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system to a different mode. This discrete event depends on the facet through which the
polytope is left. In this paper, the domains of attraction of these so-called exit facets are
determined. This result describes the interplay between the continuous and discrete dynamics
of a hybrid system, and may be useful in some approaches to reachability analysis for hybrid
systems, proposed in the literature. The method presented in this paper is restricted to affine
systems on two-dimensional polytopes. Since some results are based on argumentsfrom planar
geometry, generalization of the approach to higher dimension srequires a rather extensive and
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Abstract

In this paper a problem related to reachability analysis of piecewise-affine hybrid sys-
tems is considered. We focus on one discrete mode of a hybrid system, and study the
continuous dynamics in this mode, described by an affine autonomous system on a poly-
tope. As soon as the continuous state leaves the polytope, a discrete event is triggered,
transferring the hybrid system to a different mode. This discrete event depends on the
facet through which the polytope is left. In this paper, the domains of attraction of
these so-called exit facets are determined. This result describes the interplay between
the continuous and discrete dynamics of a hybrid system, and may be useful in some
approaches to reachability analysis for hybrid systems, proposed in the literature. The
method presented in this paper is restricted to affine systems on two-dimensional poly-
topes. Since some results are based on arguments from planar geometry, generalization of
the approach to higher dimensions requires a rather extensive and detailed mathematical
study that does not at all seem promising.
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1 Introduction

In the last decade the study of hybrid systems has received considerable attention. Reasons
for this growing interest are manifold. On the one hand an increasing number of engineering
systems is controlled by computers, thus creating an interaction between the continuous
dynamics of a physical system and the discrete dynamics of a computer. On the other hand,
also the modeling of complex dynamical systems may be facilitated by the use of hybrid
system models. Examples of this hybrid modeling can be found in a large spectrum, ranging
from the modeling of car engines to the description of biomolecular networks.

Recently, a specific subclass of hybrid systems, so-called piecewise-affine hybrid systems,
introduced by Sontag in [15], [16], [18], has been studied quite extensively (see e.g. [2], [4],
[5], and several papers in the conference proceedings [12], [6], and [13]). A piecewise-affine
hybrid system consists of an automaton, with at each discrete mode of the automaton an
affine system on a polyhedral set, evolving in continuous time. As soon as the continuous
state reaches the boundary of the polyhedral set, a discrete event occurs, and the automaton
switches to a new discrete mode. There the continuous state is restarted and will evolve



according to the system dynamics of the affine system corresponding to the new discrete
mode. In every discrete mode, the dynamics of the corresponding continuous-time affine
system, and the polyhedral set on which this system is defined, may be different. In this
paper we will assume that at each discrete mode the corresponding affine dynamics are
defined on a polytope, i.e. on a bounded polyhedral set, and that the discrete event that
occurs upon reaching the boundary of a polytope, depends on the facet through which the
polytope is left.

In the literature, several results on control of piecewise-affine hybrid systems are available
(see e.g. [5], [14], [7]). In most of these studies, the problem of reachability plays an important
role: is it possible to steer the system from a given point or set of initial states to a given
set of final states? A similar question occurs in the problem of safety verification, where one
has to guarantee that some undesirable (unsafe) states are never reached while the system
is in operation. Also for other system theoretic properties, like for example reduction of a
realization, it turns out that reachability is an important property in order to obtain useful
results (see [8]). In full generality, the reachability problem is not always decidable, or may
have a large complexity (see e.g. [1], [10], and [17] for some results in this direction). However,
for interesting special cases, solutions do exist; in this respect the class of O-minimal systems
introduced in [11] seems very important. One of the goals of this study is to obtain a better
understanding of the difficulties in solving the reachability problem.

One of the problems in reachability analysis of piecewise-affine hybrid systems is the
determination of the domain of attraction of an exit facet. Given an affine system on a
polytope, the exit facets are the facets through which the state may try to leave the polytope.
Since leaving through a different facet corresponds to a different transition in the automaton,
reachability analysis requires that for every element in the state polytope, the corresponding
exit facet is determined. This problem of characterization of the domains of attraction of
the exit facets (and in particular their geometric structure) is studied in this paper. In the
literature this question is sometimes called the co-reachability problem for the exit facets,
but in this paper we will not use this terminology. In full generality this problem is difficult
to solve. Therefore we confine ourselves to affine systems on polytopes of dimension 2, i.e.
to the planar case. It turns out that this situation is simple enough to obtain useful results,
and rich enough to gain some understanding why the problem becomes so difficult in higher
dimensions. In the 2-dimensional case arguments from planar geometry can be used, that
are not longer valid in higher dimensions.

The paper is organized as follows. In Section 2 we start with a precise description of the
problem treated in this paper. The parts of the boundary of the state polytope through which
the state may leave the polytope, called the exit sets, are studied in Section 3. In Section 4
the partitioning of the state polytope in different domains of attraction is described. Some
examples of subdivisions of the state polytope are given in Section 5, and we end the paper
with some concluding remarks and an outlook for future research in Section 6. A few proofs
are omitted because of limitations of space.

2 Problem description

We consider one discrete mode of a piecewise-affine hybrid system. The continuous dynam-
ics in this mode are described by a two-dimensional affine autonomous system on a two-
dimensional polytope (polygon) P. I.e. the differential equation describing the continuous
dynamics is given by

&= Az +a, z(0) = xo, (1)



with A € R?*2 and a € R?, and remains valid as long as the state x is contained in the state
polytope P. As soon as the state leaves the polytope P through one of its facets, a discrete
event occurs, and the hybrid system will switch to another discrete mode with possibly
different continuous dynamics. Since this discrete event depends on the facet through which
P is left, we want to determine for every initial state g € P, through which facet of P the
corresponding solution trajectory x(t,zo) will leave P, or whether this trajectory will remain
in P forever.

Let F1,..., F), denote the facets of P. For i = 1,...,k, the normal vector of facet F; is
denoted by n;, and without loss of generality we assume that n; is of unit length and points
out of the polytope P. So there exist numbers ay, ..., ax such that for ¢ = 1,..., k, the facet
F; is given by

Fi={z € P|nlz =0}

In the same fashion, the polytope P itself is described as the intersection of k half spaces:

k
P = ﬂ{x eR? | nlfz < a;).
i=1
Definition 2.1 A facet F; of polytope P is called an ezit facet if there exists a point xg € F;
and an ¢ > 0 such that the solution trajectory of the system @ = Az + a on R? (i.e. the
dynamics are not assumed to be restricted to the polytope P), and starting in z¢ at time
t = 0 satisfies

vt € (0,¢) : nl x(t, z0) > a;.

Problem 2.2 Determine for every exit facet of the polytope P the corresponding domain
of attraction. l.e. if the facet F; is an exit facet, determine all points zg € int(P) for which
there exists a time 7' > 0 such that the solution trajectory =(t,z¢) of system (1) on R?, and
starting in zg, satisfies

(i) Vt € [0,T) : z(t, ) € int(P),
(ii) (T, zo) € F;,
(i4i) Je > 0 such that Vt € (T, T +¢) : n] z(t,x0) > .
As soon as Problem 2.2 is solved in every discrete mode of a piecewise-affine hybrid system,
essential information is obtained on the switching behavior between the discrete modes of this

hybrid system. This information can be used in the reachability analysis for piecewise-affine
hybrid systems, e.g. in the approach described in [14].

3 Exit sets

In order to determine the domains of attraction of all exit facets of an affine system on a
polytope P, we first concentrate on the boundary P of P. For every point xg € P we have
to determine whether it is possible to leave the polytope P through xzg.

Definition 3.1 Consider the affine system © = Ax + a on the polytope P. The total exit set
Usot consists of those points xg on the boundary of P, such that the solution of the differential
equation & = Az+a, valid on the whole space R? and with initial state z(0) = xp, immediately
leaves the polytope P:

Uot = {z0 € OP | 3= > 0Vt € (0,¢) : z(t, z0) & P}. 2)



For the explicit determination of the total exit set Uiot, Definition 3.1 is not very helpful.
Instead it is more appropriate to use the direction of the vector field of the differential equation
& = Ax + a on the facets of the polytope P.

Let F; be a facet of P with normal vector n; of unit length and pointing out of the
polytope P. Consider the function

g Fi — R: gi(z) = nf (Az +a). (3)

It is obvious that the sign of the function g; in a point & € F; determines whether x € Uyot.
Furthermore it is important to note that the function g; is affine, so if g; is not identically
zero, it will change sign at most once.

Lemma 3.2 Let i € {1,...,k}, and let F; be a facet of polytope P with normal vector n;
pointing out of P. Let vy and vy denote the vertices of F;, and consider the system & = Az +a
on P. Let g; be the function defined in (3).

1. If gi(vi) > 0 and gi(v2) > 0 then F; C Uget.

2. If gi(v1) <0 and gi(v2) <0, then, except for the vertices v1 and v2, none of the points
of F; belongs to Uyoy. (Whether the vertices v1 and vy belong to Uy, depends on the
direction of the vector field in each vertex with respect to the other facet that meets F;
in this vertex).

3. If gi(v1) > 0 and g;(v2) <0, then there exists a unique point v € F; such that g;(v) = 0.
In this case, v1 and all points on F; located between vi and v belong to Uiot, and all
points on F; located between v and vo do not belong to Uior. Furthermore, Av + a, the
vector of the derivative in the point v, points along the facet F;. If Av + a points in the
direction of v1, then v € Uiot. If on the other hand Av+a =0 or if v # vs and Av+a
points in the direction of va, then v & Uyot.

Using Lemma 3.2, every point « on the boundary dP of the polytope P may be classified
whether or not to belong to the total exit set Uiot. Furthermore, since on every facet F;
the corresponding function g; is affine, the set Uiot consists of a finite number of connected
components. Hence it is possible to divide Uit in a unique way into a minimal number
K € NU{0} of connected subsets:

Ut = U1 U0 U -+ - U Ugk.

Each of the maximal connected components Uy, ..., Ug of Uiy is called an exit set. Note that
each component U; may consist of (parts of) different facets of P. Instead of determining the
domains of attraction of all exit facets, we will start by computing the domains of attraction
of the exit sets Uy,...,Uxk. A finer decomposition into domains of attraction for separate
facets may be carried out afterward.

4 Partitioning the interior of the polytope P

In this section, we concentrate on the interior int(P) of the polytope P. We will partition
the interior int(P) into sets of different type. This subdivision is a useful tool to determine
the domain of attraction of each exit facet.

Definition 4.1 Consider an affine system ©# = Az 4+ a on a polytope P, with exit sets
Ui,...,Uk. We define the following subsets of the interior int(P):



1. For i =1,..., K let G; denote the domain of attraction of exit set U;, i.e.

Gi := {zp € int(P) | IT > 0 such that x(¢, zo) € int(P) for t € [0,T) and z(T, zo) € U;}.

2. Let O denote the mazimal invariant set in int(P), consisting of all solutions that remain
in the interior of the polytope P forever:

O = {zp € int(P) | z(t,zo) € int(P) for ¢t € [0, 00)}.

3. Let R denote the set of all trajectories that reach 0P in finite time, without leaving P
on that occasion:

R:={zg € int(P) | 3T > 0such that z(¢,z¢) € int(P) for t € [0,T")
and z(T, zg) € OP\Utot }-

After touching the boundary 9P, trajectories in R do not leave the polytope P, but
continue to evolve inside the polytope P. From there on, the solution trajectory may either
remain in int(P) forever, or will leave the polytope P through an exit set at a later time
instant (see e.g. Example 5.2).

Lemma 4.2 Consider an affine system £ = Ax + a on a polytope P, and let G1,...,Gg, O
and R be the subsets of int(P) described in Definition 4.1. Then

(i) int(P) =G UG U---Gg UOUR,
(i) The intersection of any pair from the collection Gi,...,Gg,O, R is empty.

Proof: Let xy € int(P). Then the corresponding solution x(t,zg) either remains in int(P)
forever (i.e. zg € O), or it leaves int(P) in finite time. In the second case, let T' > 0 be the
smallest time instant that the solution z(t,z¢) reaches the boundary 0P. If (T, zy) & Usot,
then z¢ € R; otherwise, if z(T,x0) € Uiot, then zo will belong to exactly one of the sets
G1,...,Gk. Note that for ¢ # 7 we have G; NG = @ because U; NU; = @. -

Lemma 4.2 states that Definition 4.1 describes a decomposition of the interior of the
polytope P. The goal of the remainder of this section is to determine this decomposition
explicitly.

4.1 A property of the domain of attraction of an exit set

The following property of the domains of attraction of exit sets turns out to be important
for their further characterization.

Proposition 4.3 Consider an affine system x = Ax+a on a two-dimensional polytope, with
erit sets Uy,...,Uk. For everyi = 1,..., K the domain of attraction G; of exit set U; is
open.

Proof: First consider an exit set U;. Then either U; = 9P, or U; is a strict subset of P
that is connected. Since we only consider 2-dimensional systems, the relative boundary of
U; (i.e. the boundary of U; when restricted to P), consists of two points by, b2 € 9P, that
may or may not belong to U;. A solution of the system & = Az + a through one of these
boundary points touches the exit set U; either from the inside or from the outside; a point of



reflection cannot occur. This implies that a solution trajectory of the system cannot escape
from int(P) through a relative boundary point of an exit set.

Next, let g € G;. Then there exists a T' > 0 such that x(¢,z¢) € int(P) for ¢t € [0,T)
and (T, zg) € U;. Furthermore, (T, zo) lies in the relative interior of U;. Since the solution
of the differential equation £ = Ax + a on a finite time-interval depends continuously on
the initial value, there exists a neighborhood of xy such that all solution trajectories with
initial value within this neighborhood, leave the polytope P in finite time through exit set
U;. Hence a neighborhood of zg is contained in G;, and thus G; is open. -

Proposition 4.3 implies that the boundary of a domain of attraction of one exit set cannot
belong to the domain of attraction of an other exit set:

Corollary 4.4 Ifv € 0G; Nint(P), then v € OUR.

Proof: If v € 0G;, then v € G;. Suppose that v € G; for some j # ¢. Then also a
neighborhood of v belongs to GGj. Since v € 0G;, there exists a sequence in G; converging to
v. Hence G; N G; # @, which yields a contradiction with Lemma 4.2 (ii). So, according to
Lemma 4.2 (i), v € OUR. -

4.2 Computation of the set R

If a point z¢ € int(P) belongs to the set R, then the trajectory of the system with initial
value z(0) = z¢ will reach the boundary 0P of the polytope P in finite time 7', but will not
leave the polytope P at that time. The point Z := z(T, z¢) € 0P, where the solution hits the
boundary of the polytope P has some specific properties. These may be used to obtain an
explicit characterization of all points in int(P) that belong to the set R.

Proposition 4.5 Consider a system © = Ax + a on the polytope P, with facets Fy,..., Fy.
Let &; € OP be an element of facet F;, satisfying the following properties:

(1) %; is not a vertex of P,
(2) nF(A%; + a) =0, and the function x — nl (Ax + a) on facet F; changes sign in &;.
(8) A%;+a # 0 and points in the direction of that part of the facet F; where n} (Az+a) < 0.

Then the solution of & = Az + a with initial value x(0) = &; and solved backwards in time
belongs to the set R as long as this solution is contained in int(P), i.e.

(i) if x(t,&;) € int(P) for allt € (—o0,0), then
R; == {x(t,#;) e R? | t € (—00,0)} C R.
(i) if there exists t < 0 such that x(t,&;) & int(P), then T := sup,_qz(t,Z;) ¢ int(P) is
well-defined and
R; == {xz(t,#;) € R* |t € (T,0)} C R.
Furthermore, every facet F;, © = 1,...,k contains at most one point T; € F; satisfying
properties (1), (2), and (3) above. If F; does not contain a point Z; satisfying (1), (2), and

(3), define R; = @. Otherwise, define R; either as in (i) or as in (i) (depending on which
condition is satisfied). Then the set R is given by



The first condition in Proposition 4.5 is based on the fact that a trajectory belonging
to R cannot end in a vertex, because a solution through a vertex will either enter or leave
the polytope. The other two conditions guarantee that there is a solution trajectory of the
autonomous system that touches the boundary of P in Z; from inside, i.e. without leaving
the polytope on that occasion. The points on this solution trajectory that are passed before
reaching #; € OP belong to the set R.

Remark 4.6 For every i = 1,...,k the point z; € F; satisfying conditions (1), (2), and (3)
of Proposition 4.5 is (if it exists) a relative boundary point of an exit set U;, but it is not an
element of this exit set.

In the context of hybrid systems, the solution trajectories that are contained in R play
a special role. Depending on the exact definition, these trajectories may belong to different
domains of attraction. In this paper, the set R; consisting of the solution trajectory that
reaches facet F; without leaving the polytope there, is not considered as a trajectory in the
domain of attraction G; of F;. Instead, the solution is continued, and even if it leaves the
polytope P somewhat later through facet Fy, the definition of the domain of attraction Gy
of Fy implies that R; does not belong to Gy either. In this situation it seems legitimate to
consider the trajectory R; to be contained either in the domain of attraction of F; or in the
domain of attraction of Fy. The specific choice that has to be made depends on the definition
of the hybrid system. If in the hybrid system under consideration it is sufficient to reach
facet F; without leaving the polytope P, in order to enforce a discrete transition, then R;
belongs to the domain of attraction of F;. On the other hand, if the hybrid system continues
to evolve in the same discrete mode until facet F} is reached, then R; belongs to the domain
of attraction of facet Fy;. In any case, the trajectory contained in R; plays an important
role: it is located on the boundary of the domains of attraction of the facets F; and Fy. To
emphasize this role, we will not classify the points in the set R to belong to a specific domain
of attraction. Instead the set R is used to separate the domains of attraction of the exit sets
Ui,...,Uk, and, if appropriate, the invariant set O.

4.3 Determination of the invariant set O

The most involved part in the partitioning of the interior of the polytope P is the explicit
description of the invariant set 0. The characterization of this set requires the study of a
number of particular cases, that depend on the dynamics of the system under consideration.
Especially the location of fixed points with respect to the polytope P, and the location of
the eigenvalues of the matrix A in the complex plane turn out be relevant.

If all points of R? are fixed points of the system @ = Az + a, then the system remains
at its initial value forever, and there is no dynamics at all. This case is trivial. Also the
situation where there is a line of fixed points in R? is relatively simple. In this case A has
an eigenvalue 0, with eigenvector v. If A has a second eigenvalue A with eigenvector w, all
solutions will move along lines parallel to the vector w. If A > 0 solutions will move away
from the line of fixed points, and if A < 0 they will move towards the line of fixed points. If
on the other hand there is a line of fixed points, but 0 is the only eigenvalue of A, then the
solutions will move along lines parallel to the eigenvector v. In any case, if there is a line
of fixed points, all solutions evolve along parallel straight lines, and partitioning of the state
polytope according to Definition 4.1 is straightforward. Therefore we confine ourselves in the
rest of the paper to the only non-trivial situation in which the system & = Ax + a has either
one or no fixed point at all.



In Corollary 4.4 it was shown that the boundary of the domains of attraction of the exit
sets either belong to R or to O. This result was completely based on the fact that the sets
G1,...,Gk are open. The same argument is also applicable to the maximal invariant set O,
provided that O is open.

Corollary 4.7 Let & = Ax 4 a be an affine system on a two-dimensional polytope P. Con-
sider the decomposition of int(P) described in Definition 4.1. Assume that the mazimal
invariant set O is nonempty and open. Then

(i) v € 0G; Nint(P) implies that v € R,

(i) v € 00 Nint(P) implies that v € R.

Corollary 4.7 states that, if O is open, all boundaries between domains of attraction
G1,...,Gk and invariant set O consist of trajectories belonging to the set R. So, in this
situation it is not necessary to obtain a more explicit description of the maximal invariant
set O, in order to derive the partitioning of int(P) described in Definition 4.1.

Proposition 4.8 Consider a system © = Az + a on a two-dimensional polytope P, and let
O be the corresponding mazimal invariant set as introduced in Definition 4.1 (2). Assume
that the system has at most one fized point in R?. Then, depending on the affine dynamics
and the location of the polytope P, the invariant set O satisfies the following claims:

(1) If the system has no fixed point in P, then O = &.
(2) If the system has a fized point xf € int(P):

(2a) if the fized point x¢ is stable (all eigenvalues of A have negative real part) or is
marginally stable (all eigenvalues of A are located on the imaginary azis), then O
1S open,

(2b) if the fized point xf is totally unstable (all eigenvalues of A have strictly positive
real part), then O = {xf},

(2¢) if the fized point x is a saddle, i.e. A has eigenvalues A\ > 0 and Ay < 0, then
O = (zy + Vy,) Nint(P),
where Vy, = ker(A — \oI) is the eigenspace corresponding to Az.
(3) If the system has a fized point xy € OP:

(3a) if all eigenvalues of A are complex (i.e. their imaginary part is nonzero), then
0 =g,

(3b) if all eigenvalues of A are real and positive, then O = &,

(3c) if the fized point x is a saddle, i.e. A has eigenvalues A1 > 0 and Ay < 0, then

0= (l‘f + V)\z) ﬂint(P),

where Vy, = ker(A — \oI) is the eigenspace corresponding to Az.
(3d) if all eigenvalues of A are real and negative:

(3d1) if A has two different negative eigenvalues Ay < A\ < 0, define S := (xy +
Vy,) Nint(P), with V), = ker(A — XoI). Then S C O and O\S is open,



7 as one negative etgenvalue A1 and ran — A1) =0, then O = int ,
3d2) if A h ; ; lue A d rank(A —X1I) =0, then O = int(P
3d3) if A1 < 0 s the only eigenvalue of A, and ran — M) =1, define S :=
d3) if A h l l f A d k(A — M\I define S
(xf + Vy,) Nint(P), with Vi, =ker(A— A\ I). Then S C O and O\S is open.

Note that in Proposition 4.8 the set S may be empty, and if O or O\S are claimed to be
open, also these sets are possibly empty.

If in Proposition 4.8 z € int(P) is a stable fixed point, the continuous dependence of
solutions of © = Ax + a on finite time intervals implies that O is an open set. Most other
conditions (except (3d)) are relatively straightforward.

4.4 A subdivision of the interior of P

Procedure 4.9 Consider an affine system # = Az + a on a two-dimensional polytope P,
and assume that this system has at most one fixed point. Initialize the set B of boundaries
between the different domains of attraction as B := @&. Then the domains of attraction of
the exit facets may be determined as follows.

1. Determine the total exit set Uiy using Lemma 3.2, and partition this set in maximally
connected components, the exit sets Uy, ..., Uk.

2. Determine the set R introduced in Definition 4.1, using the method described in Propo-
sition 4.5. Define B := R.

3. Compute the fixed point z; of the system (if it exists) and the eigenvalues of A. De-
termine which case from Proposition 4.8 is valid.

e in cases (2b), (2¢), and (3c), B:=BU O,
e in cases (3d1) and (3d3), B:=BUS.

4. The set of boundaries B divides int(P) in separate regions. Every region contains at
most one exit set U; on its boundary. This region is the domain of attraction of exit
set Uj;.

5. If an exit set U; contains only one exit facet, the domain of attraction of the exit
set is the domain of attraction of this exit facet. Otherwise, the exit set U; contains
some vertices vy,...,v, of P in its relative interior. Solve the differential equation
& = Az + a with initial values z(0) = v;, (j = 1,...,m), backward in time, i.e. after
defining T; = sup,_o z(t, v;) & int(P) (in particular T; = —oo if (¢, v;) € int(P) for all
t < 0), determine

Q; = {a(t,v) € B | £ € (1;,0)}.

Then @, ...,Qn divide the domain of attraction G; of U; into separate domains of
attraction for all exit facets that are (partially) contained in Uj.

Proof of correctness: The set of boundaries B consists of solution trajectories of the affine
system. Therefore, solutions with initial value in int(P)\B cannot cross B. Furthermore, all
points in int(P)\B belong to one of the open sets Gy, ..., G, and if appropriate O or O\S.
These sets do not intersect each other, and their boundaries are contained in BU JdP. So B
divides int(P) in separate regions, and the region containing the exit set U; on its boundary
must be the domain of attraction of this exit set. Note that this region is unique, because
the set of boundaries B does not divide any exit set. Finally, the subdivision of a domain



of attraction G; into domains of attraction of the separate exit facets is based on the same
principle. -

If a domain of attraction G; of an exit set U; is separated by a trajectory (); ending in
vertex vj, it is unclear to which domain of attraction of an exit facet this trajectory belongs.
In fact, the trajectory is on the boundary of two domains of attraction, and it is a matter
of definition how this set itself is classified. In a hybrid systems context, this choice will be
based on the discrete event that is triggered upon reaching the vertex v;.

5 Examples

Example 5.1 Consider the system

(_ >:(6 _i)( >—|—< 1>,ontherectangle0§m1§6,0§$2§4.
T2 2 Z2

The vector field of the derivative in the vertices of the rectangle (depicted in Figure 1) shows
that the rectangle has two exit facets, U3 = {(z1,72) € R? | 1 = 0A0 < 22 < 4} and
Us = {(z1,22) € R? | 21 = 6 A0 < 22 < 4}, which at the same time are exit sets. Since there
are no points on the boundary of the polytope, where the solution touches the boundary,
R = @. Therefore, the two domains of attraction Gy and G5 are separated by the maximal
invariant set O. The system has one fixed point, z; = (3,2), located in the interior of the

(0,4) (6,4)
G2
Ux = Us
G
O
(0,0) (6,0)

Figure 1: Partitioning of the state rectangle in Example 5.1

rectangle. The matrix A has eigenvalues \; = % and Ay = —%, and v = (1,—4)7 is the
eigenvector corresponding to eigenvalue —1. So O = (z; + ker(4 — A2I)) Nint(P) consists
of the line between (,0) and (3,4) but does not include the begin- and endpoint. Points on
this line converge to z;. At the right hand side of the line, every solution reaches exit facet
Us in finite time. On the left hand side of this line, exit facet Uj is reached in finite time (see

Figure 1).

Example 5.2 (Inward spiraling). Consider the system

1 1 3 T _1
) = 1616 + 4 ), on the square 0 <z <4, 0 < 9 < 4.
T2 ~16 0 I 3

10



Figure 2: Domains of attraction of Example 5.2 (left) and Example 5.3 (right)

The vector field of the derivative in the vertices of the square indicates that all facets are exit
facets. In fact, the system has four exit sets, given by

8
Ul = {($17$2)€R2|0S.’E1<§/\$2:4}7
8
Uy = {(x1,$2)6R2|w1:4/\§<$2§4},
8
Us = {($1,$2)ER2|§<a:1§4/\a:2:0},

4
U4 = {(x17x2)€R2|.’,C1:O/\0Sx2<§}7

depicted in the left diagram of Figure 2. Every exit set has a boundary point, not belonging
to the exit set, (the points (%,4), (4, %), (%, 0), and (0, %)), and the solutions through these
points touch the boundary of the square without leaving it on that occasion. By taking these
four points as initial values, and solving the differential equation backward in time as long
as this backward solution is contained in the square, Figure 2 (left) is obtained. To make a
decomposition of the state set in domains of attraction, we first have to study the maximal
invariant set . The fixed point of the system is z; = (%, %), which is clearly contained in the
square. Furthermore A has eigenvalues —% + ?)1—2\/%2, so according to Proposition 4.8 (2a),
O is open. Therefore the set R contains all boundaries between the domains of attraction
G1,G2,G3, Gy and the set O. In Figure 2 (left) the resulting decomposition is depicted. The
area containing the fixed point z; is the maximal invariant set 0. The boundary of this set
does not intersect any exit set. All other regions in the square have exactly one exit set on
their boundary. Hence each of these regions is the domain of attraction of the corresponding
exit set.

Note that, although the dynamics of this system describe an inward spiraling process, the
system restricted to the square still has exit sets, because there exist solutions that leave the

square before converging to the fixed point .
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Example 5.3 (Outward spiraling) Consider the system

. 1 _
(?1>:( 3 >(w1>+< 2>,onthesquareO§x1§4,0§x2§4.
9 —2 2

Z2
Again, the vector field of the derivative at the vertices of the square shows that all facets are
exit facets. The corresponding four exit sets are given by

O Rlw

8
4
Uy = {($1,$2)€R2|:v1:4/\§<x2§4},
8
Us = {($1,$2)€R2|§<x1§4/\x2:0}7

8
Us = {(z1,22) €R® [21 =0A0 <2 < 3},

(see Figure 2, right). The boundary points (%, 4), (4, %), (%, 0), and (0, %) do not belong to
these exit sets, but are the endpoints of solution trajectories contained in the set R. After
solving the differential equation backwards in time, these trajectories have been plotted in
Figure 2 (right). The system has one fixed point z; = (%, %) which is unstable because
the eigenvalues of the matrix A are % + %\/gz Hence O = {zs} and the set R divides the
square in four different regions. Every region has exactly one exit set on its boundary and
is therefore the domain of attraction of this exit set (see Figure 2 (right)). However, the
configuration is rather complicated because the domains G; and G» spiral around each other

towards the fixed point x.

6 Discussion of the results and an outlook for future develop-
ments

In this paper, a problem related to reachability analysis of piecewise affine hybrid systems was
studied. For an autonomous affine dynamical system on a two-dimensional polytope a method
was derived for the computation of the domains of attraction of all exit facets. Although this
decomposition is always possible, the examples in Section 5 show that the complexity of the
solution depends on the dynamics of the problem under consideration. In Example 5.1, where
the matrix A has one positive and one negative eigenvalue, the decomposition is realized by
a straight line that is straightforward to compute. In Examples 5.2 and 5.3, where the
eigenvalues of the matrix A are complex, the boundaries between domains of attraction are
obtained by solving a differential equation backward in time. Although an analytic solution
exists, Figure 2 is obtained with numerical computations. Furthermore, Example 5.3 shows
that in case of outward spiraling it is difficult to decide to which domain of attraction a
point in the neighborhood of the fixed point belongs. Different domains of attraction spiral
around each other towards the fixed point. Unlike the maximal invariant set O, domains of
attraction are not necessarily convex.

In a hybrid systems context, one may consider the situation, where the continuous dy-
namics after a discrete transition to a new discrete mode, always start on one of the facets
of the new polytope. In this situation, the method presented in this paper may be used in
the reachability analysis of piecewise-affine hybrid systems. For example, in the approach
described in [14] and [7] reachability is studied in terms of so-called departure and arrival
sets. For systems without continuous inputs the results in this paper can be applied to check

12



whether a departure set is reachable from an arrival set. This observation can be used in the
backward recursion algorithm proposed in [7]. This will result in a sequence of finer partition-
ings of the state polytope and of its facets. If the procedure ends after finitely many steps,
then it is possible to decide on reachability questions for the hybrid system under considera-
tion. Additional research is necessary to judge on the merits of this approach. In particular
it would be interesting to know under what conditions the partitioning of a polytope in the
backward recursion stops after finitely many steps. However, it is not to be expected that
this property will hold in general (although [3] contains a proof of the decidability of two-
dimensional hybrid systems with piecewise-constant derivatives). The results in the present
paper suggest that for piecewise-affine hybrid systems the interaction between the continuous
dynamics and the discrete switching is the main source for decidability problems. Neverthe-
less, the domains of attraction of the different exit facets, that can be seen as an important
coupling mechanism between continuous and discrete dynamics, have been characterized in
great detail. In this respect, handling the switching between different modes seems more
problematic than the study of the continuous dynamics. However, the continuous dynamics
do lead to an additional problem: the numerical computation of system trajectories, for ex-
ample in case of inward or outward spiraling. In these cases the geometric complexity of the
domains of attraction of the exit sets, and in particular their lack of convexity may be other
complicating factors, as was illustrated in Examples 5.2 and 5.3.

The results of this paper may also be useful for the control of piecewise affine hybrid
systems with continuous input. In [7] an approach to this problem was presented, based on
the idea of control to one particular facet in each discrete mode of a hybrid system. The idea
of control to facet was further developed in [9]. The results in the present paper show that
most autonomous dynamical systems allow more than one exit facet. If continuous control is
available, this observation could be used to design feedbacks that realize more subtle control
objectives than just steering a system on a polytope to one particular facet. Indeed, closed-
loop systems with more than one exit facet are possible. To allow easy determination of the
domains of attraction of exit sets, a control law can be selected such that the closed-loop
system has only real eigenvalues and a fixed point z; € int(P). In order to apply this kind
of ideas in a hybrid systems context, more research is required on the interplay between
feedback control for affine systems and the structure of the polytope on which this system is
defined.

The results presented in this paper were specially developed for two-dimensional systems.
Nevertheless, the approach that was proposed by splitting up the state polytope in an in-
variant set O, domains of attraction G1i,..., Gk of the exit sets, and the set R of solutions
that touch the boundary, also remains valid in higher dimensions. The main problem in
higher dimensions is the explicit analytic determination of these sets. In a two-dimensional
setting, planar geometry was used to obtain a characterization of the different sets in the
partitioning. For the authors it is unclear how this type of results can be generalized to
higher dimensions. Especially the computation of the set R seems difficult, because in higher
dimensions also the dimension of this set will grow. It is even questionable, whether it is
worthwhile to pursue an extension to higher dimensions. The examples in Section 5 show
that already for two-dimensional systems the geometric structure of the partitioning becomes
rather complex. In higher dimensions it is to be expected that even more complicated behav-
ior may occur. Therefore it is unclear whether such results would be useful for application
in a hybrid systems context.

Although the analytic approach of this paper fails in higher dimensions, the computational
methods for approximate reachability developed in [2] may still be applicable.

Despite the two-dimensional character of the obtained results, it remains interesting to
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study classes of piecewise affine 2-dimensional hybrid systems, on the basis of partitioning of
the state polytope as described in this paper. Although this class of systems seems rather
restricted, it may exhibit interesting hybrid dynamics, of a more complicated nature than, for
example, timed-automata. Further research is necessary to investigate this class of systems in
more detail, and to find out which analysis and control problems may be solvable for systems
within this restricted class.

Acknowledgment: This research was supported in part by the project Control and Com-
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