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Coalgebra and coinduction in discrete-event control
with partial observations

ABSTRACT
Coalgebra and coinduction provide new results and insights for the supervisory control of
discrete-event systems (DES) with partial observations. The paper is based on the formalism
developed for supervisory control of DES in the full observation case, i.e. the notion of
bisimulation, its generalizations (partial bisimulation and control relation), and the finality of the
automaton of partial languages. The concept of nondeterministic weak transitions introduced in
this paper yields a definition of deterministic weak transitions. These are shown to be useful in
the study of partially observed DES. They give rise to the relational characterizations of
normality and observability. These characterizations lead to new algorithms for supremal normal
and supremal normal and controllable sublanguages that are compared to the ones known in
the literature. Coinduction is used to define an operation on languages called supervised
product, which represents the language of the closed-loop system, where the first language acts
as a supervisor and the second as an open-loop system. This technique can be used to define
many important languages, e.g. supremal controllable sublanguages, infimal controllable or/and
observable superlanguages. A variation of supervised product corresponding to the permissive
control policy with full controllability is given. It is shown to be equal to the infimal observable
superlanguage. We have obtained as a byproduct coinductive definitions of these important
languages. We show that antipermissive control policy cannot be captured by coinduction.
However, we present an algorithm based on the antipermissive control policy for the
computation of an observable sublanguage that contains the supremal normal sublanguage.
Using a similar method monolithic algorithms for computation of supremal normal and supremal
normal and controllable sublanguages are developed. Finally, the lattice theoretic continuity of
the supervised product (i.e. the distributivity of the supervised product with respect to partial
language unions) is studied.

2000 Mathematics Subject Classification:  93C65, 93B25.
Keywords and Phrases: Discrete-event systems, partial observations, supervisory control, coalgebra, coinduction.
Note: This work was carried out under project MAS2-CONTROL. It was sponsored in part by the NWO project
Coalgebra and control.





Coalgebra and Coinduction
in Discrete-Event Control with Partial Observations

Jan Komenda
Institute of Mathematic, Czech Academy of Sciences, Brno Branch,

Zizkova 22, 616 62 Brno, Czech Republic

E-mail: komenda@ipm.cz

Jan H. van Schuppen
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands,

Email: J.H.van.Schuppen@cwi.nl

Abstract

Coalgebra and coinduction provide new results and insights for the supervisory control of
discrete-event systems (DES) with partial observations. The paper is based on the formalism
developed for supervisory control of DES in the full observation case, i.e. the notion of bisim-
ulation, its generalizations (partial bisimulation and control relation), and the finality of the
automaton of partial languages. The concept of nondeterministic weak transitions introduced
in this paper yields a definition of deterministic weak transitions. These are shown to be use-
ful in the study of partially observed DES. They give rise to the relational characterizations
of normality and observability. These characterizations lead to new algorithms for supremal
normal and supremal normal and controllable sublanguages that are compared to the ones
known in the literature.

Coinduction is used to define an operation on languages called supervised product, which
represents the language of the closed-loop system, where the first language acts as a supervisor
and the second as an open-loop system. This technique can be used to define many important
languages, e.g. supremal controllable sublanguages, infimal controllable or/and observable
superlanguages. A variation of supervised product corresponding to the permissive control
policy with full controllability is given. It is shown to be equal to the infimal observable
superlanguage. We have obtained as a byproduct coinductive definitions of these important
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1 Introduction

Many different methods in discrete-event (dynamical) systems (DES) have been developed [5].
Only recently DES have been studied using coalgebraic techniques [20]. DES are mostly rep-
resented by automata viewed as a particular algebraic structure. They have been introduced by
W.M. Wonham and his co-workers [23] and have been extensively studied since 1980’s by many
researchers, see e.g. [32], [14], [15], [3], [15], [33], [6], [18] etc. Supervisory control theory has
been also extended to the study of infinite behavior of automata, see e.g. [28] and [29].

It is known that automata are at the same time algebras as well as coalgebras [19]. Therefore
they can also be viewed as so called partial automata [20], which represent a particular instance
of state-transition systems. Partial automata are coalgebras of a simple functor on the category of
sets. Coalgebras are categorical duals of algebras (the corresponding functor operates from a given
set rather than to a given set). In the last decade they have been extensively studied and used in the
semantics of programming for infinite data structures (e.g. streams), while algebraic techniques
have been used for dealing with finite data types as finite lists. Coalgebras have been found to be
suitable in system theory as well for the description of the dynamic systems as deterministic au-
tomata and their various extensions (state transition systems, weighted automata, transducers etc.)
The theory of universal coalgebras as a general theory of systems has been developed in analogy
with the dual theory of universal algebra [21]. The algebraic notion of congruence relations has
its coalgebraic counterpart: bisimulations relations. Final coalgebras are dual to initial algebras.
The universal property of finality gives rise to the definition and proof principle called coinduction
in the same way as induction is based on initiallity of an algebra. On a final coalgebra, bisimi-
larity coincides with equality, whereby proving equality of two elements of final coalgebras (e.g.
languages) amounts to constructing a bisimulation relation that relates them.

A pioneering study of the relationship between controllability and bisimulation is presented
in [2]. The authors have shown in Theorem 3.1 that controllability is equivalent to bisimilarity
with respect to the set of uncontrollable events. This idea is a major motivation for application of
coalgebra to discrete-event control and has been explored further in [20]. This paper presents a
formulation of control of DES with partial observations in terms of coalgebra. Coalgebraic tech-
niques are then applied to solve different problems in partially observed DES. The basic formalism
is the one that has been developed by J.J.M.M. Rutten in [20], i.e. partial automata as models for
DES and partial automaton of (partial) languages as the final coalgebra. The generalization to
partially observed DES is not straightforward, but requires the development of new concepts. On
the other hand, the basic ideas, i.e. relational characterizations of different notions and properties
and the use of a powerful technique called coinduction are the strong points of the application of
coalgebra to the control of DES. Indeed, the main advantage of the use of coalgebra is the nat-
urally algorithmic character of the results, there is a canonical way how to check the properties
like controllability or observability by constructing corresponding relations. Another advantage
is the possibility of using the coinductive definitions and proofs that are shown to be useful in
many situations. In particular, many extremal superlanguages or sublanguages can be defined by
coinduction, which is an alternative to different type of formulas presented in e.g. [13], [24], and
[3]. This yields also new algorithms for computation of these languages.

In the case of imperfect (partial) observations only a subset of events is actually observed by
the controller. Being inspired by the theory of concurrency, we introduce in our setting the concept
of weak transitions, including a deterministic concept, which is shown to be useful in the study of
control problems with partial observations. It enables the definition of an auxiliary relation that
corresponds to the observational equivalence and also observability relation which corresponds
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to the observability of a language with respect to an open-loop system (language). A collection
of necessary and sufficient conditions for a given partial language to be exactly achievable by a
supervisory controller is formulated by relations called partial bisimulations and a coalgebraic for-
mulation of the main theorem of supervisory control of DES with partial observations is presented.

Moreover, two different coalgebraic characterizations of normality are given, which can be
compared to [7], where the algebraic characterizations using the concept of invariant relations
have been presented. New algorithms for the computation of supremal normal (and normal and
controllable) sublanguages that are based on these coalgebraic characterizations are proposed.
Their computational complexity has been compared to that of known algorithms for computation
of supremal normal sublanguages.

Coinduction is used to define a binary operation on languages called supervised product, which
represents the language of the closed-loop system, where the first language is the language of a
supervisor and the second language is that of an open-loop system. A minor modification of super-
vised product that disregards the controllability yields an operation that is shown to be equal to the
infimal observable superlanguage. Using suitable automata representations a similar modification
of the closed-loop language under the antipermissive control policy yields an observable sublan-
guage that contains the supremal normal sublanguage. A similar method yields new algorithms
for computation of supremal normal and supremal normal and controllable sublanguages that are
monolithic. A coinductive definition of the supremal controllable sublanguage is presented. The
coinduction turns out to be well suited for formulating various concepts of discrete-event control.

The contribution of this paper when compared to the literature is twofold. Firstly, the whole
framework of discrete-event control with partial observations introduced in [14] has been reformu-
lated using the concepts from coalgebra and concurrency theory. This offers an additional insight
to many problems and results. Secondly, our approach provides a refinement of the existing theory
and yields new algorithms and useful concepts. Among new results novel algorithms for computa-
tion of supremal normal and supremal normal and controllable sublanguages have been proposed.
Moreover some of them (Algorithm 5,6) are monolithic, which can be by itself considered as
an important result. Unlike the known algorithms for supremal normal and controllable sublan-
guages, e.g. those developed by Cho and Marcus in [6] and by Yoo and Lafortune in [33]) that are
iterations of two separate algorithms, our Algorithm 6 is compact. Such an algorithm is known
to exist [11], but has not been explicitly presented. The concept of supervised product is central
in our framework, because its coinductive definition describes in fact an event by event action
of the supervisor. This considerably simplifies the study of properties of closed-loop languages
compared to the classical algebraic approach.

The paper is organized as follows. Section 2 recalls the partial automata from [20] as the coal-
gebraic framework for DES represented by automata. The reader interested in more details about
the key notions like bisimulation, coinduction, and finality should consult [21] or [20]. In Section
3 weak transition structures are defined on partial automata, powerset, projected, and observer au-
tomata are introduced using a deterministic notion of weak transitions. Observability relations are
introduced in section 4 and normality relations in section 5. These relational characterizations are
then used in section 6 to derive new algorithms for computing the supremal normal (and normal
and controllable) sublanguages. Section 7 shows the power of the coinductive definition principle.
After having specialized the observability relations to the final automaton of partial languages,
necessary and sufficient conditions for a given language to be exactly achieved are captured in
a relation called partial bisimulation. Finality is used to define the language of the closed-loop
system as well as the infimal closed observable superlanguage. An algorithm is presented for the
computation of an observable sublanguage that contains the supremal normal sublanguage. Mono-
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lithic algorithms for computation of supremal normal (and normal and controllable) sublanguages
are presented. Some preliminary results of this paper have been presented in [8] and [9] without
proofs. The results of section 7 complete the algebraic results of [13], [24], and [7]. At the end of
section 7 the distributivity of the supervised product with respect to basic language operations is
studied.

2 Partial automata as coalgebras

Generators of discrete-event systems are just deterministic automata with logical outputs (that
define the set of marked states) and partial transition function. They are defined in this section as
coalgebras and corresponding notions of homomorphism and bisimulation are presented. In this
section we recall from [20] partial automata as coalgebras with a special emphasis on the final
coalgebra of partial automata, i.e. partial automaton of partial languages.

Before we recall the definition of partial automata we defineF�coalgebras, whereF is an
endofunctor of the categorySetwith sets as objects and functions as morphisms. AnF�coalgebra
is a tuplehS; �i, whereS is a set (also called carrier set) and� : S ! F (S) defines the coalgebraic
structure onS.

LetA be an arbitrary set (usually finite and referred to as the set of inputs or events). The free
monoid of words (strings) overA is denoted byA�: The empty string will be denoted by". Denote
by *= f;g the one element set and by2 = f0; 1g the set of Booleans. A partial automaton is a
pairS = (S; ho; ti), whereS is a set of states, and a pair of functionsho; ti : S ! 2� (* +S)A,
consists of an output functiono : S ! 2 and a transition functionS ! (* +S)A. The output
functiono indicates whether a states 2 S is accepting (or terminating):o(s) = 1, denoted also
by s #, or not: o(s) = 0, denoted bys ". The transition functiont associates to each states in S
a functiont(s) : A ! (* +S). The set* +S is the disjoint union ofS and*. The meaning of
the state transition function is thatt(s)(a) = ; iff t(s)(a) is undefined, which means that there is
noa�transition from the states 2 S. t(s)(a) 2 S means that thea�transition froms is possible
and we define in this caset(s)(a) = sa, which is denoted mostly bys

a
! sa. This notation can be

extended by induction to arbitrary strings inA�. Assuming thats
w
! sw has been defined, define

s
wa
! iff t(sw)(a) 2 S, in which caseswa = t(sw)(a), also denoted bys

wa
! swa. It is easy to see

that partial automata are coalgebras of the set functorF = 2� (* +(:) )A:
A homomorphismbetween partial automataS = (S; ho; ti) andS0 = (S0; ho0; t0i) is a function

f : S ! S0 with, for all s 2 S anda 2 A:

o0(f(s)) = o(s) ands
a
! sa iff f(s)

a
! f(sa);

in which case:f(s)a = f(sa):

(* +S)A �
t

S
HHHHH

o
j

2

��
��
�o0 *

(* +S0)A
?

(1 + f)A

�t
0

S0

f

?

A partial automatonS0 = (S0; ho0; t0i) is asubautomatonof S = (S; ho; ti) if S0 � S and the
inclusion functioni : S0 ! S is a homomorphism. It is important to notice that the coalgebraic

4



concept of subautomaton corresponds to the notion of strict subautomaton in [6]. In the sequel we
use always subautomata in the coalgebraic sense defined above, i.e. strict subautomata are meant.

Note that partial automaton as defined above is just a coalgebraic reformulation of what is
understood to be a generator of a DES. Indeed, the transition function can be viewed in the coal-
gebraic form above, and the output function determines the subset of marked (or final) states (those
whose output value is equal to 1).

A simulationbetween two partial automataS = (S; ho; ti) andS0 = (S0; ho0; t0i) is a relation
R � S � S0 with, for all s 2 S ands0 2 S0:

if hs; s0i 2 R then

(
(i) o(s) � o(s0); i.e. s # ) s0 #; and

(ii) 8a 2 A : s
a
!) (s0

a
! andhsa; s0ai 2 R);

A bisimulationbetween two partial automataS = (S; ho; ti) andS0 = (S0; ho0; t0i) is a rela-
tionR � S � S0 with, for all s 2 S ands0 2 S0:

if hs; s0i 2 R then

8><
>:
(i) o(s) = o(s0); i.e. s # iff s0 #

(ii) 8a 2 A : s
a
!) (s0

a
! andhsa; s0ai 2 R; ) and

(iii) 8a 2 A : s0
a
!) (s

a
! andhsa; s0ai 2 R):

We writes � s0 whenever there exists a bisimulationR with hs; s0i 2 R. This relation is the union
of all bisimulations, i.e. the greatest bisimulation also called bisimilarity. It is immediate from the
definition of bisimulation that two states are bisimilar iff they can make the same transitions and
they give rise to the same outputs:

Proposition 2.1. For any partial automatonS = (S; ho; ti) and anys; s0 2 S:

s � s0 iff 8w 2 A� : s
w
!() s0

w
!; in which caseo(sw) = o0(s0w):

2.1 Final automaton of partial languages

In this subsection we define a partial automaton that is final among all partial automata and sat-
isfies a proof principle called coinduction. The states of this final automaton represent minimal
realizations of all possible behaviors (called partial languages) of all partial automata. Partial lan-
guages will be endowed with a (partial) automaton structure, which has the universal property of
being final among all (partial) automata. The partial automaton of partial languages is defined
using the Brzozowski notion of input derivative. Below we define the partial automaton of partial
languages over an alphabet (input set)A, denoted byL = (L; hoL; tLi). More formally,L = f� :
A� ! (* +2) j dom(�) = fw 2 A� j�(w) 2 2g 6= ; is prefix-closedg. To each partial language
� a pairhV;W i can be assigned:W = dom(�) andV = fw 2 dom(�) j �(w) = 1(2 2)g.
Conversely, to a pairhV;W i 2 L, a function� can be assigned :�(w) = 1 if w 2 V , �(w) = 0
if w 2W andw 62 V , and�(w) is undefined ifw 62W: Therefore we can write :

L = f(V;W ) j V �W � A�; W 6= ;; and W is prefix-closedg:

The transition functiontL : L ! (1 + L)A is defined using input derivatives. Recall that for
any partial languageL = (L1; L2) 2 L, La = (L1

a; L
2
a), whereLia = fw 2 A� j aw 2 Lig; i =

1; 2: If a 62 L2 thenLa is undefined. Given anyL = (L1; L2) 2 L, the partial automaton structure
of L is given by:

oL(L) =

(
1 if " 2 L1

0 if " 62 L1

5



and

tL(L)(a) =

(
La if La is defined

; otherwise
:

Notice that ifLa is defined, thenL1
a � L2

a; L2
a 6= ;; andL2

a is prefix-closed. The following
notational conventions will be used:L # iff " 2 L1, andL

w
! Lw iff Lw is defined (iffw 2 L2).

Most of the rest of this section is recalled from [20].

Theorem 2.2. L satisfies the principle of coinduction: for allK andL in L, if K � L then
K = L.

Proof. It follows from Proposition 2.1. Indeed, ifK � L then for anyw 2 A� : K
w
! , L

w
!,

i.e. w 2 K2 iff w 2 L2, in which caseo(Kw) = o0(K 0
w); i.e. w 2 K1 iff w 2 L1. It follows that

K = L. The converse implication is also true.

Theorem 2.3. The partial automatonL = (L; hoL; tLi) is final among all partial automata: for
any partial automatonS = (S; ho; ti) there exists a unique homomorphisml : S ! L. This
homomorphism identifies bisimilar states: fors; s0 2 S: l(s) = l(s0) iff s � s0.

Proof. For the existence part of the theorem, we define the homomorphisml by putting fors 2 S:

dom(l(s)) = fw 2 A� : s
w
!g

and
l(s) = ((l(s))1; (l(s))2) = (fw 2 A� j s

w
! andsw #g; fw 2 A� j s

w
!g):

Uniqueness ofl follows from the fact that for any two homomorphismsl; l0 : S ! L the relation

R = fhl(s); l0(s)i 2 L � L j s 2 Sg

is a bisimulation. Thereforel = l0 follows from theorem 2.2. The last statement is immediate
from the definition ofl and Proposition 2.1.

2.2 Coinduction

Coinduction is a dual concept to induction. Many people use induction without bearing in mind
its abstract (categorical or universally algebraic) meaning. Coinduction in its full generality must
be put into a general framework of universal coalgebra that uses the category theory. Finality of
a coalgebra enables coinductive definitions and proofs in a similar way as initiality of an algebra
enables definitions and proofs by induction. In order to make the paper more accessible to a
reader not very familiar with category theory we have prefered to introduce the coinduction only
in its special form: on final coalgebra of partial languages. It is the same as with mathematical
induction that is by many people understood only on the initial algebra of natural numbers with
the (unary algebraic) structure given by the successor operation:8n 2 N : succ(n) = n + 1.
Here definitions of functions by induction correspond to giving the successor on functions, hence
yielding recursive formulas. Proofs by induction correspond to the very well known two-steps
procedure, which amounts to verify that a relation is a congruence relation with respect to the
successor operation. Similarly, a definition by coinduction amounts to give the corresponding
structure, here output and derivatives on operations to be defined, and a proof by coinduction
consists in verifying the conditions of bisimulation relation. We believe that giving a general
categorical definition of coinduction would go far beyond the scope of the paper, which is only an
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application of coalgebra to control. Coinduction has been well covered by the existing literature
on universal coalgebra [21], [22].

Coinduction is used as a proof and definition principle throughout this paper. The use of
coinduction is limited to final coalgebras. Behavior equivalence of two elements of final coal-
gebra means that these are equal. Also notice that the elements of final coalgebras are equal to
their behaviors (the identity is the unique behavior homomorphism). This feature is sometimes
paraphrased as ’being is doing’, because these elements behave as they are.

Proofs by coinduction consist in constructing appropriate relations: for instance a proof of
equality of two elements of a final coalgebra consists in finding a bisimulation relation that relates
them. Definition by coinduction of an operation on elements of a final coalgebra consists in
defining the same coalgebraic structure on the operation (for instance we define binary operations
on partial languages by defining derivatives and output functions further in this paper). More
details about coinduction and finality can be found in [21] or [20]. Various supervisory control
and observation problems will be tackled using coinduction. It offers more then just an insight to
some well known solutions of these problems, it leads to some new algorithms and results.

We adopt the notation from [19], page 9, easily extended from automata to partial automata,
and denote the minimal (in size of the state set) representation of a partial languageL by hLi.
Hence,hLi = (DL; hohLi; thLii) is a subautomaton ofL generated byL. This means thatohLi and
thLi are uniquely determined by the corresponding structure ofL. The carrier set of this minimal
representation ofL is denoted byDL, whereDL = fLu j u 2 L2g. Let us call this set the set of
derivatives ofL. Inclusion of partial languages that corresponds to a simulation relation is meant
componentwise. The prefix closure of an (ordinary) languageL is denoted by�L. Some further
notation from [20] is used, e.g. ‘zero’ (partial) language is denoted by0, i.e. 0 = (;; f"g).

There is yet another important concept that will be needed in this paper. Namely, given an
(ordinary) languageL, the suffix closure ofL is defined bysuÆx(L) = fs 2 A� j 9u 2
A� with us 2 Lg. For partial languages, the suffix closure is defined in the same way as the
prefix closure, i.e. componentwise. There is the following relation between the transition struc-
ture ofL and its suffix closure operator.

Observation 2.4. For any (partial) languageL: suÆx(L) = [u2L2Lu.

Proof. It is immediate from the fact thatLu = (fs 2 A� j us 2 L1g; fs 2 A� j us 2 L2g).

3 Weak transition structures

In the following definition we introduce the notion of weak derivative (transition). Roughly speak-
ing it disregards unobservable steps, which correspond to so called internal moves in the frame-
work of process algebras [17]. LetA = Ao [ Auo be a partition ofA into observable events (Ao)
and unobservable (Auo) events with the natural projectionP : A� ! A�

o: Recall thatP (a) = "
for anya 2 Auo, P (a) = a for a 2 Ao, andP is catenative.

Definition 3.1. (Nondeterministic weak transitions.) For an eventa 2 A defineL
P (a)
) if 9s 2

A� : P (s) = P (a) andL
s
! Ls: Denote in this caseL

P (a)
) Ls.

Remark 3.1. According to this notation for unobservable eventsL
"
) is an abbreviation for

9� 2 A�
uo such thatL

�
!. We admit� = ", henceL

"
) is always true. Fora 2 Ao our notation
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means that there exist�; � 0 2 A�
uo such thatL

�a� 0
! L�a� 0 . This definition can be extended to

strings (words inA�) in the following way:

L
P (s)
) iff 9t 2 A� : P (s) = P (t) andL

t
! : Denote in this caseL

P (s)
) Lt.

There may exist two or mores 2 A� satisfying the condition in the definition of weak tran-
sition. Hence, the weak transition structure introduced above is not deterministic. We introduce
deterministic weak transition structure onL in the following definition.

Definition 3.2. (Deterministic weak transitions.) Define fora 2 Ao: L
a
) Lâ if L

P (a)
) and

Lâ := [fs2L2 j P (s)=ag Ls.

To avoid any confusion we must distinguish between both concepts. Let us introduce the

convention that for nondeterministic weak transition we say thatL
P (a)
) L0 for someL0 and for de-

terministic concept we denote always the unique weaka-derivative byLâ. For"-weak transitions
we introduce the notationL

"
) Luo, whereLuo = [fL� ; � 2 A�

uo such thatL� existsg, the latter
set being nonempty (" 2 A�

uo). Sometimes it will be denoted for notational convenience also by
L"̂, i.e. L"̂ = Lou is the so called unobservable reach of the partial languageL. Notice that for

anyL 2 L, Luo has the pleasant property that fora 2 Ao: Luo
P (a)
) iff Luo

a
!.

The concept of deterministic weak transitions can be extended to observable strings by induc-

tion. It should be clear that fors 2 A�
o : L

s
) Lŝ iff L

P (s)
) with Lŝ = [tfLt j t 2 L2 andP (t) =

sg: Otherwise statedLŝ = [fL0 j L
P (s)
) L0g.

There is the following relation between the deterministic weak transitions of a languageL and
the (strong) transition structure of the projected languageP (L) over alphabetAo.

Proposition 3.2. For any (partial) languageL ands 2 A�
o : P (L)

s
! P (L)s iff L

s
) Lŝ, in

which caseP (L)s = P (Lŝ).

Proof. The first part is easy. Indeed,P (L)
s
! P (L)s iff s = P (s) 2 P (L)2 iff 9u 2 L2 :

P (u) = P (s) iff L
s
), which is equivalent toLŝ exists, i.e.L

s
) Lŝ. In order to see the second

part, observe thatt 2 P (Lŝ) iff 9w 2 Lŝ with t = P (w) iff 9w 2 Lr for P (r) = s andw 2
P�1(t) iff 9rw 2 Lwith r 2 P�1(s) andw 2 P�1(t) iff P�1(s)P�1(t)\L = P�1(st)\L 6= ;.
On the other handt 2 P (L)s iff st 2 P (L) iff 9u 2 L: P (u) = st iff 9u 2 L \ P�1(st) iff
P�1(st)\L 6= ;. Since this is valid for both components of the languages involved, this achieves
the proof of the Proposition.

Notice that deterministic weak derivatives can be generated by strong derivatives and"�weak
derivatives.

Proposition 3.3. For any partial languageL anda 2 Ao: Lâ = ((L"̂)a)"̂:

Proof. It is immediate from Definition 3.2 and the fact thatP (�1)(a) = f�a� 0 j �; � 0 2 A�
uog.

Much more can be said about the topic of weak transition. In particular, our notion of deter-
ministic weak transition gives rise to another concept of weak bisimulation, where usual nondeter-
ministic weak transitions [17] are replaced by the deterministic ones. However, due to Proposition
3.2 it is not difficult to show that the new concept would coincide with the equality of projec-
tions, i.e. observable trace equivalence. The notion of weak bisimulation can be defined unlike
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deterministic weak transitions for any partial automaton using the concept of powerset automaton
introduced in the next subsection. But this goes beyond the aimed scope of the present paper. On
the other hand weak bisimulation is not a congruence, but only a weak congruence, and therefore
does not provide (strong) quotients. The same problem can be encountered in the framework of
process algebras [16].

3.1 Weak transitions and observers for partial automata

Weak transitions in the final automaton of partial languages have been introduced. Let us extend
our definition to arbitrary partial automata. As for the nondeterministic concept of weak transi-
tions, the definition is straightforward (simply for a states in partial automatonS = (S; ho; ti) and

a 2 A we puts
P (a)
) s0 if there existsu 2 A� such thatP (u) = P (a) ands

u
! s0 = su). As for

the deterministic concept of weak transitions, the corresponding definition does not make a sense
in general, however it can be defined if the set of states is a powerset. This motivates the following
construction, where we denote the set of nonempty subsets of S byPwr+(S) (= Pwr(S) n ;).

Definition 3.3. (Powerset automaton.) To any partial automatonS = (S; ho; ti) we assign a
powerset automaton, a partial automaton denoted byPwr(S) = (Pwr+(S); hoS; tSi), where for
anyQ � S; Q 6= ; we put

tS(Q)(a) = [q2Q t(q)(a) andoS(Q) = max(o(q); q 2 Q):

Notice that in the definition of transition function in a powerset automaton there is no necessity
to consider separately the case whent(q)(a) is not defined for someq 2 Q, because according to
the definition of partial automata for such a case there ist(q)(a) = ; 2*. Therefore the above
compact way of definingtS is correct. If we denote bylS : Pwr+(S) ! L andl : S ! L the
unique homomorphisms defined by finality ofL; then clearlylS(Q) = [q2Q l(q). This enables
us to use the same notation forl andlS , i.e. the subscript S can be dropped.

In order to implement the projections we define the projected automaton.

Definition 3.4. (Projected automaton.) The projected automaton is a partial automaton overAo:

P (S) = (Pwr+(S); hoP ; tP i) with

tP (Q)(a) = [fw2A�j P (w)=ag tS(Q)(w); a 2 Ao

andoP (Q) = oS(Quo) = maxfo(q); q 2 Quog, whereQuo is the unobservable reach set of
Q, i.e.Quo = fq0 2 S j 9q 2 Q with q

"
) q0:g

If we denote bylP : Pwr+(S) ! Lo the unique homomorphism defined by finality ofLo
(automaton of partial languages overAo), then clearlylP (Q) = P (l(Q)).
Deterministic weak transitions can now be defined in powerset automata: for any; 6= Q � S
anda 2 Ao: Q

a
) Qâ = [fu2P�1(a)g tS(Q)(u). Notice in particular that deterministic weak

transitions in the powerset automatonPwr(S) correspond exactly to strong transitions in the
projected automatonP (S), i.e. for any; 6= Q � S: tP (Q)(a) = Qâ.

The projected automatonP (S) of a given automatonS is related to the observer automaton
introduced in [5], but its state space is in general much larger than that of the observer automaton.
In control theory, the observer automaton is defined by induction starting from the initial state.
However, partial automata as defined above have no initial state. Note that it is natural to consider
L 2 L itself as the initial state of the minimal recognizerhLi of L 2 L. For generalS, if we are
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given an initial state, the usual construction of observer has its coalgebraic meaning. We define
for each partial automaton with designated initial stateS = (S; ho; ti) with s0 2 S the observer
automaton as the subautomaton ofP (S) generated byfs0guo (accessible fromfs0guo):

Definition 3.5. (Observer automaton.) The observer automaton is denoted by
Obs(S) = (Sobs; hoobs; tobsi) with carrier setSobs � Pwr+(S) defined as follows:
1) fs0guo 2 Sobs (fs0guo - unobservable reach set is that ofPwr(S)).
2) If Q 2 Sobs then8a 2 Ao: tP (Q)(a) 2 Sobs.
The structure of the observer automaton is given by the structure ofP (S) restricted toSobs:
8Q 2 Sobs : oobs(Q) = oP (Q) and8a 2 Ao : tobs(Q)(a) = tP (Q)(a).

Remark 3.4. Notice that the definition above implies that the states of the observer are isomorphic
to, i.e. can be identified with, different deterministic weak derivatives of its initial statefs0guo, i.e.
we haveSobs = f(s0)d̂ : tP (fs0guo)(d) is defined.g Note that if it happens that two deterministic
weak derivatives are equal, they determine a single state of the observer automaton.

4 Observability relation

In the supervisory control of DES with partial observations the observability of a (specification)
language with respect to the plant and projection (to observable events) is necessary for achieving
this language as a desirable behavior of the closed-loop system. We assume thatA = Ac [ Auc

is a partition ofA into controllable events(Ac) and uncontrollable (Auc) events. The observability
condition has been first introduced in [14] using a slightly different, but equivalent formulation.
This notion of observability is very different from the observability of linear systems. The first
attempt to capture this type of condition in an abstract setting goes back to [31]. There has been
yet another approach to the observability of DES, based on automata theoretic framework. A
necessary condition for a given specification represented by an automaton to be achieved has been
formulated in [1] using automata framework.

Definition 4.1. (Observability.) A partial languageK is said to be observable with respect to
another partial languageL (with K � L) and projectionP if for all s 2 K2 anda 2 Ac the
following implication holds true :

sa 2 L2; s0a 2 K2, andP (s) = P (s0) ) sa 2 K2:

Our aim is to find a relational characterization of observability. Unlike [9] we present first
definitions on automata representations ofK andL without specialization to relations onL. The
following auxiliary relation is needed.

Definition 4.2. (Observational indistinguishability relation onS.) A binary relationAux(S) on
S, calledobservational indistinguishability relationis the smallest relation satisfying:

(i) hs0; s0i 2 Aux(S)

(ii) If hs; ti 2 Aux(S) then8a 2 A : (s
P (a)
) s0 for somes0 andt

P (a)
) t0 for somet0 ) )

hs0; t0i 2 Aux(S)

From the definition of weak transitions it follows that (ii) is equivalent to (ii)’ and (iii)’ below:
(ii)’ If hs; ti 2 Aux(S) then : (s

"
) s0 for somes0 andt

"
) t0 for somet0 ) ) hs0; t0i 2 Aux(S)

(iii)’ If hs; ti 2 Aux(S) then8a 2 Ao : (s
a
! sa andt

a
! ta ) ) hsa; tai 2 Aux(S).

Aux(S) can be characterized by the following lemma.
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Lemma 4.1. For anys; s0 2 S: hs; s0i 2 Aux(S) iff there exist two stringsw;w0 2 K2 such that
P (w) = P (w0) ands = (s0)w ands0 = (s0)w0 .

Proof. (() Let s; s0 2 S such that there exist two stringsw;w0 2 K2 such thatP (w) = P (w0)
ands = (s0)w ands0 = (s0)w0 . Letw = w1 : : : wn andw0 = t1 : : : tm. Let P (w) = P (w0) =
a1 : : : ak. Thenn � k andm � k and there exists two increasing sequences of integers (indices)
ui � i; i = 1; : : : ; k andvi � i; i = 1; : : : ; k such thatai = wui andai = tvi . Since allai are

observable events we can writes0
P (a1):::P (ak)

=) s ands0
P (a1):::P (ak)

=) s0, whence by (ii) inductively
appliedhs; s0i 2 Aux(S).
()) Let hs; s0i 2 Aux(S). Then by the construction ofAux(S) there exista1; : : : ; ak 2 A such

thats0
P (a1):::P (ak)

=) s ands0
P (a1):::P (ak)

=) s0. Therefore there exist by definition of nondeterministic
weak transitions two stringsw;w0 with the same projection such thats = (s0)w ands0 = (s0)w0 .

Remark 4.2. Remark thatAux(S) is not in general an equivalence relation, because it might be
non transitive as is shown in the following example. However it is always symmetric and reflexive.
Such a relation is sometimes called a tolerance relation.

Example 1. TakeS = DK, whereK = (;; fa�; �g). ThenDK = fK;Ka;K�g. Then
Aux(DK) is not an equivalence relation, becauseK� = Ka� = f"g means thathK;K�i 2
Aux(DK) andhK� ;Kai 2 Aux(DK), whilehK;Kai 62 Aux(DK).

A natural question arises under which conditionsAux(S) is an equivalence relation. Recall
the concept of state-partition automaton from [6] and [5].

Definition 4.3. (State-partition automaton.) LetS = (S; ho; ti) be a partial automaton and let
Obs(S) = (Sobs; hoobs; tobsi) be its observer automaton. ThenS is said to be a state-partition
automaton if for allQ1; Q2 2 Sobs � Pwr(S) we have:Q1 6= Q2 ) Q1 \Q2 = ;.

A partial automatonS with initial states0 is a state-partition automaton if any two different
states of the observer are disjoint (as subsets ofS). In the case, where all states of the automatonS
are accessible froms0, this condition is equivalent to the statement that the states of the observer
automaton form a partition ofS. In our coalgebraic framework, the property of state-partition
automaton can be described in terms of deterministic weak derivatives (in the sense ofPwr(S)).
Namely,S is a state-partition automaton if8d; d0 2 P (l(s0)

2): (s0)d̂ 6= (s0)d̂0 ) (s0)d̂ \
(s0)d̂0 = ;. It is easy to prove that this condition is sufficient forAux(S) to be an equivalence
relation.

Proposition 4.3. If S is a state-partition automaton thenAux(S) is an equivalence relation.

Proof. Let S be a state-partition automaton. Let us show thatAux(S) is transitive. Takes; s0; s00

such thaths; s0i 2 Aux(S) andhs0; s00i 2 Aux(S). Let us show thaths; s00i 2 Aux(S). There
exist stringsv; v0; w;w0 such thatP (v) = P (v0), P (w) = P (w0), s = (s0)v, s0 = (s0)v0 ,
s0 = (s0)w0 , ands00(s0)w. Denoted = P (v) andd0 = P (w). Thens0 2 (s0)d̂ \ (s0)d̂0 . This
means that(s0)d̂ \ (s0)d̂0 6= ; and by definition of state-partition automaton(s0)d̂ = (s0)d̂0 . In
particular, there existsw00 with P (w00) = P (w) ands = (s0)w00 . Thushs; s00i 2 Aux(S).

However the opposite statement does not hold as the following example shows.
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Example 2. Put S = fs0; s1; s2g with the transition functiont(s0)(a) = s2; t(s0)(�) =
s1; t(s1)(�) = s2; t(s2)(�) = s1, the other transitions are undefined, and the output func-
tion can be arbitrary. ThenAux(S) = S2 is trivially an equivalence relation onS, butS is not a
state partition automaton, because the sets(s0)uo = S and(s0)â = fs1; s2g violate the condition
for S to be a state-partition automaton.

Lemma 4.1 implies thaths; s0i 2 Aux(S) iff there existsd 2 P (L) (d = P (w) = P (w0))
such thats 2 (s0)d̂ ands0 2 (s0)d̂, i.e. there exists a stateQ � S of the observer automaton
Obs(S) such thats 2 Q ands0 2 Q. This motivates the following definition.

Definition 4.4. Define for anys 2 S:
bscAux(S) = fs0 2 S : hs; s0i 2 Aux(S)g:

Let us now use a simpler notationbscAux if automatonS is supposed to be fixed. It is to be
expected that

Observation 4.4. The following properties are equivalent:

(i) Aux(S) is an equivalence relation

(ii) 8s; s0 2 S : hs; s0i 2 Aux(S) ) bscAux = bs0cAux.

(iii) 8s; s0 2 S : bscAux \ bs
0cAux 6= ; ) bscAux = bs0cAux.

Proof. (i) ) (ii) Let Aux(S) be an equivalence relation and take arbitrarys; s0 2 S such that
bscAux 6= bs0cAux. Assume that9q 2 S : q 2 bscAux n bs

0cAux, the other case can be treated
in a symmetric way. By definition ofb:cAux, hs; qi 2 Aux(S) andhq; s0i 62 Aux(S). Let us
show thaths; s0i 62 Aux(S). Suppose by contradiction thaths; s0i 2 Aux(S), then using the
fact thatAux(S) is symmetric and transitive,hs0; qi 2 Aux(S), hence alsohq; s0i 2 Aux(S), a
contradiction. Thereforehs; s0i 62 Aux(S).
(ii) ) (iii) Let the implication (ii) hold true. We show (iii): if fors; s0 2 S : bscAux \
bs0cAux 6= ;, then there existsq 2 S such thatq 2 bscAux \ bs

0cAux, i.e. hs; qi 2 Aux(S) and
hq; s0i 2 Aux(S). Thus from (ii) we havebscAux = bqcAux = bs0cAux, which was to be shown.
(iii) ) (i) Let the implication (iii) hold true. Takehs; s0i 2 Aux(S), andhs0; s00i 2 Aux(S).
Thens0 2 bscAux \ bs00cAux 6= ;. It follows thatbscAux = bs00cAux. But s 2 bscAux = bs00cAux,
i.e. hs; s00i 2 Aux(S) according to the definition ofbs00cAux. This proves the transitivity of
Aux(S).

Note that in factbscAux = [fd: s2(s0)d̂g (s0)d̂. It follows thaths; s0i 2 Aux(S) iff fs; s0g �
Q, for someQ 2 Sobs, which is equivalent by definition of the observer to9d 2 A�

o : fs; s0g �
(s0)d̂.

One could ask for conditions that ensure thatAux(S) is an equivalence relation without the
use ofAux(S) itself. Let M = l(s0)

2 be the closed behavior generated bys0. There is the
following condition using the states ofObs(S):

Lemma 4.5. Aux(S) is an equivalence relation iff8d1; d2 2 P (M) : (s0)d̂1 \ (s0)d̂2 6= ; )
(8s1 2 (s0)d̂1 and8s2 2 (s0)d̂2) 9d 2 P (M) : fs1; s2g � (s0)d̂.

Proof. ()) Let Aux(S) be an equivalence relation and suppose by contradiction that9d1; d2 2
P (M): (s0)d̂1\(s0)d̂1 6= ; and9s1 2 (s0)d̂1 and9s2 2 (s0)d̂2): 8d 2 P (M) : fs1; s2g 6� (s0)d̂.
It means that there existsq 2 S: q = (s0)v1 = (s0)v2 , whereP (v1) = d1 andP (v2) = d2, i.e.
hs1; qi 2 Aux(S) andhq; s2i 2 Aux(S). By the transitivity ofAux(S), hs1; qi 2 Aux(S) and
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hq; s2i 2 Aux(S) implies hs1; s2i 2 Aux(S), i.e. there existsd 2 P (M): s1 2 (s0)d̂ and
s2 2 (s0)d̂, a contradiction with8d 2 P (M) : fs1; s2g 6� (s0)d̂. Thus the implication holds true.
(() Assume the implication on the right hand side holds true,hs; s0i 2 Aux(S), andhs0; s00i 2
Aux(S). By Lemma 4.1 there exists stringsv; v0; w;w0 2 M such thats = (s0)v; s

0 = (s0)v0 =
(s0)w0 ; s00 = (s0)w, whereP (v) = P (v0), andP (w) = P (w0). Denote byd1 = P (v) and
d2 = P (w). Thens0 2 (s0)d̂1 \ (s0)d̂2. Therefore fors 2 (s0)d̂1 ands00 2 (s0)d̂2 there exists
d 2 P (M): s 2 (s0)d̂ ands00 2 (s0)d̂, i.e. hs; s00i 2 Aux(S) using Lemma 4.1, andAux(S) is an
equivalence relation.

Notice that the condition of this Lemma is similar but somewhat weaker than the condition
required forS to be a state-partition automaton, which is only a sufficient condition forAux(S)
to be an equivalence relation.

Our aim now is to provide a coalgebraic characterization of observability. Since observabil-
ity is a property of the second (closed) components ofK andL, we can assume thatS1 =
(S1; ho1; t1i) is a partial automaton with initial states0 2 S that representsK in the sense
K = l1(s0), l1 : S1 ! L being the unique behavior homomorphism defined by finality of
L. Moreover, sinceK � L, we can assume thatS1 is a subautomaton ofS = (S; ho; ti) with
L = l(s0) (l : S ! L is the behavior homomorphism) ands0 their common initial state. Let
the transition function ofS be denoted by!, i.e. s

a
! sa meanssa = t(s)(a) and similarly the

transition functiont1 of S1 is denoted by!1, i.e. s
a
!1 s

1
a meanss1a = t1(s)(a). Notice also that

due to the requirement thatS1 is a subautomaton ofS, we have in facts1a = sa 2 S1. It means
that the superscript1 can be dropped here. Let us introduce observability relations, in which the
observational indistinguishability relation is involved.

Definition 4.5. (Observability relation.) A binary relationO(S1; S) on S1 � S is called the
observability relationif for any hs; ti 2 O(S1; S) the following items hold:

(i) 8a 2 A : s
a
!1 sa ) t

a
! ta andhsa; tai 2 O(S1; S)

(ii) 8a 2 Ac : t
a
! ta and(9s0 : hs; s0i 2 Aux(S1) : s

0 a
!1 s

0
a) ) s

a
!1 sa andhsa; tai 2

O(S1; S):

Remark that (ii) can be expressed using the setbscAux(S1) introduced above: the condition

9s0 : hs; s0i 2 Aux(S1) : s0
a
!1 s

0
a can be replaced by the simpler onebscAux(S1)

a
!1, where

!1 is now to be interpreted inPwr(S1). Fors 2 S1 ands0 2 S we writes �O(S1;S) s
0 whenever

there exists an observability relationO(S1; S) onS1 � S such thaths; s0i 2 O(S1; S): Now we
are ready to prove:

Theorem 4.6. A (partial) languageK is observable with respect toL (K � L) and P iff
s0 �O(S1;S) s0.

Proof. ()) LetK be observable with respect toL andP such thatK � L. Denote

O(S1; S) = fh(s0)u; (s0)ui 2 S1 � S j u 2 K2 g � S1 � S:

Note that some of pairs inO(S1; S) can be equal. Indeed, it is possible that there existsu; v 2
K2 : (s0)u = (s0)v. But we will show that this is not a problem for our proof. Let us show that
O(S1; S) is an observability relation. Lethq; ri 2 O(S1; S). Because of the definition ofO(S1; S)
we can assume thatq = (s0)s for somes 2 K2 andr = q. We must show that conditions (i) and
(ii) are satisfied.
(i) Let q

a
!1 for a 2 A. Clearlyq

a
!, becauseS1 is a subautomaton ofS and it is immediate from
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the definition ofO(S1; S) thathqa; qai 2 O(S1; S).
(ii) Let q

a
! for a 2 Ac and9q0 : hq; q0i 2 Aux(S1) : q0

a
!1. Then by Lemma 4.1 there

exist two stringss0; s00 2 K2 such thatP (s00) = P (s0), q = (s0)s00 , andq0 = (s0)s0 . Now q0
a
!1

implies thats0a 2 K2. Recall thats0 2 K2, becauseq0 = (s0)s0 . Fromq
a
! andq = (s0)s00

follows s00a 2 L2 and by application of the observability ofK with respect toL andP we deduce
s00a 2 K2, i.e. a 2 l ((s0)s00)

2, which means thatq = (s0)s00
a
!1. It follows from (i) that

hqa; qai 2 O(S1; S). We see now that considerings00 instead ofs, whereq = (s0)s = (s0)s00 did
not make any difference.
(() Let s0 �O(S1;S) s0. Let us show thatK is observable with respect toL andP . For this
purpose, lets 2 K2, s0a 2 K2 for a 2 Ac, sa 2 L2, andP (s) = P (s0). Thens 2 K2 \ L2,
i.e. (s0)

s
!1 and(s0)

s
!, whence from (i) of Definition 4.5 inductively applied(s0)s �O(S1;S)

(s0)s. SinceK2 is prefix closed,s0 2 K2 = l1(s0)
2, we haves0

s0
!1 (s0)s0 and according to

Lemma 4.1 we haveh(s0)s; (s0)s0i 2 Aux(S1). Now we have(s0)s
a
! and(s0)s0

a
!1, where

recallh(s0)s; (s0)s0i 2 Aux(S1). By (ii) of the definition of observability relation we obtain that
(s0)s

a
!1, i.e. (s0)

sa
!1, which means thatsa 2 l1(s0)

2 = K2.

Recall that the tests for observability proposed in [7] or [5] are to be made for all states of
observer automatonObs(S1) that are in fact different weak derivatives(s0)d̂; d 2 P (l1(s0)

2). It
would mean that the test for observability requires the construction of the observer. We have just
shown that a test for observability might not rely on the observer, but onAux(S1) instead. The
test for condition (ii) of observability relation can be made for differentbscAux(S1). Recall that
bscAux(S) = [fd: s2(s0)d̂g (s0)d̂.

5 Normal relations

In this section we show an application of the above introduced notion of weak transition to the
characterization of normality of languages introduced in supervisory control of DES with partial
observations. For the sake of completeness, the concept of normality ([14], [4], [6], etc.) is stated.

Definition 5.1. (Normality.) LetK;L 2 L: K � L. K is said to be(L;P )-normal ifK2 =
L2 \ P�1(P (K2)).

Property 5.1. K is (L;P )-normal iffs 2 K2; s0 2 L2, andP (s) = P (s0) ) s0 2 K2.

Proof. SinceK � L, normality is equivalent toL2 \ P�1(P (K2)) � K2, which is equivalent to
the statement.

From the definitions of strong and weak transitions it follows:

Corollary 5.2. K � L is (L;P )-normal iff8w 2 A� : (L
w
! andK

P (w)
) ) ) K

w
! :

Normality is preserved by the unobservable reach sets.

Proposition 5.3. If a languageK is (L;P )�normal thenKuo is (Luo; P )�normal.

Proof. Using Corollary 5.2 it is sufficient to show that8w 2 A�: Luo
w
! andKuo

P (w)
) implies that

Kuo
w
!. Recall thatLuo = [fL� j � 2 L2 andP (�) = "g:Assume thatLuo

w
! andKuo

P (w)
) , i.e.

there exist�; � 0 2 A�
uo such thatL�

w
! andK� 0

P (w)
) . Hence,L

�w
�! andK

P (� 0w)
=) , thusK

P (�w)
=) ,
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becauseP (� 0w) = P (�w). It follows thatK
�w
�! after the application of(L;P )�normality of

K. But it means thatK�
w
!. SinceK� � Kuo we obtain finally thatKuo

w
!, which was to be

shown.

The following fact will be useful.

Property 5.4. Normality is preserved by (strong) transitions, i.e. ifK is (L;P )-normal anda 2 A
such thatK

a
! andL

a
! thenKa is (La; P )-normal.

Proof. It is easily seen from Corollary 5.2. Indeed, ifLa
w
! thenL

aw
! and ifKa

P (w)
) then clearly

K
P (aw)
) , whence by(L;P )�normality ofK we deduce thatK

aw
!, i.e.Ka

w
!.

Remark 5.5. It is interesting to notice that(L;P )- normality is preserved by deterministic weak
transitions. It follows from Property 5.4, Proposition 5.3 and Proposition 3.3.

Now we introduce a binary relation that corresponds to the normality.

Definition 5.2. (Normal relation.) Given two (partial) automataS1 = (S1; ho1; t1i) andS =
(S; ho; ti) as in Section 4 with initial states0 2 S, a binary relationN(S1; S) onS1�S is called
a normal relationif for any hs; ti 2 N(S1; S) the following items hold:

(i) 8a 2 A : s
a
!1 sa ) t

a
! ta andhsa; tai 2 N(S1; S)

(ii) 8a 2 Ao : t
a
! ta and(9s0 : hs; s0i 2 Aux(S1) : s

0 a
!1 s

0
a) ) s

a
!1 sa:

(iii) 8u 2 Auo : t
u
! tu ) s

u
!1 su.

Remark 5.6. Recall that (ii) can be expressed using the setbscAux(S1) : the condition9s0 : hs; s0i 2

Aux(S1) : s
0 a
!1 s

0
a can be replaced by the simpler onebscAux(S1)

a
!1.

Fors 2 S1 andt 2 S we writes �N(S1;S) t whenever there exists a normal relationN(S1; S)
onS1 � S such thaths; ti 2 N(S1; S): Now we can prove:

Theorem 5.7. A (partial) languageK is (L;P )�normal iffs0 �N(S1;S) s0.

Proof. ()) LetK be(L;P )�normal. Denote

R = fh(s0)u; (s0)ui j u 2 K2 g � S1 � S:

Let us show thatR is indeed a normality relation. Assume thathq; ri 2 R. From the form ofR
it follows that we can assume thatq = r = (s0)s for somes 2 K2. The same remark as in the
proof of Theorem 4.6 applies. Namely,s 2 K2 such thatq = r = (s0)s might not be uniquely
determined. Again we can show that the choice is not important. Nevertheless, since the argument
is the same as in the proof of Theorem 4.6, we assume thats has been chosen in the way Lemma
4.1 in (ii) below can be correctly applied.
(i) This part is the same as above in the proof of Theorem 4.6.
(ii) Let a 2 Ao be such thatr = q

a
! and9q0 : hq; q0i 2 Aux(S1) with q0

a
!1. Then by

Lemma 4.1 there exists a strings0 2 K2 = l1(s0)
2 such thatP (s) = P (s0) andq0 = (s0)s0 .

Thus we have(s0)s0
a
!1, whences0a 2 K2 and by normality we deducesa 2 K2, because also

sa 2 L2 = l(s0)
2 (from q = (s0)s

a
!).

(iii) Let u 2 Auo andq = (s0)s
u
!. Thus we have andsu 2 l(s0)

2 = L2, whereP (su) = P (s),
and recall thats 2 K2, whence by normality (Property 5.1)su 2 K2, i.e. q = (s0)s

u
!1.
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(() Now letR be a normal relation onS1 � S andhs0; s0i 2 R. It will be shown thatK
is (L;P )�normal using Corollary 5.2. Let us prove by induction on the structural complexity of

strings that for eachw 2 A� : L
w
! andK

P (w)
) impliesK

w
!. Forw = " it is trivially true,

becauseK2 is prefix closed (i.e.K
"
!). Suppose now that forw 2 A� the above implication

holds true. LetL
wa
! andK

P (wa)
) . This implies in particular thatL

w
! andK

P (w)
) , hence by the

induction hypothesisK
w
!. Sincehs0; s0i 2 R, by inductive application of (i) of the definition

of normal relation we obtain thath(s0)w; (s0)wi 2 R. Now suppose firsta 2 Ao andLw
a
!

andK
P (wa)
) . The latter means by definition of nondeterministic weak transition that there exists

v 2 A� : P (v) = P (w) andK
v
! K 0 P (a)) , whereK 0 = Kv. Moreover,v (andK 0) can be chosen

such thatK 0 a
!. Indeed,K 0 P (a)) means by definition there exists�; � 0 2 A�

uo such thatK 0 �a�
0

! .
Thus, it is sufficient to considerK 00 = K 0

� andv� rather thenv, because nowK 00 = K 0
�

a
!. But

P (v�) = P (v) = P (w). NowLw
a
! gives(s0)w

a
! andv 2 K2 with Kv

a
! impliesva 2 K2,

i.e. (s0)v
a
!1. By Lemma 4.1h(s0)w; (s0)vi 2 Aux(S1), i.e. by application of (ii) of normal

relation we obtain(s0)w
a
!1, i.e. K

wa
!. In the casea 2 Auo the property (iii) gives the same

result. Indeed, we simply obtain thatLw
a
!, i.e. (s0)w

a
! implies by (iii) of the definition of

normal relations that(s0)w
a
!1. But this means thatKw

a
!.

Let us recall here the concept of control relation introduced in [20]. LetAuc be the subset of
uncontrollable events. We use the following stronger version of control relations with condition
(i) strengthened to inclusion.

Definition 5.3. (Control relation.) Given two partial automataS1 = (S1; ho1; t1i) and S =
(S; ho; ti) as above, a binary relationC onS1�S is called acontrol relationif for anyhs; ti 2 C
the following items hold:

(i) 8a 2 A : s
a
!1 sa ) t

a
! ta andhsa; tai 2 C

(ii) 8u 2 Auc : t
u
! tu ) s

u
!1 su andhsu; tui 2 C.

It has been shown in [20] that

Theorem 5.8. A (partial) languageK is controllable with respect toL andAuc iff there exists a
control relationR � S1 � S such thaths0; s0i 2 R.

In the above definition,S1 corresponds to the closed-loop system consisting of the plant and
the supervisor andS corresponds to the open-loop plant. From Theorem 4.6 and Theorem 5.7
after comparing the definitions of observability and normal relations it follows immediately the
well known fact that normality implies observability. More precisely:

Corollary 5.9. K is (L;P )�normal iffK is observable with respect toL andP and controllable
with respect toL andAuo. In particular, we obtain the following well known implication. IfK is
observable with respect toL andP , controllable with respect toL andAuc, andAc � Ao (i.e.
Auo � Auc), thenK is (L;P )-normal.

Finally let us compare our result with that in [7]. The test for normality in [7] is made for all
classes introduced in that paper that are in fact different weak derivatives(s0)d̂; d 2 P (K). It
means that their test for observability and/or normality requires the construction of an observer.
It is known [30] that these tests can be done in polynomial time. We have shown that these
tests do not rely on the observer, but onAux(S1) instead in exactly the same way as the test for
observability.
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6 Supremal normal and controllable sublanguages

It is well known that the supremal observable sublanguage of a given language does not always
exist. On the other hand, supremal normal and therefore also supremal controllable and normal
sublanguages of a given language do exist. Algorithms for their computation have been presented
in [6], [7], and [4]. The algorithm in [7] has been developed using the invariance properties of
equivalence relations induced on a given language by a natural projection. The concept of active
event set of a given state or a subset of states (corresponding to an equivalence class) is used.
However, this concept can be captured in a more natural way using the coalgebraic structure of
partial automata.

6.1 Construction of supremal normal and controllable sublanguages using normal
relations

Given two (ordinary and not necessarily prefix closed) languagesK andL such thatK � L, let us
consider partial automataS0 = (S0; ho0; t0i) andS = (S; ho; ti) representingK andL in the sense
made precise below and such thatS0 is a subautomaton ofS with s0 their common initial state.
Let l0 : S0 ! L andl : S ! L be the associated behavior homomorphisms, whereK = (l0(s0))

1

andL = (l(s0))
1. Recall that such a representation with subautomaton always exists [6]. Let

the transition function ofS be denoted by!, i.e. s
a
! sa meanssa = t(s)(a) and similarly the

transition functiont0 of S0 is denoted by!0 , i.e. s
a
!0 sa meanssa = t0(s)(a). This notation is

possible, becauseS0 is a subautomaton ofS. Moreover we can assume without loss of generality
thatS0 is a trim automaton.

We consider normal relations onS0 � S. Theorem 5.7 suggests a test for normality. We start
with includinghs0; s0i 2 N(S0; S) and we continue by adding new states using (i) of the defini-
tion of normal relation. Every time a new state is included we test conditions (ii) and (iii), either
these conditions are satisfied and we continue the construction ofN(S0; S) or one of them is not
satisfied, in which case the procedure aborts and the conclusion is thatK is not(L;P )�normal.
It is obvious that if this procedure is never aborted, it leads to the diagonal relation onS0, denoted
by diag(S0), becauseS0 is a trim subautomaton ofS. In this casediag(S0) is a normal relation
onS0 � S proving thatK is (L;P )-normal. Thus diagonal normal relations are of special interest
for testing the normality of a language and computing supremal normal sublanguages. Conditions
(ii) and (iii) of normal relations can be reformulated:

(ii) 8s 2 S0 � S and8a 2 Ao : (s
a
! sa andbscAux(S0)

a
!0) ) s

a
!0 sa:

(iii) 8s 2 S0 � S and8u 2 Auo : s
u
! su ) s

u
!0 su.

The procedure for computation of the supremal normal sublanguage can now be easily devised.
It will consist in removing some strings that cause the violation of conditions (ii) and (iii) above.
This amounts to removing some states and edges from automatonS0, which is made by Algorithms
1 and 2.

Note that condition (iii) of the definition of normal relation is just the ”controllability” con-
dition with respect toAuo instead ofAuc that appears in the definition of control relation [20].
Therefore, the first step (algorithm) of our computation will be similar to the case of complete
observations, i.e. the removal of certain states that violate our ”extended controllability” condition
(iii).

Now let us devise an algorithm that ensures condition (iii) of normality, which is of the same
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kind as (ii) of control relations. Therefore for computation of supremal normal and controllable
sublanguages we can take care of (ii) of controllability and (iii) of normal relations at the same
time and use a natural extension of the algorithm presented in [20].

LetR = fh(s0)w; (s0)wi j w 2 K � Lg � S0�S. ClearlyR is a diagonal relation onS0, i.e.
R = diag(S0) and it carries an automaton structure as given in [20]. Recall that forht; ti 2 R we
put ht; ti

a
!R ht; tia iff t

a
!0 ta in S0, which impliest

a
! ta (becauseS0 is a subautomaton ofS),

in which caseht; tia = hta; tai. The output function plays no role here, it can be arbitrary. Now
we can repeat the algorithm from [20] forR.

Algorithm 1. Define the following operator that maps any diagonal relationH � S0 � S to

�(H) = fhs; si 2 H j 8u 2 Auc [ Auo : s
u
!) s

u
!0 andhsu; sui 2 H):g

We putR̂ =
T
i�0 �i(R):

ThenR̂ = diag(S1) for someS1 � S0 andR̂ is the greatest fixed point of� that is contained
in R :

Lemma 6.1. Let� andR̂ are as defined above. Then 1.R̂ = �(R̂) and
2. For anyR0 � R: If R0 � �(R0) thenR0 � R̂:

Proof. The operator� is monotone (as a set operator with respect to inclusion), i.e. there exists a
fixpoint according to [26]. A detailed proof can be found in [20].

The construction in Algorithm 1 yields the supremal sublanguage ofK that is controllable
with respect toL andAuc [Auo: More precisely, we have the following theorem:

Theorem 6.2. LetK = l0(s0)
1, L = l(s0)

1, and automataR andR̂ be as above. Thenhs0; s0i 2
R̂ and l̂(hs0; s0i)1 = E, wherel̂ : R̂ ! L is the unique homomorphism describing the behavior
of states inR̂ andE is the supremal sublanguage ofK that is controllable with respect toL and
Auc [ Auo.

Proof. The same as the proof of Theorem 9.2 [20] with the only difference thatAuc is replaced
now byAuc [Auo.

The effect of the procedure described in Algorithm 1 is to remove the states of automatonS0

that violate condition (iii). It is clear that Algorithm 1 stops after a finite number of iterations for
regular languagesK andL represented by finite automataS0 andS, respectively. The represen-
tationR̂ of E (supremal sublanguage ofK that is controllable with respect toL andAuc [ Auo)
given by Algorithm 1 is often not suitable for the forthcoming algorithm. Notice that in Algo-
rithm 1 it was not necessary thatS0 is state-partition automaton. However, Algorithm 1 must be
followed by another algorithm in order to ensure that condition (ii) of normal relation holds and
this property of representation will be required.

Let us suppose thatS1 is a representation ofE such thatS1 is a subautomaton ofS andS1 is a
state-partition automaton. This will be needed for the correctness of the algorithm below. Denote
by l1 : S1 ! L the behavior homomorphism ofS1, i.e. l1(s0)1 = E.

Remark 6.3. Note thatS can now be a different representation than the one resulted from Algo-
rithm 1, because of the requirements thatS1 is a subautomaton ofS and thatS1 is a state-partition
automaton. Such representationsS1 as subautomaton ofS can be constructed using the procedure

18



from [7] that ensures the condition ofS1 being a state-partition automaton. It is not difficult to
see that in automatonS1 = (S1; ho1; t1i) we have

(C) 8s 2 S1 : 8u 2 Auc [ Auo : (s
u
!) s

u
!1):

This means that the controllability condition does not depend on the particular representation.
This is very important, because in Algorithm 1 smaller representations ofK andL can be used,
while the condition (iii) of normal relations remains valid for representationsS1 andS that we
use in Algorithm 2.

Thus we consider separately (ii) of normal relations in Algorithm 2 below. We denote by
Acc(S) the accessible part of an automatonS and make the following construction.

Algorithm 2. Construct the automaton( ~S; h~o; ~ti) in the following way.
1) We put~S = S1.
2) ~t : ~S ! (1 + ~S)A with

for a 2 Auo: q 2 ~S: ~t(q)(a) is defined ifft1(q)(a) is defined, in which case~t(q)(a) =
t1(q)(a), and:

for a 2 Ao : ~t(q)(a) is defined iff8s 2 bqcAux(S1) : (s
a
!) s

a
!1);

in which case~t(q)(a) = t1(q)(a).
3) The output function is unchanged:~o = o1.
4) Put( ~S; h~o; ~ti) := Acc( ~S; h~o; ~ti).

Algorithm 2 just states that for any stateq 2 ~S an outgoing edge labeled bya 2 Ao is to be

removed (of course only ifq
a
!1), whenever there existss 2 bqcAux(S1) : s

a
! ands

a
6!1 in

S1. Intuitively it means that we remove an observable a-transition from alls 2 bqcAux(S1) at the
same time, which makes the resulting language normal. However, there might be a conflict if there
existsq0 2 ~S such thathq; q0i 2 Aux(S1) (i.e. q 2 bq0cAux(S1)) andbqcAux(S1) 6= bq0cAux(S1).
Then it might happen that for somes 2 bqcAux(S1) \ bq

0cAux(S1) we should removea 2 Ao from
t1(q) (regarding from the classbqcAux(S1)) and on the other hand we should keep it regarding
from bq0cAux(S1). From this characterization the importance of the assumption thatAux(S1) is
an equivalence relation is easily seen. Indeed, ifAux(S1) is an equivalence relation then for any
q0 2 ~S such thathq; q0i 2 Aux(S1) we obtain according to Observation 4.4 thatbqcAux(S1) =
bq0cAux(S1), i.e. the above conflict situation cannot happen. Nevertheless, a stronger condition
for S1 being a state-partition automaton is required to quarantee the supremality of the normal
sublanguage represented by the resulting automatonAcc( ~S; h~o; ~ti). Note also that the procedure
described in Algorithm 2 can lead to removal of certain states that become inaccessible from the
initial state after removing some observable transitions.

Algorithm 1 followed by Algorithm 2 ensure the conditions of normal relations are fulfilled.
Unlike Algorithm 1, which consists in iterative application of the operator�, Algorithm 2 is a
monolithic one. However there is an intrinsic difficulty concerning the computation of supremal
controllable and normal sublanguages. It is possible that the diagonal relation of the resulting
automaton~S might not be a control relation, i.e. condition (ii) of control relation might be vi-
olated due to the removal of some uncontrollable edges in Algorithm 2. If the supremal normal
sublanguage is of interest (i.e. the condition in the definition of� is required to be valid only for
u 2 Auo instead ofu 2 Auo [Auc), Algorithm 2 does not affect what has been done in Algorithm
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1 due to the fact that in our definition of normal relations we have separated the conditions for
observable events (ii) and unobservable events (iii). Therefore in Algorithm 2 we remove only
observable transitions from states in~S and condition (iii) will hold for ~S, i.e. its diagonal relation
will be a normal relation on~S�S. However, if the supremal normal and controllable sublanguage
is of interest, then Algorithm 2 may affect the condition (iii) for someu 2 Ao \ Auc. Only in the
caseAo � Ac, the supremal normal and controllable sublanguage is obtained after Algorithm 1
and Algorithm 2 have been applied. This explains why in general an iterative scheme that consists
in consecutive repeating of these algorithms in the same way as in [6] or [5] is used. In the next
section we show that it is not necessary to consider such an iterative scheme if we implement Al-
gorithm 1 as a monolithic algorithm instead of an iteration. In the proof of the following theorem
we use the notation!0 for transition function~t of ~S. Recall that transition functionst andt1 of S
andS1 are denoted through! and!1, respectively.

Now we are interested in computation of supremal(L;P )�normal sublanguage ofK. We
need the following modification of Algorithm 1, where the condition in the definition of operator
� is required only for allu 2 Auo instead of for allu 2 Auc [Auo.
Algorithm 1’. Define the following operator that maps any diagonal relationH � S0 � S to

�(H) = fhs; si 2 H j 8u 2 Auo : s
u
!) s

u
!0 andhsu; sui 2 H):g

We putR̂ = \i�0 �
i(R):

Theorem 6.4. Algorithm 1’ followed by Algorithm 2 yields the supremal(L;P )�normal sublan-
guage ofK in the following sense:~l(s0)1, where~l : ~S ! L is the unique behavior homomorphism,
is the supremal(L;P )-normal sublanguage ofK.

Proof. The coinductive proof principle is used. Note that step 4) of Algorithm 2 is not used, be-
cause in fact the behavior homomorphism~l takes automatically care of the accessibility operation.
First we show that~l(s0)1 is a(L;P )-normal sublanguage ofK. To prove the normality of~l(s0)1

we show that the following relation is a normality relation on~S � S. Then~l(s0) is (L;P )-normal
sublanguage ofK according to theorem 5.7. Since normality is a property of the prefix closure,
this means that~l(s0)1 is (L;P )�normal sublanguage ofK in the classical framework.

R = fh(s0)u; (s0)ui j u 2 ~l(s0)
2 g:

Take a pairh(s0)v; (s0)vi 2 R for somev 2 ~l(s0)
2.

(i) If (s0)v
a
!0 for a 2 A, then clearly by construction of Algorithm 2(s0)v

a
!. It is clear from

the definition ofR thath(s0)va; (s0)vai 2 R.
(ii) Let a 2 Ao be such that(s0)v

a
! and let there exists0 2 ~S: s0 �Aux( ~S) (s0)v with s0

a
!0 .

By Lemma 4.1 there exist two stringsw;w0 2 A� such thatP (w) = P (w0), (s0)v = (s0)w, and
s0 = (s0)w0

a
!. According to the construction of Algorithm 2 for anys �Aux(S1) (s0)w0 there

must bes
a
! ) s

a
!1. In order to show that(s0)v

a
!0 it must be that for anyq �Aux(S1) (s0)v

there must beq
a
!) q

a
!1. But using the fact thatAux(S1) is transitive (follows from 4.3) and

the fact thats0 �Aux( ~S) (s0)v implies thats0 �Aux(S1) (s0)v we obtain thaths0; qi 2 Aux(S1):

But this just means that for anyq �Aux(S1) (s0)v we haveq
a
!) q

a
!1, i.e. (s0)v

a
!0 .

(iii) Let a 2 Auo be such that(s0)v
a
!. Then according to Algorithm 1’ we have(s0)v

a
!0 ,

becausea 2 Auo and ~S � S1. This shows together with (i) and (ii) thatR is a normality relation
on ~S � S.
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We show finally that~l(s0)1 is the supremal(L;P )�normal sublanguage ofK. Let N be a
(L;P )�normal sublanguage ofK. We construct an auxiliary partial language(N; �N) that is for
the sake of simplicity also denoted byN . Similarly partial languages corresponding toK andL,
i.e. (K; �K) and(L; �L), respectively, are denoted byK andL. This abuse of notation should not
lead to any confusion. Then it is sufficient to show that

R = fhNu; ~l(s0)ui j u 2 N2g

is a simulation relation. Then we will have(N; �N) � ~l(s0), i.e. in particularN � ~l(s0)
1. Take an

arbitrary pairhNw; ~l(s0)wi 2 R for somew 2 N2.
(i) Let Nw #, i.e. Kw #, and therefore~o((s0)w) = o1((s0)w) = 1 according to point 3) of
Algorithm 2. But this is equivalent to~l(s0)w # as a partial language.
(ii) Let Nw

a
! for a 2 Ao. Then alsoKw

a
!, becauseN � K (the inclusion holds for both

ordinary and induced partial languages). Thus,Lw
a
! as well. This means that(s0)w

a
!1 and

(s0)w
a
!. In order to show that~l(s0)w

a
! for a 2 Ao, i.e. (s0)w

a
!0 we must prove that for any

q �Aux(S1) (s0)w: q
a
! ) q

a
!1. There existv; v0 : P (v) = P (v0) such thatq = (s0)v0

and(s0)w = (s0)v. SinceS1 is a state-partition automaton and(s0)w is in two possibly different
states of the observer automaton, we conclude by the property of state-partition automaton that
these two states of the observer automaton coincide. But this means that there existsw0 2 A� such
thatP (w) = P (w0) andq = (s0)w0 . Now q

a
! means thatw0a 2 L2. Using normality ofN it

follows fromwa 2 N2 andw0a 2 L2 thatw0a 2 N2. Thereforew0a 2 K2 (becauseN � K),
which means thatq

a
!1. The casea 2 Auo is much easier. Again,Nw

a
! implies thatKw

a
!.

We show that~l(s0)w
a
!, i.e. (s0)w

a
!0 . It follows from Algorithm 1’ that(s0)w

a
! implies that

(s0)w
a
!1, whence(s0)w

a
!0 , because Algorithm 2 does not affect transitions labeled bya 2 Auo.

Note that sinceN was an arbitrary(L;P )�normal sublanguage ofK and~l(s0)1 was shown to
be a(L;P )�normal sublanguage ofK, ~l(s0)1 must be the supremal(L;P )�normal sublanguage
of K.

Now we illustrate the computation of the supremal(L;P )�normal sublanguage ofK by the
following simple example.

Example 3. LetA = fa; �g with Ao = fag, K, andL are given by automata representations
below. We assume that all states are marked, which does not play any role for normality.

K L K K�a�

	�
�
�� I@

@
@
�

	�
�
�� I@

@
@
�

	�
�
��

�
�
�� � @

@
@
�
R

K�
a - K�a L�

a - L�a K�
a - K�a

� a
K�a��

L�aa

a
?

The original representation ofK is not a state-partition automaton. The corresponding state-
partition automaton representing the same languageK, i.e. the synchronous product
S1 := hKi kAo Obs(hKi) is drawn on the right ofK andL. The corresponding representationS
of L such thatS1 is a subautomaton ofS is given below together with the output of Algorithm 2,
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denoted byU .

L L�a� U U�a�

	�
�
��

�
�
�� � @

@
@
�
R 	�

�
��

�
�
�� � @

@
@
�
R

L�
a - L�a �

a
L�a�� U�

a - U�a U�a��

L�aa

a
?

Notice thatK is controllable with respect toL andAuo, i.e. the action of Algorithm 1’ is empty
in this case. The Algorithm 2 then removes the second transition labelled bya, yielding thusU ,
which is easily seen to be the supremal(L;P )�normal sublanguage ofK .

To conclude, we present a coalgebraic interpretation of the algorithm given in [7]. The algo-
rithm given therein when interpreted in our framework yields a partial automaton�S = ( �S; h�o; �ti),
where �S = f[d2G (s0)d̂g with G = fd 2 P (K) : 8s 2 (s0)d̂ : 8u 2 Auo : s

u
! ) s

u
!1g,

which is the first part of the algorithm, and the definition of�o : �S ! 2 and�t : �S ! (1 + �S)A is
the second part. The output function is unchanged, i.e.�o = o1j �S. For anyq 2 �S there exists by
definition of �S ad 2 G: s 2 (s0)d̂. Using this,
for q 2 �S anda 2 Auo �t(q)(a) is defined ifft1(q)(a) is defined, in which case�t(q)(a) = t1(q)(a),
and

for a 2 Ao : �t(q)(a) is defined iff8s 2 (s0)d̂ :

(s
a
!) s

a
!1); in which case�t(q)(a) = t1(q)(a):

The construction of�t is the second part of their algorithm, where the condition for�t to be de-
fined is similar to our condition 2 of Algorithm 2, but expressed using deterministic weak deriva-
tives. An important feature is thatS1 is a state-partition automaton, thusd 2 P (K)2 such that
q 2 (s0)d̂ is for any state inq 2 ~S uniquely determined. Remark that the last procedure which is
taken from [7] is not correct ifS1 is not a state-partition automaton.

Our procedure for computation of the supremal(L;P )�normal sublanguage ofK consists in
Algorithm 1’ followed by Algorithm 2. We show that it is different from that described in [7] in
both steps. Implicitly, the two steps are also present in that paper, the first one is the construction
of carrier set (removal of some states) and the second one consists in removing some observable
transitions.

It has been shown that for regular languagesK andL there exists always a finite automaton
representation that satisfies the condition of state-partition automaton. Namely, the synchronized
producthKiP := hKi k Obs(hKi) is a state-partition automaton as follows from results in [6].
In particular,Aux(hKiP ) is an equivalence relation according to Proposition 4.3.

Remark that this procedure is correct only if there is no conflict between different states of
Obs(S1). This means thatS1 must be a state-partition automaton.

Finally, let us compare our algorithms with those from [7]. Our algorithm for computation of
supremal normal sublanguages (Algorithm 1’ followed by Algorithm 2) differs from that presented
in [7] in both steps. The first step (construction of�S) differs from our Algorithm 1’ in that we do
not necessarily remove in Algorithm 1’ all states in(s0)d̂ for d 62 G as can be shown in a simple
example. However these states are automatically removed by Algorithm 2, while producing the
accessible part of~S. This means that there is some saving on computational complexity using our
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algorithm comparing to that presented in [7], because Algorithm 1 can use minimal representa-
tions, the computation of the setG and the automaton�S from [7] is not necessary. Nevertheless,
both algorithms suffer from the exponential complexity in the worst case, because they rely on the
subset constructions related to partial observations.

The concepts developed in this paper lead to new algorithms for supervisory control with
partial observations presented without details in [8]. In that paper the concept of normality of
a language with respect to a plant is also captured by different relations. These are introduced
on finite automata representations in order to make the computations feasible. Our approach is
inspired by the work of Cho and Marcus [7], where algebraic characterizations using the concept
of invariant relations have been presented. The main advantage of the coalgebraic approach is
that the formulations using relations provide a canonical way how to check different properties
of languages (like controllability, observability, and normality). Since all these relations are in
fact different weaker forms of bisimulation, we can proceed in the same way as for checking the
bisimilarity [20]. Coalgebraic methods yield new algorithms and more general results for the com-
putation of the supremal normal and normal and controllable (see also next section) sublanguages
based on the corresponding relations.

Remark finally that the algorithm we have presented is composed of two separate algorithms,
which makes its use in some theoretical problems involving supremal normal sublanguages (e.g.
conditions for its commutation with synchronous product) quite difficult. Therefore we will
present in the next section monolithic algorithms for the computation of the supremal normal
and normal and controllable sublanguages motivated by coinductive definitions.

6.2 Note about maximal observable sublanguages

A procedure for computation of maximal observable sublanguages has been proposed by Cho
and Marcus in [7]. It turns out that there are many technical difficulties while computing such
maximals. The main issue is to ensure the procedure to be nonretrospective, i.e. that the procedure
does not affect what has been computed earlier in the algorithm.

It is to be be expected that in our setting similar problems occur. An algorithm for maximal
observable sublanguages can be designed using observability relations. However it is not easy to
ensure the correctness of such a procedure because of the difficulties related to the fact that now
some unobservable transitions are also to be removed. Moreover, it is not necessary to remove
transitions simultaneously from all states that form a state of the observer automaton and there is
no unique way how to do it, i.e. different orderings of controllable event set must be considered.
In the next section another approach to the synthesis of observable sublanguages is presented. It
will be based on coinductive definitions.

7 Coinduction in discrete-event control

This section is devoted to the application of a powerful technique called coinduction to discrete-
event control. While coinductive proofs have already been used in the previous sections, coinduc-
tive definitions are used below to capture some important concepts like closed-loop language and
optimal super/sublanguages.
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7.1 Coinductive definition of supervised product and partial bisimulation under
partial observations

In this subsection we present the definition of a supervised product of languages that describes the
behavior of a supervised DES under partial observations. Assume throughout this section that the
specificationK and the open-loop partial languageL (K � L) are given.

In the last section we have been studying relations on automata representations and we have
formulated the basic properties of observability and normality using these relations. Now we aim
at using the coinductive definitions. For this reason we must work with the final automaton of
partial languages, where the coinductive definitions can be used. Coinductive definitions are used
for defining algebraic operations, e.g. binary operations, on elements of final coalgebras. They
consist in defining the coalgebraic structure (given by the functor) on the result of operation. For
partial languages this means that new operations can be introduced (or sometimes the known ones
reintroduced) by defining the output and transition functions (i.e. input derivatives). Interestingly,
differential equations from analysis may also be viewed as coinductive definitions of solutions
they define if a suitable coalgebraic structure (stream automata for ODEs, weighted automata for
PDEs) is used [22].

Note that observability and normality relations can be defined in the final automatonL. How-
ever, there is a difficulty with the fact that once we use the minimal representationshKi, hLi 2 L
as the subautomata ofL generated byK andL, respectively, it is not true in general that for
K � L, hKi is a subautomaton ofhLi. Therefore some additional technicalities are involved.
In particular,Aux(S1) is replaced byAux(K;L) to stress the fact that bothhKi and hLi are
involved. Its definition has been first presented in [9].

In order to characterize the observability property we first need to introduce the following
auxiliary relation defined onDK � DL. Note that any relationR � (DK � DL)2 can be
endowed with the following transition structure: fora 2 A (M;N)

a
! (M 0; N 0) iff M

a
! Ma

andN
a
! Na with M 0 = Ma andN 0 = Na. We write(M;N)

P (a)
) (M 0; N 0) iff 9s 2M2 \N2:

P (s) = a, M 0 =Ms, andN 0 = Ns.

Definition 7.1. A binary relationAux(K;L) � (DK � DL)2, called observational indistin-
guishability relation, is the smallest relation satisfying:

(i) h(K;L); (K;L)i 2 Aux(K;L)

(ii) If h(M;N); (Q;R)i 2 Aux(K;L) then8a 2 A : if (M;N)
P (a)
) (M 0; N 0) and(Q;R)

P (a)
)

(Q0; R0) ) h(M 0; N 0); (Q0; R0)i 2 Aux(K;L)

For(M;N); (Q;R) 2 DK�DLwe write(M;N) �K;L
Aux (Q;R)wheneverh(M;N); (Q;R)i 2

Aux(K;L).

Lemma 7.1. For given partial languagesK;L: h(M;N); (Q;R)i 2 Aux(K;L) iff there exist
two stringss; s0 2 K2 such thatP (s) = P (s0) andM = Ks, N = Ls, Q = Ks0 , andR = Ls0 .

Proof. (() Let (M;N) 2 DK � DL and (Q;R) 2 DK � DL and there exist two strings
s; s0 2 K2 such thatP (s) = P (s0),M = Ks,N = Ls,Q = Ks0 , andR = Ls0 . Let s = s1 : : : sn
and s0 = t1 : : : tm. Let P (s) = P (s0) = a1 : : : ak. Thenn � k, m � k, and there exist
two increasing sequences of integers (indices)ui � i; i = 1; : : : ; k andvi � i; i = 1; : : : ; k
such thatai = sui = tvi . Sinces; s0 2 K2, and allai are observable events we can write

(K;L)
P (a1):::P (an)

=) (M;N) and also(K;L)
P (a1):::P (an)

=) (Q;R), whence by (ii) inductively
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applied(M;N) �K;L
Aux (Q;R).

()) Let (M;N) �K;L
Aux (Q;R). By the construction ofAux(K;L) there exista1; : : : ; ak 2 A

such that(K;L)
P (a1):::P (ak)

=) (M;N) and(K;L)
P (a1):::P (ak)

=) (Q;R). Therefore there exist two
stringss; s0 with the same projection withM = Ks, N = Ls, Q = Ks0 , andR = Ls0 .

Now we repeat the definition of the observability relation used in [9].

Definition 7.2. (Observability relation.) Given two (partial) languages K and L, a binary relation
O(K;L) � DK � DL is called anobservability relationif for any hM;Ni 2 O(K;L) the
following items hold:

(i) 8a 2 A : M
a
! ) N

a
! andhMa; Nai 2 O(K;L)

(ii) 8a 2 Ac : N
a
! and(9M 0 2 DK;N 0 2 DL : (M 0; N 0) �K;L

Aux (M;N) andM 0 a
!) )

M
a
! andhMa; Nai 2 O(K;L):

ForM 2 DK andN 2 DL we writeM �O(K;L) N whenever there exists an observability
relationO(K;L) onDK � DL such thathM;Ni 2 O(K;L): In order to check whether for a
given pair of (partial) languages (K andL), K is observable with respect toL, it is sufficient to
establish an observability relationO(K;L) onDK �DL such thathK;Li 2 O(K;L). Indeed,
we have

Theorem 7.2. A (partial) languageK is observable with respect toL (with K � L) andP iff
K �O(K;L) L.

Proof. ()) Let K be observable with respect to L. Denote

O1(K;L) = fhKu; Lui 2 DK �DL j u 2 K2 g:

Let us show thatO1(K;L) is an observability relation.
Let hM;Ni 2 O1(K;L). We can assume thatM = Ks andN = Ls for s 2 K2. We must show
that conditions (i) and (ii) of the Definition 7.2 are satisfied.
(i) Let M

a
! for a 2 A. Notice thatK � L implies that for anyu 2 K2, Ku � Lu. In

particularN
a
!, becauseM = Ks � Ls = N and it follows from the definition ofO1(K;L) that

hMa; Nai 2 O1(K;L).
(ii) Let N

a
! for a 2 Ac and9(M 0; N 0) �K;L

Aux (M;N) : M 0 a
!. Then by Lemma 7.1 there

exist two stringss0; s00 2 K2 such thatP (s0) = P (s00) andM 0 = Ks0 , N 0 = Ls0 , M = Ks00(=
Ks), andN = Ls00(= Ls). NowM 0 a

! implies thats0a 2 K2. FromN
a
! andN = Ls00 follows

s00a 2 L2. Now by application of the observability ofK with respect toL andP we deduce
s00a 2 K2, i.e. a 2 K2

s00 = M2. This means thatM
a
!, which was to be proved. The rest follows

from (i).
(() Let K �O(K;L) L. Let us show thatK is observable with respect toL andP . For this
purpose, lets 2 K2 anda 2 Ac such thats0a 2 K2 andsa 2 L2 andP (s) = P (s0). Thens 2
K2 \ L2, i.e.L

s
! andK

s
!, whence from (i) of definition 7.2 inductively appliedKs �O(K;L)

Ls. SinceK � L ands0a 2 K2, we haves0 2 L2, becauseK2 is prefix-closed. According to
Lemma 7.1 we have(Ks; Ls) �

K;L
Aux (Ks0 ; Ls0). Notice thatsa 2 L2 meansLs

a
!, and similarly

s0a 2 K2 meansKs0
a
!. By (ii) of the definition of observability relation we obtain thatKs

a
!,

i.e. sa 2 K2.
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Remark 7.3. In the sequel we need also another type of auxiliary relationsAux(S) for the spe-
cial caseS = hKi. We will writeAux(K) instead ofAux(hKi). Notice that it is possible to
extend the definition ofAux(S) to Aux(Pwr(S)) with the only difference, that the propagation
of this relation is realized by unions of nondeterministic transitions, in particular by deterministic
weak transitions. In the case of the final automaton of partial languages similar construction of
observational indistinguishability relation is to be realized onPwr(suÆx(K)). Now we prepare
the coinductive definition of the supervised product. This definition will consider arguments from
Pwr(suÆx(K)) andPwr(suÆx(L)) rather than fromDK andDL. In fact we will work with
unions of the form[ki=1Ksi 2 Pwr(suÆx(K)); whereP (s1) = � � � = P (sk). In order to keep
the notation simple, we will use an extension ofAux(K) to such unions of derivatives. In the
definition of supervised product this will be needed.

Now we give a formal definition ofAux(K) extended toPwr(suÆx(K)).

Definition 7.3. (Extension ofAux(K) from DK toPwr(suÆx(K))). A binary relationAux(K) �
(Pwr(suÆx(K)))2, calledobservational indistinguishability relationis the smallest relation sat-
isfying:

(i) h(K;K) 2 Aux(K)

(ii) If hM;Ni 2 Aux(K) then8a 2 A : M
a
!Ma andN

a
! Na ) hMa; Nai 2 Aux(K)

(iii) If hM;Ni 2 Aux(K) then8m;n 2 Z+: if M
"
)M1;M

"
)M2; : : : ;M

"
)Mn; andN

"
)

N1; : : : ; N
"
) Nm, thenh[ni=1Mi;[mj=1Nji 2 Aux(K).

Clearly, a natural extension of Lemma 4.1 holds. Namely,h[ki=1Ksi ;[
l
j=1Ltj i 2 Aux(K),

whereP (s1) = � � � = P (sk) andP (t1) = � � � = P (tl) iff P (s1) = P (t1), which implies naturally
P (si) = P (tj) 8i; j: The notation[ki=1Ksi �

K
Aux [

l
j=1Ltj is also used.

Definition 7.4. (Supervised product under partial observations.) Define the following binary
operation on (partial) languages called supervised product under partial observations for allM 2
Pwr(suÆx(K)) andN 2 Pwr(suÆx(L)):

(M=OUN)a =

(1) Ma=
O
UNa if M

a
! andN

a
!;

(2) ([fM 0:hM 0;Mi2Aux(K)g M
0
a)=

O
UNa if M 6

a
! and9M 0 2 DK :

M 0 �K
Aux M such thatM 0 a

! andN
a
! anda 2 Ac [Ao;

(3) 0=OUNa if M 6
a
! and8M 0 2 DK :M 0 �K

Aux M : M 0 6
a
! andN

a
! anda 2 Auc \Ao;

(4) M=OUNa if M 6
a
! andN

a
! anda 2 Auc \ Auo;

(5) ; otherwise

and(M=OUN) # iff N #.

Remark 7.4. 1. According to Observation 2.4,DL � Pwr(suÆx(L)) and sinceK � L also
DK � Pwr(suÆx(L)).
2. It follows from the definition of supervised product thatK � (K=OUL) � L. Both inclusions
can be verified by construction of the corresponding simulation relations. Let us show thatK �
(K=OUL). Consider the following relation:
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R(K;L) = fhKw; (K=
O
UL)wi j w 2 K2g:

It easy to see thatR(K;L) is a simulation relation proving the claimed inclusion. Takew 2 K2.
(i) If Kw #, thenw 2 K1, i.e. w 2 L1, which meansLw #. Furthermore, it follows from the
definition of 7.4 that(K=OUL)w = Kw=

O
ULw. Therefore,(K=OUL)w #.

(ii) if for a 2 A: Kw
a
!, then(K=OUL)wa = (Kw=

O
ULw)a = Kwa=

O
ULwa, i.e. (K=OUL)w

a
! and

hKw; (K=
O
UL)wi 2 R(K;L).

As a consequence we conclude that the range of supervised product is againPwr(suÆx(L)),
i.e. the supervised product can be also viewed as a (partial) binary operation onPwr(suÆx(L)).

The definition of supervised product under partial observations is quite complicated due to
the interconnections between observability and controllability that must be taken into account. It
deserves additional comments. Notice that several cases must be distinguished. First of all, by (1)
the controller allows any event that does not exit from its (supervisor) language. A controllable
event is enabled when the supervisor observess 2 A� iff there exists a string with the same pro-
jection ass that can be continued by this event within the supervisor’s language, which is included
in (2). The controller also enables all uncontrollable events that are possible in the plant, but the
future actions depend on whether the occurred uncontrollable event is observable or not. If the
uncontrollable event is unobservable then the first component of the supervised product need not
to move, but only the second component is updated as is seen from (4) above. In the case that
the uncontrollable eventa is observable, there must be further specified whether there exists a
derivative indistinguishable from a derivative currently considered that can make ana�transition
(i.e. there exists a string that has the same projection ass that can continued bya within the su-
pervisor’s language), in which case the action is the same as for controllable events (i.e. this case
is included in (2) above), or whether there is no such derivative, which means that only uncontrol-
lable events that are possible in the plant are allowed in the future. The latter case corresponds to
the term containing the zero partial language and is labeled by (3) above. In any other case (5) the
controllable events are disabled by the supervisor. We have thus the coinductive definition of the
closed-loop language that gives a clear picture of what is the mechanism of discrete-event control
under partial observations.

Note that a similar attemp to capture the behavior of the interaction of a supervisor with a plant
has been made in [12], where this interaction is represented by the so called masked prioritized
synchronization. Although we can see a similar classification of event types (with respect to
their controllability and observability) as in our supervised product, the setting of that paper is
somewhat different: considers priority sets for both plant and the supervisor and an interface
masks.

Now we proceed in the same way as in the case of full observations. Let us define the following
relation called partial bisimulation under partial observations.

Definition 7.5. (Partial bisimulation.) A binary relationR(K;L) � DK�DL is called apartial
bisimulation under partial observationsif for all hM;Ni 2 R(K;L):

(i) o(M) = o(N) (M # iff N #)

(ii) 8a 2 A : M
a
! ) N

a
! andhMa; Nai 2 R(K;L)

(iii) 8u 2 Auc : N
u
! ) M

u
! andhMu; Nui 2 R(K;L)

(iv) 8a 2 Ac : N
a
! and(9(M 0; N 0) �K;L

Aux (M;N) : M 0 a
! ) ) M

a
!.
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ForM 2 DK andN 2 DL we writeM �
O(K;L)
U N whenever there exists a partial bisim-

ulation under partial observationsR(K;L) such thathM;Ni 2 R(K;L). This relation is called
partial bisimilarity under partial observations.

Remark 7.5. Notice that (i) relates the marking components of the languages involved and (ii)
corresponds to the language simulation (inclusion), while (iii) to the controllability and (iv) to
the observability condition. Observe also that the second statement on the right hand side of (iii)
follows from the corresponding first statement and (ii).

Now we are ready to formulate the main theorem, which gives a coalgebraic formulation
of the controllability and observability theorem [5] in supervisory control of DES with partial
observations.

Theorem 7.6. LetK � L are given partial languages. ThenK �
O(K;L)
U L iff K = K=OUL:

The supervised product under partial observations of the languagesK andL equalsK iff K and
L are partially bisimilar in the sense of Definition 7.5.

Proof. ()) LetK �
O(K;L)
U L. Define

R(K;L) = fhM; (M=OUN)i jM 2 DK; N 2 DL andM �
O(K;L)
U Ng:

According to the coinduction proof principle it is sufficient to prove thatR(K;L) is a bisimula-

tion, because thenK �
O(K;L)
U L, i.e. hK; (K=OUL)i 2 R(K;L) implies thatK = (K=OUL). Let

hM; (M=OUN)i 2 R(K;L).

(i) M # iff N # (becauseM �
O(K;L)
U N ) iff (M=OUN) #.

(ii) If M
a
! for a 2 A then by (ii) of definition 7.5N

a
! andMa �

O(K;L)
U Na. Thus,

(M=OUN)
a
! (M=OUN)a = (Ma=

O
UNa), andhMa; (M=OUN)ai 2 R(K;L).

(iii) If (M=OUN)
a
!, then according to the (coinductive) definition of the supervised product we

have four possibilities : eitherM
a
! andN

a
!, orM 6

a
! and9M 0 �K

Aux M : M 0 a
! andN

a
!

anda 2 Ac [ Ao, orM 6
a
! and8M 0 2 DK : M 0 �K

Aux M : M 0 6
a
! andN

a
! anda 2 Auc \

Ao; or, finally,M 6
a
! andN

a
! anda 2 Auc \ Auo. Notice however that the second case is con-

tradicted by (iv) of definition 7.5: it is sufficient to see that if9M 0 �K
Aux M : M 0 a

! andN
a
!,

then9(M 0; N 0) �K;L
Aux (M;N) : M 0 a

! andN
a
!. Indeed, by Lemma 4.1 applied forS = DK

(recall thatM 2 DK)M = Ks andM 0 = Ks0 for somes; s0 : P (s0) = P (s), then it is sufficient
to putN 0 = Ls0 , which clearly exists, becauseK � L. The third and the fourth cases (with
a 2 Auc) are both impossible due to (iii) of the same definition. Hence only the first possibility
can occur, which brings us back to the previous case (ii).
(() Let us show that the following relation is a partial bisimulation under partial observations.
Define

T (K;L) = fhM;Ni jM 2 DK; N 2 DL andM = (M=OUN)g:

Let hM;Ni 2 T (K;L).
(i) M # iff (M=OUN) # (from the definition ofT (K;L)) iff N # (from definition 7.4).
(ii) If M

a
! for a 2 A then(M=OUN)

a
! and clearly (from the coinductive definition of supervised

product)N
a
!. AlsoMa = (M=OUN)a = (Ma=

O
UNa), whencehMa; Nai 2 T (K;L):

(iii) If N
u
! for u 2 Auc then(M=OUN)

u
! according to the definition of supervised product.

ThusM
u
! as well. Furthermore,Mu = (M=OUN)u = (Mu=

O
UNu); which meanshMu; Nui 2

T (K;L):
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(iv) If N
a
! for a 2 Ac and (9(M 0; N 0) �K;L

Aux (M;N) : M 0 a
! ) then from the definition of

supervised product (the second case occurs: note that in particularM 0 �K
Aux M), (M=OUN)

a
!,

i.e.M
a
!, which was to be shown.

Finally, similarly as in the case of full observations, there is the following characterization of
partial bisimilarity.

Corollary 7.7. K �
O(K;L)
U L iff (K2Auc \ L

2 � K2, K �O(K;L) L, andK1 = K2 \ L1).

Proof. It is quite analogous to the full observations case. In particular, notice that partial bisimu-
lation under partial observations implies partial bisimulation as it has been first introduced in [20].
Thus, it is sufficient to consider only the additional property of observability, which appears in
both sides of the claimed equivalence.

7.2 Infimal closed observable superlanguages and maximal observable sublanguages

This subsection contains only new results. In the last subsection we have introduced an operation
on partial languages called supervised product under partial observations. This operation corre-
sponds to the behavior of the supervised discrete-event system modeled by a partial automaton
using the centralized version ofC&P control architecture in the terminology of [34]. We call this
control architecture in the centralized case simply permissive. LetK = (K1;K2) be the desired
behavior (partial language) andV be the supervisory controller. Then8s 2 A�

o the associated
control law (events enabled afterV observess) is:


P (V; s) = Auc [ fa 2 Ac : 9s
0 2 K2 with P (s0) = P (s) ands0a 2 K2g:

The centralized counterpart of theD&A control architecture we call antipermissive and it is given
by the following control law:8s 2 A�

o


A(V; s) = Auc [ fa 2 Ac : 8s
0 2 K2 with P (s0) = P (s) we haves0a 2 L2 ) s0a 2 K2g:

There is also an antipermissive control architecture counterpart of the supervised product, but
its definition is postponed towards the end of this subsection. Let us call it antipermissive su-
pervised product. We will show that it cannot be defined by coinduction, however in the very
similar way using suitable automata representations. Note that the permissiveness or antipermis-
siveness is related to the observability (controllable events). Recall that the control policy must be,
by definition, permissive with respect to uncontrollable events in the sense that these are always
enabled.

Remark 7.8. We consider from now on an order relation on partial languages induced by their
second component only, i.e. we writeK � L iff K2 � L2. The same applies for infimum
(supremum), and maximum operations. Note that only the second condition of simulation relations
must be checked to prove such defined inclusion of partial languages.

Let us recall the coinductive definition of the supervised product in the case of full observations
from [20].
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Definition 7.6. Define the following binary operation on (partial) languages for allK;L 2 L and
8a 2 A:

(K=UL)a =

8><
>:
Ka=ULa if K

a
! andL

a
!

0=ULa if K 6
a
! andL

a
! anda 2 Auc

; otherwise

and(K=UL) # iff L #.

Theorem 7.9. (K=UL) = inf( �C(K;L)) = inffM � K : M is controllable with respect toL
andAucg, i.e.K=UL equals the infimal controllable superlanguage ofK.

Proof. Let us show thatK=UL is a superlanguage ofK that is controllable with respect toL and
Auc. It is clear from the definition of supervised product thatK � (K=UL) in the sense of Remark
7.8. Let us show thatK=UL is controllable with respect toL andAuc. It is sufficient to prove that
the following relation is a control relation.

C = fh(K=UL); Li j K;L 2 Lg:

(i) Let (K=UL)
a
! andL

a
! for a 2 A. Then by coinductive definition ofK=UL either

(K=UL)a = (Ka=ULa) or (K=UL)a = (0=ULa). However, by definition ofC in both cases
we haveh(K=UL)a; Lai 2 C.
(ii) If L

u
! for u 2 Auc, then eitherK

u
! and hence(K=UL)

u
! or K 6

u
!, but according to the

definition ofK=UL we have still(K=UL)
u
! (0=ULu).

It remains to show the infimality. LetM � K be controllable with respect toL andAuc.

R = fh(K=UL);Mi j K;L;M 2 L : K �M � L; andM2Auc \ L
2 �M2g:

satisfies (ii) of the definition of simulation relations. Let(K=UL)
a
! for a 2 A. According to the

definition ofK=UL we have two possibilities: eitherK
a
! andL

a
!, in which case(K=UL)a =

Ka=ULa orK 6
a
! andL

a
! anda 2 Auc. In the first case we haveM

a
! simply becauseK

a
! and

K � M , while in the latter case we haveM
a
! because of the controllability ofM with respect

to L andAuc (by definition 5.3 of control relations fora 2 Auc: L
a
! ) M

a
!). Moreover in

both casesh(K=UL)a; Lai 2 R.

Although the infimal controllable superlanguages are important [13], supremal controllable
sublanguages are even more interesting as least restrictive solutions of full observation supervi-
sory control problems [32]. In [20] an algorithm for the computation of supremal controllable
sublanguages, based on control relations, has been presented. It turns out that it is also possible to
define the supremal controllable sublanguage by coinduction.

Definition 7.7. Define the following binary operation on (partial) languages for allK;L 2 L and
8a 2 A:

(K=SCL)a =

8><
>:
Ka=

S
CLa if K

a
! andL

a
!

and if8u 2 A�
uc : La

u
!) Ka

u
!

; otherwise

and(K=SCL) # iff L # .

Theorem 7.10. (K=SCL) = sup(C(K;L)) = supfM � K : M is controllable with respect to
L andAucg, i.e.K=SCL equals the supremal controllable sublanguage ofK.
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Proof. First we show thatK=SCL is a sublanguage ofK that is controllable with respect toL and
Auc. It is clear from the definition ofK=SCL that (K=SCL) � K in the sense of Remark 7.8.
Indeed, if we takeU = (K=SCL)w = Kw=

S
CLw andV = Kw for somew 2 (K=SCL)

2, then
U

a
! ) V

a
!. Let us show thatK=SCL is controllable with respect toL andAuc. It is sufficient

to prove that the following relation is a control relation (Definition 5.3).

C = fh(K=SCL)w; Lwi j w 2 (K=SCL)
2g:

Take a pairM = (K=SCL)s andN = Ls for somes 2 (K=SCL)
2:

(i) Let (K=SCL)s
a
! andLs

a
! for a 2 A. Then by coinductive definition ofK=SCL we have

(K=SCL)sa = (Ksa=
S
CLsa), which by definition ofC means thath(K=SCL)sa; Lsai 2 C.

(ii) Let Ls
u
! for u 2 Auc. Since(K=SCL)

s
!, we have by definition 7.7 thatK

s
! andL

s
!

and8u 2 A�
uc : Ls

u
! ) Ks

u
!. Therefore we deduceKs

u
!. Furthermore,8v 2 A�

uc:
Lsu

v
!) Ls

uv
!) Ks

uv
!) Ksu

v
!, becauseuv 2 A�

uc and(K=SCL)
s
!. Hence(K=SCL)s

u
!,

which proves thatC is a control relation, i.e.K=SCL is controllable with respect toL andAuc.
It remains to show the supremality. LetM � K be controllable with respect toL andAuc. In

order to show thatM2 � (K=SCL)
2, we consider

R = fhMw; (K=
S
CL)wi j w 2M2g:

TakehMs; (K=
S
CL)si 2 R for somes 2M2. LetMs

a
! for a 2 A. ThenKs

a
!, andLs

a
!, since

M � K � L. In order to prove that(K=SCL)s
a
!, it remains to show that8u 2 A�

uc : Lsa
u
!)

Ksa
u
!. But this is straightforward: ifLsa

u
!, then by controllability ofM we deduceMsa

u
!,

thus fromM � K it follows thatKsa
u
!. It follows thatR satisfies (ii) of simulation relations,

i.e.M � K=SCL.

Let us now suppose that controllability is not an issue. Recall that an algorithm for supremal
controllable sublanguage has been given in [20]. We have also shown that the supervised product
in the case of full observations defined therein provides the infimal controllable superlanguage.
As a byproduct we have its coinductive definition. In the case of partial observations, we can now
separate the issue of controllability from observability and introduce the following modification
of supervised product. Note that a similar method (separating the issue of controllability from ob-
servability) has been used in [1] for automata (supervisor) approach. Unlike the methods known
from the literature ([1] and [24]) for infimal closed and observable superlanguages our coalge-
braic approach (the following coinductive definition) has a direct algorithmic character, because
coinduction defines the resulting structure event by event).

Definition 7.8. Define the following binary operation on (partial) languages for all
M 2 Pwr(suÆx(K)) andN 2 Pwr(suÆx(L)) and8a 2 A:

(M=ON)a =

8>>>>>>>>><
>>>>>>>>>:

Ma=
ONa if M

a
! andN

a
! and

9s 2 K2 : M = Ks and N = Ls

[fM 0:hM 0;Mi2Aux(K)g M
0
a=

ONa if M 6
a
! and9M 0 2 DK :

M 0 �K
Aux M such thatM 0 a

!

andN
a
! anda 2 Ac

; otherwise

and(M=ON) # iff N #.
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The new operation has the following pleasant property:

Theorem 7.11. (K=OL) = inf( �O(K;L; P )) = inffM � K : M is observable with respect to
L andPg: The infimal observable superlanguage ofK equals(K=OL).

Proof. It can be proven by coinduction using the formula forinf( �O(K;L; P )) given in [24]. An-
other, more direct, way is to show thatK=OL is an observable partial language containingK that
is smaller then any other observable superlanguage ofK.

Let us show thatK=OL is a superlanguage ofK that is observable with respect toL. It is clear
from the definition 7.8 that(K=OL)2 is a superlanguage ofK2. Formally it can be checked by
constructing an obvious simulation relation. Let us show thatK=OL is observable with respect to
L. According to theorem 7.2 we put

O = fh(K=OL)u; Lui j u 2 (K=OL)2 g

and show thatO is an observability relation onD(K=OL) � DL. Take a pairhU; V i 2 R. We
can assume thatU = (K=OL)s andV = Ls for somes 2 (K=OL)2.
(i) Let a 2 A such that(K=OL)s

a
!. It follows from the definition 7.8 thatLs

a
! and from the

definition ofO thath(K=OL)sa; Lsai 2 O.

(ii) Let a 2 Ac such thatLs
a
! and there existsM 2 D(K=OL) : M �

K=OL;L
Aux (K=OL)s with

M
a
!. It means that there exists0; s00 2 A� such thatP (s00) = P (s0), (K=OL)s = (K=OL)s00 ,

Ls = Ls00 , andM = (K=OL)s0
a
!. According to definition 7.8 inductively applied there exist

si 2 A�; i 2 I such that(K=OL)s0 = ([i2IKsi)=
OLs0 , whereP (si) = P (s0) 8i 2 I: Notice,

that it can be thatI = f1g ands1 = s0. SinceM
a
!, by definition 7.8 either there existsj ; j 2

J � I such thatKsj
a
! for j 2 J andMa = ([j2JKsja)=

OLs0a, or there existwk; k 2 K

such thatK
wka! , P (wk) = P (s0) andMa = ([k2KKwka)=

OLs0a. Since alsoP (wk) = P (s00)
for all k 2 K, we deduce finally that according to definition 7.8 in both cases there must be
(K=OL)s = (K=OL)s00

a
!, which proves thatO is an observability relation.

The last step of the proof is to show that ifM � K is a language which is observable with
respect toL andP , then(K=OL) �M . It is sufficient to prove that

R = fh(K=OL)u;Mui j u 2 (K=OL)2 andK �M �O(M;L) Lg

satisfies (ii) of simulation relation.
Take a pairhU; V i 2 R. We can assume thatU = (K=OL)w andV = Mw for somew 2

(K=OL)2. LetU
a
!. There existsi 2 K2 for i in some index setI such thatP (si) = P (w) 8i 2 I

andU = ([Ksi)=
OLw. Now, U

a
! implies that eitherU = Kw=

OLw
a
! Kwa=

OLwa or there
existsJ � I such thatKsj

a
! for j 2 J andUa = ([Ksja)=

OLwa anda 2 Ac or finally there
existwk 2 A�; k 2 K such thatP (wk) = P (w), a 2 Ac, andUa = ([Kwka)=

OLwa. In the
first case we have directlywa 2 K2, i.e. V = Mw

a
!. In the second casew 2 M2 (because

V = Mw), sj 2 M2, becausesj 2 K2 � M2, sja 2 M2, wa 2 L2, a 2 Ac (because we
are in the second case of definition 7.8), andP (sj) = P (w). Thereforewa 2 M2, becauseM
is observable with respect toL andP . Finally, in the third case we have similarlyw 2 M2,
wk 2 M2, wka 2 M2, wa 2 L2, a 2 Ac, andP (wk) = P (w), which gives alsowa 2 M2.
HenceV =Mw

a
!, and triviallyhUa; Vai 2 R, which was to be shown.

To illustrate the new operation, consider the following example.
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Example 4. We consider prefix-closed languagesK2 andL2 given by the following tree automata,
different fromhKi, resp. hLi fromL! The marked components are not considered,A = fa; �g,
andAo = fag.
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We have for instance(K=OL)�a� = (K�a=
OL�a)� = Ka�=

OL�a� according to the definition
7.8, becauseK�a 6

�
!, but there existsKa �K

Aux K�a withKa
�
! Ka� . Also,K=OL is indeed the

infimal observable superlanguage ofK as stated in theorem 7.11.

Recall that we use an order relation with respect to the second components of partial languages
(Remark 7.8). As for the original definition of supervised product it can be shown in a similar way
that

Theorem 7.12. (K=OUL) = inf( �CO(K;L; P )) = inffM � K : M is controllable with respect
to L andAuc and observable with respect toL andPg: (K=OUL) equals the infimal controllable
and observable superlanguage ofK.

The proof of this theorem is similar to that of theorems 7.9 and 7.11. As a direct consequence,
the supervised product is monotone with respect to the specification:

Corollary 7.13. For (partial ) languagesK � K 0 we have(K=OUL) � (K 0=OUL).

Note that the infimality of the above defined operations is in both cases only with respect to
the second (closed) components of the partial languages involved. The following example shows
that the infimality with respect to the marking component can not hold.

33



Example 5. TakeK = (fag; f"; a; �; �a; �abg), L = (fa; abg; f"; a; ab; ab�; �; �a; �abg), and
M = (fa; �g; f"; a; ab; �; �a; �abg). ThenK=OL = (fa; abg; f"; a; ab; �; �a; �abg). HenceK �
M ,M is observable with respect toL andP , but(K=OL)1 6�M1, becauseab 2 (K=OL)1nM1.

Similar examples can be constructed forK=UL orK=OUL. Before we study the antipermissive
control law, we consider the case, where controllability is again not an issue. Unlike the permissive
case, the fact thatAux(K;L) is not an equivalence relation onDK �DL creates difficulties as
is illustrated in the example below.

Example 6. Consider the following specification and plant languages:
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@
a
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K�a L�a

We see thatK� = Ka� andL� = La� . This is a problem, because using the antipermissive control
law one would like to allowa 2 A after observation ofs if M = Ks satisfies the condition

M
a
! and8(M 0; N 0) 2 DK �DL : (M 0; N 0) �K;L

Aux (M;N) : (N 0 a
! ) M 0 a

!): (1)

This condition seems to be a natural coalgebraic interpretation of the antipermissive control law

A(V; s) introduced above. But the stateK� can be reached by two strings, whose projections
are " anda, and this creates a difficulty. On one hand afters = a, eventa should be disabled at
K� = Ka� , since(K� ; L� ) �

K;L
Aux (Ka; La) andLa

a
!, whileKa 6

a
!. On the other hand, after

s = ", eventa can be enabled atK� , since the condition in the antipermissive control law
A(V; s)
is fulfilled. Using the minimal representation and condition (1) we would define by coinduction
a different language than the language of the closed-loop system. The problem is that the states
of the minimal representations that lie in the intersection of two observer states might lead to the
conflicts as is shown in this example. In order to avoid the above ambiguities and define the closed-
loop system under the antipermissive control law, suitable (”unfolded”) automata representations,
in general different from minimal ones, must be used.

In order to avoid the undesirable situation of the above example we use in the following def-
inition underlying representations of languagesK andL by automataS1 andS, whereS1 is a
subautomaton ofS such thatAux(S1) is an equivalence relation. We have proven in section 4
that the condition ofS1 being state-partition automaton [33] is stronger, i.e. it guarantees that
Aux(S1) is an equivalence relation. It is known how to construct such representations [7] or [33].

Let s0 denote the common initial state ofS1 andS. The transition structure ofS1 andS is
denoted by!1 and!, respectively. In the following algorithm we compute a sublanguage ofK
that is observable with respect toL andP using the antipermissive control law.

Algorithm 3. Let automataS1 andS representK andL, respectively, be such thatS1 is a sub-
automaton ofS andAux(S1) is an equivalence relation. Let us construct the partial automaton
~S = h~o; ~ti with the~t denoted by!0 .
1. Put ~S := fs0g.
2. For anys 2 ~S anda 2 A we puts

a
!0 sa if 8s0 2 S1 :
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s0 �Aux(S1) s : (s0
a
! ) s0

a
!1)

and we put in the cases
a
!0 also ~S := ~S [ fsag.

3. For anys 2 ~S we put~o(s) = o(s):

Let us denote by~l the unique (behavior) homomorphism given by finality ofL.

Theorem 7.14.~l(s0) is an observable sublanguage with respect toL andP . Moreover, ifS1 is a
state-partition automaton, then~l(s0) contains the supremal(L;P )�normal sublanguage ofK.

Proof. To prove the observability of~l(s0) we show that the following relation is an observability
relation on~S � S.

O = fh(s0)u; (s0)ui j u 2 ~l(s0) g:

Then~l(s0) is observable respect toL andP according to theorem 4.6. Take a pairh(s0)v; (s0)vi 2
O for somev 2 ~l(s0).
(i) If (s0)v

a
!0 for a 2 A, then clearly by construction of Algorithm 3(s0)v

a
!. It is clear from

the definition ofO thath(s0)va; (s0)vai 2 O.
(ii) Let a 2 Ac be such that(s0)v

a
! and let there exists0 2 ~S: s0 �Aux( ~S) (s0)v with s0

a
!.

By Lemma 4.1 there exist two stringsw;w0 2 A� such thatP (w) = P (w0), (s0)v = (s0)w, and
s0 = (s0)w0

a
!. According to the construction of Algorithm 3 for anys �Aux(S1) (s0)w0 there

must bes
a
! ) s

a
!1. In order to show that(s0)v

a
!0 it must be that for anyq �Aux(S1) (s0)v

there must beq
a
! ) q

a
!1). But using the fact thatAux(S1) is transitive and the fact that

s0 �Aux( ~S) (s0)v implies thats0 �Aux(S1) (s0)v we obtain thaths0; qi 2 Aux(S1): But this

just means that for anyq �Aux(S1) (s0)v we haveq
a
! ) q

a
!1, i.e. (s0)v

a
!0 , andO is an

observability relation.
We show finally that the supremal(L;P )�normal sublanguage ofK is contained in~l(s0). Let

N be a(L;P )�normal sublanguage ofK. Then it is sufficient to show that

R = fhNu; ~l(s0)ui j u 2 N2g

satisfies (ii) of simulation relation in order to prove thatN2 � ~l(s0)
2. Take an arbitrary pair

hNw; ~l(s0)wi 2 R for somew 2 N2. Let Nw
a
! for a 2 A. Then alsoKw

a
!, sinceN � K

andLw
a
! as well. This means that(s0)w

a
!1 and(s0)w

a
!. In order to show that~l(s0)w

a
!,

i.e. (s0)w
a
!0 we must prove that for anyq �Aux(S1) (s0)w: q

a
! ) q

a
!1. There exist

v; v0 : P (v) = P (v0) such thatq = (s0)v0 and (s0)w = (s0)v. SinceS1 is a state-partition
automaton and(s0)w is in two possibly different states of the observer automaton, we conclude by
the property of state-partition automaton that these two states of the observer automaton coincide.
But this means that there existsw0 2 A� such thatP (w) = P (w0) andq = (s0)w0 . Now q

a
!

means thatw0a 2 L2. Using normality ofN it follows from wa 2 N2 andw0a 2 L2 that
w0a 2 N2. Thereforew0a 2 K2 (becauseN � K), which means thatq

a
!1. We conclude that

~l(s0)w
a
! andR satisfies (ii) of simulation relations, i.e. we have the inclusionN2 � ~l(s0)

2. Note
that sinceN was an arbitrary(L;P )�normal sublanguage ofK, the same inclusion must hold for
the supremal(L;P )�normal sublanguage ofK.

In the following example we show that~l(s0) is not always a maximal observable sublanguage
of K.

Example 7. We consider prefix-closed languagesK2 andL2 given again by tree automata and
we assume that all the states of both automata are marked. The alphabet isA = fa; b; �g, with
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Ao = fa; bg.
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Using algorithm 3 we obtain the resulting automaton~S, whose closed language is~l(s0) = f"; ag.
It is indeed an observable sublanguage ofK2 containing the supremal normal sublanguageN =
f"g. However,~l(s0) is not a maximal observable sublanguage ofK2, becauseM = f"; a; aag is
a larger observable sublanguage ofK2. Notice also that~l(s0) is not(L;P )�normal.

Note that because of the above mentioned difficulties we do not present a coinductive def-
inition of the antipermissive counterpart of supervised product that takes into account the issue
of controllability, which would correspond to the definition of the antipermissive control policy.
However it is possible to design an algorithm that describes the behavior of the closed-loop system
under the antipermissive control policy similar to Algorithm 3. Remark that there is an asymmetry
in the antipermissive control policy: it is imposed to be permissive with respect to the uncontrol-
lable events, while it is antipermissive with respect to the controllable events. As a consequence
specificationK and the closed-loop language for the antipermissive control policy are not in gen-
eral comparable.

Notice an important difference between the permissive and antipermissive control policy. Us-
ing the permissive control policy after having left from the specification languageK by an uncon-
trollable event, there might still be some controllable events enabled in the future, while using the
antipermissive control policy only uncontrollable events are enabled in such a situation.

To conclude, we have found an observable sublanguage that contains the supremal normal
sublanguage. This is very useful, because supremal normal sublanguages are often too small
(restrictive) in many concrete problems.

Our technique can be modified for constructing an observable and controllable sublanguage,
because the idea in the coinductive definition of the supremal controllable sublanguage can be in-
corporated within Algorithm 3. In this way a monolithic algorithm for the computation of supre-
mal normal and controllable sublanguages is developed in the next subsection.

7.3 Monolithic algorithms for supremal normal and controllable sublanguages

Now we show a monolithic algorithm for the computation of supremal normal sublanguages along
the lines of Algorithm 3. The main idea is that the iterative procedure of Algorithm 1 is incor-
porated into Algorithm 2 using unobservable strings instead of events. Since we work with finite
representations, our algorithm is still effective. Although there is already a method in the literature
[11] based on the optimal control and graph theoretical techniques to obtain such a monolithic al-
gorithm, our method is made explicitly for logical DES. The interest of this algorithm is not its
computational complexity, but its formal simplicity. It is of high theoretical interest in the study
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of modularly distributed DES with partial observations of local modules. It will enable us in the
future [10] to find the conditions under which the global supremal normal and/or supremal normal
and controllable sublanguages can be synthesized locally.

Algorithm 4. Let automataS1 andS representingK andL, respectively be such thatS1 is a
subautomaton ofS and S1 is a state-partition automaton. Let us construct partial automaton
~S = ( ~S; h~o; ~ti) with ~t denoted by!0 .
Define the auxiliary condition (*) as follows:
if a 2 Auo then8u 2 A�

uo: sa
u
!) sa

u
!1;

if a 2 Ao then8s0 �Aux(S1) s : s
0 a
!) s0

a
!1, in which case also8u 2 A�

uo: s
0
a

u
!) s0a

u
!1.

Below are the steps of the algorithm.
1. Put ~S := fs0g.
2. For anys 2 ~S anda 2 A we puts

a
!0 sa if s

a
!1 and condition (*) is satisfied and we put in

the cases
a
!0 also ~S := ~S [ fsag.

3. For anys 2 ~S we put~o(s) = o(s):

Let us denote by~l the unique (behavior) homomorphism given by finality ofL.

Theorem 7.15.~l(s0) is the supremal(L;P )�normal sublanguage ofK.

Proof. To prove the normality of~l(s0) we show that the following relation is a normal relation on
~S � S.

N = fh(s0)u; (s0)ui j u 2 ~l(s0)
2 g:

Then~l(s0) is (L;P )�normal according to Theorem 5.7. Take a pairh(s0)v; (s0)vi 2 N for some
v 2 ~l(s0)

2.
(i) If (s0)v

a
!0 for a 2 A, then clearly by construction of Algorithm 4(s0)v

a
!. It is clear from

the definition ofN thath(s0)va; (s0)vai 2 N .
(ii) Let a 2 Auo be such that(s0)v

a
!. We must show that(s0)v

a
!0 , i.e. 8u 2 A�

uo: (s0)va
u
!

) (s0)va
u
!1. It follows from (s0)

v
!0 and Algorithm 4 that8u 2 A�

uo: (s0)v
u
!) (s0)v

u
!1.

Indeed, if we assumev = v1 : : : vk for somek 2 Z, then eithervk 2 Auo, i.e. (s0)v1:::vk�1

vk!0

means directly that8u 2 A�
uo: (s0)v

u
! ) (s0)v

u
!1 or vk 2 Ao, but then the condition (*) is

even stronger: by puttings0 = s we obtain the same conclusion. Since in both casesau 2 A�
uo,

the required implication holds as well for(s0)va as required for(s0)v
a
!0 .

(iii) Let a 2 Ao be such that(s0)v
a
! and let there exists0 2 ~S: s0 �Aux( ~S) (s0)v with s0

a
!0 .

By Lemma 4.1 there exist two stringsw;w0 2 A� such thatP (w) = P (w0), (s0)v = (s0)w,
ands0 = (s0)w0

a
!. According to the construction of Algorithm 4 for anys �Aux(S1) (s0)w0

there must bes
a
! ) s

a
!1, in which case also8u 2 A�

uo: sa
u
! ) sa

u
!1. In order

to show that(s0)v
a
!0 it must be that for anyq �Aux(S1) (s0)v we haveq

a
! ) q

a
!1, in

which case also8u 2 A�
uo: qa

u
! ) qa

u
!1. But using the fact thatAux(S1) is transitive,

becauseS1 is a state-partition automaton, a stronger condition, and the fact thats0 �Aux( ~S) (s0)v
implies thats0 �Aux(S1) (s0)v we obtain thaths0; qi 2 Aux(S1): But this just means that for any

q �Aux(S1) (s0)v we haveq
a
! ) q

a
!1, in which case also8u 2 A�

uo: qa
u
! ) qa

u
!1, i.e.

(s0)v
a
!0 . ThereforeN is a normal relation.

We show finally that the supremal(L;P )�normal sublanguage ofK is contained in~l(s0). Let
N be a(L;P )�normal sublanguage ofK. Then it is sufficient to show that

R = fhNu; ~l(s0)ui j u 2 N2g
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satisfies (ii) of simulation relation in order to prove thatN2 � ~l(s0)
2. Take an arbitrary pair

hNw; ~l(s0)wi 2 R for somew 2 N2. Let Nw
a
! for a 2 A. Then alsoKw

a
!, sinceN � K

andLw
a
! as well. This means that(s0)w

a
!1 and(s0)w

a
!. In order to show that~l(s0)w

a
!, i.e.

(s0)w
a
!0 it must be shown that the condition (*) is satisfied.

For a 2 Auo we need to show that8u 2 A�
uo: (s0)wa

u
! ) (s0)wa

u
!1. But this is easy:

(s0)wa
u
! meanswau 2 L2. SinceN is (L;P )�normal,wa 2 N2 andP (wa) = P (wau), we

deducewau 2 N2 � K2. But this just means that(s0)wa
u
!1.

For a 2 Ao it must be checked that for anyq �Aux(S1) (s0)w: q
a
! ) q

a
!1, in

which case also8u 2 A�
uo: qa

u
! ) qa

u
!1. There existv; v0 : P (v) = P (v0) such that

q = (s0)v0 and(s0)w = (s0)v. SinceS1 is a state-partition automaton and(s0)w = (s0)v is in
two potentially different states of the observer automaton, we conclude by the property of state-
partition automaton that these two states of the observer automaton coincide. But this means
that there existsw0 2 A� such thatP (w) = P (w0) and q = (s0)w0 . Now q

a
! means that

w0a 2 L2. By normality ofN it follows fromwa 2 N2 andw0a 2 L2 thatw0a 2 N2. Therefore
w0a 2 K2 (becauseN � K), which means thatq

a
!1. The rest is similar as fora 2 Auo: if

for u 2 A�
uo: qa = (s0)w0a

u
!, thenw0au 2 L2, by normality ofN and usingwa 2 N2, where

P (w0au) = P (wa) we havew0au 2 N2 � K2. But this just means that(s0)w0a = qa
u
!1.

We conclude that~l(s0)w
a
! andR satisfies (ii) of simulation relation, i.e. we have the inclusion

N2 � ~l(s0)
2. Note that sinceN was arbitrary(L;P )�normal sublanguage ofK, and~l(s0)

has been shown to be a(L;P )� normal sublanguage ofK, it follows that~l(s0) is the supremal
(L;P )�normal sublanguage ofK.

Following the same technique we can synthesize a monolithic algorithm for computation of
supremal normal and controllable sublanguages.

Algorithm 5. Let automataS1 andS representingK andL, respectively are such thatS1 is a
subautomaton ofS and S1 is a state-partition automaton. Let us construct partial automaton
~S = ( ~S; h~o; ~ti) with ~t denoted by!0 .
Define the auxiliary condition (**) as follows:
if a 2 Au [ Auo then8u 2 (Au [ Auo)

�: sa
u
!) sa

u
!1;

if a 2 Ac \ Ao then8s0 �Aux(S1) s : s0
a
! ) s0

a
!1, in which case also8u 2 (Au [ Auo)

�:

s0a
u
!) s0a

u
!1.

Below are the steps of the algorithm.
1. Put ~S := fs0g.
2. For anys 2 ~S anda 2 A we puts

a
!0 sa if s

a
!1 and condition (**) is satisfied and we put in

the cases
a
!0 also ~S := ~S [ fsag.

3. For anys 2 ~S we put~o(s) = o(s):

As usual, we denote by~l the unique (behavior) homomorphism given by finality ofL. Simi-
larly as for Algorithm 4, one can verify by coinduction that

Theorem 7.16.~l(s0) is the supremal controllable (with respect toL andAu) and(L;P )�normal
sublanguage ofK.

Proof. The structure of the proof follows very much that of Theorem 7.15. First we prove that
~l(s0) is controllable with respect toL andAu. According to Theorem 5.8 it is sufficient to show
that the following relation is a control relation on~S � S.

C = fh(s0)u; (s0)ui j u 2 ~l(s0)
2 g:
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Take a pairh(s0)w; (s0)wi 2 N for somew 2 ~l(s0)
2.

(i) If (s0)w
a
!0 for a 2 A, then clearly by construction of Algorithm 5(s0)w

a
!, because~l(s0) �

K � L. It is clear from the definition ofC thath(s0)wa; (s0)wai 2 C.
(ii) Let a 2 Au be such that(s0)w

a
!. We must show that(s0)w

a
!0 . According to Algorithm 5

condition (**) must be checked. SinceAu � Au[Auo it amounts to show that8u 2 (Au[Auo)
�:

(s0)wa
u
! ) (s0)wa

u
!1. We haveu = u1 : : : ul for somel 2 Z with 8i 2 f1; : : : ; lg : ui 2

Au [ Auo. Notice that we have alsow = w1 : : : wk for somek 2 Z. There are 2 possibilities for
wk: wk 2 Au [ Auo orwk 2 Ac \ Ao. According to condition (**) of Algorithm 5 for(s0)

w
!0 ,

i.e. (s0)w1:::wk�1

wk!0 in both cases means that in particular8u 2 (Au [ Auo)
�: sw

u
!) sw

u
!1.

Indeed, condition (**) forwk 2 Ac \ Ao is stronger than forwk 2 Au [ Auo as is easily seen by
takings0 = s. Sinceau 2 (Au [Auo)

�, the condition (**) for(s0)w
a
!0 holds true, which proves

the controllability of~l(s0):
To prove the normality of~l(s0) we show that the following relation is a normal relation on

~S � S.
N = fh(s0)u; (s0)ui j u 2 ~l(s0)

2 g:

Then~l(s0) is normal with respect toL andP according to Theorem 5.7. Take a pairh(s0)v; (s0)vi 2
N for somev 2 ~l(s0)

2.
(i) If (s0)v

a
!0 for a 2 A, then clearly by construction of Algorithm 5(s0)v

a
!. It is clear from

the definition ofN thath(s0)va; (s0)vai 2 N .
(ii) Let a 2 Auo be such that(s0)v

a
!. We must show that(s0)v

a
!0 , i.e. 8u 2 (Au [ Auo)

�:
(s0)va

u
! ) (s0)va

u
!1. It follows from (s0)

v
!0 , Auo � Au [ Auo, and Algorithm 5 that

8u 2 (Au [ Auo)
�: (s0)v

u
!) (s0)v

u
!1, the argument being the same as above in the proof of

controllability. Sinceau 2 (Au [ Auo)
�, the required implication holds as well.

(iii) Let a 2 Ao be such that(s0)v
a
! and let there existss0 2 ~S: s0 �Aux( ~S) (s0)v with s0

a
!0 .

By Lemma 4.1 there exist two stringsw;w0 2 A� such thatP (w) = P (w0), (s0)v = (s0)w,
and s0 = (s0)w0

a
!0 . But using the fact thatS1 is a state-partition automaton there exists

v0 : P (v0) = P (v) such thats0 = (s0)v0
a
!0 . Two cases must be distinguished. Assume first that

a 2 Ao \ Ac. It follows from Algorithm 5 that8s �Aux(S1) (s0)v0 there must bes
a
!) s

a
!1,

in which case also8u 2 (Au [ Auo)
�: sa

u
!) sa

u
!1. Thens

a
!0 as well using the transitivity

of Aux(S1) and the obvious fact thatAux( ~S) � Aux(S1), which means thats0 �Aux( ~S) (s0)v
implies thats0 �Aux(S1) (s0)v. Now for anyq �Aux(S1) (s0)v there must behs0; qi 2 Aux(S1):

Thereforeq
a
!) q

a
!1, in which case also8u 2 (Au[Auo)

�: qa
u
!) qa

u
!1. Thus(s0)v

a
!0 .

Now we assume thata 2 Ao\Au. According to the construction of Algorithm 5, it is sufficient to
show that8u 2 (Au [ Auo)

�: (s0)va
u
! ) (s0)va

u
!1. We know that(s0)

v
!0 . Using the same

argument as in the proof of controllability or (ii) of normality it follows that8u 2 (Au [ Auo)
�:

(s0)v
u
! ) (s0)v

u
!1. It is sufficient to notice thata 2 Ao \ Au � Au [ Auo, i.e. also

au 2 (Au [ Auo)
�. Thus,8u 2 (Au [ Auo)

�: (s0)va
u
! ) (s0)v

au
! ) (s0)v

au
!1, which is

equivalent to(s0)va
u
!1. Since in both cases(s0)v

a
!0 , we conclude thatN is a normal relation.

We show finally that the supremal controllable (with respect toL andAu) and(L;P )�normal
sublanguage ofK is contained in~l(s0). LetN be a controllable and(L;P )�normal sublanguage
of K. Then it is sufficient to show that

R = fhNu; ~l(s0)ui j u 2 N2g

satisfies (ii) of simulation relation in order to prove thatN2 � ~l(s0)
2. Take an arbitrary pair

hNw; ~l(s0)wi 2 R for somew 2 N2. Let Nw
a
! for a 2 A. Then alsoKw

a
!, sinceN � K

andLw
a
! as well. This means that(s0)w

a
!1 and(s0)w

a
!. In order to show that~l(s0)w

a
!, i.e.
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(s0)w
a
!0 it must be shown that condition (**) of Algorithm 5 is satisfied. Ifa 2 Au [ Auo then

we show that8u 2 (Au [ Auo)
�: (s0)wa

u
! ) (s0)wa

u
!1. Indeed, ifu 2 (Au [ Auo)

� then
u = u1 : : : uk for somek 2 Z with ui 2 Au [Auo 8i 2 f1; : : : ; kg. Thus,(s0)wa

u
!, i.e.wau =

wau1 : : : uk 2 L2 together withwa 2 N2 and normality and controllability ofN inductively used
implieswau1 2 N2,. . . ,wau = wau1 : : : uk 2 N2 � K2. This means that(s0)wa

u
!1, which

was to be shown. Leta 2 Ac \ Ao. We need to show that8s0 �Aux(S1) (s0)w : s0
a
!) s0

a
!1,

in which case also8u 2 (Au [ Auo)
�: s0a

u
! ) s0a

u
!1. Let s0 �Aux(S1) (s0)w : s0

a
!.

According to Lemma 4.1 and by taking into account thatS1 is a state-partition automaton, there
existsw0 2 K2 such thatP (w0) = P (w) ands0 = (s0)w0 . Hences0

a
! is equivalent tow0a 2 L2.

By normality ofN it follows from wa 2 N2 andw0a 2 L2 thatw0a 2 N2. Thusw0a 2 K2,
becauseN2 � K2, but this means thats0

a
!1. The second part is similar as fora 2 Auo [ Au.

Indeed, foru 2 (Au [ Auo)
� with s0a

u
! we obtain consequently:w0au 2 L2, w0a 2 N2, i.e.

by inductive application of normality and controllability ofN we have finallyw0au 2 N2 � K2,
which givess0a

u
!1. To conclude, in any case we have obtained~l(s0)w

a
!, i.e. R satisfies (ii)

of simulation relation, and the inclusionN2 � ~l(s0)
2 has been shown. Note that sinceN was

arbitrary controllable and(L;P )�normal sublanguage ofK, it follows that~l(s0) is the supremal
controllable and(L;P )�normal sublanguage ofK.

Remark 7.17. An important feature of Algorithm 5 is its compactness, i.e. it is not an iteration
of two separate algorithms as are the algorithms in [33] or [9]. Therefore it looks almost like a
coinductive definition of the supremal normal and controllable sublanguage, which is not possible
to do directly inL. Thus Algorithm 5 is suitable for investigating problems like ”when does the
supremal normal and controllable sublanguage commute with the synchronous product of (partial)
languages?”

7.4 Distributivity of the supervised product

The behavior of the supervised DES has been formalized by the (partial) language operation of su-
pervised product. It is of interest to study algebraic properties of this operation, e.g. distributivity
with respect to (partial) language operations. The problem of distributivity of the supervised prod-
uct with respect to language unions is addressed in this section. The following theorem answers
the main question. It turns out that

Theorem 7.18. If Ac � Ao, then for anyK andK 0 (partial) sublanguages ofL we have:

(K [K 0)=OUL = (K=OUL) [ (K 0=OUL):

Proof. Formally, it can be checked that

R = fh[(K [K 0)=OUL]u; [(K=
O
UL) [ (K 0=OUL)]ui j u 2 [(K [K 0)=OUL]

2g

is a bisimulation relation. Take aw 2 [(K [K 0)=OUL]
2.

(i) is straightforward:[(K [K 0)=OUL]w # iff w 2 L1 iff [(K=OUL) [ (K 0=OUL)]w #.
(ii) If [(K [K 0)=OUL]w

a
! for a 2 A, then according to the definition 7.4 of supervised products
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several cases must be distinguished. We have the following possibilities:

[(K [K 0)=OUL]w =

8>>>>>><
>>>>>>:

(K [K 0)w=
O
ULw if (K [K 0)

w
! andL

w
!

[i2I(K [K 0)wi=
O
ULw if (K [K 0) 6

w
! andL

w
! and9I 6= ;

andwi; i 2 I : P (wi) = P (w) and8i 2 I :

(K [K 0)
wi!

0=OULw if K 6
w
! andL

w
! andw 62 A�

c

By applying again the definition of the supervised product several cases must be distinguished:

[(K [K 0)=OUL]wa =

8>>>>>>>>>>><
>>>>>>>>>>>:

(K [K 0)wa=
O
ULwa if (K [K 0)

wa
! andL

wa
!

[j2J(K [K 0)vj=
O
ULwa if (K [K 0) 6

w
! andL

wa
! anda 2 Ac [ Ao

and9J 6= ; andvj ; j 2 J : P (vj) = P (w)

and8j 2 J : (K [K 0)vj
a
!

(K [K 0)w=
O
ULwa if K 6

wa
! andL

wa
! anda 2 Auc \ Auo

0=OULwa if K 6
wa
! andL

wa
! and8v : P (v) = P (w) :

Kv 6
a
! anda 2 Auc \ Ao

Now combinations of different cases of both preceding equations must be considered. Some
of the combinations are only hypothetic, and in fact they are impossible. For instance, if the last
case in the first equation occurs, then only the last case in the second equation can occur. Some
cases are easy, others are problematic. For instance, the last case of the other equation in com-
bination with any case of the first equation, as well as the combination of the first cases of both
equations are not problematic and the conclusion is easily drawn. Now we consider the problem-
atic case(K [K 0)

w
!, namely e.g.K

w
! andK 0 6

w
!, while there exists an index setJ such that

8j 2 J : (K [ K 0)vj
a
! andP (vj) = P (w), namely e.g.8j 2 J : Kvj 6

a
! andK 0

vj

a
!. This

is a problem, because in order to draw the plausible conclusion(K 0=OUL)w
a
!, we need first be

sure that(K 0=OUL)
w
!, which is not obvious. However our assumptionAc � Ao will be used.

It is known from Corollary 5.9 that under the assumptionAc � Ao observability together with
controllability are equivalent to the normality. Since the supervised product is known to be con-
trollable and observable, it follows that the supervised product is also(L;P )�normal. Therefore

(K 0=OUL) is (L;P )� normal and fromK 0
vj

a
!, i.e. (K 0=OUL)

vj
! it follows that(K 0=OUL)

w
!, and

thus(K [K 0=OUL)w
a
!.

The same problem appears if the second case in the first equation occurs. The situation is sim-
ilar to the one above withw replaced bywi, but owing to the(L;P )� normality of the supervised

product this is not substantial: again(K 0=OUL)
vj
! implies that(K 0=OUL)

w
!.

(iii) This inclusion (simulation) is easy and holds always: it follows from the monotonicity of the
supervised product with respect to the specification (see Corollary 7.13), thereforeK � K [K 0

implies thatK=OUL � (K [ K 0)=OUL. Similarly, K 0 � K [ K 0 implies thatK 0=OUL � (K [
K 0)=OUL. Hence,(K=OUL) [ (K 0=OUL � (K [K 0)=OUL.

Under the structural assumption on the event setAc � Ao, the supervised product with
partial observations distributes with laguage unions. This distributivity implies that important
properties are preserved by unions: ifK=OUL = K, i.e. K is controllable,Lm(G)�closed
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and observable andK 0=OUL = K, i.e. K 0 is controllable,Lm(G)�closed and observable, then
(K[K 0)=OUL = (K=OUL)[ (K

0=OUL) = K[K 0, i.e.K[K 0 is also controllable,Lm(G)�closed
and observable. Note finally that it is not difficult to extend the above distributivity to an arbitrary
number of specifications, even to an infinite number (which amounts to the lattice theoretical lower
semicontinuity).

Similarly, if Ac � Ao then our technique can be used to show that the supervised product is
also distributive with respect to partial language intersections. The situation is symmetric in the
sense that the opposite inclusion is trivial here (always holds). To conclude, we have shown that
the concept of supervised product is useful for investigation of properties of closed-loop languages
in discrete-event control with partial observations.

8 Conclusion

Supervisory control of DES with partial observations has been treated by coalgebraic techniques.
The new concept of deterministic weak transitions gives rise to the definition of projected and
observer automata. Observability and normality have been characterized by appropriate relations
in this framework, which gives an insight into problems of partially observed DES. They have
been used to design algorithms for supremal normal and/or normal and controllable sublanguages.
These are discussed in detail and compared to those encountered in the literature.

Another approach, based on finality of the automaton of partial languages, consists in using
coinductive or similar definitions for describing permissive or antipermissive control laws under
partial observations. As a byproduct coinductive definitions of observable approximations of a
given language have been obtained. These definitions give rise to new algorithms for the compu-
tation of infimal closed and observable superlanguages and observable sublanguages larger than
the supremal normal sublanguage because of their coinductive nature. They rely only on obser-
vational indistinguishability relations, which can be constructed directly from the corresponding
definitions that give at the same time algorithms for their construction. The lack of the existence of
an optimal (maximally permissive) solution for the supervisory control with partial observations is
related to the fact that the supervised product does not in general distribute with (partial) language
unions when the controller has only partial information about the DES.

The naturally algorithmic character of the coalgebraic approach is one of its main advantages.
While the algebraic approach works with strings (words), which is sometimes cumbersome, the
coalgebraic approach relies on the relational framework (various weakening of bisimulation re-
lations) and we proceed event by event. The use of coinductive definitions and proofs makes
coalgebraic techniques relevant for control of DES. Coinductive definitions enable to character-
ize languages of the closed (controlled) DES and coinductive proofs are used to check different
properties like controllability, observability, normality, or distributivity of operations on (partial)
languages.

The results of this paper are being generalized to the decentralized and modular supervisory
control. For instance, in modular control of DES, the system is composed of local subsystems
that run concurrently, i.e. the global system is the parallel composition of local systems. To
each local system a local supervisor is associated. Many interesting questions arise: can the
control be exerted at the local level without violating our control objectives or without affecting
the optimality of the solution? If the answer to these question is positive, there is an exponential
save on the computational complexity. In our coalgebraic framework these two problems can be
paraphrased as follows: when does the supervised product commute with synchronous product
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and when does the supremal controllable sublanguage (as an operation defined by coinduction in
section 7) commute with synchronous product? (recall that the synchronous product of partial
languages has been defined by coinduction in [20]).

The contribution of the coalgebraic approach to the control and systems theory remains to
be further evaluated. However, we believe that application of the coinductive techniques is not
limited to discrete-event systems, but it can be useful for other type of systems. It seems possible
to study with coalgebraic techniques some problems of hybrid systems, especially if the control
objectives are only at the discrete-event level (safety or minimal required behavior). In some areas
of control and systems theory with a high level of abstraction there might be interesting to apply
the coalgebraic techniques. Various coalgebras (systems) can be obtained by varying the functor
on the category of sets. Moreover, the use of this method is not limited to systems defined by
functors in the category of sets, but functors on some ”structurally richer” categories (like the
categories of topological or metric spaces and continuous functions between them as morphisms).
An interesting application of coalgebra to symbolic dynamics in one dimensional discrete-time
dynamical systems defined by a continuous function on a complete metric space can be found in
[21]. Different types of coalgebras have their own notions of homomorphism and bisimulation,
as well as cofreeness and finality, i.e. coinduction, yet there is a unifying theory of universal
coalgebra.

Future research tasks might include a study of how to improve the computational complexity
of our algorithms, a study of decentralized, hierarchical, and modular control of DES using coal-
gebra as well as an application of the coalgebraic techniques to timed DES. Optimal supervisory
control can be investigated by coalgebraic techniques using coalgebras of weighted automata [22]
(weights here correspond to the costs) with formal power series as their final coalgebra.
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