d.l.a.g., 
(b) there are no t and k for which w1(t) = 1,for all I ~ k, 
(c) for each t and k with w1(t-) = 1 for all l ~ k, we have wk(t) = 0, 
(d) for every k, l > k and t > 0 with wk(t-) = 1 and w1(t-) = 0, we have wk(t) =I. 

Proof. (a) The c.a.d.l.a.g. property follows immediately from the definition of the 
functions cv;. 

(b) Suppose that for some k and t ~ 0, w1(t) = 1 for all l ~ k. Then, because of 
(a), there is an e > 0 such that u)k(s) = 1 for all s E (t, t + e ). Hence, by definition 
of Wk, yk n (t, t + e) = 0. However, because signals are dense, there is a j > k with 
Yj n (t,t + e)#0. Let J be the smallest of such j > k. So we have w;_ 1(t)= 1, 

yl- 1 n (t, t + e) = 0 and yJ n (t, t + e) # 0, which contradicts property (iiib) of a 
signal/recovery sequence. 

(c) Suppose that for some t > 0 and some k w1(t-) =I for all l ~ k, and Wk(t) = 1. 
By (b) there is an l > k with wz(t) = 0. Let m be the smallest. So we have Wm-1(t-) = 
Wm-1 (t) = 1 and Wm(t-) = 1, wm(t) = 0. This clearly implies that t E ym but at the 
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same time t is in the interior of the set Uk [r;'- 1, s~-l ). This contradicts property 

(iiib) of signal/recovery systems. 
(d) Suppose wk(t-) = 1 and w1(r) = 0 for some l > k and wk(t) = 0. So t E gk_ 

But then (by property (iii) of a signal/recovery system) t E S/'1• which is in conflict 

with the above mentioned fact that cv1(t-) = 0. D 

We continue our proof of Theorem 1. Let the p;, i = 1, 2, . . . be as in the statement 

of the theorem, i.e., for all t > 0, Li e-P;t < oo. Let, fork ~ !, p(k,l) = [O](p, ... .,p,) (see 

earlier in this section). Using Lemma 5 we have 

p<k.1+1) = [O] >-:: [O] . =F(k,I) <P1+1,p1,. . .,p,) r lP1 .... ,pk) · 

Hence, keeping k fixed, the sequence of distributions p(k,l), I~ k, converges weakly, 

as I -; oo. The following lemma shows that it converges to a probability distribution: 

Lemma 7. For each k, p(k,ll(t)-; 1 as t ~ oo, uniformZv in !. 

Proof. As before, let EP denote the exponential distribution with mean l/p. For each 

p > 0 and t > 0 we have (using Lemma 5 again) 

pCk,l)(t) = [O](p, . .,pJt) ~ [O]cp.p,, .. .,pJt) =Efp,,. .. ,pjt). (8) 

Note that this last expression is the probability that in a finite on-off system with 

l -k +I nodes with recovery rates p1, ••. , Pk, and where the input signals are generated 

according to a Poisson process with intensity p, the last node receives a signal before 

time t. This probability is clearly larger than or equal to the probability that each of 

(a)-(c) below happens. 

(a) No input signal is sent in the interval (0, Vt). 
(b) Every node is in state 1 at time Vi. 
( c) An input signal is sent in the interval ( y'i, t). 

This probability is 

,--pJi ll (I - ,-P/) (I - ,-W-Jil) ,;, ,-pJi (I - ~ ,-e,Ji) (I - ,--<-Ji')_ 

For every p this is a lower bound for p(k,ll(t). Now use (6) and take p=t-213 to 

complete the proof of Lemma 7. D 

We go on with the proof of Theorem l. We have seen that p(k,l) converges to a 

probability distribution function as I --+ oo. Denote the limit by pCkl, and let 

/lk := Jl(F(k); Pk-1, ... 'PI), 

where we use the notation introduced at the beginning of this section. In this way we 

get a sequence (µk) of probability measures on ;;k-l, where J; is the set of all sequences 

(s;_ 1,r;);:;;1 with O=so < r1 < s 1 < r2 <···.From the definitions it is clear that for 
each 1, the projection of Jl(F(k+I,ll; p1c, ... , pi) on 27k-I equals p(F<k. I); Pk-I, ... , pi). By 

Lemma 4 it follows that the projection of µk+ 1 on J;k- I is /lk· Hence, by standard exten­

sion theorems, there is a measure v on 27N whose marginal on 27k is Jlk+J, k = 1, 2, .... 
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It is clear that for each k a random element of J;k is /lk+ 1-a.s. a (volume k) signal/ 
recovery sequence. Hence, a random element of EN is v-a.s. an infinite signal/recovery 
sequence. The theorem now follows from Lemma 6 if we can show that v-a.s. the sys­
tem has dense signals. By standard countability arguments this is equivalent to showing 
that for every open interval I C IR+, 

(9) 

Due to property ( iiia) of signal/recovery systems, the l.h.s. of (9) equals limk_,00 v{ g>k n 
I ::f. 0} which, by the construction of v above, equals 

The required result now follows from the following Lemma: 

Lemma 8. For every open interval I c IR+ and for every e > 0 there exists a finite 
K such that for all k ~ K and l ~ k 

Proof. We have, for any p > 0, 

p([O];p1, ... ,pk){Yk nI:::f.0} ~ µ([O];p1, ... ,pk,p){Yk-l nI/0} 

= µ([O]; p, p1, ... , pk){.'l'k n If 0} 

= µ(EP; p1,. . ., pk){ yk n If 0}, ( 10) 

where the first two expressions in the r.h.s. refer to a system with leftmost and rightmost 
nodes k - 1 and l, and k and l + 1, respectively. The inequality is obvious from 
the definition, the first equality follows from Lemma 3. Remind that EP denotes the 
exponential distribution function with mean I/p. Note that the last expression in the 
r.h.s. of (JO) is the probability that in a (size I - k + 1) on-off system to which input 
signals are sent according to a Poisson process with intensity p, and with recovery rates 
p1, ... , Pk, the last node receives a signal in the time interval /, and the computations 
below refer to that system. We will choose p appropriately, depending on k. First 
of all, it follows from ( 6) that there exists a sequence ( T;) with the properties that 
lim;_,00 T; = 0, T; < IIl/2 for all i, and lim,._, 00 Lj;.i e-PJ'' = 0. Now take p = 1/ y'rk. 
Let t and t + s be the infimum and supremum of the interval I. It is clear that the last 
expression in (JO) is larger than or equal to the probability that each of the following 
events (a)-( c) occur. 

(a) No input signal is sent in (t,t+-rk). 

(b) Each node in the system which had value 0 at time t, has recovered before time 

t + 'k· 
(c) An input signal is sent in the interval (t +s/2,t +s). 
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This probability is 
l 

e-.fikTJ (1 _ e-pjrk)(l _ e-s/(2.Jrk)) 

J=k 

~ e-.fik (1 _ 2:= e-PjTk) (I _ e-s/(2v'fkl). 

j~k 

The right-hand side in the last inequality does not depend on I and goes to 1 as 
k ---. oo. This completes the proof of Lemma 8 and of Theorem 1. D 
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