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Coalgebra and coinduction in discrete-event control
with partial observations

ABSTRACT

Coalgebra and coinduction provide new results and insights for the supervisory control of
discrete-event systems (DES) with partial observations. The paper is based on the formalism
developed for supervisory control of DES in the full observation case, i.e. the notion of
bisimulation, its generalizations (partial bisimulation and control relation), and the finality of the
automaton of partial languages. The concept of nondeterministic weak transitions introduced in
this paper yields a definition of deterministic weak transitions. These are shown to be useful in
the study of partially observed DES. They give rise to the relational characterizations of
normality and observability. These characterizations lead to new algorithms for supremal normal
and supremal normal and controllable sublanguages that are compared to the ones known in
the literature. Coinduction is used to define an operation on languages called supervised
product, which represents the language of the closed-loop system, where the first language acts
as a supervisor and the second as an open-loop system. This technique can be used to define
many important languages, e.g. supremal controllable sublanguages, infimal controllable or/and
observable superlanguages. A variation of supervised product corresponding to the permissive
control policy with full controllability is given. It is shown to be equal to the infimal observable
superlanguage. We have obtained as a byproduct coinductive definitions of these important
languages. We show that antipermissive control policy cannot be captured by coinduction.
However, we present an algorithm based on the antipermissive control policy for the
computation of an observable sublanguage that contains the supremal normal sublanguage.
Using a similar method monolithic algorithms for computation of supremal normal and supremal
normal and controllable sublanguages are developed. Finally, the lattice theoretic continuity of
the supervised product (i.e. the distributivity of the supervised product with respect to partial
language unions) is studied.
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Abstract

Coalgebra and coinduction provide new results and insights for the supervisory control of
discrete-event systems (DES) with partial observations. The paper is based on the formalism
developed for supervisory control of DES in the full observation case, i.e. the notion of bisim-
ulation, its generalizations (partial bisimulation and control relation), and the finality of the
automaton of partial languages. The concept of nondeterministic weak transitions introduced
in this paper yields a definition of deterministic weak transitions. These are shown to be use-
ful in the study of partially observed DES. They give rise to the relational characterizations
of normality and observability. These characterizations lead to new algorithms for supremal
normal and supremal normal and controllable sublanguages that are compared to the ones
known in the literature.

Coinduction is used to define an operation on languages called supervised product, which
represents the language of the closed-loop system, where the first language acts as a supervisor
and the second as an open-loop system. This technique can be used to define many important
languages, e.g. supremal controllable sublanguages, infimal controllable or/and observable
superlanguages. A variation of supervised product corresponding to the permissive control
policy with full controllability is given. It is shown to be equal to the infimal observable
superlanguage. We have obtained as a byproduct coinductive definitions of these important
languages. We show that antipermissive control policy cannot be captured by coinduction.
However, we present an algorithm based on the antipermissive control policy for the compu-
tation of an observable sublanguage that contains the supremal normal sublanguage. Using
a similar method monolithic algorithms for computation of supremal normal and supremal
normal and controllable sublanguages are developed.

Finally, the lattice theoretic continuity of the supervised product (i.e. the distributivity of
the supervised product with respect to partial language unions) is studied.
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1 Introduction

Many different methods in discrete-event (dynamical) systems (DES) have been developed [5].
Only recently DES have been studied using coalgebraic technigues [20]. DES are mostly rep-
resented by automata viewed as a particular algebraic structure. They have been introduced by
W.M. Wonham and his co-workers [23] and have been extensively studied since 1980’s by many
researchers, see e.g. [32], [14], [15], [3], [15], [33], [6], [18] etc. Supervisory control theory has
been also extended to the study of infinite behavior of automata, see e.g. [28] and [29].

It is known that automata are at the same time algebras as well as coalgebras [19]. Therefore
they can also be viewed as so called partial automata [20], which represent a particular instance
of state-transition systems. Partial automata are coalgebras of a simple functor on the category of
sets. Coalgebras are categorical duals of algebras (the corresponding functor operates from a given
set rather than to a given set). In the last decade they have been extensively studied and used in the
semantics of programming for infinite data structures (e.g. streams), while algebraic techniques
have been used for dealing with finite data types as finite lists. Coalgebras have been found to be
suitable in system theory as well for the description of the dynamic systems as deterministic au-
tomata and their various extensions (state transition systems, weighted automata, transducers etc.)
The theory of universal coalgebras as a general theory of systems has been developed in analogy
with the dual theory of universal algebra [21]. The algebraic notion of congruence relations has
its coalgebraic counterpart: bisimulations relations. Final coalgebras are dual to initial algebras.
The universal property of finality gives rise to the definition and proof principle called coinduction
in the same way as induction is based on initiallity of an algebra. On a final coalgebra, bisimi-
larity coincides with equality, whereby proving equality of two elements of final coalgebras (e.g.
languages) amounts to constructing a bisimulation relation that relates them.

A pioneering study of the relationship between controllability and bisimulation is presented
in [2]. The authors have shown in Theorem 3.1 that controllability is equivalent to bisimilarity
with respect to the set of uncontrollable events. This idea is a major motivation for application of
coalgebra to discrete-event control and has been explored further in [20]. This paper presents a
formulation of control of DES with partial observations in terms of coalgebra. Coalgebraic tech-
niques are then applied to solve different problems in partially observed DES. The basic formalism
is the one that has been developed by J.J.M.M. Rutten in [20], i.e. partial automata as models for
DES and partial automaton of (partial) languages as the final coalgebra. The generalization to
partially observed DES is not straightforward, but requires the development of new concepts. On
the other hand, the basic ideas, i.e. relational characterizations of different notions and properties
and the use of a powerful technique called coinduction are the strong points of the application of
coalgebra to the control of DES. Indeed, the main advantage of the use of coalgebra is the nat-
urally algorithmic character of the results, there is a canonical way how to check the properties
like controllability or observability by constructing corresponding relations. Another advantage
is the possibility of using the coinductive definitions and proofs that are shown to be useful in
many situations. In particular, many extremal superlanguages or sublanguages can be defined by
coinduction, which is an alternative to different type of formulas presented in e.g. [13], [24], and
[3]. This yields also new algorithms for computation of these languages.

In the case of imperfect (partial) observations only a subset of events is actually observed by
the controller. Being inspired by the theory of concurrency, we introduce in our setting the concept
of weak transitions, including a deterministic concept, which is shown to be useful in the study of
control problems with partial observations. It enables the definition of an auxiliary relation that
corresponds to the observational equivalence and also observability relation which corresponds



to the observability of a language with respect to an open-loop system (language). A collection
of necessary and sufficient conditions for a given partial language to be exactly achievable by a
supervisory controller is formulated by relations called partial bisimulations and a coalgebraic for-
mulation of the main theorem of supervisory control of DES with partial observations is presented.

Moreover, two different coalgebraic characterizations of normality are given, which can be
compared to [7], where the algebraic characterizations using the concept of invariant relations
have been presented. New algorithms for the computation of supremal normal (and normal and
controllable) sublanguages that are based on these coalgebraic characterizations are proposed.
Their computational complexity has been compared to that of known algorithms for computation
of supremal normal sublanguages.

Coinduction is used to define a binary operation on languages called supervised product, which
represents the language of the closed-loop system, where the first language is the language of a
supervisor and the second language is that of an open-loop system. A minor modification of super-
vised product that disregards the controllability yields an operation that is shown to be equal to the
infimal observable superlanguage. Using suitable automata representations a similar modification
of the closed-loop language under the antipermissive control policy yields an observable sublan-
guage that contains the supremal normal sublanguage. A similar method yields new algorithms
for computation of supremal normal and supremal normal and controllable sublanguages that are
monolithic. A coinductive definition of the supremal controllable sublanguage is presented. The
coinduction turns out to be well suited for formulating various concepts of discrete-event control.

The contribution of this paper when compared to the literature is twofold. Firstly, the whole
framework of discrete-event control with partial observations introduced in [14] has been reformu-
lated using the concepts from coalgebra and concurrency theory. This offers an additional insight
to many problems and results. Secondly, our approach provides a refinement of the existing theory
and yields new algorithms and useful concepts. Among new results novel algorithms for computa-
tion of supremal normal and supremal normal and controllable sublanguages have been proposed.
Moreover some of them (Algorithm 5,6) are monolithic, which can be by itself considered as
an important result. Unlike the known algorithms for supremal normal and controllable sublan-
guages, e.g. those developed by Cho and Marcus in [6] and by Yoo and Lafortune in [33]) that are
iterations of two separate algorithms, our Algorithm 6 is compact. Such an algorithm is known
to exist [11], but has not been explicitly presented. The concept of supervised product is central
in our framework, because its coinductive definition describes in fact an event by event action
of the supervisor. This considerably simplifies the study of properties of closed-loop languages
compared to the classical algebraic approach.

The paper is organized as follows. Section 2 recalls the partial automata from [20] as the coal-
gebraic framework for DES represented by automata. The reader interested in more details about
the key notions like bisimulation, coinduction, and finality should consult [21] or [20]. In Section
3 weak transition structures are defined on partial automata, powerset, projected, and observer au-
tomata are introduced using a deterministic notion of weak transitions. Observability relations are
introduced in section 4 and normality relations in section 5. These relational characterizations are
then used in section 6 to derive new algorithms for computing the supremal normal (and normal
and controllable) sublanguages. Section 7 shows the power of the coinductive definition principle.
After having specialized the observability relations to the final automaton of partial languages,
necessary and sufficient conditions for a given language to be exactly achieved are captured in
a relation called partial bisimulation. Finality is used to define the language of the closed-loop
system as well as the infimal closed observable superlanguage. An algorithm is presented for the
computation of an observable sublanguage that contains the supremal normal sublanguage. Mono-



lithic algorithms for computation of supremal normal (and normal and controllable) sublanguages
are presented. Some preliminary results of this paper have been presented in [8] and [9] without
proofs. The results of section 7 complete the algebraic results of [13], [24], and [7]. At the end of
section 7 the distributivity of the supervised product with respect to basic language operations is
studied.

2 Partial automata as coalgebras

Generators of discrete-event systems are just deterministic automata with logical outputs (that
define the set of marked states) and partial transition function. They are defined in this section as
coalgebras and corresponding notions of homomorphism and bisimulation are presented. In this
section we recall from [20] partial automata as coalgebras with a special emphasis on the final
coalgebra of partial automata, i.e. partial automaton of partial languages.

Before we recall the definition of partial automata we defivecoalgebras, wheré' is an
endofunctor of the categoSet with sets as objects and functions as morphismsFAitoalgebra
isatuple(S, ), whereS is a set (also called carrier set) amd S — F'(.S) defines the coalgebraic
structure orf.

Let A be an arbitrary set (usually finite and referred to as the set of inputs or events). The free
monoid of words (strings) ovet is denoted byd*. The empty string will be denoted lay Denote
by += {0} the one element set and By= {0, 1} the set of Booleans. A partial automaton is a
pair S = (S, (o,t)), whereS is a set of states, and a pair of functidost) : S — 2 x (ff +S5)4,
consists of an output function : S — 2 and a transition functio — (1 +S)4. The output
functiono indicates whether a statec S is accepting (or terminating)i(s) = 1, denoted also
by s |, or not: o(s) = 0, denoted by 1. The transition function associates to each staten S
afunctiont(s) : A — (f +5). The set} +S is the disjoint union ofS and{}. The meaning of
the state transition function is théts)(a) = 0 iff ¢(s)(a) is undefined, which means that there is
no a—transition from the state € S. ¢(s)(a) € S means that the—transition froms is possible
and we define in this cagés)(a) = s,, which is denoted mostly by % s,. This notation can be
extended by induction to arbitrary stringsi. Assuming thats — s,, has been defined, define
s ¥ iff t(sy)(a) € S, in which cases,, = t(sy)(a), also denoted by =% s,,. Itis easy to see
that partial automata are coalgebras of the set furféter2 x (ft +(.) )4.

A homomorphisrbetween partial automata= (S, (o, t)) andS’ = (5, (', t')) is a function
f: S — S with, forall s € S anda € A:

o' (f(s)) = o(s) ands = s, iff f(s5) = f(sa),

in which caseif(s)s = f(sa)-

(1t +9)4 t S
0
1+ f / 2
o
(,ﬂ +S,)A t, Sl

A partial automatory’ = (57, (¢/,t')) is asubautomatowf S = (S, (o, t)) if S’ C S and the
inclusion functioni : S” — S is a homomorphism. It is important to notice that the coalgebraic
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concept of subautomaton corresponds to the notion of strict subautomaton in [6]. In the sequel we
use always subautomata in the coalgebraic sense defined above, i.e. strict subautomata are meant.
Note that partial automaton as defined above is just a coalgebraic reformulation of what is
understood to be a generator of a DES. Indeed, the transition function can be viewed in the coal-
gebraic form above, and the output function determines the subset of marked (or final) states (those
whose output value is equal to 1).
A simulationbetween two partial automaga= (S, (o, ¢)) andS’ = (', (o, ')) is a relation
R C S x S with, forall s € S ands’ € §":

i (5,5') € R then (z) o(s) < o(s’),ai.e. s :Z s' ], and
(i1) VYae A: s == (s = and(sq,s,) € R),
A bisimulationbetween two partial automat= (S, (o,t)) andS’ = (S', {0/, ")) is a rela-
tion R C S x 8’ with, forall s € S ands’ € S’:

(1)  o(s)=o(s), ie.s] iff & |
if (s,s') € Rthen{ (i1) Vac A: s %= (s 3 and(s,,s,) € R,) and
(1ii) VYac A: s’ 5 = (s> and(s,,s,) € R).
We writes ~ s’ whenever there exists a bisimulatirwith (s, s’) € R. This relation is the union
of all bisimulations, i.e. the greatest bisimulation also called bisimilarity. It is immediate from the
definition of bisimulation that two states are bisimilar iff they can make the same transitions and
they give rise to the same outputs:

Proposition 2.1. For any partial automators = (S, (o,t)) and anys, s’ € S:
s~ s iff vw € A*: s 5 <= s’ 5, inwhich case(s,,) = 0/(s),).

2.1 Final automaton of partial languages

In this subsection we define a partial automaton that is final among all partial automata and sat-
isfies a proof principle called coinduction. The states of this final automaton represent minimal
realizations of all possible behaviors (called partial languages) of all partial automata. Partial lan-
guages will be endowed with a (partial) automaton structure, which has the universal property of
being final among all (partial) automata. The partial automaton of partial languages is defined
using the Brzozowski notion of input derivative. Below we define the partial automaton of partial
languages over an alphabet (input sétflenoted by = (L, (oz,t.)). More formally,L = {® :

A* = (1 42) | dom(®) = {w € A* |®(w) € 2} # (is prefix-closed. To each partial language

® a pair(V, W) can be assignedV = dom(®) andV = {w € dom(®) | (w) = 1(€ 2)}.
Conversely, to a paifV, W) € L, a function® can be assigned®(w) =1if w € V, ®(w) =0

if we W andw ¢ V, and®(w) is undefined ifw ¢ W. Therefore we can write :

L={(V,W)|VCWC A", W #0, and W is prefix-closef

The transition functiort, : £ — (1 + £)* is defined using input derivatives. Recall that for
any partial languagé = (L', L?) € £, L, = (L}, L?), whereL} = {w € A* | aw € L'}, i =
1,2.1f a ¢ L? thenL, is undefined. Given ang = (L, L?) € £, the partial automaton structure

of L is given by:
1 ifeelL!
oc(L) = _ L
0 ifegL



and
L, if Ly is defined

1] otherwise

te(L)(a) = {

Notice that if L, is defined, therLl C L2, L2 # 0, and L2 is prefix-closed. The following
notational conventions will be used: | iff ¢ € L', andL = L, iff L,, is defined (iffw € L?).
Most of the rest of this section is recalled from [20].

Theorem 2.2. £ satisfies the principle of coinduction: for af and L in L, if K ~ L then
K =L.

Proof. It follows from Proposition 2.1. Indeed, K ~ L then for anyw € A* : K RPN =S
i.e.w € K2iff w € L?, in which caseo(K,,) = o'(K],),i.e.w € K!iff w € L. It follows that
K = L. The converse implication is also true. O

Theorem 2.3. The partial automatorC = (£, (or, t.)) is final among all partial automata: for
any partial automatorS = (5, (o, t)) there exists a unigue homomorphigm S — L. This
homomorphism identifies bisimilar states: fos’ € S: I(s) = I(¢') iff s ~ §'.

Proof. For the existence part of the theorem, we define the homomorghigrputting fors € S:
dom(l(s)) = {w € A*: s B}

and
I(s) = (1), (U(5))*) = {w € A" | s = andsy, |}, {w € A" [ s 3}).

Uniqueness of follows from the fact that for any two homomorphisi$ : S — L the relation
R={{l(s),l'(s))ye Lx L|se S}

is a bisimulation. Therefore = !’ follows from theorem 2.2. The last statement is immediate
from the definition of and Proposition 2.1. O

2.2 Coinduction

Coinduction is a dual concept to induction. Many people use induction without bearing in mind
its abstract (categorical or universally algebraic) meaning. Coinduction in its full generality must
be put into a general framework of universal coalgebra that uses the category theory. Finality of
a coalgebra enables coinductive definitions and proofs in a similar way as initiality of an algebra
enables definitions and proofs by induction. In order to make the paper more accessible to a
reader not very familiar with category theory we have prefered to introduce the coinduction only
in its special form: on final coalgebra of partial languages. It is the same as with mathematical
induction that is by many people understood only on the initial algebra of natural numbers with
the (unary algebraic) structure given by the successor operatio N : succ(n) = n + 1.

Here definitions of functions by induction correspond to giving the successor on functions, hence
yielding recursive formulas. Proofs by induction correspond to the very well known two-steps
procedure, which amounts to verify that a relation is a congruence relation with respect to the
successor operation. Similarly, a definition by coinduction amounts to give the corresponding
structure, here output and derivatives on operations to be defined, and a proof by coinduction
consists in verifying the conditions of bisimulation relation. We believe that giving a general
categorical definition of coinduction would go far beyond the scope of the paper, which is only an
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application of coalgebra to control. Coinduction has been well covered by the existing literature
on universal coalgebra [21], [22].

Coinduction is used as a proof and definition principle throughout this paper. The use of
coinduction is limited to final coalgebras. Behavior equivalence of two elements of final coal-
gebra means that these are equal. Also notice that the elements of final coalgebras are equal to
their behaviors (the identity is the unique behavior homomorphism). This feature is sometimes
paraphrased as 'being is doing’, because these elements behave as they are.

Proofs by coinduction consist in constructing appropriate relations: for instance a proof of
equality of two elements of a final coalgebra consists in finding a bisimulation relation that relates
them. Definition by coinduction of an operation on elements of a final coalgebra consists in
defining the same coalgebraic structure on the operation (for instance we define binary operations
on partial languages by defining derivatives and output functions further in this paper). More
details about coinduction and finality can be found in [21] or [20]. Various supervisory control
and observation problems will be tackled using coinduction. It offers more then just an insight to
some well known solutions of these problems, it leads to some new algorithms and results.

We adopt the notation from [19], page 9, easily extended from automata to partial automata,
and denote the minimal (in size of the state set) representation of a partial langumyge.).

Hence (L) = (DL, (o(ry, t(1))) is a subautomaton af generated by.. This means that;, and

t(ry are uniquely determined by the corresponding structui& dthe carrier set of this minimal
representation of. is denoted byD L, whereDL = {L, | u € L?}. Let us call this set the set of
derivatives ofL. Inclusion of partial languages that corresponds to a simulation relation is meant
componentwise. The prefix closure of an (ordinary) language denoted byL. Some further
notation from [20] is used, e.g. ‘zero’ (partial) language is denote@ bg. 0 = (0, {}).

There is yet another important concept that will be needed in this paper. Namely, given an
(ordinary) languagd., the suffix closure ofL is defined bysuffix(L) = {s € A* | Ju €
A*withus € L}. For partial languages, the suffix closure is defined in the same way as the
prefix closure, i.e. componentwise. There is the following relation between the transition struc-
ture of L and its suffix closure operator.

Observation 2.4. For any (partial) languagée.: suffix(L) = U,cr2Ly,.

Proof. It isimmediate from the factthdt, = ({s € A* |us € L'}, {s € A* |us € L?}). O

3 Weak transition structures

In the following definition we introduce the notion of weak derivative (transition). Roughly speak-
ing it disregards unobservable steps, which correspond to so called internal moves in the frame-
work of process algebras [17]. Ldt= A, U A,, be a partition of4 into observable eventsi()

and unobservable(,,) events with the natural projectiad : A* — A*. Recall thatP(a) = ¢
foranya € Ay, P(a) = afora € A,, andP is catenative.

P:(g)

Definition 3.1. (Nondeterministic weak transitions.) For an event A defineL if 3s €

A* : P(s) = P(a) andL > L. Denote in this cas& 1,

Remark 3.1. According to this notation for unobservable eveiits= is an abbreviation for
Ir € A%, such thatl . We admitr = ¢, hencel = is always true. Fou € A, our notation



Tat'

means that there exist 7' € AZ such thatL. — L,.. This definition can be extended to
strings (words inA*) in the following way:
()

L3t e a* - P(s) = P(t)andL - . Denote in this cas& i L.

There may exist two or more € A* satisfying the condition in the definition of weak tran-
sition. Hence, the weak transition structure introduced above is not deterministic. We introduce
deterministic weak transition structure grin the following definition.

e C e . . . . P(a
Definition 3.2. (Deterministic weak transitions.) Define farc A,: L = L, if L :(>)
La :=Ugser2 | p(s)=a} Ls-

and

To avoid any confusion we must distinguish between both concepts. Let us introduce the

convention that for nondeterministic weak transition we saylhgg) L' for someL' and for de-
terministic concept we denote always the unique wedkrivative byL;. Fores-weak transitions
we introduce the notatioh = L,,,, whereL,, = U{L,, T € A}, such thatL, exists, the latter
set being nonempty (e A7 ). Sometimes it will be denoted for notational convenience also by
Lg, i.e. L; = Ly, is the so called unobservable reach of the partial langiiagéotice that for

anyL € L, L,, has the pleasant property that toe A,: Ly, Fla) iff Lyo —.
The concept of deterministic weak transitions can be extended to observable strings by induc-

tion. It should be clear that fore A% : L = Ly iff L S with Ly = Uy{L; | t € L? andP(¢) =
s}. Otherwise stated; = U{L' | L i L'}

There is the following relation between the deterministic weak transitions of a lan@ueu
the (strong) transition structure of the projected langud@g) over alphabeti,,.

Proposition 3.2. For any (partial) languagel, ands € A% : P(L) > P(L), iff L = L;, in
which caseP(L), = P(L;).

Proof. The first part is easy. Indee®(L) > P(L), iff s = P(s) € P(L)? iff Ju ¢ L?

P(u) = P(s) iff L =, which is equivalent td ; exists, i.e.L. = L;. In order to see the second
part, observe that € P(L;) iff 3w € L; with ¢ = P(w) iff 3w € L, for P(r) = s andw €
P~Y(¢t) iff Irw € Lwithr € P~1(s) andw € P~L(t)iff P~Y(s)P~1(t)NL = P~(st)NL # 0.

On the other hand € P(L), iff st € P(L) iff 3u € L: P(u) = st iff 3u € L N P~Y(st) iff
P~Y(st)n L # (. Since this is valid for both components of the languages involved, this achieves
the proof of the Proposition. O

Notice that deterministic weak derivatives can be generated by strong derivatives\wadk
derivatives.

Proposition 3.3. For any partial language. anda € A,: Ls = ((Lg)a)e-
Proof. Itis immediate from Definition 3.2 and the fact tet V) (a) = {rar’ | 7,7 € A%}, O

Much more can be said about the topic of weak transition. In particular, our notion of deter-
ministic weak transition gives rise to another concept of weak bisimulation, where usual nondeter-
ministic weak transitions [17] are replaced by the deterministic ones. However, due to Proposition
3.2 it is not difficult to show that the new concept would coincide with the equality of projec-
tions, i.e. observable trace equivalence. The notion of weak bisimulation can be defined unlike



deterministic weak transitions for any partial automaton using the concept of powerset automaton
introduced in the next subsection. But this goes beyond the aimed scope of the present paper. On
the other hand weak bisimulation is not a congruence, but only a weak congruence, and therefore
does not provide (strong) quotients. The same problem can be encountered in the framework of
process algebras [16].

3.1 Weak transitions and observers for partial automata

Weak transitions in the final automaton of partial languages have been introduced. Let us extend
our definition to arbitrary partial automata. As for the nondeterministic concept of weak transi-
tions, the definition is straightforward (simply for a staie partial automatos = (S, (o, t)) and

a € A we puts L) o if there existsu € A* such thatP(u) = P(a) ands = s' = s,). As for

the deterministic concept of weak transitions, the corresponding definition does not make a sense
in general, however it can be defined if the set of states is a powerset. This motivates the following
construction, where we denote the set of nonempty subsets of%by (S) (= Pwr(S) \ 0).

Definition 3.3. (Powerset automaton.) To any partial automatn= (S, (o,t)) we assign a
powerset automaton, a partial automaton denoted®by-(S) = (Pwr™(S), (os, ts)), where for
anyQ € S; Q # 0 we put

ts(Q)(a) = Ugeq t(gq)(a) andog(Q) = max(o(q),q € Q).

Notice that in the definition of transition function in a powerset automaton there is no necessity
to consider separately the case whgp)(a) is not defined for some € @, because according to
the definition of partial automata for such a case theté¢gisa) = () €f}. Therefore the above
compact way of definingg is correct. If we denote bis : Pwr™(S) — Landl: S — L the
unique homomorphisms defined by finality 6f then clearlyls(Q) = Ugeq 1(g). This enables
us to use the same notation fandig, i.e. the subscript S can be dropped.

In order to implement the projections we define the projected automaton.

Definition 3.4. (Projected automaton.) The projected automaton is a partial automatonyer

P(S) = (Pwrt(8), {op, tp)) with

tp(Q)(a) = Ufwear| P(w)=a} ts(Q)(w), a € A,
andop(Q) = 05(Quo) = max{o(q), ¢ € Quo}, WhereQ,, is the unobservable reach set of
Q,i.e.Quo={qd € S|3ge Qwithqg= ¢}

If we denote byip : Pwr™(S) — L, the unique homomorphism defined by finality &f
(automaton of partial languages owy), then clearlyip(Q) = P(1(Q)).

Deterministic weak transitions can now be defined in powerset automata: fdr gng@ C S
anda € A, Q = Q; = UgueP-1(a)} ts(Q)(u). Notice in particular that deterministic weak
transitions in the powerset automatéhwr(.S) correspond exactly to strong transitions in the
projected automatoR(S), i.e. foranyd # Q C S: tp(Q)(a) = Qa.

The projected automataR(S) of a given automatoi is related to the observer automaton
introduced in [5], but its state space is in general much larger than that of the observer automaton.
In control theory, the observer automaton is defined by induction starting from the initial state.
However, partial automata as defined above have no initial state. Note that it is natural to consider
L € L itself as the initial state of the minimal recogniZdr) of L € L. For general, if we are
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given an initial state, the usual construction of observer has its coalgebraic meaning. We define
for each partial automaton with designated initial state (.S, (o, t)) with sy € S the observer
automaton as the subautomatom{fS) generated by s }., (accessible frord s }yo):

Definition 3.5. (Observer automaton.) The observer automaton is denoted by

Obs(S) = (Sobs, (0obs, tobs)) With carrier setSy,s € Pwr™(S) defined as follows:

1) {s0}uo € Sobs ({S0}uo - unobservable reach set is that Bivr(S)).

2)If Q € Sops thenVa € A, tp(Q)(a) € Sops-

The structure of the observer automaton is given by the structui@(8) restricted toS,ps:
VQ € Sobs : 00bs(Q) = 0p(Q) andVa € A, : tops(Q)(a) = tp(Q)(a).

Remark 3.4. Notice that the definition above implies that the states of the observer are isomorphic
to, i.e. can be identified with, different deterministic weak derivatives of its initial §talg,, i.e.

we haveSg,s = {(s0);: trP({s0}uo)(d) is defined} Note that if it happens that two deterministic
weak derivatives are equal, they determine a single state of the observer automaton.

4 Observability relation

In the supervisory control of DES with partial observations the observability of a (specification)
language with respect to the plant and projection (to observable events) is necessary for achieving
this language as a desirable behavior of the closed-loop system. We assurhe=th&t U A,

is a partition ofA into controllable events{.) and uncontrollable4,.) events. The observability
condition has been first introduced in [14] using a slightly different, but equivalent formulation.
This notion of observability is very different from the observability of linear systems. The first
attempt to capture this type of condition in an abstract setting goes back to [31]. There has been
yet another approach to the observability of DES, based on automata theoretic framework. A
necessary condition for a given specification represented by an automaton to be achieved has been
formulated in [1] using automata framework.

Definition 4.1. (Observability.) A partial languagés is said to be observable with respect to
another partial languagéd. (with K C L) and projectionP if for all s € K? anda € A, the
following implication holds true :

sa € L?, s'a € K* andP(s) = P(s') = sac K~

Our aim is to find a relational characterization of observability. Unlike [9] we present first
definitions on automata representationgoand L without specialization to relations af. The
following auxiliary relation is needed.

Definition 4.2. (Observational indistinguishability relation afl.) A binary relationAuz(S) on
S, calledobservational indistinguishability relatiasmthe smallest relation satisfying:

(i) (so,s0) € Aux(S)
(i) If (s,t) € Auxz(S) thenVa € A : (s 19 o for somes’ andt ) ¢ for somet’ ) =
(¢, ') € Auz(S)
From the definition of weak transitions it follows that (i) is equivalent to (ii)’ and (iii)’ below:
(i) If (s,t) € Auxz(S)then: ¢ = s for somes’ andt = #' for somet’ ) = (s',t') € Auxz(S)
(i)’ If (s,t) € Auz(S)thenVa € Ay : (s 5 sqandt S t,) = (sq,ta) € Auz(S).
Auzx(S) can be characterized by the following lemma.
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Lemma 4.1. For anys, s’ € S: (s,s') € Auz(S) iff there exist two strings), w’ € K? such that
P(w) = P(w') ands = (s¢)w ands’ = (8¢)-

Proof. (<) Lets, s’ € S such that there exist two strings w’ € K2 such thatP(w) = P(w’)
ands = (sg)y ands’ = (sg)w. Letw = wy...w, andw’ = t;...t,. Let P(w) = P(vw') =
a1 ...ag. Thenn > k andm > k and there exists two increasing sequences of integers (indices)
u; >, 1 =1,...,kandv; > ¢, i = 1,...,k such that; = w,, anda; = t,,. Since alla; are

observable events we can write” L) ¢ ands, 7L ¢ whence by (i) inductively

applied(s, s') € Auz(S).
(=) Let (s, s') € Auz(S). Then by the construction ofuz(S) there existy, ..., a; € A such

thatsy © 2L %) ¢ ands, T@2LL ™) ¢ Therefore there exist by definition of nondeterministic

weak transitions two strings, w’ with the same projection such that= (sg)., ands’ = (s¢)-
U

Remark 4.2. Remark thatduz(S) is not in general an equivalence relation, because it might be
non transitive as is shown in the following example. However it is always symmetric and reflexive.
Such a relation is sometimes called a tolerance relation.

Example 1. Take S = DK, whereK = (0,{a7,7}). ThenDK = {K, K, K,;}. Then
Auz(DK) is not an equivalence relation, becauke = K, = {¢} means that K, K,;) €
Auz(DK) and(K,, K,) € Aux(DK), while (K, K,) ¢ Aux(DK).

A natural question arises under which conditiohsz(S) is an equivalence relation. Recall
the concept of state-partition automaton from [6] and [5].

Definition 4.3. (State-partition automaton.) L&t = (S, (o,t)) be a partial automaton and let
0bs(S) = (Sobs, (0obs, tobs)) be its observer automaton. Théhis said to be a state-partition
automaton if for allQ1, Q2 € Syps C Pwr(S) we have:Q; # Q2 = Q1N Q2 = 0.

A partial automatorf with initial states is a state-partition automaton if any two different
states of the observer are disjoint (as subsef ofn the case, where all states of the automaton
are accessible fromy, this condition is equivalent to the statement that the states of the observer
automaton form a partition of. In our coalgebraic framework, the property of state-partition
automaton can be described in terms of deterministic weak derivatives (in the sdfwe(df)).
Namely, S is a state-partition automaton\it,d’ € P(i(s0)?): (s0); # (s0)g = (s0)3N
(s0)y = 0. Itis easy to prove that this condition is sufficient fuz(S) to be an equivalence
relation.

Proposition 4.3. If S is a state-partition automaton thetuz(.S) is an equivalence relation.

Proof. Let S be a state-partition automaton. Let us show thai:(S) is transitive. Take, s, s”
such that(s, s') € Auxz(S) and(s',s") € Auz(S). Let us show thats, s") € Auz(S). There
exist stringsv, v, w,w’ such thatP(v) = P(v'), P(w) = P(w'), s = (s0)v, 8 = (50)v',
s = (s0)uw, ands”(sp)w. Denoted = P(v) andd’ = P(w). Thens' € (so);N (so);. This
means thatso) ; N (s0); # 0 and by definition of state-partition automaton) ; = (so) z. In
particular, there exist®” with P(w") = P(w) ands = (sg)y. Thus(s, s") € Auz(S). O

However the opposite statement does not hold as the following example shows.
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Example 2. Put S = {sq, s1, s2} with the transition functiont(sg)(a) = s2, t(so)(7) =

s1, t(s1)(1) = s2, t(s2)(1) = s1, the other transitions are undefined, and the output func-
tion can be arbitrary. Themluz(S) = S? is trivially an equivalence relation of, but S is not a
state partition automaton, because the $8¢3,, = S and(sp)s = {s1, s2} violate the condition
for S to be a state-partition automaton.

Lemma 4.1 implies thats, s’) € Auz(S) iff there existsd € P(L) (d = P(w) = P(w'))
such thats € (so); ands’ € (sp), i.e. there exists a statg C S of the observer automaton
Obs(S) such thats € @ ands’ € Q. This motivates the following definition.

Definition 4.4. Define for anys € S:
18] Aua(s) = {8' € S: (s,5") € Auz(S)}.

Let us now use a simpler notatig®| 4., if automatons is supposed to be fixed. Itis to be
expected that

Observation 4.4. The following properties are equivalent:

(i) Aux(S) is an equivalence relation
(i) Vs,s'eS: (s,8) € Auz(S) = |[s]aue = |5'| Auz-
(i) Vs,8' €8S : |8|auwe N8 awe 0 = 5] auwe = |5'] Aue-

Proof. (i) = (i7) Let Auz(S) be an equivalence relation and take arbitrary € S such that
|8] Auz # || Auz- Assume thaBg € S : ¢ € [s]|auz \ |8'] auz, the other case can be treated
in a symmetric way. By definition of.| 4y, (s,q) € Auz(S) and(q,s’) ¢ Auz(S). Let us
show that(s,s’) ¢ Auxz(S). Suppose by contradiction thét, s’) € Auz(S), then using the
fact thatAuz(S) is symmetric and transitivés’, ¢y € Auz(S), hence alsdg, s') € Auz(S), a
contradiction. Thereforés, s') ¢ Auxz(S).

(¢d) = (i4i) Let the implication (ii) hold true. We show (iii): if fog,s" € S : |s]Auz N
|8'] auz # 0, then there existg € S such thayy € |s] auz N |8"] Auzs 1-€. (s,q) € Auz(S) and
(q,8") € Auz(S). Thus from (ii) we havé s| 4y = |¢] Auz = |8"] 4uz, Which was to be shown.
(i4i) = (i) Let the implication (iii) hold true. Takes, s’) € Aux(S), and(s’,s") € Auz(S).
Thens' € [s] auz N [8"] Auz # 0. It follows that|s]| a4z = [8”] Auz- BUtS € [$] aue = [5"] Auz
i.e. (s,s") € Auz(S) according to the definition ofs”| 4,4,. This proves the transitivity of
Auzx(S). O

Note that in fact s | sus = Ufa. se(s0),;3 (S0)g- It follows that(s, s') € Aux(S) iff {s,s'} C
Q, for someQ € S, which is equivalent by definition of the observerdd € A% : {s,s'} C
(s0) -

One could ask for conditions that ensure tHatz(.S) is an equivalence relation without the
use of Auz(S) itself. Let M = I(sp)? be the closed behavior generateddgy There is the
following condition using the states 6fbs(.S):

Lemma 4.5. Auz(S) is an equivalence relation iffdy,d> € P(M) : (so)g, N (s0)g, #0 =
(Vsl S (So)tﬁ andVsy € (So)d*z) dd € P(M) : {81, 82} - (30)({-

Proof. (=) Let Auz(S) be an equivalence relation and suppose by contradictiortithatl, €
P(M) (So)dAlﬂ(So)dAl 75 (@ and3s; € (So)d*l andds, € (So)d*z)i Vd € P(M) : {81, 82} g (So)d*.
It means that there existse S: ¢ = (50)v; = (50)vy, WhereP(vy) = dy and P(v2) = do, i.e.
(s1,q) € Auz(S) and(q, s2) € Aux(S). By the transitivity ofAuz(S), (s1,q) € Auxz(S) and
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(q,82) € Auxz(S) implies (s1,s2) € Aux(S), i.e. there existel € P(M): s1 € (s0); and
s2 € (s0) 4, @ contradiction wittvd € P(M) : {s1,s2} Z (s0)4 Thus the implication holds true.
(<) Assume the implication on the right hand side holds t{ues’) € Aux(S), and(s',s") €
Auz(S). By Lemma 4.1 there exists stringsv’, w, w’ € M such thats = (sg),, s’ = (s0)» =
($0)w's 8" = (s0)w, WhereP(v) = P(¢v'), andP(w) = P(w'). Denote byd; = P(v) and
d2 = P(w). Thens' € (s0) N (s0)g,- Therefore fors € (so); ands” € (so)4, there exists
de P(M): s € (so);ands” € (so) 4, 1.€.(s,s") € Auz(S) using Lemma 4.1, andux(S) is an
equivalence relation. O

Notice that the condition of this Lemma is similar but somewhat weaker than the condition
required forS to be a state-partition automaton, which is only a sufficient conditiomfor(.S)
to be an equivalence relation.

Our aim now is to provide a coalgebraic characterization of observability. Since observabil-
ity is a property of the second (closed) componentg<oaind L, we can assume that; =
(S1, (01,t1)) is a partial automaton with initial statgy € S that representd( in the sense
K = li(so), 1 : S1 — L being the unique behavior homomorphism defined by finality of
L. Moreover, sincel’ C L, we can assume thay is a subautomaton & = (5, (o, t)) with
L =1I(so) (I : S — L is the behavior homomorphism) argl their common initial state. Let
the transition function of be denoted by, i.e. s = s, meanss, = t(s)(a) and similarly the
transition functiort; of S is denoted by-1, i.e. s 31 s} meanss! = t;(s)(a). Notice also that
due to the requirement th&§ is a subautomaton o, we have in fact! = s, € S;. It means
that the superscrigtcan be dropped here. Let us introduce observability relations, in which the
observational indistinguishability relation is involved.

Definition 4.5. (Observability relation.) A binary relatio®(S;,S) on S; x S is called the

observability relatiorif for any (s, t) € O(S1, S) the following items hold:

() VacA:s31s, = t3t,and(sqt,) € O(S1,S)

(i) Va € A. = t 5 toand(3s': (s,8') € Aux(Sy) : ' 31 8/,) = 531 s, and(s,,ta) €
0(S51, S).

Remark that (i) can be expressed using the[s¢l,.(s,) introduced above: the condition
3s' 1 (s,8') € Aux(S1) : s =31 ', can be replaced by the simpler oh€ 4,,(s,) —1. Where
—1 is now to be interpreted ifPwr(S1). Fors € Sy ands’ € S we writes =g, ,5) s' whenever
there exists an observability relatiah(.S1, S) on S; x S such tha{(s,s’) € O(S1,5). Now we
are ready to prove:

Theorem 4.6. A (partial) languageK is observable with respect th (K C L) and P iff
S0 ~0(84,9) S0-

Proof. (=) Let K be observable with respect foand P such thatK’ C L. Denote
0(51,5) = {<(80)u, (80)u> €S xS | u € K? } C 51 xS,

Note that some of pairs i®(S1, S) can be equal. Indeed, it is possible that there existse
K?: (s0)u = (50)». But we will show that this is not a problem for our proof. Let us show that
O(S1, S) is an observability relation. Lég, r) € O(S1,.S). Because of the definition 6(S1, S)

we can assume that= (sq)s for somes € K2 andr = ¢q. We must show that conditions (i) and
(ii) are satisfied.

(i) Let ¢ -3 for a € A. Clearlyq %, becauses; is a subautomaton ¢ and it is immediate from
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the definition ofO(S1, S) that(qq., ¢.) € O(S1, S).

(i) Let ¢ & fora € A.and3q : (q,¢) € Aux(Sy) : ¢ -31. Then by Lemma 4.1 there
exist two stringss’, s” € K2 such thatP(s") = P(s'), ¢ = (s0)s, andg’ = (so)s. Now ¢’ —34
implies thats’a € K?2. Recall thats’ € K2, becausg’ = (sg)y. Fromg % andq = (sq)s»
follows s”a € L? and by application of the observability &f with respect ta and P we deduce
s"a € K2, i.e. a € 1((so)s)? which means thay = (sg)s» —1. It follows from (i) that
(da, qa) € O(S1,S). We see now that considering instead ofs, whereq = (s9)s = (s0)s» did
not make any difference.

(«=) Let so =p(s,,5) so- Let us show thaK is observable with respect t and P. For this
purpose, let € K2, s'a € K% fora € A, sa € L? andP(s) = P(s'). Thens € K2 L?,
i.e. (s9) =31 and(sg) =, whence from (i) of Definition 4.5 inductively appli€dy)s R0(51,9)

(s0)s. SinceK? is prefix closeds’ € K? = I1(s0)?, we havesg —5;1 (s0)s and according to
Lemma 4.1 we haveé(sg)s, (so)s) € Aux(S1). Now we have(sg)s — and(sg)ys —51, where
recall((so)s, (s0)s') € Aux(S1). By (ii) of the definition of observability relation we obtain that
(50)s —51, 1-€. (s0) =51, which means thada € 11 (sp)? = K2. O

Recall that the tests for observability proposed in [7] or [5] are to be made for all states of
observer automato@bs(S1) that are in fact different weak derivativésy) ;, d € P(l1(s0)?). It
would mean that the test for observability requires the construction of the observer. We have just
shown that a test for observability might not rely on the observer, butwr(S;) instead. The
test for condition (ii) of observability relation can be made for differenty,.(s,). Recall that

LSJAux(S) = U{d: s€(s0)4} (SO)J'

5 Normal relations

In this section we show an application of the above introduced notion of weak transition to the
characterization of normality of languages introduced in supervisory control of DES with partial
observations. For the sake of completeness, the concept of normality ([14], [4], [6], etc.) is stated.

Definition 5.1. (Normality.) LetK,L € £: K C L. K is said to be(L, P)-normal if K? =
L2 N P Y(P(K?)).
Property 5.1. K is (L, P)-normal iffs € K2, s’ € L?,andP(s) = P(s') = s’ € K2,

Proof. SinceK C L, normality is equivalent td?> N P~1(P(K?)) C K?, which is equivalent to
the statement. N

From the definitions of strong and weak transitions it follows:

Corollary 5.2. K C Lis (L, P)-normal iffYw € A*: (L = and K Pg)) = K5.

Normality is preserved by the unobservable reach sets.
Proposition 5.3. If a languageK is (L, P)—normal thenk,, is (L., P)—normal.

Proof. Using Corollary 5.2 it is sufficient to show thét € A*: L, — andK,, Flw)

implies that
Ko . RecallthatL,, = U{L, | 7 € L? andP(7) = €}. Assume thal,, — andK,, P e

(T'w)

. P(w P
there existr, ' € A%, such that., = and K, %) HenceL ™ andk Y

(Tw)

, thusK P:> ,
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becauseP(r'w) = P(rw). It follows that K == after the application ofL, P)—normality of
K. But it means thaf(, =. SinceK, C K,, we obtain finally thatk,,, —, which was to be
shown. O

The following fact will be useful.

Property 5.4. Normality is preserved by (strong) transitions, i.eKifis (L, P)-normal anda € A
such thatX' % and L % thenK,, is (L,, P)-normal.

Proof. Itis easily seen from Corollary 5.2. Indeed[if = thenL % and if K, ng) then clearly

K 7% whence by(L, P)—normality of K we deduce thak %%, i.e. K, —. O

Remark 5.5. It is interesting to notice thatL, P)- normality is preserved by deterministic weak
transitions. It follows from Property 5.4, Proposition 5.3 and Proposition 3.3.

Now we introduce a binary relation that corresponds to the normality.

Definition 5.2. (Normal relation.) Given two (partial) automatéy = (S1, (01,¢1)) and S =
(S, (o, t)) as in Section 4 with initial statey € S, a binary relationN (S;, S) onS; x S is called
anormal relationif for any (s, t) € N(S1,S) the following items hold:

(Y VacA:s31s, = tSt, and(sq,ts) € N(S1,95)
(i) Vac A, :t S toand(3s': (s,8') € Aux(S1) : 8" 31 8'y) = 5 =31 sa.
(i) Yu€ Ayo: t Sty = §—31 su.

Remark 5.6. Recall that (i) can be expressed using the|sel ., (s, ) : the conditiords’ : (s, s) €
Auz(S1) : 8' =1 54 can be replaced by the simpler ohe€f 4,,,(s,) —1.

Fors € Si andt € S we writes =g, 5) t Whenever there exists a normal relatliiSy, S)
onS; x S such thats,t) € N(S1,.S). Now we can prove:

Theorem 5.7. A (partial) languageK is (L, P)—normal iff s ~ (s, ) $o-
Proof. (=) Let K be (L, P)—normal. Denote
R = {<(80)u7 (80)u> | u e K2 } - Sl x S.

Let us show thaR? is indeed a normality relation. Assume ti{air) € R. From the form ofR

it follows that we can assume that= r = (sg)s for somes € K2. The same remark as in the
proof of Theorem 4.6 applies. Namely,c K? such thay = » = (s¢), might not be uniquely
determined. Again we can show that the choice is not important. Nevertheless, since the argument
is the same as in the proof of Theorem 4.6, we assumes thas been chosen in the way Lemma
4.1 in (ii) below can be correctly applied.

(i) This part is the same as above in the proof of Theorem 4.6.

(i) Let a € A, be such that = ¢ % and3¢’ : (¢,¢) € Auxz(S;) with ¢ -%,. Then by
Lemma 4.1 there exists a stris) € K2 = 1;(sp)? such thatP(s) = P(s') andq’ = (sg)s-
Thus we havésg)s —1, whences’a € K? and by normality we deduce: € K2, because also
sa € L? =1(s0)? (fromgq = (s0)s —).

(iii) Let w € Ay, andg = (sg)s —. Thus we have anslu € I(sq)? = L?, whereP(su) = P(s),
and recall thas € K2, whence by normality (Property 5.4 € K2,i.e.q = (s0)s —51.
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(<) Now let R be a normal relation 0§ x S and(sp, sp) € R. It will be shown thatK
is (L, P)—normal using Corollary 5.2. Let us prove by induction on the structural complexity of

strings that for eacly € A* : L 5 and K Fly) implies K . Forw = ¢ it is trivially true,
becausek? is prefix closed (i.e.K ). Suppose now that fap € A* the above implication

holds true. Letl, % andK Pga). This implies in particular thak = and K P(w), hence by the

induction hypothesigl . Since(sg, so) € R, by inductive application of (i) of the definition
of normal relation we obtain thd{so)., (so)w) € R. Now suppose first € A, andL,, %

P _— o " :
and K (:w>a). The latter means by definition of nondeterministic weak transition that there exists

veA*: P(v) = P(w)andK 2% K’ P:(?), whereK’ = K,,. Moreoverp (andK') can be chosen
such thatk” . Indeed,k” & means by definition there existsr’ A, such thatk’’ ™5 .
Thus, it is sufficient to considek” = K’ andvr rather therv, because nowk” = K’ %. But
P(vr) = P(v) = P(w). Now L,, % gives(so)., — andv € K? with K,, % impliesva € K2,
i.e. (s0)y —51. By Lemma 4.1{(s0)w, (50)») € Aux(S1), i.e. by application of (ii) of normal
relation we obtair(sp), —1, i.e. K 2%, Inthe casar € A,, the property (iii) gives the same
result. Indeed, we simply obtain that, %, i.e. (sg). — implies by (iii) of the definition of

normal relations thasy),, —1. But this means thak’,, . O

Let us recall here the concept of control relation introduced in [20].A.gtbe the subset of
uncontrollable events. We use the following stronger version of control relations with condition
(i) strengthened to inclusion.

Definition 5.3. (Control relation.) Given two partial automatéd; = (Si, (o1,¢1)) and S =
(S, (o, t)) as above, a binary relatiof on S; x S is called acontrol relatiorif for any (s, t) € C
the following items hold:

() VacA:s315, = tSt,and(s,t,)eC
(i) Vu € Aye: t B t, = 531 s,and(sy,t,) € C.

It has been shown in [20] that

Theorem 5.8. A (partial) languagekK is controllable with respect td and A, iff there exists a
control relationR C S; x S such that(sg, so) € R.

In the above definition$; corresponds to the closed-loop system consisting of the plant and
the supervisor and corresponds to the open-loop plant. From Theorem 4.6 and Theorem 5.7
after comparing the definitions of observability and normal relations it follows immediately the
well known fact that normality implies observability. More precisely:

Corollary 5.9. K is (L, P)—normal iff K is observable with respect foand P and controllable
with respect tal, and A,,. In particular, we obtain the following well known implication.Af is
observable with respect tb and P, controllable with respect td. and A,., and A, C A, (i.e.
Ayo C Aye), thenK is (L, P)-normal.

Finally let us compare our result with that in [7]. The test for normality in [7] is made for all
classes introduced in that paper that are in fact different weak derivétiygs d € P(K). It
means that their test for observability and/or normality requires the construction of an observer.
It is known [30] that these tests can be done in polynomial time. We have shown that these
tests do not rely on the observer, but 4nz(S) instead in exactly the same way as the test for
observability.
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6 Supremal normal and controllable sublanguages

It is well known that the supremal observable sublanguage of a given language does not always
exist. On the other hand, supremal normal and therefore also supremal controllable and normal
sublanguages of a given language do exist. Algorithms for their computation have been presented
in [6], [7], and [4]. The algorithm in [7] has been developed using the invariance properties of
equivalence relations induced on a given language by a natural projection. The concept of active
event set of a given state or a subset of states (corresponding to an equivalence class) is used.
However, this concept can be captured in a more natural way using the coalgebraic structure of
partial automata.

6.1 Construction of supremal normal and controllable sublanguages using normal
relations

Given two (ordinary and not necessarily prefix closed) langu&gasd L such thatk’ C L, letus
consider partial automatl = (', (¢/,¢')) andS = (S, (o, t)) representingC andL in the sense
made precise below and such ti#tis a subautomaton o with sy their common initial state.
Let!’: S’ — L andl : S — L be the associated behavior homomorphisms, wkeee (I'(so))*

andL = (I(sp))!. Recall that such a representation with subautomaton always exists [6]. Let
the transition function of be denoted by, i.e. s = s, meanss, = t(s)(a) and similarly the
transition functiont’ of S’ is denoted by, i.e. s 3/ s, meanss, = t'(s)(a). This notation is
possible, becaus# is a subautomaton &f. Moreover we can assume without loss of generality
thatS’ is a trim automaton.

We consider normal relations dif x S. Theorem 5.7 suggests a test for normality. We start
with including (so, sp) € N(S’, S) and we continue by adding new states using (i) of the defini-
tion of normal relation. Every time a new state is included we test conditions (ii) and (iii), either
these conditions are satisfied and we continue the constructidyif$f .5) or one of them is not
satisfied, in which case the procedure aborts and the conclusion & tisatot (L, P)—normal.

It is obvious that if this procedure is never aborted, it leads to the diagonal relatigin denoted

by diag(S'), becauses’ is a trim subautomaton &f. In this caseliag(S’) is a normal relation

on S’ x S proving thatK is (L, P)-normal. Thus diagonal normal relations are of special interest
for testing the normality of a language and computing supremal normal sublanguages. Conditions
(i) and (iii) of normal relations can be reformulated:

(i) Vs € S’ C Sandva € A, : (s % s, and |5] Auz(s) L) = 53 s,
(ii) Vs € ' CSandVu € Ayo: s — 8y = s —3 5q.

The procedure for computation of the supremal normal sublanguage can now be easily devised.
It will consist in removing some strings that cause the violation of conditions (ii) and (iii) above.
This amounts to removing some states and edges from autofatshich is made by Algorithms
1and 2.

Note that condition (iii) of the definition of normal relation is just the "controllability” con-
dition with respect tad,, instead ofA,,. that appears in the definition of control relation [20].
Therefore, the first step (algorithm) of our computation will be similar to the case of complete
observations, i.e. the removal of certain states that violate our "extended controllability” condition
(iii).

Now let us devise an algorithm that ensures condition (iii) of normality, which is of the same
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kind as (ii) of control relations. Therefore for computation of supremal normal and controllable
sublanguages we can take care of (ii) of controllability and (iii) of normal relations at the same
time and use a natural extension of the algorithm presented in [20].

Let R = {{(s0)w, (S0)w) | w € K C L} C S x S. ClearlyR is a diagonal relation of’, i.e.
R = diag(S") and it carries an automaton structure as given in [20]. Recall thatfore R we
put(t,t) =g (t,t)q iff t 3 t, in ', which impliest % t, (becauses’ is a subautomaton o),
in which case€(t, t), = (tq,tq). The output function plays no role here, it can be arbitrary. Now
we can repeat the algorithm from [20] f&.

Algorithm 1. Define the following operator that maps any diagonal relatibrC S’ x S to
T(H)={(s,8) € H|Yu € AyeUAyo: s == s— and(sy,s,) € H).}
We putR = ;5o T¥(R).

Thenk = diag(S1) for someS; C S’ andR is the greatest fixed point @f that is contained
in R :

Lemma 6.1. LetT and R are as defined above. ThenZz.=T'(R) and
2. ForanyR' C R: If RF CT'(R') thenR' C R.

Proof. The operatof” is monotone (as a set operator with respect to inclusion), i.e. there exists a
fixpoint according to [26]. A detailed proof can be found in [20]. O

The construction in Algorithm 1 yields the supremal sublanguaglk’ dfiat is controllable
with respect td, and A, U A,,. More precisely, we have the following theorem:

Theorem 6.2. Let K = I'(so)", L = I(so)", and automateR and R be as above. Thefsy, s) €

R andl((so,Aso>)1 = E, wherel : R — L is the unique homomorphism describing the behavior
of states inR and E is the supremal sublanguage &fthat is controllable with respect th and

Auc U Auo-

Proof. The same as the proof of Theorem 9.2 [20] with the only differenceAhats replaced
now by A, U Ayo. O

The effect of the procedure described in Algorithm 1 is to remove the states of autoffiaton
that violate condition (iii). It is clear that Algorithm 1 stops after a finite number of iterations for
regular languageK and L represented by finite automatadand S, respectively. The represen-
tation R of E (supremal sublanguage &f that is controllable with respect thand A, U Ay,)
given by Algorithm 1 is often not suitable for the forthcoming algorithm. Notice that in Algo-
rithm 1 it was not necessary thét is state-partition automaton. However, Algorithm 1 must be
followed by another algorithm in order to ensure that condition (ii) of normal relation holds and
this property of representation will be required.

Let us suppose th&; is a representation df such thatS; is a subautomaton ¢f and.S; is a
state-partition automaton. This will be needed for the correctness of the algorithm below. Denote
by l; : S1 — L the behavior homomorphism 6%, i.e.l1(sp)! = E.

Remark 6.3. Note thatS can now be a different representation than the one resulted from Algo-
rithm 1, because of the requirements thafs a subautomaton ¢f and thatS; is a state-partition
automaton. Such representatiatisas subautomaton of can be constructed using the procedure
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from [7] that ensures the condition & being a state-partition automaton. It is not difficult to
see that in automatof; = (51, (o1,t1)) we have

(C)Vse Sy :Vu € Aye U Ays: (sﬁ>:> s—u>1).

This means that the controllability condition does not depend on the particular representation.
This is very important, because in Algorithm 1 smaller representatiod$ afd L can be used,
while the condition (iii) of normal relations remains valid for representatiShsand S that we

use in Algorithm 2.

Thus we consider separately (ii) of normal relations in Algorithm 2 below. We denote by
Acc(S) the accessible part of an automatoand make the following construction.

Algorithm 2. Construct the automatoff, (6, %)) in the following way.
1) We putS = 5.
2)t:85 — (1+8)4 with
fora € Auw: q € S: i(q)(a) is defined ifft,(q)(a) is defined, in which casiq)(a) =
ti1(q)(a), and:

fora € A,: t(q)(a)is definediffs € |q| Aua(sy) : (s 5= 5-%),

in which casé(q)(a) = t1(q)(a).
3) The output function is unchangegl= o;.
4) Put(S, (6,1)) := Acc(S, (6,1)).

Algorithm 2 just states that for any stajec S an outgoing edge labeled lye A, is to be

removed (of course only if —%;), whenever there exists € |q/| Auz(Sy) @ 8 5 ands 41 in

S1. Intuitively it means that we remove an observable a-transition from all ¢] 4,.(s,) at the

same time, which makes the resulting language normal. However, there might be a conflict if there
existsq’ € S such that(q, ¢') € Aux(S1) (i.€. ¢ € || auz(sy)) ANA|¢] Aua(sy) # 19'] Aua(sy)-

Then it might happen that for somsec | q] guqz(s,) N [4'] Auz(s,) We should remove € A, from

t1(q) (regarding from the clasky] 4us(s,)) @and on the other hand we should keep it regarding
from [q'| 4uz(s,)- From this characterization the importance of the assumptionAhats;) is

an equivalence relation is easily seen. Indeedyit:(S,) is an equivalence relation then for any

¢ € S such that(g,q') € Auz(S;) we obtain according to Observation 4.4 that 4uz(s,) =

14’ | Aua(sy), 1-€. the above conflict situation cannot happen. Nevertheless, a stronger condition
for S; being a state-partition automaton is required to quarantee the supremality of the normal
sublanguage represented by the resulting automéut:o(ﬁ, (6,t)). Note also that the procedure
described in Algorithm 2 can lead to removal of certain states that become inaccessible from the
initial state after removing some observable transitions.

Algorithm 1 followed by Algorithm 2 ensure the conditions of normal relations are fulfilled.
Unlike Algorithm 1, which consists in iterative application of the operdtpAlgorithm 2 is a
monolithic one. However there is an intrinsic difficulty concerning the computation of supremal
controllable and normal sublanguages. It is possible that the diagonal relation of the resulting
automatonS might not be a control relation, i.e. condition (ii) of control relation might be vi-
olated due to the removal of some uncontrollable edges in Algorithm 2. If the supremal normal
sublanguage is of interest (i.e. the condition in the definitioh &f required to be valid only for
u € Ay, instead ofu € Ay, U Aye), Algorithm 2 does not affect what has been done in Algorithm
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1 due to the fact that in our definition of normal relations we have separated the conditions for
observable events (ii) and unobservable events (iii). Therefore in Algorithm 2 we remove only
observable transitions from statesdrand condition (iii) will hold for$, i.e. its diagonal relation
will be a normal relation o$ x S. However, if the supremal normal and controllable sublanguage
is of interest, then Algorithm 2 may affect the condition (iii) for some A, N A,.. Only in the
caseA, C A, the supremal normal and controllable sublanguage is obtained after Algorithm 1
and Algorithm 2 have been applied. This explains why in general an iterative scheme that consists
in consecutive repeating of these algorithms in the same way as in [6] or [5] is used. In the next
section we show that it is not necessary to consider such an iterative scheme if we implement Al-
gorithm 1 as a monolithic algorithm instead of an iteration. In the proof of the following theorem
we use the notations: for transition functiorf of S. Recall that transition functiortsandt; of S
andJsS; are denoted through» and—1, respectively.

Now we are interested in computation of supreifial P)—normal sublanguage df. We
need the following modification of Algorithm 1, where the condition in the definition of operator
I is required only for alk, € A, instead of for alu € A, U Ayo.
Algorithm 1'. Define the following operator that maps any diagonal relatibrC S’ x S to

T(H)={(s,8) €H |Yu € Ayo: s = = s and(sy,s,) € H).}
We putR = N;>o0 Fl(R)

Theorem 6.4. Algorithm 1’ followed by Algorithm 2 yields the suprenfal P)—normal sublan-
guage ofK in the following sensé(sy)!, wherel : S — L is the unique behavior homomorphism,
is the suprema(L, P)-normal sublanguage df'.

Proof. The coinductive proof principle is used. Note that step 4) of Algorithm 2 is not used, be-
cause in fact the behavior homomorphistakes automatically care of the accessibility operation.
First we show thak(sy)! is a(L, P)-normal sublanguage df. To prove the normality of(so)*

we show that the following relation is a normality relation®mx S. Theni(so) is (L, P)-normal
sublanguage o according to theorem 5.7. Since normality is a property of the prefix closure,
this means thal(sq)! is (L, P)—normal sublanguage df in the classical framework.

R = {{(s0)u; (s0)u) | u € U(50)* }.

Take a paif(so)y, (s0)») € R for somev € I(sp)2.
() If (s0), — fora € A, then clearly by construction of Algorithm 2g),, . It is clear from
the definition ofR that((s0)va, (S0)va) € R-
(i) Let a € A, be such thatsg), — and let there exist’ € S: s ~ Auz(3) (50)» With 8" 3.,
By Lemma 4.1 there exist two strings w’ € A* such thatP(w) = P(w'), (s0)» = (80)w, and
s’ = (s0)w —. According to the construction of Algorithm 2 for ABY~ Auq(s;) (S0)wr there
must bes % = s —31. In order to show thafsg), — it must be that for any & ,.(s,) (so)v
there mustbg % = ¢ —3;. But using the fact thatiuz (S ) is transitive (follows from 4.3) and
the fact thats’ ~ puz () (S0)v iMplies thats' ~ 4,4(s,) (50)» We obtain thats’,q) € Aux(S1).
But this just means that for amy~ 4,.,(s,) (s0)» We haveg % = ¢ 31, i.e.(sg)y —5.
(iii) Let a € Ay, be such thatsy), —. Then according to Algorithm 1’ we hav@g), —,
because € Ay, andS C S;. This shows together with (i) and (ii) th&t is a normality relation
onsS x S.
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We show finally tha'f(so)1 is the suprema(L, P)—normal sublanguage df. Let N be a
(L, P)—normal sublanguage df. We construct an auxiliary partial langua@¥, V) that is for
the sake of simplicity also denoted BY. Similarly partial languages correspondingicand L,
i.e. (K, K) and(L, L), respectively, are denoted By and L. This abuse of notation should not
lead to any confusion. Then it is sufficient to show that

R = {(Nu,l(s0)u) | u € N}

is a simulation relation. Then we will havé/, N') C (so), i.e. in particulatN C I(sq)". Take an
arbitrary pair(N,,, (s0).) € R for somew € N2
(i) Let N, |, i.e. K, |, and thereforé((so)w) = 01((s0)w) = 1 according to point 3) of
Algorithm 2. But this is equivalent tﬁso)w | as a partial language.
(i) Let N, = fora € A,. Then alsoK,, —, becauseV C K (the inclusion holds for both
ordinary and induced partial languages). Thig, % as well. This means thdt),, —; and
(50)w —. In order to show thal(sg),, — for a € Ay, i.e. (s0)w —5 We must prove that for any
4 Raue(sy) (S0)w: ¢ = = ¢ —31. There exis,v' : P(v) = P(v') such thaty = (sg).
and(so)w = (s0)»- SincesS; is a state-partition automaton a@4)),, is in two possibly different
states of the observer automaton, we conclude by the property of state-partition automaton that
these two states of the observer automaton coincide. But this means that there’exist$ such
that P(w) = P(w') andq = (sg)w. Now ¢ % means thatv’a € L2. Using normality ofNN it
follows fromwa € N? andw’a € L? thatw'a € N?%. Thereforew’a ¢ K? (becauseV C K),
which means thag —5;. The caser € A,, is much easier. Againy,, — implies thatk,, —.
We show thaf(sp)y, —, i.€. (50)w —. It follows from Algorithm 1’ that(sg),, — implies that
(80)w =4 whence(sg)q, -4/, because Algorithm 2 does not affect transitions labeled byA ..
Note that sinceV was an arbitraryL, P)—normal sublanguage @ andi(sy)* was shown to
be a(L, P)—normal sublanguage df, [(s)! must be the supremélL, P)—normal sublanguage
of K. O

Now we illustrate the computation of the suprerfia] P)—normal sublanguage df by the
following simple example.

Example 3. Let A = {a, 7} with A, = {a}, K, and L are given by automata representations
below. We assume that all states are marked, which does not play any role for normality.

K L K Krar
7N 7N e 7N
K, — K Li— L K — Krfgo—— Krarr
.

Lraa

The original representation ok is not a state-partition automaton. The corresponding state-
partition automaton representing the same langu&ge.e. the synchronous product

Sy := (K) ||a, Obs({K)) is drawn on the right of¢ and L. The corresponding representatisn

of L such thatS; is a subautomaton & is given below together with the output of Algorithm 2,
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denoted by/.

L Lrar U Uyar
v 7N 7 7N
Ly — L, Lrgrr  Ur ——— Upq Urarr
o
Lraa

Notice thatK is controllable with respect td. and A,,, i.e. the action of Algorithm 1’ is empty
in this case. The Algorithm 2 then removes the second transition labellegylgiding thusU,
which is easily seen to be the supreria P)—normal sublanguage ok .

To conclude, we present a coalgebraic interpretation of the algorithm given in [7]. The algo-
rithm given therein when interpreted in our framework yields a partial autonfater(S, (6, %)),
whereS = {Ugeq (s0)} With G = {d € P(K) : Vs € (s0)j: Yu € Ayo: s — = s =1},
which is the first part of the algorithm, and the definitiorsaf S — 2 andf : § — (1 + S)4is
the second part. The output function is unchangedgi.o;|g. For anyg € S there exists by
definition of S ad € G s € (s0) 4. Using this,
forg € Sanda € Ay, £(q)(a) is defined ifft; (¢) (a) is defined, in which caséq)(a) = t1(q)(a),

and -
fora € A,: (q)(a) is defined iff¥s € (so), :

(s 5 = s -31),in which casé(q)(a) = t1(q)(a).

The construction of is the second part of their algorithm, where the conditiort fiorbe de-
fined is similar to our condition 2 of Algorithm 2, but expressed using deterministic weak deriva-
tives. An important feature is tha is a state-partition automaton, thdsc P(K)? such that
q € (s0) is for any state iy € S uniquely determined. Remark that the last procedure which is
taken from [7] is not correct i is not a state-partition automaton.

Our procedure for computation of the suprerfial P) —normal sublanguage df consists in
Algorithm 1’ followed by Algorithm 2. We show that it is different from that described in [7] in
both steps. Implicitly, the two steps are also present in that paper, the first one is the construction
of carrier set (removal of some states) and the second one consists in removing some observable
transitions.

It has been shown that for regular languageand L there exists always a finite automaton
representation that satisfies the condition of state-partition automaton. Namely, the synchronized
product(K)p := (K) || Obs((K)) is a state-partition automaton as follows from results in [6].

In particular,Auz((K) p) is an equivalence relation according to Proposition 4.3.

Remark that this procedure is correct only if there is no conflict between different states of
Obs(S1). This means thaf; must be a state-partition automaton.

Finally, let us compare our algorithms with those from [7]. Our algorithm for computation of
supremal normal sublanguages (Algorithm 1’ followed by Algorithm 2) differs from that presented
in [7] in both steps. The first step (construction®fdiffers from our Algorithm 1’ in that we do
not necessarily remove in Algorithm 1’ all states(i) ; for d ¢ G as can be shown in a simple
example. However these states are automatically removed by Algorithm 2, while producing the
accessible part . This means that there is some saving on computational complexity using our
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algorithm comparing to that presented in [7], because Algorithm 1 can use minimal representa-
tions, the computation of the sétand the automatof from [7] is not necessary. Nevertheless,
both algorithms suffer from the exponential complexity in the worst case, because they rely on the
subset constructions related to partial observations.

The concepts developed in this paper lead to new algorithms for supervisory control with
partial observations presented without details in [8]. In that paper the concept of normality of
a language with respect to a plant is also captured by different relations. These are introduced
on finite automata representations in order to make the computations feasible. Our approach is
inspired by the work of Cho and Marcus [7], where algebraic characterizations using the concept
of invariant relations have been presented. The main advantage of the coalgebraic approach is
that the formulations using relations provide a canonical way how to check different properties
of languages (like controllability, observability, and normality). Since all these relations are in
fact different weaker forms of bisimulation, we can proceed in the same way as for checking the
bisimilarity [20]. Coalgebraic methods yield new algorithms and more general results for the com-
putation of the supremal normal and normal and controllable (see also next section) sublanguages
based on the corresponding relations.

Remark finally that the algorithm we have presented is composed of two separate algorithms,
which makes its use in some theoretical problems involving supremal normal sublanguages (e.g.
conditions for its commutation with synchronous product) quite difficult. Therefore we will
present in the next section monolithic algorithms for the computation of the supremal normal
and normal and controllable sublanguages motivated by coinductive definitions.

6.2 Note about maximal observable sublanguages

A procedure for computation of maximal observable sublanguages has been proposed by Cho
and Marcus in [7]. It turns out that there are many technical difficulties while computing such
maximals. The main issue is to ensure the procedure to be nonretrospective, i.e. that the procedure
does not affect what has been computed earlier in the algorithm.

It is to be be expected that in our setting similar problems occur. An algorithm for maximal
observable sublanguages can be designed using observability relations. However it is not easy to
ensure the correctness of such a procedure because of the difficulties related to the fact that now
some unobservable transitions are also to be removed. Moreover, it is not necessary to remove
transitions simultaneously from all states that form a state of the observer automaton and there is
no unique way how to do it, i.e. different orderings of controllable event set must be considered.
In the next section another approach to the synthesis of observable sublanguages is presented. It
will be based on coinductive definitions.

7 Coinduction in discrete-event control

This section is devoted to the application of a powerful technique called coinduction to discrete-
event control. While coinductive proofs have already been used in the previous sections, coinduc-
tive definitions are used below to capture some important concepts like closed-loop language and
optimal super/sublanguages.
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7.1 Coinductive definition of supervised product and partial bisimulation under
partial observations

In this subsection we present the definition of a supervised product of languages that describes the
behavior of a supervised DES under partial observations. Assume throughout this section that the
specificationk” and the open-loop partial languagdé K C L) are given.

In the last section we have been studying relations on automata representations and we have
formulated the basic properties of observability and normality using these relations. Now we aim
at using the coinductive definitions. For this reason we must work with the final automaton of
partial languages, where the coinductive definitions can be used. Coinductive definitions are used
for defining algebraic operations, e.g. binary operations, on elements of final coalgebras. They
consist in defining the coalgebraic structure (given by the functor) on the result of operation. For
partial languages this means that new operations can be introduced (or sometimes the known ones
reintroduced) by defining the output and transition functions (i.e. input derivatives). Interestingly,
differential equations from analysis may also be viewed as coinductive definitions of solutions
they define if a suitable coalgebraic structure (stream automata for ODEs, weighted automata for
PDESs) is used [22].

Note that observability and normality relations can be defined in the final autoiatdow-
ever, there is a difficulty with the fact that once we use the minimal representafionsL) € £
as the subautomata df generated byK and L, respectively, it is not true in general that for
K C L, (K)is a subautomaton dfL). Therefore some additional technicalities are involved.

In particular, Auz(S1) is replaced byAduz(K, L) to stress the fact that bot{f’) and (L) are
involved. Its definition has been first presented in [9].

In order to characterize the observability property we first need to introduce the following
auxiliary relation defined oK x DL. Note that any relatiolR C (DK x DL)? can be
endowed with the following transition structure: ferc A (M, N) % (M',N') iff M % M,

andN % N, with M’ = M, andN' = N,. We write(M, N) &) (M, N} iff 3s € M2 N?:
P(s) =a, M' = My, andN' = N;.

Definition 7.1. A binary relation Auz(K, L) C (DK x DL)? called observational indistin-
guishability relationis the smallest relation satisfying:

(i) (K,L),(K,L)) € Aux(K, L)

(i) If (M, N),(Q,R)) € Auz(K,L)thenva € A : if (M,N) & (', N") and (Q, R) "%
(@, R) = (M',N'),(Q,R)) € Auz(K, L)

For(M,N),(Q, R) € DK x DLwe write(M, N) ~''% (Q, R) wheneve( (M, N), (Q, R)) €
Auz(K,L).

Lemma 7.1. For given partial language€(, L: ((M,N),(Q, R)) € Auz(K, L) iff there exist
two stringss, s’ € K2 such thatP(s) = P(s')andM = K,, N = L,,Q = Ky, andR = L.

Proof. (<) Let (M,N) € DK x DL and(Q,R) € DK x DL and there exist two strings
s,8' € K?suchthatP(s) = P(s'), M = K;, N = L;,,Q = Ky,andR = L. Lets = s1...5,
ands’ = t;...ty,. Let P(s) = P(s') = a1...a,. Thenn > k, m > k, and there exist
two increasing sequences of integers (indiagsy i, ¢ = 1,...,kandv; > ¢, 1 = 1,...,k
such thata; = s,, = t,,. Sinces,s’ € K2, and alla; are observable events we can write

(5,1) "“2=L) (a1 ) and also(k, L) T“2=£) (0, R), whence by (ii) inductively
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applied(M, N) ~5:% (Q, R).
(=) Let (M, N) =52 (Q, R). By the construction ofluz(K, L) there exist,...,a; € A

such that(k, L) ~“2=£) (a7, Ny and (&, L) 722 (@, R). Therefore there exist two
stringss, s’ with the same projection with/ = K,, N = L,,Q = Ky, andR = L. O

Now we repeat the definition of the observability relation used in [9].

Definition 7.2. (Observability relation.) Given two (partial) languages K and L, a binary relation
O(K,L) C DK x DL is called anobservability relationf for any (M,N) € O(K, L) the
following items hold:

() VacA: M5 = N5 and(M,,N,) € O(K, L)
(i) Va € A.: N % and(3IM' € DK,N' € DL: (M',N') =Y (M, N)andM' %) =
Auz
M % and(M,,N,) € O(K,L).

ForM € DK andN € DL we write M ~og 1) N whenever there exists an observability
relationO(K, L) on DK x DL such tha{M, N) € O(K, L). In order to check whether for a
given pair of (partial) languageg{(and L), K is observable with respect 1, it is sufficient to
establish an observability relati@gn( K, L) on DK x DL such that K, L) € O(K, L). Indeed,
we have

Theorem 7.2. A (partial) languageK is observable with respect tb (with K C L) and P iff
K zO(K,L) L.

Proof. (=) Let K be observable with respect to L. Denote
O1(K,L) = {{(Ky,,L,) € DK x DL |u € K*}.

Let us show tha©; (K, L) is an observability relation.

Let (M, N) € O1(K, L). We can assume thaff = K, andN = L, for s € K2. We must show
that conditions (i) and (i) of the Definition 7.2 are satisfied.

(i) Let M % for a € A. Notice thatK C L implies that for anyu € K?, K, C L,. In
particularN %, becausé/ = K, C L, = N and it follows from the definition 00, (K, L) that
(Mg, N,) € O1(K, L).

(i) Let N % fora € A, and3(M', N') =51 (M, N) : M'%. Then by Lemma 7.1 there
exist two stringss’, s” € K? such thatP(s') = P(s") andM’' = Ky, N' = Ly, M = Kg/(=
K),andN = Ly (= Ly). Now M’ % implies thats’'a € K2. FromN % andN = L, follows
s"a € L?. Now by application of the observability df with respect toL and P we deduce
s"a € K?,i.e.a € K%, = M?. This means that/ %, which was to be proved. The rest follows
from (i).

(<) Let K ~o(k ) L. Let us show thaf( is observable with respect tb and P. For this
purpose, les € K2 anda € A, such that’’a € K? andsa € L? andP(s) = P(s'). Thens €
K?nL?ie.L > andK -, whence from (i) of definition 7.2 inductively applid, ~ox.1,
L,. SinceK C L ands'a € K?, we haves’' € L?, becausek? is prefix-closed. According to
Lemma 7.1 we havéK,, L;) ~'% (K, Ly). Notice thatsa € L? meansL, %, and similarly
s'a € K? meansK, —. By (ii) of the definition of observability relation we obtain thit, =,
i.e.sa € K2. O
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Remark 7.3. In the sequel we need also another type of auxiliary relatidns(S) for the spe-

cial caseS = (K). We will write Auz(K) instead ofAuz((K')). Notice that it is possible to
extend the definition aluz(S) to Aux(Pwr(S)) with the only difference, that the propagation

of this relation is realized by unions of nhondeterministic transitions, in particular by deterministic
weak transitions. In the case of the final automaton of partial languages similar construction of
observational indistinguishability relation is to be realizedBwr(suffix(K)). Now we prepare

the coinductive definition of the supervised product. This definition will consider arguments from
Pwr(suffix(K)) and Pwr(suffix(L)) rather than fromDK and DL. In fact we will work with
unions of the formu%_, K, € Pwr(suffix(K)), whereP(s;) = --- = P(s;). In order to keep

the notation simple, we will use an extensiondaefz( K') to such unions of derivatives. In the
definition of supervised product this will be needed.

Now we give a formal definition cfluz(K) extended t@wr(suffix(K)).

Definition 7.3. (Extension ofAuz(K') from DK toPwr(suffix(K))). A binary relationAuz(K) C
(Pwr(suffix(K)))?, calledobservational indistinguishability relatiés the smallest relation sat-

isfying:

() (K,K) € Aux(K)

(i) If (M, N) € Auz(K)thenvac A: M % M,andN % N, = (M,, N,) € Auz(K)

(iiiy 1f (M,N) € Auz(K)thenVm,n € Z,: it M S My, M = Ms,...,M = M,, andN =
Ni,...,N = Ny, then(Ur_ M;, U™ | N;) € Auz(K).

Clearly, a natural extension of Lemma 4.1 holds. Namgly, , K, Ué-:lLtj) € Auz(K),
whereP(s1) = --- = P(sg) andP(t1) = --- = P(t;) iff P(s1) = P(¢1), whichimplies naturally
P(s;) = P(t;) Vi, j. The notationJ}_, K, =%  Ui_, L, is also used.

Definition 7.4. (Supervised product under partial observations.) Define the following binary
operation on (partial) languages called supervised product under partial observations fiar all
Pwr(suffix(K)) and N € Pwr(suffix(L)):

(M/gN)o =
(1) M,/9N,if M 5 andN 5,

() (Ugnrr e wnyeaua i)y Mb)/GNa it M and3M’ € DK :
M'~K M suchthatM’ % andN % anda € A, U A,;

(3) 0/9N, if M A andVM' € DK : M' =%, M : M' % andN % anda € Ay N Ay,
(4) M/9N,if M £ andN % anda € Ay N Ayo;
(5) 0 otherwise

and(M/9N) | iff N |.

Remark 7.4. 1. According to Observation 2.4)L C Pwr(suffix(L)) and sinceK C L also
DK C Pwr(suffix(L)).

2. It follows from the definition of supervised product thatC (K /9 L) C L. Both inclusions
can be verified by construction of the corresponding simulation relations. Let us shoW that
(K/9L). Consider the following relation:
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R(K,L) = {{Ku, (K/gL)w) |w e K},

It easy to see thaR (K, L) is a simulation relation proving the claimed inclusion. Take K2.
() If K, |, thenw € K!,i.e. w € L', which meand.,, |. Furthermore, it follows from the
definition of 7.4 that K /9 L), = K/ Ly, Therefore(K/§L),, |.
(ii) if for a € A: Ky =, then(K/9L)wa = (Kw/9Lw)a = Kwa/9Lwa, i.6. (K/9L), ~ and
(Kuw, (K/9L)y) € R(K, L).

As a consequence we conclude that the range of supervised product iagdiuffix(L)),
i.e. the supervised product can be also viewed as a (partial) binary operati®wo(suffix(L)).

The definition of supervised product under partial observations is quite complicated due to
the interconnections between observability and controllability that must be taken into account. It
deserves additional comments. Notice that several cases must be distinguished. First of all, by (1)
the controller allows any event that does not exit from its (supervisor) language. A controllable
event is enabled when the supervisor obsesvesA* iff there exists a string with the same pro-
jection ass that can be continued by this event within the supervisor’s language, which is included
in (2). The controller also enables all uncontrollable events that are possible in the plant, but the
future actions depend on whether the occurred uncontrollable event is observable or not. If the
uncontrollable event is unobservable then the first component of the supervised product need not
to move, but only the second component is updated as is seen from (4) above. In the case that
the uncontrollable event is observable, there must be further specified whether there exists a
derivative indistinguishable from a derivative currently considered that can maketeamsition
(i.e. there exists a string that has the same projectiontiaat can continued by within the su-
pervisor's language), in which case the action is the same as for controllable events (i.e. this case
is included in (2) above), or whether there is no such derivative, which means that only uncontrol-
lable events that are possible in the plant are allowed in the future. The latter case corresponds to
the term containing the zero partial language and is labeled by (3) above. In any other case (5) the
controllable events are disabled by the supervisor. We have thus the coinductive definition of the
closed-loop language that gives a clear picture of what is the mechanism of discrete-event control
under partial observations.

Note that a similar attemp to capture the behavior of the interaction of a supervisor with a plant
has been made in [12], where this interaction is represented by the so called masked prioritized
synchronization. Although we can see a similar classification of event types (with respect to
their controllability and observability) as in our supervised product, the setting of that paper is
somewhat different; considers priority sets for both plant and the supervisor and an interface
masks.

Now we proceed in the same way as in the case of full observations. Let us define the following
relation called partial bisimulation under partial observations.

Definition 7.5. (Partial bisimulation.) A binary relatioml®(K, L) C DK x DL is called apartial
bisimulation under partial observatioifisor all (M, N) € R(K, L):

(i) o(M)=o(N) (M | iff N|)

(i) VacA: MS5 = N5 and(M,,N,) € R(K, L)

(i) Vu € Aye: N5 = M5 and(M,,N,) € R(K,L)

(v) Vac A.: N Sand(3(M',N') =L (M,N): M' %) = M 5,
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For M € DK andN € DL we write M NO(K L)' N whenever there exists a partial bisim-

ulation under partial observatiod¥ K, L) such that{M, N) € R(K,L). This relation is called
partial bisimilarity under partial observations.

Remark 7.5. Notice that (i) relates the marking components of the languages involved and (ii)
corresponds to the language simulation (inclusion), while (iii) to the controllability and (iv) to
the observability condition. Observe also that the second statement on the right hand side of (iii)
follows from the corresponding first statement and (ii).

Now we are ready to formulate the main theorem, which gives a coalgebraic formulation
of the controllability and observability theorem [5] in supervisory control of DES with partial
observations.

Theorem 7.6. Let K C L are given partial languages. Thed ~ NO(K Dp i K= K/gL.

The supervised product under partial observations of the IangqueBdL equalsK iff K and
L are partially bisimilar in the sense of Definition 7.5.

_O(K,L)

Proof. (=) Let K ~; L. Define

R(K,L) = {(M,(M/9N)) | M € DK, N € DL andM ~J"" N},

According to the coinduction proof principle it is sufficient to prove tR4#, L) is a bisimula-
tion, because the’ zg(K’L) L ie. (K,(K/9L)) € R(K, L) implies thatk = (K/9L). Let
(M,(M/9N)) € R(K, L).
() M |iff N | (becaused ~0"F) Ny iff (M/9N) |
(i) If M % fora € A then by (i) of definiton 7.5N % and M, ~5%" N,. Thus,
(M/QN) % (M/QN)a = (Ma/QNo), and(Ma, (M/N)a) € R(K, L).
(iii) If (M/9N) =, then according to the (comductlve) definition of the supervised product we
have four possibilities : eithe¥/ % andN %, or M 7% andIM’' ~% M : M'% andN %
anda € AcUA,,orM /A andvM’' € DK : M'~K _M: M' /A andN % anda € Ay,e N
Ay or, finally, M % andN = anda € Ay N Ayo. Notice however that the second case |s con-
tradicted by (iv) of definition 7.5: itis sufficient to see thaBif/’ ~X M : M' % andN 5,
then3(M', N') =L (M, N) : M" % andN 2. Indeed, by Lemma 4.1 applied f§r= DK
(recallthatM € DK) M = K, andM' = K, for somes, s’ : P(s") = P(s), thenitis sufficient
to put N’ = L., which clearly exists, becaud€ C L. The third and the fourth cases (with
a € A,.) are both impossible due to (iii) of the same definition. Hence only the first possibility
can occur, which brings us back to the previous case (ii).
(<) Let us show that the following relation is a partial bisimulation under partial observations.
Define

T(K,L)={(M,N) | M € DK, N € DL andM = (M/JN)}.
Let (M,N) € T(K, L).
(i) M | iff (M/9N) | (from the definition of (K, L)) iff N | (from definition 7.4).
(i) If M = fora € Athen(M/9N) = and clearly (from the coinductive definition of supervised
product)N %. Also M, = (M/9N), = (Ma/9N,), whence(M,, N,) € T(K, L).
(i) If N = for u € A, then(M/9N) = according to the definition of supervised product.
ThusM = as well. FurthermoreM,, = (M/9N), = (M,/9N,), which meangM,, N,,) €
T(K,L).
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(iv) If N % fora e A.and B(M',N') =55 (M,N) : M’ % )then from the definition of
supervised product (the second case occurs: note that in partidtlar = M), (M/9N) =,
i.e. M %, which was to be shown. O

Finally, similarly as in the case of full observations, there is the following characterization of
partial bisimilarity.

(K.L)

Corollary 7.7. K ~g"") Liff (K24,.N L? C K%, K ~o(k.r) L, andK' = K>N LY).

Proof. It is quite analogous to the full observations case. In particular, notice that partial bisimu-
lation under partial observations implies partial bisimulation as it has been first introduced in [20].
Thus, it is sufficient to consider only the additional property of observability, which appears in
both sides of the claimed equivalence. O

7.2 Infimal closed observable superlanguages and maximal observable sublanguages

This subsection contains only new results. In the last subsection we have introduced an operation
on partial languages called supervised product under partial observations. This operation corre-
sponds to the behavior of the supervised discrete-event system modeled by a partial automaton
using the centralized version 6% P control architecture in the terminology of [34]. We call this
control architecture in the centralized case simply permissiveKLet (K!, K?) be the desired
behavior (partial language) and be the supervisory controller. Théfs € A} the associated
control law (events enabled aftérobserves) is:

vp(V,s) = Ay U{a € A, : 3s' € K* with P(s") = P(s) ands’a € K?}.

The centralized counterpart of tii#&& A control architecture we call antipermissive and it is given
by the following control law¥s € A}

ya(V,s) = AyeU{a € A.: Vs’ € K* with P(s') = P(s) we haves'a € L? = s'a € K?}.

There is also an antipermissive control architecture counterpart of the supervised product, but
its definition is postponed towards the end of this subsection. Let us call it antipermissive su-
pervised product. We will show that it cannot be defined by coinduction, however in the very
similar way using suitable automata representations. Note that the permissiveness or antipermis-
siveness is related to the observability (controllable events). Recall that the control policy must be,
by definition, permissive with respect to uncontrollable events in the sense that these are always
enabled.

Remark 7.8. We consider from now on an order relation on partial languages induced by their
second component only, i.e. we wriee C L iff K2 C L2. The same applies for infimum
(supremum), and maximum operations. Note that only the second condition of simulation relations
must be checked to prove such defined inclusion of partial languages.

Let us recall the coinductive definition of the supervised product in the case of full observations
from [20].
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Definition 7.6. Define the following binary operation on (partial) languages forRIIL € £ and
Ya € A:
K,/uL, ifK<% andL %
(K/uL)a={0/yL, ifK A andL % anda € A,
0 otherwise

and(K/yL) | iff L.

Theorem 7.9. (K/yL) = inf(C(K, L)) = inf{M D K : M is controllable with respect t@&
and A, }, i.e. K/y L equals the infimal controllable superlanguagerof

Proof. Let us show thak(/; L is a superlanguage @f that is controllable with respect b and
A,.. Itis clear from the definition of supervised product that_ (K /L) in the sense of Remark
7.8. Let us show thak' /iy L is controllable with respect tb and A,,.. It is sufficient to prove that
the following relation is a control relation.

C={(K/uL),L) | K,L € L}.

() Let (K/yL) % andL % for a € A. Then by coinductive definition of(/y/L either
(K/uL)e = (Ka/uLg) of (K/uL)q = (0/7Lg). However, by definition o in both cases
we have((K/yL)q, Lq) € C.
(i) If L 5 foru € Ay, then eitherk % and hencd K/yL) - or K -/, but according to the
definition of K /iy L we have stil( K/ L) < (0/yLy,).

It remains to show the infimality. Le/ © K be controllable with respect tb and A,,..

R={((K/yL),M) | K,L,Mec L: KCMCL, andM?4,.NL*>C M?}.

satisfies (ii) of the definition of simulation relations. (@t /iy L) = for a € A. According to the
definition of K /iy L we have two possibilities: eithét % andL %, in which cas€ K/ L), =
K,/uL,or K % andL % anda € A,.. Inthe first case we haved % simply becaus& % and
K C M, while in the latter case we havd — because of the controllability df/ with respect
to L and A, (by definition 5.3 of control relations far € A,.: L = = M ). Moreover in
both case$(K/yL)q, Ls) € R. O

Although the infimal controllable superlanguages are important [13], supremal controllable
sublanguages are even more interesting as least restrictive solutions of full observation supervi-
sory control problems [32]. In [20] an algorithm for the computation of supremal controllable
sublanguages, based on control relations, has been presented. It turns out that it is also possible to
define the supremal controllable sublanguage by coinduction.

Definition 7.7. Define the following binary operation on (partial) languages forRIIL € £ and
Ya € A:
Ko/3L, K% andL >

(K/&L)a= andifvu € A%, : L, = = K, =
0 otherwise

and(K/3L) | iff L.

Theorem 7.10. (K/2.L) = sup(C(K, L)) = sup{M C K : M is controllable with respect to
LandA,.}, i.e. K/gL equals the supremal controllable sublanguagéof
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Proof. First we show thaK/gL is a sublanguage dt that is controllable with respect b and
Aye. Itis clear from the definition of/2 L that (K/2L) C K in the sense of Remark 7.8.
Indeed, if we take/ = (K/ZL)y = Ky/2 Ly, andV = K, for somew € (K/2L)? then
U5 = V 5. Letus show thak /2 L is controllable with respect th and A,.. Itis sufficient
to prove that the following relation is a control relation (Definition 5.3).

C = {((K/EL)w, Lw) | w € (K/ZL)*}.

Take a paiM = (K/ZL); andN = L, for somes € (K /2 L)%
(i) Let (K/2L)s = and Ly = for a € A. Then by coinductive definition ok /gL we have
(K/2L)sa = (Ksa/2 Lsa), Which by definition ofC means tha{(K /2 L)sa, Lsa) € C.
(ii) Let Ly = for u € A,.. Since(K/L) >, we have by definition 7.7 thdt’ > andL >
andvu € A%.: Ly % = K, . Therefore we deduc&’, . Furthermoreyv € A%.:
Loy == Ls =5 = K; 53 = Ks, —, becausew € A%, and(K/L) . Hence(K /L) —,
which proves tha€’ is a control relation, i.eK/gL is controllable with respect th and A,..

It remains to show the supremality. Lif C K be controllable with respect tb andA,.. In
order to show thad/? C (K /Z.L)?, we consider

R = {{Mu, (K/gL)w) | w € M?}.

Take (M, (K/$L)s) € Rforsomes € M?2. Let M, = fora € A. ThenK, =, andL, -, since
M C K C L. In order to prove thatK /¢ L)s %, it remains to show thatu € A%, : Lg, — =
K., =. But this is straightforward: if.,, —, then by controllability ofA we deducel,, —,
thus fromM C K it follows that K, —. It follows that R satisfies (i) of simulation relations,
i.e. M C K/?L. O

Let us now suppose that controllability is not an issue. Recall that an algorithm for supremal
controllable sublanguage has been given in [20]. We have also shown that the supervised product
in the case of full observations defined therein provides the infimal controllable superlanguage.
As a byproduct we have its coinductive definition. In the case of partial observations, we can now
separate the issue of controllability from observability and introduce the following modification
of supervised product. Note that a similar method (separating the issue of controllability from ob-
servability) has been used in [1] for automata (supervisor) approach. Unlike the methods known
from the literature ([1] and [24]) for infimal closed and observable superlanguages our coalge-
braic approach (the following coinductive definition) has a direct algorithmic character, because
coinduction defines the resulting structure event by event).

Definition 7.8. Define the following binary operation on (partial) languages for all
M € Pwr(suffix(K)) and N € Pwr(suffix(L)) andVa € A:

(Ma/ONa if M % andN 3 and
ds€ K?: M=K, and N = L,
Ugarr: o e Aua (i)} My/9Na it M A and3M’ € DK :
M'~K M such thatM’ %
andN % anda € A,

0 otherwise

(M/9N)a =

\

and(M/°N) | iff N |.
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The new operation has the following pleasant property:

Theorem 7.11. (K /°L) = inf(O(K, L, P)) = inf{M D K : M is observable with respect to
L and P}. The infimal observable superlanguagefoequals(K/°L).

Proof. It can be proven by coinduction using the formulaiiei(O(K, L, P)) given in [24]. An-
other, more direct, way is to show th&t/© L is an observable partial language containffighat
is smaller then any other observable superlanguadé. of

Let us show thak’/© I is a superlanguage @ that is observable with respectfo It is clear
from the definition 7.8 thatkK/° L)? is a superlanguage df2. Formally it can be checked by
constructing an obvious simulation relation. Let us show A L is observable with respect to
L. According to theorem 7.2 we put

O = {{((K/?L)u, Lu) | u € (K/9L)* }

and show thaO is an observability relation o (K/°L) x DL. Take a paifU,V) € R. We
can assume théf = (K/°L), andV = L, for somes € (K/°L)?.
(i) Let a € A such that K/°L), . It follows from the definition 7.8 that, % and from the
definition of O that ((K/° L) s, Lsa) € O.
(i) Let a € A, such thatZ, % and there existd/ € D(K/°L): M zﬁjL’L (K/OL), with
M %. It means that there exist, s” € A* such thatP(s”) = P(s), (K/°L)s = (K/°L)gn,
Ly = Ly, andM = (K/°L)y 2. According to definition 7.8 inductively applied there exist
s; € A*, i € Tsuchthaf K/°L)y = (UierKs,)/C Ly, whereP(s;) = P(s') Vi € I. Notice,
that it can be thal = {1} ands; = s'. SinceM -%, by definition 7.8 either there exis}, j €
J C I such thatK; % forj € JandM, = (UjEJKsja)/OLS,a, or there existw,, k € K
such thatk “%’, P(wy,) = P(s') and M, = (Upcx Kuwya)/© Lsa. Since alsoP(wy) = P(s")
for all £ € K, we deduce finally that according to definition 7.8 in both cases there must be
(K/°L), = (K/°L)s %, which proves tha© is an observability relation.

The last step of the proof is to show thatdif O K is a language which is observable with
respect tal and P, then(K /°L) C M. Itis sufficient to prove that

R={((K/°L)y, M) | u € (K/°L)* andK C M ~o(1) L}

satisfies (ii) of simulation relation.

Take a paiU, V) € R. We can assume that = (K/°L),, andV = M, for somew €
(K/PL)%. LetU . There exisk; € K2 foriin some index sef such thatP(s;) = P(w) Vi € T
andU = (UKj,)/°L,. Now, U % implies that eithel/ = K,,/° Ly, % Kua/C L, Or there
existsJ C I such thatk,, = for j € J andU, = (UK,;,q)/° Luw, anda € A, or finally there
existwy, € A*, k € K such thatP(w;) = P(w), a € A., andU, = (UK, a)/ Ly In the
first case we have directiya € K2, i.e. V = M,, . Inthe second case € M? (because
V = My), s; € M?, becauses; € K? C M?, sja € M? wa € L? a € A. (because we
are in the second case of definition 7.8), @@;) = P(w). Thereforewa € M?, because\f
is observable with respect tb and P. Finally, in the third case we have similarly € M?,
wy € M2, wpa € M? wa € L?, a € A, andP(w;) = P(w), which gives alsava € M?2.
HenceV = M,, =, and trivially (U,, V) € R, which was to be shown. O

To illustrate the new operation, consider the following example.

32



Example 4. We consider prefix-closed languagés$ and L? given by the following tree automata,
different from(K), resp. (L) from £! The marked components are not considetéd= {a, 7},
andA, = {a}.

L K
y \\T‘ y \\T‘
L, L, K,

K,
o] g o] .
Laa Lar Lrq Kao  Kar Kra
1
Lrar  Lraa
g
Lraar
Then
K/°L
PN
(K/9L)a (K/°L)~
P |
(K/°L)aa (K/°L)ar (K/L)ra

| e

(K/°L)rar (K/°L)raa

We have for instanc@ /° L) or = (Kra/°Lrq)r = Kar/© Lrqr according to the definition
7.8, becausé(,, /, but there existé(, ~% K., with K, = K,,. Also, K/9L is indeed the
infimal observable superlanguage Efas stated in theorem 7.11.

Recall that we use an order relation with respect to the second components of partial languages
(Remark 7.8). As for the original definition of supervised product it can be shown in a similar way
that

Theorem 7.12.(K/9L) = inf(CO(K, L, P)) = inf{M D K : M is controllable with respect
to L and A, and observable with respect foand P}. (K/gL) equals the infimal controllable
and observable superlanguage/éf

The proof of this theorem is similar to that of theorems 7.9 and 7.11. As a direct consequence,
the supervised product is monotone with respect to the specification:

Corollary 7.13. For (partial ) languagesk’ C K’ we have(K/9L) C (K'/9L).

Note that the infimality of the above defined operations is in both cases only with respect to
the second (closed) components of the partial languages involved. The following example shows
that the infimality with respect to the marking component can not hold.
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Example 5. TakeK = ({a},{e,a,T,7a,7ab}), L = ({a,ab},{e,a,ab,abr, ,7a,7adb}), and
M = ({a,7},{e,a,ab, 7, 7a,7ab}). ThenK/°L = ({a,ab}, {¢,a,ab, 7, 7a, Tab}). HenceK C
M, M is observable with respect foand P, but (K /°L)! ¢ M, becauseb € (K/°L)'\ M*.

Similar examples can be constructed f6f; L or K/8L. Before we study the antipermissive
control law, we consider the case, where controllability is again not an issue. Unlike the permissive
case, the fact thatuxz (K, L) is not an equivalence relation dnK x DL creates difficulties as
is illustrated in the example below.

Example 6. Consider the following specification and plant languages:
K L
I I
K, - T K, L, T Le
N N
Lra

K’T(l

We see thak; = K, andL, = L,,. Thisis a problem, because using the antipermissive control
law one would like to allowe € A after observation of if M = K satisfies the condition

M % and¥(M',N') € DK x DL: (M',N') =32 (M,N): (N' % = M'%). (1)

This condition seems to be a natural coalgebraic interpretation of the antipermissive control law
v4(V, s) introduced above. But the stat€, can be reached by two strings, whose projections
are ¢ anda, and this creates a difficulty. On one hand after a, eventa should be disabled at

K, = K, since(K,,L,) ~\'% (K,, L,) and L, %, while K, /. On the other hand, after

s = ¢, event can be enabled &k, since the condition in the antipermissive control k(V, s)

is fulfilled. Using the minimal representation and condition (1) we would define by coinduction
a different language than the language of the closed-loop system. The problem is that the states
of the minimal representations that lie in the intersection of two observer states might lead to the
conflicts as is shown in this example. In order to avoid the above ambiguities and define the closed-
loop system under the antipermissive control law, suitable ("'unfolded”) automata representations,
in general different from minimal ones, must be used.

In order to avoid the undesirable situation of the above example we use in the following def-
inition underlying representations of languagésand L by automataS; and S, whereS; is a
subautomaton of such thatAuz(S1) is an equivalence relation. We have proven in section 4
that the condition ofS; being state-partition automaton [33] is stronger, i.e. it guarantees that
Auz(S7) is an equivalence relation. It is known how to construct such representations [7] or [33].

Let sg denote the common initial state 6f andS. The transition structure ¥, and S is
denoted by—; and—, respectively. In the following algorithm we compute a sublanguad€ of
that is observable with respectfoand P using the antipermissive control law.

Algorithm 3. Let automataS; and S representK and L, respectively, be such th&f is a sub-
automaton ofS and Auz(S1) is an equivalence relation. Let us construct the partial automaton
S = (6,t) with thet denoted by-.

1. PutS := {so}.

2. Foranys € S anda € A we puts — s, if Vs’ € Sy :
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8"~ ua(sy) 5+ (8 4 = 5
and we put in the case-3, also S := S U {s4}.
3. Foranys € S we puts(s) = o(s).

Let us denote by the unique (behavior) homomorphism given by finalityCof

Theorem 7.14.1(so) is an observable sublanguage with respecttand P. Moreover, ifS is a
state-partition automaton, théfsg) contains the supremdl, P)—normal sublanguage ok .

Proof. To prove the observability di(so) we show that the following relation is an observability
relationonS x S.

O = {{(s0)u; (s0)u) | v € Us0) }-

Thenl(s) is observable respect foand P according to theorem 4.6. Take a péiso )., (s0),) €
O for somew € i(s).

() If (s0), — fora € A, then clearly by construction of Algorithm 3g), . It is clear from
the definition ofO that((so)va, (S0)va) € O.

(i) Let a € A, be such thatsg), — and let there exist’ € S: s' ~ Auz(9) (50)» With 5" 5.
By Lemma 4.1 there exist two strings w’ € A* such thatP(w) = P(w'), (s0)» = (80)w, and
s' = (s0)w —. According to the construction of Algorithm 3 for ABY~ Auq(s;) (S0)wr there
must bes % = s —31. In order to show thafsg), — it must be that for any ~ 4,,(s,) (s0)v

there must bgg % = ¢ —%;). But using the fact thatluz(S;) is transitive and the fact that
s N pue(3) (S0)v iMplies thats’ ~4,4(s,) (s0)» We obtain tha(s’,q) € Aux(S1). But this

just means that for any ~ 4,,(s,) (s0)» We haveq % = ¢ 31, i.e. (s9), —+, andO is an
observability relation.

We show finally that the supremil, P)—normal sublanguage df is contained iri(sq). Let
N be a(L, P)—normal sublanguage df. Then it is sufficient to show that

R = {(Ny,1(s0)u) | u € N?}

satisfies (ii) of simulation relation in order to prove thgt C 5(30)2. Take an arbitrary pair
(Nw,1(s0)w) € R for somew € N2. LetN,, - fora € A. Then alsokK,, —, sinceN C K
andL,, % as well. This means thdsg)., —1 and(sg)w —. In order to show thak(sg), —,

i.e. (s0)w — We must prove that for any ~4,.(s,) (s0)w: ¢ = = ¢ —51. There exist

v,v' : P(v) = P(v') such thaty = (sp), and(so)w = (s0)y. SincesS; is a state-partition
automaton andsy)., is in two possibly different states of the observer automaton, we conclude by
the property of state-partition automaton that these two states of the observer automaton coincide.
But this means that there existé € A* such thatP(w) = P(w’) andq = (sp)y. Now g
means thaiv'a € L?. Using normality of N it follows from wa € N? andw’a € L? that

w'a € N2. Thereforew'a € K? (becauseV C K), which means thaj —3;. We conclude that
I(s0)w — andR satisfies (ii) of simulation relations, i.e. we have the inclus\onC i(sg)2. Note

that sincelV was an arbitraryL, P)—normal sublanguage df, the same inclusion must hold for
the suprema(L, P)—normal sublanguage df . O

In the following example we show thé(tso) is not always a maximal observable sublanguage
of K.

Example 7. We consider prefix-closed languagi?€ and L? given again by tree automata and
we assume that all the states of both automata are marked. The alphabeti$a, b, 7}, with
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A, ={a,b}.

L
e
K, L, L,
o VA
Ko  Ke Ly L+
g
Lraa

Using algorithm 3 we obtain the resulting automat®rwhose closed languageiis,) = {¢, a}.
It is indeed an observable sublanguagefdf containing the supremal normal sublangualje=
{e}. However](so) is not a maximal observable sublanguageif, becausé\l = {¢, a, aa} is
a larger observable sublanguage EP. Notice also that(sy) is not(L, P)—normal.

Note that because of the above mentioned difficulties we do not present a coinductive def-
inition of the antipermissive counterpart of supervised product that takes into account the issue
of controllability, which would correspond to the definition of the antipermissive control policy.
However it is possible to design an algorithm that describes the behavior of the closed-loop system
under the antipermissive control policy similar to Algorithm 3. Remark that there is an asymmetry
in the antipermissive control policy: it is imposed to be permissive with respect to the uncontrol-
lable events, while it is antipermissive with respect to the controllable events. As a consequence
specificationk” and the closed-loop language for the antipermissive control policy are not in gen-
eral comparable.

Notice an important difference between the permissive and antipermissive control policy. Us-
ing the permissive control policy after having left from the specification lang&abg an uncon-
trollable event, there might still be some controllable events enabled in the future, while using the
antipermissive control policy only uncontrollable events are enabled in such a situation.

To conclude, we have found an observable sublanguage that contains the supremal normal
sublanguage. This is very useful, because supremal normal sublanguages are often too small
(restrictive) in many concrete problems.

Our technique can be modified for constructing an observable and controllable sublanguage,
because the idea in the coinductive definition of the supremal controllable sublanguage can be in-
corporated within Algorithm 3. In this way a monolithic algorithm for the computation of supre-
mal normal and controllable sublanguages is developed in the next subsection.

7.3 Monolithic algorithms for supremal normal and controllable sublanguages

Now we show a monolithic algorithm for the computation of supremal normal sublanguages along
the lines of Algorithm 3. The main idea is that the iterative procedure of Algorithm 1 is incor-
porated into Algorithm 2 using unobservable strings instead of events. Since we work with finite
representations, our algorithm is still effective. Although there is already a method in the literature
[11] based on the optimal control and graph theoretical techniques to obtain such a monolithic al-
gorithm, our method is made explicitly for logical DES. The interest of this algorithm is not its
computational complexity, but its formal simplicity. It is of high theoretical interest in the study
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of modularly distributed DES with partial observations of local modules. It will enable us in the
future [10] to find the conditions under which the global supremal normal and/or supremal normal
and controllable sublanguages can be synthesized locally.

Algorithm 4. Let automataS; and S representingk’ and L, respectively be such th&t is a

subautomaton of and S; is a state-partition automaton. Let us construct partial automaton

S = (S, (s,1)) with# denoted by-.

Define the auxiliary condition (*) as follows:

ifa € Ay thenVu € A% 5, = = 84 —31;

if a € A, thenVs' m,,(s,) s s/ = = & =1, inwhich case alsbu € A}, s, = = s, —1.
Below are the steps of the algorithm.

1. PutS := {so}.

2. Foranys € S anda € A we puts -3 s, if s —5; and condition (*) is satisfied and we put in

the cases -3/ alsoS := S U {s,}.

3. Foranys € S we puts(s) = o(s).

Let us denote by the unique (behavior) homomorphism given by finalityCof

Theorem 7.15.1(sp) is the suprema(L, P)—normal sublanguage ok .

Proof. To prove the normality of(so) we show that the following relation is a normal relation on
S xS.

N = {{(s0)u; (0)u) | u € U(50)* }.

Thenl(sg) is (L, P)—normal according to Theorem 5.7. Take a [if)., (so)») € N for some
v € (s0)?.

(i) If (s0)y —5 for a € A, then clearly by construction of Algorithm @), —. It is clear from
the definition of N that((so)va, (S0)va) € N.

(i) Let a € Ay, be such thafsg), —. We must show thatisg), — , i.e. Yu € A%,: (50)va —
= (80)va —51. It follows from (sp) - and Algorithm 4 that'u € A%,: (so)y — = (50)» —51-

v

Indeed, if we assume = v; ... v, for somek € Z, then eithew, € Ay, i.€. (50)vy..v_4 =5
means directly thatu € A%: (so)y — = (s0)» —51 Or v € A,, but then the condition (*) is
even stronger: by putting = s we obtain the same conclusion. Since in both cases A?_,
the required implication holds as well fo#p),, as required fotsg), —.
(iii) Let a € A, be such thatsy), — and let there exist’ € S: s/ ~ Auz(9) (s50)» With s 5.
By Lemma 4.1 there exist two strings, w’ € A* such thatP(w) = P(w'), (s0)v = (50)w:
ands’ = (sg)w —. According to the construction of Algorithm 4 for ABYR Ayz(sy) (50)w
there must bes % = s 34, in which case als&/u € A% s, — = s, —1. In order
to show that(s), — it must be that for any; ~4,.(s,) (s0)» We haveq = = ¢ =1, in
which case als&/u € A% q. — = ¢4 —1. But using the fact thaluz(S;) is transitive,
because is a state-partition automaton, a stronger condition, and the fact'that, . &) (s0)w
implies thats’ ~ 4,,(s,) (s0)» We obtain thats’, ¢) € Aux(S1). But this just means that for any
4 ®Auz(s:) (S0)o We haveg % = ¢ =31, in which case alsbu € A}, qo = = qq —51, i€,
(50)v —51. ThereforeN is a normal relation.

We show finally that the supremil, P)—normal sublanguage df is contained iri(sq). Let
N be a(L, P)—normal sublanguage df. Then it is sufficient to show that

R = {(Nu,(s0)u) | u € N}
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satisfies (ii) of simulation relation in order to prove thgt C [(50)2. Take an arbitrary pair
(Ny,1(s0)w) € R for somew € N2. LetN,, - fora € A. Then alsoK,, 5, sinceN C K
andL,, — as well. This means thékg)., —1 and(sg), —. In order to show thall(sg)., —, i.e.
(50)w —5+ it must be shown that the condition (*) is satisfied.

Fora € Ay, we need to show thatu € A*,: (so)wa — = (50)wa —51. But this is easy:
(50)wa — meanswau € L2, SinceN is (L, P)—normal,wa € N? andP(wa) = P(wau), we
deducewau € N? C K?. But this just means thakg)we —1.

Fora € A, it must be checked that for any ~ u.(s,) (so)w: ¢ = = g =51, in
which case als&/u € Af,: ¢u — = ¢o —1. There exisw,v’ : P(v) = P(v') such that
g = (s0)w and(so)w = (s0)y. SincesS; is a state-partition automaton afh),, = (so)y iS in
two potentially different states of the observer automaton, we conclude by the property of state-
partition automaton that these two states of the observer automaton coincide. But this means
that there exists’ € A* such thatP(w) = P(w') andq = (so)wr- Now ¢ % means that
w'a € L?. By normality of NV it follows from wa € N? andw’a € L? thatw’a € N2. Therefore
w'a € K? (becauseV C K), which means thag —5;. The rest is similar as fag € A, if
foru € A%, qu = (50)wa —, thenw'au € L?, by normality of N and usingwa € N2, where
P(w'au) = P(wa) we havew'au € N? C K2, But this just means thdkg)wq = ¢a —51.

We conclude thaf(so)., — andR satisfies (ii) of simulation relation, i.e. we have the inclusion
N2 C I(s0)®. Note that sinceV was arbitrary(L, P)—normal sublanguage o, and(sg)
has been shown to be(&, P)— normal sublanguage df, it follows thati(so) is the supremal
(L, P)—normal sublanguage df . O

Following the same technique we can synthesize a monolithic algorithm for computation of
supremal normal and controllable sublanguages.

Algorithm 5. Let automataS; and S representingk’ and L, respectively are such tha is a
subautomaton of and S; is a state-partition automaton. Let us construct partial automaton
S = (S, (s,t)) with# denoted by-.
Define the auxiliary condition (**) as follows:
ifa € Ay U AyothenVu € (A, U Ayo)*: 84 — = Sq —51;
if a € Ac N Ao thenVs' myyus,) 50 8 = = s =31, in which case alst/u € (A, U Ayo)*:
st 5= sl 3.

Below are the steps of the algorithm.
1. PutS := {so}.
2. Foranys € S anda € A we puts % s, if s -5, and condition (**) is satisfied and we put in
the cases -3/ alsoS := S U {s,}.
3. Foranys € S we puts(s) = o(s).

As usual, we denote biythe unique (behavior) homomorphism given by finalityfof Simi-
larly as for Algorithm 4, one can verify by coinduction that

Theorem 7.16.1(sp) is the supremal controllable (with respectiand 4,,) and(L, P)—normal
sublanguage oK.

Proof. The structure of the proof follows very much that of Theorem 7.15. First we prove that

I(s0) is controllable with respect tb and A,. According to Theorem 5.8 it is sufficient to show
that the following relation is a control relation ¢hx S.

C = {{(s0)u: (s0)u) | u € U(s0)* }.
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Take a pair(so)w, (50)w) € N for somew € i(so)>.
(i) If (s0)w —5 for a € A, then clearly by construction of Algorithm(5g)., —, becausé(sg) C
K C L. Itis clear from the definition of’ that((so)wa, (S0)wa) € C.
(i) Let @ € A, be such thatsg),, —. We must show thatsg),, —. According to Algorithm 5
condition (**) must be checked. Sineg, C A, U A, itamounts to show thatu € (A, U Ay,)*:
(50)wa — = (50)wa —1. We haveu = uy ...u, for somel € Z withVi € {1,...,1} : w; €
A, U A,,. Notice that we have also = wy ... w;, for somek € Z. There are 2 possibilities for
wy: wy, € Ay U Ay, Orwy, € A. N A,. According to condition (**) of Algorithm 5 for(sg) —,
i.€. (50)wy..wy_, — In both cases means that in particiarc (A, U Ayuo)*: sw — = Su —51.
Indeed, condition (**) forw, € A, N A, is stronger than fow, € A, U A,, as is easily seen by
takings’' = s. Sinceau € (A, U Ay,)*, the condition (**) for(sg)., —5 holds true, which proves
the controllability ofl(so).

To prove the normality of(so) we show that the following relation is a normal relation on
S xS. :

N = {{(s0)u: (s0)u) | u € I(50)* }.

Theni(so) is normal with respect té and P according to Theorem 5.7. Take a p&ifg )., (s0)v) €
N for somev € i(sg)?.
() If (s0), — fora € A, then clearly by construction of Algorithm (3¢),, . It is clear from
the definition ofN that((so)va, (50)va) € N.
(i) Let a € Ay, be such thatsg), —. We must show thatsy), — , i.e. Vu € (A, U Ayo)*:
(50)va — = (50)va —>1. It follows from (sg) =31, Ayo C Ay U Ay, and Algorithm 5 that
Vu € (Ay U Auo)*: (50)s — = (s0)s —51, the argument being the same as above in the proof of
controllability. Sincenu € (A, U Ay,)*, the required implication holds as well.
(iii) Let a € A, be such thatsy), - and let there exists' € S: s’ R Auz(g) (S0)v With s’ .
By Lemma 4.1 there exist two strings, w’ € A* such thatP(w) = P(w'), (s0)v = (50)w:
ands’ = (so)w —5. But using the fact thas; is a state-partition automaton there exists
v' . P(v') = P(v) such that’ = (sg),» —. Two cases must be distinguished. Assume first that
a € A, N A,. It follows from Algorithm 5 thatVs ~ 4,.(s,) (s0). there mustbe = = s =4,

in which case alstu € (A, U Ayo)*: 54 — = s4 —1. Thens 3/ as well using the transitivity

of Auxz(S1) and the obvious fact thatuz(S) C Auxz(S1), which means that/ R Auz(3) (s0)w
implies thats’ ~ 4u4(s,) (50)- NOW fOr anyq ~ 4,.(s,) (s0)» there must bgs’, q) € Auxz(S1).
Therefore; % = ¢ -3, inwhich case alsWu € (A,UAu0)* ¢a — = qq —31. Thus(sg), —5:.
Now we assume that e A, N A,. According to the construction of Algorithm 5, it is sufficient to
show thatvu € (A, U Auo)*: (50)va — = (50)va —51. We know that(sg) /. Using the same
argument as in the proof of controllability or (ii) of normality it follows that € (A, U Ayo)*:
(s0)s — = (s0)s —1. Itis sufficient to notice that € A, N A, C A, U A,,, i.e. also
au € (Ay U Ayo)*. Thus,Vu € (Ay U Awo)*: (50)va — = (50)v = = (s0)» —1, Which is
equivalent td(s),a —1. Since in both casesg), —, we conclude thaV is a normal relation.

We show finally that the supremal controllable (with respedi &md A,) and(L, P)—normal
sublanguage ok is contained iri(sq). Let N be a controllable an(lL, P)—normal sublanguage
of K. Then itis sufficient to show that

R = {(Nu,l(s0)u) | u € N}

satisfies (i) of simulation relation in order to prove thet C f(so)z. Take an arbitrary pair
(Nuw,1(s0)w) € R for somew € N2 LetN, = fora € A. Then alsoK,, -, sinceN C K
andL,, - as well. This means thékg),, —1 and(sg). —. In order to show thal(sg),, —, i.e.
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(50)w —5: it must be shown that condition (**) of Algorithm 5 is satisfied.alie A, U A,, then
we show that/u € (A, U Auo)*: (50)wa — = (S0)wa —51. Indeed, ifu € (A, U A,,)* then
u=uy...uyforsomek € Z with u; € Ay, U Ayo Vi € {1,...,k}. Thus,(s0)we —, i.€. wau =
wauy .. .u, € L? together withwa € N2 and normality and controllability a¥ inductively used
implieswau; € N2,... wau = wau; ...u;, € N> C K2. This means thatsg),, —1, which
was to be shown. Let € A, N A,. We need to show thats’ ~ 4,.(s,) (S0)w : 8" = = s =1,

in which case alsou € (A, U Ayo)*: s, = = s, —1. Lets' maus) (S0)w @ 8 .
According to Lemma 4.1 and by taking into account tBafs a state-partition automaton, there
existsw’ € K? such thatP(w') = P(w) ands’ = (sg).. Hences' % is equivalent tav'a € L2
By normality of N it follows from wa € N? andw’a € L? thatw'a € N2. Thusw'a € K?,
becauseV? C K2, but this means that —5;. The second part is similar as fore A,, U A,.
Indeed, foru € (A, U Ay,)* with s, = we obtain consequentlyw’au € L2, w'a € N?, i.e.
by inductive application of normality and controllability 8f we have finallyw’au € N? C K2,
which givess!, —%;. To conclude, in any case we have obtairﬁ@ﬁ)w %, i.e. R satisfies (ii)
of simulation relation, and the inclusiai? C i(s9)? has been shown. Note that sinbewas

arbitrary controllable an@L, P)—normal sublanguage df, it follows thati(sg) is the supremal
controllable and L, P)—normal sublanguage df. O

Remark 7.17. An important feature of Algorithm 5 is its compactness, i.e. it is not an iteration
of two separate algorithms as are the algorithms in [33] or [9]. Therefore it looks almost like a
coinductive definition of the supremal normal and controllable sublanguage, which is not possible
to do directly in£. Thus Algorithm 5 is suitable for investigating problems like "when does the
supremal normal and controllable sublanguage commute with the synchronous product of (partial)
languages?”

7.4 Distributivity of the supervised product

The behavior of the supervised DES has been formalized by the (partial) language operation of su-
pervised product. It is of interest to study algebraic properties of this operation, e.g. distributivity
with respect to (partial) language operations. The problem of distributivity of the supervised prod-
uct with respect to language unions is addressed in this section. The following theorem answers
the main question. It turns out that

Theorem 7.18.1f A. C A,, then for anyK and K’ (partial) sublanguages aof we have:
(KUK")/gL = (K/gL)U(K'/gL).
Proof. Formally, it can be checked that
R = {{[(K UK")/gL]u, [(K/gL) U (K'/gL)]) | u € [(K UK')/gL]*}
is a bisimulation relation. Takewa € [(K U K')/9L]2.

(i) is straightforward{(K U K')/9L],, | iff w € LYiff [(K/9L) U (K'/9L)]w -
(i) If (K U K")/9L], = fora € A, then according to the definition 7.4 of supervised products
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several cases must be distinguished. We have the following possibilities:

(K UK')y/9Ly if (KUK') % andL %
Uier (K UKy, /9L, if (KUK') A andL = and3I #
(KUK")/9L), = andw;, i € I : P(w;) = P(w) andVi € I :
(KUK') %
0/9Ly, if K A andL 2 andw ¢ A

By applying again the definition of the supervised product several cases must be distinguished:

wa

(KU K")wa/9Lua if (KUK')% andL %%
Ujes(KUK")y,;/9Lya if (KUK') £ andL =¥ anda € A.U 4,
and3J # @ andv;, j € J: P(v;) = P(w)

(KUK')/9Llwa = andvj € J: (KUK'),, %
(KUK")y/9Lya if K72 andL “% anda € Ay N Ay
0/9 Lusa if K72 andL ®% andvv: P(v) = P(w):

K, 7 anda € A, N A,

\

Now combinations of different cases of both preceding equations must be considered. Some
of the combinations are only hypothetic, and in fact they are impossible. For instance, if the last
case in the first equation occurs, then only the last case in the second equation can occur. Some
cases are easy, others are problematic. For instance, the last case of the other equation in com-
bination with any case of the first equation, as well as the combination of the first cases of both
equations are not problematic and the conclusion is easily drawn. Now we consider the problem-
atic casg K U K') 5, namely e.g. K = andK’ /4, while there exists an index sétsuch that
vj € J: (K UK'),, = andP(v;) = P(w), namely e.gVj € J : K,; /4 andK] . This
is a problem, because in order to draw the plausible concly$idfL),, -, we need first be
sure that(K’/9 L) =, which is not obvious. However our assumptidp C A, will be used.

It is known from Corollary 5.9 that under the assumptidn C A, observability together with
controllability are equivalent to the normality. Since the supervised product is known to be con-
trollable and observable, it follows that the supervised product is(@lsB')—normal. Therefore
(K'/gL)is (L, P)— normal and fromk; =, i.e.(K'/gL) % it follows that(K'/9L) %, and
thus(K U K'/9 L)y 5.

The same problem appears if the second case in the first equation occurs. The situation is sim-
ilar to the one above with replaced byw;, but owing to thg L, P)— normality of the supervised
product this is not substantial: agdii”/9L) — implies that(K’/9L) 3.

(iii) This inclusion (simulation) is easy and holds always: it follows from the monotonicity of the
supervised product with respect to the specification (see Corollary 7.13), thekefardl U K’
implies thatk /9L C (K U K')/9L. Similarly, K’ C K U K' implies thatk’/9L C (K U
K" /9 L. Hence(K/9L)U (K'/9L C (K UK")/IL.

O

Under the structural assumption on the event4gtC A,, the supervised product with
partial observations distributes with laguage unions. This distributivity implies that important
properties are preserved by unions:lﬂ’f/gL = K, i.e. K is controllable,L,,(G)—closed
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and observable anﬂ”/gL = K, i.e. K' is controllable,L,,(G)—closed and observable, then
(KUK")/9L = (K/9L)U(K'/9L) = KUK',i.e. K UK'is also controllableL,,(G)—closed

and observable. Note finally that it is not difficult to extend the above distributivity to an arbitrary
number of specifications, even to an infinite number (which amounts to the lattice theoretical lower
semicontinuity).

Similarly, if A. C A, then our technique can be used to show that the supervised product is
also distributive with respect to partial language intersections. The situation is symmetric in the
sense that the opposite inclusion is trivial here (always holds). To conclude, we have shown that
the concept of supervised product is useful for investigation of properties of closed-loop languages
in discrete-event control with partial observations.

8 Conclusion

Supervisory control of DES with partial observations has been treated by coalgebraic techniques.
The new concept of deterministic weak transitions gives rise to the definition of projected and
observer automata. Observability and normality have been characterized by appropriate relations
in this framework, which gives an insight into problems of partially observed DES. They have
been used to design algorithms for supremal normal and/or normal and controllable sublanguages.
These are discussed in detail and compared to those encountered in the literature.

Another approach, based on finality of the automaton of partial languages, consists in using
coinductive or similar definitions for describing permissive or antipermissive control laws under
partial observations. As a byproduct coinductive definitions of observable approximations of a
given language have been obtained. These definitions give rise to new algorithms for the compu-
tation of infimal closed and observable superlanguages and observable sublanguages larger than
the supremal normal sublanguage because of their coinductive nature. They rely only on obser-
vational indistinguishability relations, which can be constructed directly from the corresponding
definitions that give at the same time algorithms for their construction. The lack of the existence of
an optimal (maximally permissive) solution for the supervisory control with partial observations is
related to the fact that the supervised product does not in general distribute with (partial) language
unions when the controller has only partial information about the DES.

The naturally algorithmic character of the coalgebraic approach is one of its main advantages.
While the algebraic approach works with strings (words), which is sometimes cumbersome, the
coalgebraic approach relies on the relational framework (various weakening of bisimulation re-
lations) and we proceed event by event. The use of coinductive definitions and proofs makes
coalgebraic techniques relevant for control of DES. Coinductive definitions enable to character-
ize languages of the closed (controlled) DES and coinductive proofs are used to check different
properties like controllability, observability, normality, or distributivity of operations on (partial)
languages.

The results of this paper are being generalized to the decentralized and modular supervisory
control. For instance, in modular control of DES, the system is composed of local subsystems
that run concurrently, i.e. the global system is the parallel composition of local systems. To
each local system a local supervisor is associated. Many interesting questions arise: can the
control be exerted at the local level without violating our control objectives or without affecting
the optimality of the solution? If the answer to these question is positive, there is an exponential
save on the computational complexity. In our coalgebraic framework these two problems can be
paraphrased as follows: when does the supervised product commute with synchronous product

42



and when does the supremal controllable sublanguage (as an operation defined by coinduction in
section 7) commute with synchronous product? (recall that the synchronous product of partial
languages has been defined by coinduction in [20]).

The contribution of the coalgebraic approach to the control and systems theory remains to
be further evaluated. However, we believe that application of the coinductive techniques is not
limited to discrete-event systems, but it can be useful for other type of systems. It seems possible
to study with coalgebraic techniques some problems of hybrid systems, especially if the control
objectives are only at the discrete-event level (safety or minimal required behavior). In some areas
of control and systems theory with a high level of abstraction there might be interesting to apply
the coalgebraic techniques. Various coalgebras (systems) can be obtained by varying the functor
on the category of sets. Moreover, the use of this method is not limited to systems defined by
functors in the category of sets, but functors on some "structurally richer” categories (like the
categories of topological or metric spaces and continuous functions between them as morphisms).
An interesting application of coalgebra to symbolic dynamics in one dimensional discrete-time
dynamical systems defined by a continuous function on a complete metric space can be found in
[21]. Different types of coalgebras have their own notions of homomorphism and bisimulation,
as well as cofreeness and finality, i.e. coinduction, yet there is a unifying theory of universal
coalgebra.

Future research tasks might include a study of how to improve the computational complexity
of our algorithms, a study of decentralized, hierarchical, and modular control of DES using coal-
gebra as well as an application of the coalgebraic techniques to timed DES. Optimal supervisory
control can be investigated by coalgebraic technigues using coalgebras of weighted automata [22]
(weights here correspond to the costs) with formal power series as their final coalgebra.
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