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Abstract

An important problem in the dynamics of surface homeomorphisms is determining the
forcing relation between orbits. The forcing relation between periodic orbits can be computed
using existing algorithms. Here we consider forcing relations between homoclinic orbits. We
outline a general procedure for computing the forcing relation, and apply this to compute
the equivalence and forcing relations for homoclinic orbits of the Smale horseshoe map.
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1 Introduction

In this paper, we study the braid equivalence and forcing relation for homoclinic orbits of the Smale
horseshoe map. This problem is important in obtaining a detailed understanding of the chaotic behaviour
of general surface diffeomorphisms. The braid type of an orbit gives a combinatorial way of specifying
the orbit, and the forcing relation places restrictions of the coexistence of orbits of different braid types.
For systems exhibiting full-blown chaotic behaviour, we can then deduce the existence of infinitely many
orbits from knowledge of just a single orbit, and also obtain a lower bound on the topological entropy. For
parameterised families of systems exhibiting a transition to chaos, the forcing relation gives information
on the order in which different orbits are created. The forcing relation for homoclinic orbits can also be
used to give information about the periodic orbits of the system. We restrict to the Smale horseshoe map
since this provides a model of chaotic dynamics in two dimensions which is universal (in a combinatorial
sense), for which a natural symbolic description of orbits is available, and which models other important
systems, such as the Hénon map.

Chaotic behaviour and the forcing relation is well-understood for one-dimensional (non-invertible)
maps. Sharkovskii’s theorem [23] describes the forcing relation of periodic orbits of interval maps in
terms of the period. For unimodal interval maps, the kneading theory of Milnor and Thurston [21] shows
that periodic orbits are created in a linear ordering. The kneading theory has been partially generalised
to non-unimodal maps [1] to give a fairly complete picture of the bifurcation structure.

For systems in two-dimensions, the situation is more complicated and still not well-understood.
It is still possible to obtain considerable information from a single orbit, but periodic orbits are only
partially ordered [3] by the forcing relation. This makes the study of surface diffeomorphisms particularly

∗This work was partially funded by Leverhulme Special Research Fellowship SRF/4/9900172. The author
would like to thank Toby Hall and Eiko Kin for numerous comments and suggestions which were invaluable in
the writing of this paper.
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interesting; the dynamics is much richer than that of one-dimensional maps, but there is enough structure
that a fairly complete understanding of chaotic dynamics is feasible.

Considerable attention in the literature has been paid to the Hénon family, a two-dimensional analogue
of the one-dimensional quadratic family, and to the Smale horseshoe map, an analogue of the tent map,
and a theoretically tractable chaotic system. It has been shown that the Hénon map has a full Smale
horseshoe for certain parameter values, and a partially-formed horseshoe for others [12]. In fact, any
C1+ε surface diffeomorphism with positive topological entropy must have a horseshoe [17], so the Smale
horseshoe map is pivotal in studying chaos in two-dimensions. Further, the third iterate of the Smale
horseshoe map contains periodic orbits of all braid types [18], so is “combinatorially universal”.

The forcing relation for periodic orbits of surface diffeomorphisms can be studied using the Nielsen-
Thurston theory of surface homeomorphisms [24]. This gives a classification of surface homeomorphisms
up to isotopy, and provides a canonical diffeomorphism in each isotopy class which minimises the topo-
logical entropy and has minimal orbit structure (see [14, 4]). A number of algorithms exist to compute
the forcing relation [2, 13, 19].

A conjecture of Hall and de Carvalho [10] suggests that the periodic orbits of the Smale horseshoe map
are partitioned into families on which the forcing relation restricts to a linear order, and that each family
has an associated homoclinic orbit which forces all periodic orbits of the family. The forcing relation
between families can be determined from a knowledge of the forcing relation between the associated
homoclinic orbits. If the conjecture is true, being able to compute the forcing relation between homoclinic
orbits is an important problem in determining the complete forcing relation. Partial results on the
conjecture are given in [11].

In this paper we compute the braid equivalence and forcing relations for homoclinic orbits of the Smale
horseshoe map using the trellis theory developed in [7, 8]. The braid type of a homoclinic orbit to a saddle
fixed point can be described by the trellis formed by finite pieces of the stable and unstable manifolds
of the saddle fixed point. The trellis can be represented combinatorially by giving the relative ordering
of the intersection points along the stable and unstable manifolds. Since approximations to trellises can
be computed numerically for a given diffeomorphism, we can, in theory, extract the combinatorics of a
numerically computed trellis to find the braid type. The results of this paper, however, use a purely
combinatorial construction of the trellis from the symbolic coding of the homoclinic orbit.

The fundamental operation on trellises is that of pruning, related to the pruning isotopies of de
Carvalho [9]. However, the pruning theory for trellises is much simpler than the general theory, and
has a straightforward formulation in terms of the combinatorics of the trellis. We compute the trellis
associated with a given homoclinic horseshoe orbit by pruning a trellis for the Smale horseshoe map
relative to the given orbit. The braid equivalence relation is given by comparing the combinatorics of the
resulting trellis, and the forcing relation can be given by following the other orbits through the pruning.
By computing the graph representative of the trellis, a lower bound for the topological entropy forced by
the homoclinic orbit can be found.

A number of other authors have considered forcing relations for homoclinic orbits and tangles. Rom-
Kedar [22] gave forcing relations and entropy bounds for some infinite families of trellises. McRobie and
Thompson [20] discussed the possible bifurcation sequences associated with the break-up of horseshoes
in a driven oscillator using methods similar to our prunings. Methods for the computation of the forcing
relation for homoclinic orbits have been given by Handel [15] and Hulme [16]. The methods outlined
in this paper have the advantage of being applicable to general trellises and homoclinic/heteroclinic
orbits, and the computations are straightforward to implement. Further, this is the first paper to present
numerical computations of forcing relations between homoclinic orbits.

The paper is organised as follows. In Section 2, we describe the combinatorics of periodic and
homoclinic orbits of the Smale horseshoe map, and introduce the braid type of a homoclinic orbit. In
Section 3 we introduce the results of trellis theory which are necessary for the calculations. In Section 4
we describe the algorithms used to compute the braid equivalence and forcing relations, and discuss the
implementation of the pruning procedure. In Section 5 we present the results of numerical computations
of the equivalence and forcing relations for homoclinic orbits of the Smale horseshoe map with short
symbolic codings. Finally, we give some conclusions and open problems in Section 6.

The computations of this paper were performed using the C++ library “trellis”, which is freely
available for download [6]. This package allows computations on combinatorial trellises, including the
computation of the trellis associated with a horseshoe homoclinic orbit, and the computation of the graph
representative of the trellis.
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2 Horseshoe Orbits

R

R0 R1

a
p

Figure 1: The Smale horseshoe map

In this paper, the model of the Smale horseshoe map f : S2 → S2 depicted in Figure 1 will be used.
The stadium-shaped domain shown, consisting of two half-discs and a square R, is mapped into itself as
in an orientation-preserving way as indicated by the dotted lines, with a stable fixed point a in the left
hemisphere. The map is then extended to a homeomorphism of S2 with a repelling fixed point at ∞
whose basin includes the complement of the stadium domain. The saddle fixed point of negative index
(i.e. positive eigenvalues) is denoted p.

The non-wandering set Ω(f) consists of the fixed points a and ∞, together with a Cantor set

Λ = {x ∈ S2 : fn(x) ∈ R for all n ∈ Z}.

Since Λ is contained in the union of the rectangles R0 and R1, symbolic dynamics can be introduced
in the usual way, providing an itinerary homeomorphism

k: Λ → Σ2 = {0, 1}Z,

with the property that σ(k(x)) = k(f(x)) for all x ∈ Λ (where σ: Σ2 → Σ2 is the shift map). The code of
an orbit H in Λ is the bi-infinite sequence given by the itinerary of any of its points.

The itinerary of a point x is periodic of period n if and only if x is a period n point of F . This paper
is concerned with orbits which are homoclinic to p, and the term homoclinic orbit will be used exclusively
to mean such orbits. A point x ∈ Λ is homoclinic if and only if its itinerary consists of finitely many 1’s.

Definition 2.1 (Core) Let H be a homoclinic orbit of the horseshoe. The core of H is the longest word
in the code of H which begins and ends with 1.

The signature of H is equal to the length of the core minus one. Thus, for example, the point with
itinerary 0110 · 01010 is a point of the homoclinic orbit 011001010 with core 1100101 and signature 6.
The primary homoclinic orbits are those with cores 1 and 11; these two orbits have the same homoclinic
braid type, are forced by every other homoclinic orbit, but do not force any other periodic or homoclinic
orbit. By contrast, the orbits with cores 111 and 101 will be shown to force all periodic and homoclinic
orbits of the horseshoe (cf. [15]).

Definition 2.2 (Decoration) The decoration of H is defined to be ∗ if H has code 010
110, · if H has

code 010
1
0
110 and c if H has code 010

1c
0
110.

Orbits of the Smale horseshoe map with the same decoration have the same braid type, as defined below.

Definition 2.3 (Braid type) The braid type of a homoclinic orbit H of a surface diffeomorphism f ,
denoted BT[H ; f ] is the conjugacy class of the isotopy class of f relative to H .

In other words, orbits H of f and H ′ of f ′ have the same braid type if there is an isotopy (ft) and a
diffeomorphism h such that f = f0, H is a homoclinic orbit of ft for all t, H ′ = h(H) and f ′ = h◦f1◦h−1.

Definition 2.4 (Forcing) A braid type BT forces BT′ if every homeomorphism f with a homoclinic
orbit H with BT(H, f) = BT has a homoclinic orbit H ′ with BT(H ′, f) = BT′.
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3 Horseshoe trellises

In this section those aspects of trellis theory which will be used later are reviewed. Trellis theory is
applicable in a much more general setting (see [8] for full details), but here the key definitions and results
are presented in a manner tailored for the study of horseshoe trellises. All results stated in this section
can be found in [8].

The key ideas presented are as follows. A trellis is a finite portion of the tangle of stable and
unstable manifolds of a saddle fixed point. Starting with the familiar tangle of the full horseshoe, the
full horseshoe trellis of signature n can be defined for each integer n ≥ 2: it has longer and longer stable
and unstable branches as n increases. Given a horseshoe homoclinic orbit, the full horseshoe trellis of
appropriate signature can be pruned, by removing as many intersections as possible without disturbing
the given homoclinic orbit. This pruned trellis is a complete invariant of homoclinic braid type, and so
the technique can be used to determine whether or not two given homoclinic orbits have the same braid
type.

Given a trellis (and the action of a diffeomorphism on it), there is a lower bound on the dynamics of
any diffeomorphism which has such a trellis. This minimal dynamics can be computed as the dynamics
of a tree map, using techniques similar to those developed for computing train tracks for periodic orbits
by Bestvina and Handel [2] and Franks and Misiurewicz [13].

The dynamics forced by a given horseshoe homoclinic orbit can thus be determined by finding the
appropriate pruned horseshoe trellis, and calculating the associated tree map. In this paper, we are only
concerned with forcing relations between homoclinic orbits.

3.1 The full horseshoe trellis

Definition 3.1 (Trellis) Let f : S2 → S2 be a diffeomorphism, and p be a hyperbolic saddle fixed point
of f . Then a trellis for f (at p) is a pair T = (T U , T S), where T U and T S are intervals in W U (f ; p)
and W S(f ; p) respectively containing p. (Here, W U (f ; p) and W S(f ; p) denote the unstable and stable
manifolds, respectively, of f at p.) Given a trellis T = (T U , T S), denote by T V the set of intersections of
T U and T S. The trellis is transverse if all of its intersection points are transverse.

Since all trellises considered in this paper will be transverse, and hence the word trellis will be understood
to mean transverse trellis.

Definition 3.2 (Segment) Let T = (T U , T S) be a trellis. A segment of T is a closed subinterval of
either T U or T S with endpoints in T V but interior disjoint from T V . The segment is called unstable or
stable according as it is a subinterval of T U or of T S.

Definition 3.3 (Region, bigon) Let T = (T U , T S) be a trellis. Then a region of T is the closure of a
component of S2 \ (T U ∪ T S). A bigon of T is a region bounded by two segments (one unstable and one
stable).

Definition 3.4 (Full horseshoe trellis) Let f be the Smale horseshoe map, and p be the fixed point
with code 0. Let q0 be the homoclinic point with itinerary 0 ·10, and qk = fk(q0). Given i ≥ 0 and j ≤ 0,
denote by T U

i an interval in W U (f ; p) with end intersections p and qi, and by T S
j the interval in W S(f ; p)

with end points p and qj . For n ≥ 2, a full horseshoe trellis of signature n is a trellis T = (T U
i , T S

j ) such
that i − j = n.

It is clear that all full horseshoe trellises as defined above are differentiably conjugate.

Example 3.5 The full horseshoe trellis of signature 2 is depicted in Figure 2(a). The chaotic dynamics
is supported in the regions labelled R0 and R1. All points in RU are in the basin of the attracting fixed
point a, and all points in the interior of RU are in the basin of the repelling point at infinity. The point
r0 has itinerary 01 · 010, and the point r1 has itinerary 01 · 110. The full horseshoe trellis of signatures 3
is depicted in Figure 2(b).
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(a) (b)

Figure 2: (a) The full horseshoe trellis with signature 2. (b) The full horseshoe trellis with
signature 3.

3.2 Pruning isotopies

Given a trellis T for a diffeomorphism f , a pruning isotopy is an isotopy which removes the intersections on
the boundary of one or more bigons of f . To be more precise, it is an isotopy from f to a diffeomorphism f ′

which has a trellis T ′ obtained from T by removing such intersections. There are two possibilities; we
can either remove both intersections of a single bigon, as depicted in Figure 3(a), or remove intersections
from two neighbouring bigons, changing the orientation of the crossing at the remaining intersection, as
depicted in Figure 3(b).

(b)(a)

Figure 3: The local effect of pruning isotopies on a trellis

However, an isotopy of the diffeomorphism f supported in some open set U will also change the trellis
outside of U . If we are trying to reduce the number of intersections of T , we need to ensure that no other
intersections are created when we remove intersections locally. This gives rise to the notion of an inner
bigon

Definition 3.6 (Inner bigon) A bigon B is inner if B ∩
⋃

n∈Z
fn(T V ) = B ∩ T V . i.e. A bigon is B

inner if the only intersections of B with the orbits of the intersection points of the trellis are the vertices
of B.

The following result follows from the proof of Theorem 3.5 of [8].

Theorem 3.7 (Pruning away an inner bigon) Let T be a trellis of a diffeomorphism f . Suppose
either that B is an inner bigon with vertices v0 and v1, or that B0 and B1 are inner bigons with a common
vertex v and other vertices v0 and v1 on different orbits. Then there is a diffeomorphism h : S2 → S2,
which we can take to be supported on a neighbourhood U of B or B0 ∪ B1, such that f ′ = f ◦ h has a
trellis T ′ with the same intersections apart from those on the orbits of v0 and v1 under f .

The trellis T ′ is obtained by removing all the intersections of T contained in the orbit of U . The
diffeomorphism f ′ is isotopic to f , and a general pruning isotopy can be constructed as a sequence of
isotopies pruning away an inner bigon.
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Example 3.8 Figure 4a) depicts the full horseshoe trellis of signature 3, and a shaded neighbourhood U

of an inner bigon B, together with its image. Pruning away the bigon B yields a diffeomorphism f ′ with
trellis T ′ as shown in b). Pruning away the bigon B′ yields a diffeomorphism f ′′ with the trellis T ′′

depicted in c).

UB

B
′

(a) (b) (c)

Figure 4: Pruning away inner bigons in the horseshoe trellis

3.3 Horseshoe trellises

A trellis obtained by pruning the full horseshoe trellis as in Example 3.8 is called a horseshoe trellis:

Definition 3.9 (Horseshoe trellis) A horseshoe trellis is a trellis T obtained from the full horseshoe
trellis by a pruning isotopy (i.e. by pruning away a sequence of inner bigons).

A horseshoe trellis can be associated to each homoclinic orbit of the horseshoe, by pruning away as
many inner bigons as possible without touching the homoclinic orbit. It is trivial that the signature of
a horseshoe homoclinic orbit H is equal to the least integer n such that H is an intersection of the full
horseshoe trellis of signature n.

Definition 3.10 (Trellis forced by a homoclinic orbit) Let H be a horseshoe homoclinic orbit of
signature n, and let m ≥ n. The trellis of signature m forced by H is the trellis T obtained from the
full horseshoe trellis of signature m by pruning away inner bigons as much as possible without removing
points of H .

Example 3.11 The white circles in Figure 4 represent points of the homoclinic orbit H with code 010010
(which thus has signature 3). The trellis of Figure 4c) is thus the trellis forced by this homoclinic orbit.
Note that every bigon has a point of H on its boundary.

This method makes it possible to determine whether or not two horseshoe homoclinic orbits have the
same homoclinic braid type:

Definition 3.12 (Trellis type) Let T and T ′ be horseshoe trellises for diffeomorphism f and f ′ respec-
tively. We say that (f ; T ) and (f ′; T ′) have the same trellis type if there is a diffeomorphism g isotopic
to f relative to T , and a homeomorphism h : S2 → S2 such that h(T ) = T ′ and h−1 ◦ f ′ ◦ h = g.

We denote the trellis type containing (f ; T ) by [f ; T ].
For horseshoe trellises, the trellis type is determined by the geometry of the trellis:

Theorem 3.13 Let T and T ′ be horseshoe trellises for diffeomorphism f and f ′ respectively. Then (f ; T )
and f ′; T ′) have the same trellis type if and only if T and T ′ are diffeomorphic.

Proof: It suffices to consider the case T = T ′. Since the points with itinerary 010 all lie on a single
homoclinic orbit, we can deduce the action of f and f ′ on all the vertices of T from the action of this
orbit simply by counting vertices in each fundamental domain. The result follows since all regions of T

are simply-connected, so the isotopy class is determined by the action on the segments. �
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Since a horseshoe trellis type is fully determined by the geometry of the trellis, we define the type of a
horseshoe trellis T to be the type of (f ; T ) for any diffeomorphism f with trellis T which can be obtained
by pruning away inner bigons.

Horseshoe trellises (f ; T ) and (f ′; T ′) have the same type if and only if the trellises T and T ′ are
homeomorphic, and this occurs if and only if the orderings of the intersections on the stable and unstable
manifolds are the same.

Definition 3.14 (Intersection ordering) Let (f ; T ) be a horseshoe trellis, with intersections T V =
{vi : i = 0 . . . n − 1} such that vi <u vi+1 (i.e. vi is closer to p along the unstable manifold). Then the
relative ordering of the unstable and stable manifolds is the permutation πT such that vπT (i) <s vπT (j) if
and only if πT (i) < πT (j).

The following result gives a computable criterion for the equivalence of horseshoe trellises.

Theorem 3.15 Let T and T ′ be horseshoe trellises. Then T and T ′ have the same trellis type if and
only if πT = πT ′ .

The following result is immediate from Theorem 2 of [8], and shows that a homoclinic braid type
is determined by the geometry of the trellis obtained by pruning up to the given orbit. In particular,
homoclinic orbits can only have the same braid type if they have the same signature (i.e. their cores have
the same length).

Theorem 3.16 Let H and H ′ be horseshoe homoclinic orbits of signatures n and n′, and let T and T ′

be the trellises of signature m ≥ max{n, n′} forced by them. Then H and H ′ have the same homoclinic
braid type if and only if T and T ′ have the same trellis type.

The following result follows from the main theorem (Theorem 1) of [5] which shows that the dynamics
forced by a trellis is minimal in the isotopy class.

Theorem 3.17 Let H and H ′ be horseshoe homoclinic orbits of signatures n and n′, and let T and T ′

be the trellises of signature m ≥ max{n, n′} forced by H. The homoclinic braid type of H forces the braid
type of H ′ if and only if T has an intersection on an orbit with the same braid type as H ′.

4 Computation of the equivalence and forcing relations

We now give a brief outline of the algorithm used to compute the equivalence and forcing relations for
horseshoe homoclinic orbits, and then discuss the implementation details of the pruning procedure.

4.1 Algorithm

To compute the trellis forced by the orbit H , a full horseshoe trellis of the same signature as H is
constructed, and then pruned relative to the orbit H and the orbit with code 010, the latter being used
to fix the end intersections. The pruning process sweeps through the trellis, pruning whenever an inner
bigon is found whose vertices are not points of H , or a pair of inner bigons is found whose outer vertices
are not points of H .

The equivalence relation for orbits of signature n is determined by first computing all the trellises
of signature n associated with the homoclinic orbits. The homoclinic orbits of the same decoration are
known to have the same braid type, so only one orbit with each decoration is needed. Since the trellis
is a braid type invariant by Theorem 3.16, and the relative intersection ordering characterises horseshoe
orbits by Theorem 3.15, the relative intersection ordering is computed for each orbit, and the orbits
partitioned into equivalence classes accordingly. To compute the equivalence relation between homoclinic
horseshoe orbits, it suffices to compute the trellis of signature n forced by each.

Since the (horseshoe) itineraries of intersections can be continued through the pruning, the codes of
the remaining orbits can be recovered from the pruned trellis. Note, though, that in order to show that
the homoclinic braid type of a homoclinic orbit H does not force that of a homoclinic orbit H ′, it is
necessary to show that none of the homoclinic orbits of the same type as H ′ persist through the pruning.

7



Thus it is necessary to compute equivalences in order to be able to compute the forcing relation. Hence,
to compute whether BT(H) forces BT(H ′) where H has signature n and H ′ has signature n′, we need to
compute all trellises of signature n′ to determine the equivalence relation on braid types of signature n′.
We then compute the trellis of signature max{n, n′} forced by H , and determine if it contains an orbit
of braid type BT(n′).

The topological entropy forced by the homoclinic orbit of a given braid type was computed by finding
the graph representative, as detailed in [7, 8].

4.2 Implementation of pruning

The most natural implementation of a trellis type is as a list of vertices with image information. Hence
an intersection can be represented as

class Intersection is

Orientation orientation;

Intersection previous unstable;

Intersection next unstable;

Intersection previous stable;

Intersection next stable;

Intersection preimage;

Intersection image;

end;

Here, each Intersection data element is a reference to another intersection, which may be void, and
the orientation is either positive or negative, depending on the orientation of the intersections of the
periodic orbit. We remark that this contains more information than is needed to specify the trellis
structure; it suffices to store the next unstable, next stable image intersections. However, at least
one of previous unstable or previous stable is required for the algorithm, and preimage is useful for
general trellises. Note that the orientations for horseshoe trellises always alternate between positive and
negative.

The main procedure needs to detect and prune inner bigons, as shown in Figure 3(a). Detecting
bigons and inner bigons can be accomplished by the predicates is bigon and is inner bigon. We
assume throughout that the function arguments are not void.

bool is bigon(Intersection a, Intersection b) is

return( (a.next unstable==b or b.next unstable==a)

and (a.next stable==b or b.next stable==a) );

end;

bool is inner bigon(Intersection a, Intersection b) is

/* assume a.preimage==void and b.preimage==void */

do

if(a==void and b==void) then return true; end;

if not is bigon(a,b)) then return false; end;

a:=a.image;

b:=b.image;

end;

end;

The pruning is performed by the procedures prune bigon and prune inner bigon described below. The
vertices a and b are deleted following a prune bigon function.

prune bigon(Intersection a, Intersection b) is

/* assume is bigon(a,b) */

if(a.next unstable!=b) then swap(a,b) end;

a.previous unstable.next unstable:=b.next unstable;

8



b.next unstable.previous unstable:=a.previous unstable;

if(a.next stable!=b) then swap(a,b) end;

a.previous stable.next stable:=b.next stable;

b.next stable.previous stable:=a.previous stable;

end;

prune inner bigon(Intersection a, Intersection b) is

/* assume is inner bigon(a,b) */

while(a!=void) do

prune bigon(a,b);

a:=a.image;

b:=b.image;

end;

end;

The procedure prune inner bigon can be easily constructed from prune bigon. Detecting and removing
the intersections of two adjacent bigons as shown in Figure 3(b) can be carried out as follows: The vertices
a and c may be deleted after a prune bigon pair procedure.

bool is bigon pair(Intersection a, Intersection b, Intersection c) is

return( ((a.next unstable==b and b.next unstable==c)

or (c.next unstable==b and b.next unstable==a))

and ((a.next stable==b and b.next stable==c)

or (c.next stable==b and b.next stable==a)) );

end;

prune bigon pair(Intersection a, Intersection b, Intersection c) is

/* assume is bigon pair(a,b,c) */

if(a.next unstable!=b) then swap(a,c) end;

a.previous unstable.next unstable:=b;

c.next unstable.previous unstable:=b;

if(a.next stable!=b) then swap(a,c) end;

a.previous stable.next stable:=b;

c.next stable.previous stable:=b;

b.orientation := -b.orientation;

end;

When dealing with trellises which are not horseshoe trellises, extra code is needed to take care of
degenerate cases involving endpoints. In particular, in the function is inner bigon, an extra line

if(a==void or b==void) then return false; end;

is needed in case an endpoint occurs between a and b. These procedures can be further optimised; we
present them in the form given here to show explicitly the steps required, omitting only the details of
garbage collection.

5 Numerical results

In this section we compute, for horseshoe homoclinic orbits with short cores, the equivalence classes under
the relation of having the same homoclinic braid type, and the forcing relation.
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Sig Dec Ordering

2 ∗ 0, 7 , 4, 3 , 2,5,6, 1

3 · 0, 9 , 6, 5 , 4, 3 , 2,7, 8, 1

4 0 0, 11 , 8, 7 , 6, 5 , 4, 3 , 2, 9,10, 1
1 0, 23 , 12, 11 , 6, 5 , 4, 19, 16, 15, 20, 3 , 2, 21, 14, 9, 8,17,18, 7, 10, 13, 22, 1

Table 1: Relative orderings for trellis with signature up to 4. The intersections correspond-
ing to the fixed point and the forcing orbits are indicated in bold type, and the intersections
corresponding to the primary homoclinic orbit with code 010 are indicated in italic type.

5.1 Horseshoe homoclinic orbits with the same homoclinic braid type

We have computed the trellis types forced by all horseshoe homoclinic orbits of signature 12 or less, and
determine which pairs have the same homoclinic braid type. Table 1 presents the relative orderings of
trellises of signature up to 4, and Table 3 presents the equivalence relation for orbits of signatures up
to 9.

For orbits of signature up to 4, the only equivalences are trivial; two homoclinic orbits have the same
homoclinic braid type if and only if they have the same decoration. However the orbits of signature 5
with decorations 01 and 10, and codes 010

1010
110 and 010

1100
110 respectively, are equivalent (see Figure 5).

(b) (c)(a)

Figure 5: The horseshoe trellis and homoclinic orbits with codes (a) 01101110 and (b) 01110110,
and (c) the trellis they force.

For homoclinic orbits of signature at most 7, all orbits have the same homoclinic braid type as their
time reversal. However, for orbits of signature 8, there are two pairs of orbits whose homoclinic braid
type differs from that of their time reversal. This is a counterexample to the conjecture that horseshoe
orbits which are time-reversals have the same braid type.

8
3 7

2

5
6

1

5 4

40 0 4

6 5

3
8

2
5 6

4

7
1

(a) (b)

Figure 6: Topological graph representatives for the homoclinic orbits with codes (a) 010
101001

0
110

and (b) 010
110010

0
110.

The trellises forced by the orbits with codes 010
1010010

110 and 010
1100100

110 are not equivalent, even
though these words are reverses of each other. Each trellis has 176 intersections. The graph representatives
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Sig #T V htop Decorations

2 8 0.693147 ∗

3 10 0.528049 ·

4 12 0.434175 0
24 0.637160 1

5 14 0.372312 00
26 0.585210 01, 10
38 0.589844 11

6 16 0.327931 000
28 0.621811 001, 100
39 0.493726 011, 010, 110
76 0.618251 111
92 0.655290 101

7 18 0.294274 0000
29 0.658093 0001, 1000
42 0.450806 0011, 0010, 0100, 1100
58 0.471989 0110
70 0.549761 0111, 0101, 1110, 1010

122 0.591665 1101, 1011
134 0.604018 1111
218 0.684471 1001

Table 2(a): Equivalences for homoclinic orbits with signature up to 7.

Sig #T V htop Decorations

8 19 0.267727 00000
31 0.676320 00001, 10000
43 0.458765 00011, 00010, 01000, 11000
60 0.410427 00110, 00100, 01100
72 0.563961 00111, 00101, 11100, 10100

100 0.535252 01101, 01110, 01010, 10110
112 0.518203 01111, 01011, 11010, 11110
176 0.612495 01001
252 0.646515 11001
176 0.612495 10010
252 0.646515 10011
208 0.576220 11011
252 0.612102 11111
268 0.625290 11101, 10111
336 0.650772 10101
472 0.690998 10001

Table 3(b): Equivalences for homoclinic orbits with signature 8.

11



Sig #T V htop Decorations

9 22 0.246163 000000
34 0.684979 000001, 100000
46 0.485379 000011, 000010, 010000, 110000
62 0.376307 000110, 000100, 001000, 011000
74 0.597015 000111, 000101, 111000, 101000
82 0.398273 001100
94 0.537060 001101, 001110, 001010, 001001, 011100, 010100, 101100, 100100

106 0.504368 001111, 001011, 110100, 111100
150 0.604226 011001, 100110
162 0.484357 011011, 011010, 011110, 010110, 110110
198 0.537481 011111, 010111, 111110, 111010
214 0.563076 011101, 010101, 101010, 101110
182 0.502700 010010, 010011, 110010
430 0.659895 010001
510 0.671444 110001
310 0.548079 110011
378 0.583547 110111, 110101, 111011, 101011
446 0.603536 111101, 101111
458 0.607837 111111
650 0.666417 111001
722 0.668611 101001
725 0.670332 101101
722 0.668611 100101
650 0.666417 100111
430 0.659895 100010
510 0.671444 100011
982 0.692607 100001

Table 3(c): Equivalences for homoclinic orbits with signature 9.
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are shown in Figure 6. The topological entropy of both these orbits is log λ, where λ is the largest root
of the polynomial

λ13 − 2λ12 + 2λ8 + λ7 − 4λ5 − 2λ4 + 2λ2 + 2λ − 2.

Numerically, λmax ≈ 1.845, giving htop > 0.612.
Another counterexample is given by the orbits with codes 010

1110010
110 and 010

1100110
110. These

trellises each have 252 intersections. The topological entropy of both these orbits is log λ, where λ is the
largest root of the polynomial

λ13 − 2λ12 + 3λ7 − 4λ6 + 4λ5 + 2λ4 + 2λ − 2.

Numerically, λmax ≈ 1.909, giving htop > 0.646.

5.2 The forcing relation

•

1001

0011 0

0110

011

0111

01

001

00 0001

000

0000

1101

1

111

1111

11

101

Figure 7: Decorations and scopes of homoclinic braid types of signature up to 7 and the forcing
relation between them.

Figure 7 shows the forcing relation between horseshoe homoclinic orbits of signature 7 or less. Each
homoclinic orbit is specified by its decoration, and the scope of the decoration is also given. Only one
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decoration is given for each equivalence class of homoclinic braid types (so, for example, the decoration
10 is not included, since it is equivalent to 01).

We give two examples illustrating the computation of Figure 7 the interpretation of the results.

(a) (b)

Figure 8: The homoclinic orbit 01101110 forces the orbits 010
10

0
110.

Example 5.1 Figure 8 shows the horseshoe trellis, on which the orbit H with code 01101110 (decoration
01) has been marked with white dots, and the intersections on the orbits with codes 010

10
0
110 with black

dots. On performing a pruning isotopy to obtain the trellis forced by the orbit P , it can be seen that
the marked intersections persist. Therefore the homoclinic braid type with decoration 01 forces the
homoclinic braid type with decoration 0. From Figure 8 it can also be seen that the only other forced
homoclinic braid type with signature less than 5 is that with decoration 00.

(a) (b)

Figure 9: The homoclinic orbit 0111110 forces the orbits 010
111

0
110.

Example 5.2 It is possible to compute braid types of arbitrary signature forced by any homoclinic
orbit. In Figure 9, we show the trellis of signature 5 forced by the homoclinic orbit 0111110 which has
decoration 1 and signature 4, allowing us to compute the braid types of signature up to 5 forced by the
orbit. In particular, we see that the orbit 0111110 forces the orbits 010

1110
110, so the homoclinic braid

type with decoration 1 forces the homoclinic braid type with decoration 11. The other homoclinic braid
types with signature less than 5 forced by the braid type with decoration 1 have decorations ·, 0 and 00.

6 Conclusions and further research

We have described a numerical method for determining the forcing relation for homoclinic orbits of the
Smale horseshoe map using trellises. The method is exact, in that is considers orbits given in terms
of their symbolic codes, and The numerical techniques can also be used to determine forcing relations
between homoclinic and heteroclinic orbits of general surface homeomorphisms.
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One of the motivations for this work was to help in determining the forcing relation between periodic
orbits of the Smale horseshoe map, and between homoclinic and periodic orbits. Unfortunately, while it is
fairly straightforward to compute a train track for a pseudo-Anosov periodic orbit, it is less straightforward
to determine the codes of the periodic orbits forced by a given homoclinic orbit. The main difficulties
is that there may be many periodic orbits of the Smale horseshoe map with the same braid type, and
that pruning the trellis destroys the partition of the regions R0 and R1, making it difficult to recover the
braid type from a trellis or its graph representative.

There are also number of important related computational problems for which no methods are cur-
rently available. On the combinatorial side, it is also important to develop methods for computing the
topological graph representative of a trellis type; this has been implemented for horseshoe trellises, but
not for trellises on general surfaces. It is also important to have an automatic procedure for generating
a combinatorial trellis from numerically-computed stable and unstable manifolds. Unfortunately, näıve
methods fail since a numerically computed trellis may have orbits not present in the actual system, and
may even be inconsistent. An extension of the trellis package is planned which will allow the dynamics
forced by a numerically computed trellis to be found.
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