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Cooperative scans

ABSTRACT
Data mining, information retrieval and other application areas exhibit a query load with multiple
concurrent queries touching a large fraction of a relation. This leads to individual query plans
based on a table scan or large index scan. The implementation of this access path in most
database systems is straightforward. The "Scan" operator issues next page requests to the
buffer manager without concern for the system state. Conversely, the buffer manager is not
aware of the work ahead and it focuses on keeping the most-recently-used pages in the buffer
pool. This paper introduces "cooperative scans" -- a new algorithm, based on a better sharing of
knowledge and responsibility between the "Scan" operator and the buffer manager, which
significantly improves performance of concurrent scan queries. In this approach, queries share
the buffer content, and progress of the scans is optimized by the buffer manager by minimizing
the number of disk transfers in light of the total workload ahead. The experimental results are
based on a simulation of the various disk-access scheduling policies, and implementation of the
"cooperative scans" within PostgreSQL and MonetDB/X100. These real-life experiments show
that with a little effort the performance of existing database systems on concurrent scan queries
can be strongly improved.

1998 ACM Computing Classification System: H.2 DATABASE MANAGEMENT; H.2.2 Physical Design
Keywords and Phrases: database management; query processing; table scans; buffer management
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ABSTRACT

Data mining, information retrieval and other application areas exhibit a query load with multiple concurrent

queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large

index scan. The implementation of this access path in most database systems is straightforward. The Scan

operator issues next page requests to the buffer manager without concern for the system state. Conversely, the

buffer manager is not aware of the work ahead and it focuses on keeping the most-recently-used pages in the

buffer pool.

This paper introduces cooperative scans – a new algorithm, based on a better sharing of knowledge and

responsibility between the Scan operator and the buffer manager, which significantly improves performance

of concurrent scan queries. In this approach, queries share the buffer content, and progress of the scans is

optimized by the buffer manager by minimizing the number of disk transfers in light of the total workload

ahead.

The experimental results are based on a simulation of the various disk-access scheduling policies, and im-

plementation of the cooperative scans within PostgreSQL and MonetDB/X100. These real-life experiments

show that with a little effort the performance of existing database systems on concurrent scan queries can be

strongly improved.

1. Introduction
Database technology applied to data mining, OLAP, multimedia and information retrieval and other
areas has to deal with queries that process an entire relation (or a large fraction of it). The relation
width and low predicate selectivities often make the query optimizer resort to table scans. Buffering
of scan queries has been considered solved, using a simple LRU policy [CR93, SS86]. This strategy
is efficient for isolated queries. However, either due to a concurrent environment (multiple users)
or domain-specific strategies (e.g. search-space exploration), modern applications often exhibit a
query load consisting of multiple concurrent scan queries. In this situation, a traditional DBMS scan
buffering algorithm causes queries to issue conflicting disk requests, which severely hurts performance.

This paper introduces the cooperative scans algorithm, which can significantly improve the response
time in these application areas. In this approach, CScan – a modified Scan operator, announces the
pages needed upfront, and an active buffer manager (ABM) optimizes the order of disk accesses taking
into account all CScan requests. Since the semantics of the table scans often do not require a particular
order of data processing, this allows multiple running queries to process the same set of tuples at a
given time. Additionally, it reduces the number of concurrently issued I/O requests, resulting in
improved disk bandwidth. Several policies for scheduling CScan requests are discussed to find the
algorithm providing the optimal performance.

The cooperative scans idea can be readily included in existing DBMSs. This requires an addition of
a physical relational algebra operator to the standard repertoire and a buffer manager modification
such that it can be informed of the page set needed in advance. The technique is illustrated with an
implementation in PostgreSQL [Pos] and a high-performance query processing engine based on the
open-source DBMS MonetDB [BZN05].
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The rest of this paper is organized as follows. Section 2 describes example scenarios with concurrent
scan queries and analyzes the performance of such query loads on modern DBMSs. Section 3 introduces
different variants of cooperative scans and presents detailed simulation results. The importance of
using large-chunk exclusive I/O is also discussed. Section 4 explains in detail how the recommended
“relevance” scheduling policy can be incorporated into a DBMS buffer manager. In Section 4.2 we
expand the scope of this analysis by considering non-scan access paths (index-scans and random
requests). The validity of our approach is shown in Section 5 where we present results of real-life
experiments with PostgreSQL and MonetDB/X100. Section 6 discusses related work and we conclude
in Section 7.

2. Motivation
This section presents typical application areas which generate heavy loads of scan-based queries, and
demonstrates the performance problems these pose for database systems.

2.1 Scan-based applications
Database technology continues to pervade into new application areas, which, while posing relatively
small (comparing to e.g. OLTP) number of queries, require processing much larger data volumes for
each of them. In this situation, the importance of index-supported OLTP usage scenarios diminishes
with respect to the scan-based analysis-oriented scenarios. A typical example of such situation are
data-mining applications, such as presented by the DD Benchmark [BRK98]. This benchmarks tests
DBMS performance while executing queries for a data-mining task in which a decision tree is incre-
mentally induced using a beam search strategy. Each step k of the beam search generates a batch Bk

of cross-table requests:
Bk = { SELECT ci,ctarget,COUNT(*) FROM table WHERE predg GROUP BY ci,ctarget |∀g ∈ Gk−1,∀ci ∈ table }.
The selection predicates predg (1) are typically conjunctive range-expressions on any of the at-

tributes ci and (2) yield at least some thousands of tuples (for statistical confidence). Property (1)
implies that a single clustered index cannot be used, and (2) implies that unclustered indices will not
be beneficial either, such that the hundreds of cross-table requests generated by a single data mining
task must be handled with scans.

Another example is content-based multimedia retrieval, e.g. a web server that allows people to
retrieve images similar to the provided one from a large picture collection [MH04]. KNN-search over
multimedia requires searching a high-dimensional space such that indexing becomes hard (the “curse”
of dimensionality) and sequential scans are sometimes the best option [BGRS99]. Similar issues arise
when databases are used to store genome data and free-form subsequence match queries are to be
executed, which also results in sequential scans [AMS+97]. Also in ad-hoc OLAP environments, users
may pose aggregate queries on large fact tables that cannot be answered with predefined materialized
views or precomputed data cubes.

All discussed application types, while differing in the performed tasks, put similar requirements on
DBMSs. In the next section we analyze how these requirements are met.

2.2 DBMS performance on SCAN queries
While there have been multiple approaches suggested to buffer page replacement (e.g. [CR93, CD85,
NFS91, SS86]), most of them concentrated on optimizing random accesses. For scan-based queries,
usually a simple LRU replacement policy with limited caching is used.

Table 1 presents results of an experiment showing that current DBMS technology does not handle
concurrent scans well. Three database systems (MySQL [MyS], PostgreSQL and one of the major
commercial players), were filled with the lineitem table from the TPC-H benchmark [Tra02] with scale
factor 5 (ca. 30 millions tuples). All tests were conducted on a dual AthlonMP system with 1.5GB of
main memory running Linux with a 5-disk (100GB 7200RPM SATA) RAID-5 [PGK88] storage. The
following scenarios were tested:

• reading the database data with a simple file scan



2. Motivation 3

MySQL PgSQL DB-Y

File scan 501 285 318

Standalone 297 209 267

Q1 Q2 Q1 Q2 Q1 Q2

Synchronized 263 263 194 194 256 256

De-synchronized

average 204 225 115 121 171 171

concurrent 157 185 78 84 131 131

Table 1: Simple scan experiment results (in thousands tuples per second)

year model size seek bandw. cache.

(GB) (ms) (MB/s) (MB)

1994 Seagate 1.25 10.0 2 0

Elite

1996 Quantum 4.5 9.5 3.6 0

Empire

1998 Quantum 6.4 10.0 14 0

Fireball

2000 Quantum 18.4 7.9 40 0

Atlas10KII

2002 WD 200 8.9 60 8

Caviar

2004 Maxtor 300 9.3 65 16

MaxLineIII
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Figure 1: Disk hardware characteristics over the last decade

• a single TPC-H Query-6, standalone.

• two such queries in parallel, starting at the same time.

• two such queries in parallel, the second starting when the first is halfway through 1.

Query 6 was chosen as it is a simple scan query that requires little CPU effort in all tested DBMSs,
making it disk-bound. This query could be implemented using an index scan, but no attribute is
selective enough to choose an unclustered index plan over scan, and assuming the existence of an
index over all used attributes is not reasonable.

Table 1 shows that all tested systems, while differing in absolute performance, follow the same
tendency. The first observation is that the standalone performance is significantly lower than raw file
scan. This shows that DBMSs do not fully exploit the available bandwidth. When two queries start at
exactly the same time, performance is in line with single query performance. Since queries are at the
same stage of processing, they can share the data that is in the buffer, resulting in only a single series
of disk read requests. However, if the queries start at different times, buffer sharing is not possible
anymore and the average execution speed severely suffers on all platforms. This illustrates the first
problem we will address in Section 3, i.e. queries do not exploit the data available in the buffer.

Another problem Table 1 illustrates is that concurrent performance is sometimes significantly
smaller than half the sequential speed. This is caused by both queries issuing conflicting requests
resulting in additional disk arm movements. Figure 1 shows that hardware improvements actually
make this problem more severe. Over the last decade, the sequential bandwidth of disks steadily grew,

1concurrent speed is estimated by taking half of the tuples divided by (total time minus half of time of sequential
run)
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Figure 2: Scan processing using traditional strategy and Cooperative Scans

while seek time, in large part determined by disk arm movements, improved very little. We address
this issue in Section 3.2, where we demonstrate the importance of using exclusive I/O.

3. Cooperative Scans
The problems identified in the previous section are mainly caused by the fact that queries always keep
to the sequential order of processing pages in the table, ignoring the data that is in the buffer but is
required further in the execution process. Only in a lucky situation where there was a similar scan
performed recently, a query may “follow” the other one reusing already fetched data (cached either
by the buffer manager or the operating system).

Figure 2 illustrates the modification to the traditional DBMS architecture that attempts to solve this
problem. We introduce two new ideas: (i) a new version of the Scan operator and (ii) a modification
of the traditional buffer manager.

The new CScan operator registers itself as an active scan on a particular table, accepting data as it
comes, instead of explicitly asking the buffer manager for particular pages. CScan has much the same
interface as the normal Scan operator, but it is willing to accept that data may come in a random
order. Note that some database systems may generate query plans that exploit column ordering when
scanning tables stored as clustered B-trees (’index-scans’). Such query plans should stick to using the
normal Scan and not the new CScan. We discuss integration of such (and other non-scan) queries in
our framework in Section 4.2.

The Active Buffer Manager (ABM) extends the traditional buffer manager in that it keeps track
of CScan operators and which pages have already been processed by each scan, and tries to schedule
disk reads such that multiple concurrent scans reuse the same pages. The overall goal of the ABM is to
minimize average table scan cost, keeping the maximum query execution cost reasonable (i.e. ensuring
“fair” treatment of all queries). Table 2 lists different ABM parameters used further in this article.

The ABM reads and caches data in the granularity of chunks, which are (much) larger than pages.
There are two reasons for introducing chunks. The first is that scans must produce good bandwidth
while the order in which the data is fetched might be random, as determined by one of the scheduling
policies (in Section 3.2, we investigate how a chunk size influences disk read performance). The second
reason is that there are typically two or three orders of magnitude fewer chunks than pages. Thus,
it becomes possible to have chunk-level scheduling policies that are considerably more complex than
page-level policies.

3.1 Scheduling policies
One of the responsibilities of the ABM is to determine the most efficient order of disk fetches to satisfy
all the currently running queries. To show the characteristics of the various scheduling policies that
can be applied to that task, we developed a simulation tool that is described first.

Simulator description Our simulator models a “perfect” disk where each (equi-sized) chunk fetch
has a fixed cost, regardless the order of chunk fetches. This is of course not true in real life due to disk
access locality and its effect on latency. However, in Section 3.2 we will explain how this problem can
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B the size of a buffer page (e.g. 8KB)

N the number of pages in the buffer

(e.g. 16384, a 128MB buffer pool)

C the number of pages in a chunk

(e.g. 1024, giving 8MB chunks)

Q the number of all concurrent scans

QT the current number of concurrent scans on a table T
Qlim the maximum allowed number of scans on a single table

MT the number of chunks in a table T
S the number of currently cached chunks

Table 2: Active Buffer Manager parameters

be minimized with chunk-level exclusive I/O. Also, when multiple queries are running on the CPU at
the same time, their speed is assumed to be exactly inversely proportional to their number. This is a
simplification, as e.g. CPU cache effects might increase or even decrease the CPU cost of concurrent
queries with respect to the single-query cost.

The simulator models a CPU with a 2GHz clock and a hard disk with a 50 MB/s throughput.
Queries are defined as processes that need various numbers of cycles per byte (c/b) of data. This
means, for the example settings, a perfect query (with CPU and disk requirements balanced) should
process data at a rate of ca. 40 c/b. A lower c/b factor means the query is disk-bound, while a higher
c/b factor means it is CPU-bound. The simulated dataset is a 100MB table divided into twenty 5MB
chunks. The size of the buffer is 6 chunks. These low example values are chosen only to keep the
performance graphs readable.

To show differences between various scenarios, two test-cases were used:

HomogeneousRun - 3 copies of the same query that spend 20 c/b, with a 0.5 second delay between
them (Figure 3)

HeterogeneousRun - 3 different queries. Query 1 uses 45 c/b and starts at 0.0s. Query 2 processes
5 c/b and starts at 0.5s. Query 3 processes 25 c/b and starts at 1.0s (Figure 4)

Each graph presenting simulation results contains two areas. The upper part displays events related
to specific chunks. Dark rectangles represent the time when a given chunk is being fetched from the
disk. White rectangles show the time when a chunk is being stored in the cache. Lines inside white
rectangles show the time spent by particular queries on processing that chunk.

The bottom part represents the state of global entities, with the following areas: the time that
queries spend waiting for I/O, total execution time of the queries, CPU usage (number of queries
processing data) and finally disk usage (number of currently running disk requests).

The “Attach” Policy There are situations, where the DBMS needs to execute concurrent queries
that have very similar CPU performance and disk bandwidth requirements. This is not an uncommon
scenario if the database is a back-end to a web server for e.g. multimedia search or pattern matching
on a genome database. Such applications often feed the DBMS with a set of canned scan-based queries
that differ only in their bound parameters.

If all such queries are issued at the same time, it is probable that they will go over the table with
the same speed. In this situation, they will share the disk access cost, resulting in good performance.
However, if queries come in at different times, they will ask for different parts of the table concurrently,
and will start to fight for disk bandwidth, as shown in the upper picture of Figure 3.

For this class of problems, the “attach” policy starts processing each new query not at the beginning,
but at the most recently fetched chunk, until reaching the end of the table, and then continue from
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Figure 3: HomogeneousRun Simulation

the beginning until the initial point. The lower picture of Figure 3 shows the execution timeline of
our HomogeneousRun. All queries obtain good performance thanks to sharing the chunks.

However, if the queries do not proceed with the same speed, they may get “desynchronized”. The
top part of Figure 4 presents what happens for HeterogeneousRun. At the beginning, queries share
data that is in the buffer, but once they are not synchronized anymore, they start to issue conflicting
requests to the disk, such that chunk sharing is lost, and the number of chunk loads needed to satisfy
the query batch goes up.

The “Elevator” Policy The attach policy can be refined to work well with unbalanced queries, by
forcing faster queries to wait for slower ones. This can be done by keeping a “sliding window” of
currently buffered chunks, and allowing a request for the next chunk only if the last chunk in this
window does not have any queries currently processing it. The middle part of Figure 4 shows that it
maximizes chunk reuse and improves system throughput.

This “elevator” approach has one important drawback: quick queries spend significant amounts of
time just waiting for other queries. This means that while the average response time for the slowest
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type of queries is minimized, all queries get this response time. Thus, there is an opportunity to
further improve average response times by better servicing quick queries.

The “Relevance” Policy The “relevance” policy generalizes chunk scheduling by computing for
each chunk two relevance functions. Chunk-selection is triggered whenever a query qtrigger finishes
processing a chunk. Then, for all chunks in the table fetchRelevance(c, qtrigger) is computed, and if
this function is positive on any chunk, the ABM loads the chunk with the maximum score. Also, if the
chunk cache is already full, a cached chunk with the lowest keepRelevance(c, qtrigger) score is chosen
for eviction.

Query and Chunk Features There are various features of each active query (q) and table chunk (c)
that can be taken into account for the relevance functions, including:

availableChunks(q) : {c} - The set of chunks a query has not processed yet and that are in the cache.
For example, queries that still have many chunks available may be ignored.

desiredChunks(q) : {c} - the set of chunks that a query still needs to process. Analogous to what
was found in [AGM89], queries that are almost finished may be promoted.

priority(q) : int - chunks that benefit queries with a high priority [CJL89] might get loaded earlier.

startT ime(q) : int - algorithm may explicitly try to minimize maximum query response time (i.e.
select chunks that benefit the longest running query).

cached(c) : bool - true if the chunk is currently cached.

processingQueries(c) : {q} - the set of queries that is currently processing this chunk. If this set is
non-empty, the chunk cannot be evicted in any policy.

interestedQueries(c) : {q} - the set of queries that still want to read this chunk. The larger this set,
the more relevant the chunk might be.

seekDistance(c) : int - the absolute difference in chunk sequence number with respect to the last
chunk fetched by the ABM. Chunks with a low value might be preferred, as this might reduce
chunk fetch cost.

This approach is highly extensible with many possible relevance functions exploiting other
application-specific chunk and query features. In the following, however, we recommend functions
that we think fit for application in a generic DBMS, as we expect them to perform well in most
circumstances.

We should note that computing relevance functions on all chunks leads to a complexity:

O(MT ∗ cost(fetchRelevance()) + S ∗ cost(keepRelevance())

This is quite expensive. Recall, though, that with C = 1024 a linear complexity in the number of
chunks might be acceptable. In any case, for our “recommended” functions in Section 4 we propose
an implementation with complexity independent of the number of chunks.

Recommended “Relevance” Functions The goal of the functions we recommend here is to (strictly)
minimize the average query response time. That is, we do not take into account query priorities or
deadlines.

Our fetchRelevance() determines which queries are “starved” (i.e. do not have any interesting
chunk cached) and selects a chunk that benefits the highest number of “starved” queries, including
the query that triggered chunk-selection, if that one is “starved”. Forcing a starved triggering query
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to be selected ensures that each query receives a chunk once in a while. If there are no starved queries,
we select the chunk that interests most queries.

Before a new chunk can be loaded, a slot needs to be prepared in the chunk cache. The keepRelevance
function needs to ensure that a chunk chosen to be evicted is not being processed by any query.
Additionally, chunks that would increase the number of “starved” queries should stay in the cache. If
the chunk cache size S is at least 2QT it is certain that there exists such a chunk.

The proposed relevance functions are defined as follows:

fetchRelevance(ccand, qtrigger) ::=

• 0, if availableChunks(qtrigger) = ∅ ∧

¬qtrigger ∈ interestedQueries(ccand)).

• |{q|∀q : availableChunks(q) = ∅ ∧

q ∈ interestedQueries(ccand)}|, otherwise.

keepRelevance(ccand, qtrigger) ::=

• ∞, if processingQueries(ccand) 6= ∅.

• QT , if ∃qreq : availableChunks(qreq) = {ccand}.

• |interestedQueries(ccand)|, otherwise.

The lower part of Figure 4 shows execution of HeterogeneousRun with this approach. Comparing
the results with the elevator results, the slow queries take more or less the same amount of time to
complete, but query 2 (the quickest one) finishes much faster.

3.2 Chunk-based I/O
ABM performs I/O requests using chunks instead of pages. In order to determine a good chunk size, we
performed disk microbenchmarks on comparable Linux machines with the ext3 filesystem. It consists
of a series of random accesses to the chunks from a very large (non-cached) file with the following
hardware:

IDE disk IBM DeskStar 7200RPM 40GB (a typical desktop PC drive).

SCSI disk Seagate Cheetah 10000RPM 36GB (a typical server drive).
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random page chunk

num num read write

reads writes num BW num BW

single 1 1 1 1 1 1

RAID-0 X X 1 X 1 X

RAID-1 X X/2 2 X/2 1 X/2

RAID-5 X X/2 1 X − 1 1 X − 1

Table 3: Chunk and Page I/O Concurrency and Bandwidth for RAID systems consisting of X disks

RAID-5 disk 3WARE 7810 hardware RAID-5 [PGK88] with SCSI interface, internally consisting of
8 SATA drives (7200RPM), configured with 64KB RAID stripes.

Figure 5 shows a trend of increasing performance with larger chunk sizes over all drives. After a
certain point, optimal bandwidth is reached beyond which increasing the chunk size does not improve
the performance anymore.

This is explained as follows. The cost of fetching a low-level disk block is the sum of access time and
the sequential read time. Figure 1 shows that while the latter improves constantly, the former did not
change significantly over the last decade. The reasons for improvements in sequential disk bandwidth
were the increases of disk rotation speed and (especially) the density of disks. On the other hand, the
seek time depends more on mechanical phenomena, like acceleration power and precision of the motor
that steers a disk head, hence it is harder to improve.

Bandwidth close to the optimal can only be achieved, when read time strongly dominates over access
time. This happens when the disk controller gets a number of consecutive low-level block requests for
which it does not have to change the position of the disk head. Such requests are submitted to the
disk controller only when a program issues a large chunk read to the OS.

This fully explains the behavior of Figure 5. The optimal bandwidth of the IDE drive is reached
at a chunk size of 4MB, and for the SCSI drive this is 8MB. The 8-drive RAID-5, however, needs
large 32MB blocks. This implies that each individual drive in the RAID needs a 4MB chunk read to
perform optimally (just like we measured).

Exclusive I/O A related issue is how page and chunk requests are submitted. In OLTP scenarios,
it may often be beneficial to let each query issue its page (single-block) request to the disk subsystem
concurrently. This means that the disk device will get a batch of block requests. SCSI disks then
reorder those requests, so a single disk head movement serves multiple such requests, minimizing the
average seek time. A second benefit involves RAID subsystems, which are often used in database
configurations to increase fault tolerance and performance. The RAID controller partitions the set of
outstanding block requests into subsets of block requests for each different disk in the RAID, combining
the first benefit with the additional benefit of improved throughput by processing requests to different
disks in parallel.

Table 3 shows the capacities of the most used disk configurations: single disks and RAID, for which
we look at the most relevant levels RAID-0 (block striping), RAID-1 (block striping, with one mirror
for each block) and RAID-5 (one parity block per X − 1 disks, with the parity blocks distributed
between all disks).

The first two columns of Table 3 show that between X/2 and X page (single-block) requests can be
handled in parallel, depending on the disk subsystem configuration and whether it is a read or write
request. The other columns show the situation for chunk I/O, which is geared towards achieving high
bandwidth. While the results show that a high bandwidth is possible, the level of concurrency is very
limited. Therefore, we propose that the ABM serializes each chunk read to the same disk subsystem
with respect to any other buffer I/O to that subsystem.
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Figure 6: Implementation of Active Buffer Manager

4. ABM Implementation
This section demonstrates how cooperative scans can be integrated into the buffer manager of a
DBMS. The goal is to improve the performance of queries that depend on scans, without hurting
the performance of queries that do not. Also, we would like the modification to be as unintrusive as
possible, in order to facilitate the introduction of cooperative scans into an existing DBMS. Therefore,
we take care to leverage the buffer manager infrastructure found in a typical DBMS. This allowed us
to add cooperative scans to PostgreSQL in less than two weeks (see Section 5).

This section concentrates on implementing the relevance policy introduced in Section 3.1, as the
simulations in Section 3 clearly show it to be the most versatile and high performance scheduling
strategy. We also discuss how non-scan queries can be taken into account with that approach.

4.1 A Fast “Relevance” Algorithm
All obvious algorithms, including the one suggested in Section 3.1 have complexity linear with respect
to the number of chunks. While this number is surely much smaller than the number of page-chunks,
it can still be substantial (thousands or more) for very large databases. To reduce the number of
computations, chunks may be grouped into equivalence classes - groups of chunk that are interesting
for exactly the same set of queries. The algorithm presented in this section has a complexity linear with
respect to the number of equivalence classes, hence O(2QT ), regardless of the number of chunks. As
most DBMSs will not be able to sustain a great many concurrent queries anyway, it seems reasonable
to assume the amount of concurrent scans to not more than a few Qlim (≤ 16) queries on the same
table (or enforce this using queuing).

ActiveScans data structures Figure 4 presents the basic data structures that the ABM adds to an
existing relational buffer manager. For each table that is being scanned, the buffer manager creates a
record in ActiveScans. Each active scan maintains the following information:

• availableChunks - a count of how many chunks for this scan are currently cached.

• firstChunk - a link to the list of these chunks.
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• ActiveQueries - whenever a CScan starts on a table, it is assigned a free slot in this array. Its
numAvailable field contains the number of availableChunks that are actually interesting for this
query (it may already have seen some of the cached chunks). Its busyOnCached field tells which
cached chunk is currently being processed (if any) by this query. The blockedSince tells whether
and how long a query is waiting for an available chunk.

• activeMask - a bit-mask defining which queries are currently running.

• ChunkMap - we store information for each chunk of the table in the ChunkMap array that is indexed
by chunk number. Given an interest in a certain chunk c, we can look up information about it
in O(1). If the chunkCached field contains a valid ChunkCache index number, the chunk is cached
there.

Chunks are said to belong to the same equivalence class if they have the same query bit-mask,
that is, the same set of queries is interested in them. For each chunk, we keep this set of
interested queries in a query bit-mask chunkClass. The fields nextInClass and prevInClass

maintain a doubly-linked list that connect chunks of the same equivalence class.

• ChunkEquivClasses - an array of 2Qlim pointers. For each non-empty equivalence class, this holds
a chunk pointer into ChunkMap, that is the first element of the above mentioned doubly-linked
list of all chunks in that equivalence class. By indexing this array with a bit-mask, we can thus
determine in O(1) whether there is a chunk in a certain equivalence class (i.e. a particular set
of interested queries).

ChunkCache datastructures The ChunkCache represents the currently cached chunks for all scans
(possibly on various tables). It has the following columns:

• processCnt - defines how many queries are currently processing the pages of this chunk.

• neededBy - a bit-mask that tells which queries have not yet started processing this chunk but
still want to

• nextByTable - a linked list between ChunkCache entries that contains all chunks of the same table.

• tableChunk - tells which chunk (sequence number in a table) is cached here.

The ChunkBufferMap array is used to map each chunk onto C buffer pages, located anywhere in the
buffer pool. Note that pages do not need to be contiguous in order to perform chunk reads, as we
can use scatter/gather I/O calls (readv() on UNIX systems). A scatter/gather read provides a list of
buffers (pages) and file offsets to the OS, which reads one big chunk, whose data is then put into these
non-contiguous buffers. This allows us to play some tricks, e.g. if some pages in a chunk are already
cached and dirty, we can redirect the data read from those (stale) disk pages to one “dummy” page
to be ignored, and afterward put the references to the already cached pages in the ChunkMap.

Only a subset of the ChunkCache needs to be filled at one any time. Free slots mean that there are
buffer pages allocated under the normal buffer manager policies.

Algorithm details There are various situations the scheduling algorithm needs to handle:

ABM initialized - only ChunkCache and an array storing multiple ActiveScans need to be allocated.

new table scanned - ActiveScans and all table-related structures (ActiveQueries,
ChunkEquivClasses, ChunkMap) need to be initialized

query enters - a new query is added to ActiveQueries for a given table and activeMask is updated.
All entries in ChunkEquivClasses need to be updated, as equivalence class changes for all the
chunks.
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Figure 7: Sequential Scan vs. Ordered Index Scan, depending on selectivity

chunk released - when a query Qi finishes processing a chunk, the proper bit in neededBy is flipped
and processCnt is decreased. If processCnt becomes 0, it is possible to free the pages from
BufferCache. It is also necessary to update the lists of both old and new classes in ChunkMap and
adjust the respective values in ChunkEquivClasses.

new chunk required - when a query asks for a new chunk, first ChunkCache is checked if it contains a
chunk with matching neededBy value. If so, the query starts processing that chunk and processCnt

is increased. If not, the query sets its blockedSince timestamp and blocks until chunk becomes
available.

fetching a chunk - when no I/O is in process, it is possible to fetch the next relevant chunk. The
fetching process chooses a query that is waiting the longest and traverses ChunkMap to find the
chunk class that is not empty, satisfies this query and maximizes the number of other “starved”
queries (our relevance policy). The algorithms first examines a class that satisfies all running
queries and successively tries masks with 1, 2 and so on queries removed from the mask (except
for the “triggering” query). It continues until a non-empty equivalence class is found. If no
queries are waiting, a chunk class that satisfies most queries is chosen. A first chunk from the
chosen class is scheduled for I/O. If necessary, we need to free one of the slots in ChunkCache

freeing a chunk slot - when no slots in ChunkCache are available there are two choices. First,
BufferCache can be asked for a new collection of pages to create a new cache slot. Second,
one of the chunks can be evicted. To do that the entries of the current table in the ChunkCache

are processed and a chunk with the lowest keepRelevance() value is chosen. It is also possible to
remove entries of other tables.

In all situations, our algorithm performs at most O(2Qlim) steps. The most often executed step
(determining a chunk to be fetched) executes in O(2QT ) steps in the worst case.

4.2 Using the ABM for non-scan queries
Until now, the discussion of our framework was limited to pure scans. We now first extend its use to
index scans, and then discuss how other relational operators can benefit from the ABM infrastructure.

Index Selections A query that uses an unclustered index (B-tree) to evaluate some selection predicate
typically yields a list of rids (record ID-s). The B-tree provides these rids in the order of the attributes
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included in the predicate. If the number of rids is substantial, many DBMSs use the policy of sorting
the rids in order to improve the access pattern in the next phase, which is record-fetching by rid.

In an unclustered index, the selected records tend to be uniformly distributed over the relation. In
Figure 7, we examine per chunk of 8MB what is the I/O cost of fetching individual pages in sorted
order of rids with respect to the percentage of selected tuples.2 All costs are normalized with respect
to the cost of sequentially reading a full 8MB chunk.

Thus, our experiment consists of repeated synchronous seek-forward, read-page actions. Obviously,
if multiple (subsequent) rids need the same page, it is fetched only once. In the case of our data-
base server platform with the RAID-5 system, we had Linux kernel 2.6 installed, which supports
asynchronous I/O and the lio listio() system call3. This call takes a list of file positions and page
buffers, such that in one system call the disk receives our list of desired pages.

The results clearly show that page fetch costs quickly surpass sequential chunk access cost, in the
case of RAID and SCSI disks well before 0.1% of selected tuples. This corresponds to about a half
percent of selected pages (i.e. about 5 8KB pages from the 8MB chunk). Since this break-even point
is determined by the balance between disk bandwidth and latency, it is likely that it will shift towards
even lower percentages over time. We predict that in a few years, individual page fetches will only be
useful for (almost) single-record access, such as equi-selections on a (foreign) key.

The results suggest that the benchmarked SCSI disk switches automatically from seek/read/seek
mode of operation to a sequential scan, such that its performance does not (significantly) degrade
from sequential scan performance. The RAID subsystem shows that even with the lio listio() the
penalty of random access is relatively high from the start. Its random access performance at low
selectivities is actually not worse than a single disk, but because a RAID disk provides high sequential
bandwidth, its performance penalty is relatively higher.

We conclude from this experiment that if an DBMS detects an index selection with a selection
percentage of 0.1%4 or more, the resulting I/O will be as costly as a sequential scan. Thus, it can just
as well use the cooperative scan infrastructure, register itself as a scan, and as chunks come in “cherry
pick” only the pages it needs. If cooperative scan is aware that all queries interested in a chunk are
not normal scans but only index selections with (sorted) page lists attached to them, it can reduce its
memory consumption by making a union of all wanted pages in a chunk, and have the array passed
to the scatter-readv(), containing a pointer to the same “dummy” page for the unwanted pages.

Other Queries We should note than scan and index scan are two main operators for accessing
relations stored on disk. That is, other query processing operators, such as Aggregation, Projection,
Hash Join and Scan Select all access their input data through a sequential scan, and hence can
benefit from CScan as well. In the case of nested-loop join, the inner relation is scanned in a looping
sequential [CD85] fashion. If there are multiple such operators running on the same inner table, each
repeated scan can be treated as an independent CScan, since the order of the data from the inner
relation is not relevant. Obviously, the outer relation can be serviced by a CScan as well. Similarly,
for Nested-loop Index Join and Index Select, which use index scans, we can also retrieve their data
by-the-chunk via the ABM (as discussed in the previous section), if the page selection percentage of
the index scan is estimated to be sufficiently high.

Even if the page selection percentage is low, as in single-page queries found in OLTP loads, using
the ABM may sometimes be beneficial. The simplest idea to benefit from the ABM is to also take
the number of single-page queries that fall in a chunk into account in the chunk relevance criteria,
such that chunks are selected in a way that helps the current OLTP query load. One complication of
mixing OLTP queries with large scans is that OLTP throughput on a RAID system is optimized by
issuing multiple page requests concurrently, while sequential throughput is optimized using exclusive
bulk I/O (Section 3.2). These conflicting interests may cause the OLTP throughput to drop below the

2We use 50 bytes tuples, and 8KB pages here, such that 150 tuples fit on a page.
3In Linux listio seems to be implemented efficiently only for up to 16 combined requests.
4depending on the tuple size
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required OLTP query rate when the ABM is performing bulk exclusive I/O. In those cases, it seems
best to alternate between exclusive bulk I/O and concurrent single page I/O periodically.

5. Experiments
To evaluate our proposal in a real-life environment, we implemented cooperative scans in PostgreSQL.
Since this DBMS is known to be not very CPU-efficient we also added this functionality to the high-
performance X100 processing engine of the open-source DBMS MonetDB [BZN05], to be able to
experiment with large numbers of concurrent queries.

5.1 PostgreSQL extension
In PostgreSQL, each query performing a table scan issues sequential page requests, possibly initializing
an I/O event for each of them. Data is processed once a page is available. Since the default page size
is 8 kilobytes, such behavior results in many disk accesses, which in a concurrent query environment
may conflict with each other.

We have modified PostgreSQL to support cooperative scans. The first modification was to change
the default behavior of the heap structure. Instead of reading pages one after another, the heap asks
the ABM for the next chunk number and processes data within this chunk. Additionally, our extension
introduces a new process that is responsible for fetching data chunks from the disk - we call it the
fetcher. When the ABM chooses a chunk that is not cached, it sends a request to the fetcher to perform
exclusive I/O. The requesting query polls the fetcher about data availability and starts processing
once it is ready.

As discussed in Section 3.2, large I/O requests should be serialized to avoid disk interference. The
fetcher process consumes an entire chunk before starting the next one. Note that it does not read an
entire chunk (e.g. 8MB) in one I/O requests, instead, it issues multiple smaller (e.g. 64KB) requests
marking already read parts of a chunk as available for processing. Thanks to that, the requesting
query does not need to wait for the entire chunk loading time, resulting in better interleaving of I/O
and processing.

Experimental setting For our experiments we used variants of TPC-H [Tra02] Query 1. This query
consists of two processing steps. The first step is a scan of all the tuples and a selection on them using
a simple predicate based on a ‘DELTA’ parameter (relatively cheap). The second step runs multiple
aggregations the remaining on tuples (relatively expensive). Depending on the ‘DELTA’ value, this
query can be either CPU-bound (when many tuples pass the first step) or disk-bound (when only few
tuples are aggregated).

The test machine is a dual AthlonMP 1400+ with 1GB RAM running Linux kernel 2.6. The disk has
an average bandwidth of ca. 20MB/sec. We used PostgreSQL server version 7.4.1 with the extensions
described previously. It was filled with a TPC-H database of scale factor 3 - the lineitem table in this
setting consumes ca. 3GB in PostgreSQL storage, which is enough to ensure it is not cached by the
operating system. With the chunk size set to 2MB (256 pages) it resulted in dividing this table into
ca. 1500 chunks. In all our experiments the ChunkCache size was set to 8 chunks (16 MB).

Experimental results The experiments presented in Table 4 consist of two runs. The Homoge-
neousRun runs of two identical disk-bound instances of Query 1 (selectivity of the first step is ca.
1.5%). In the HeterogeneousRun the second query was replaced with a much slower, CPU-bound
one. Like in Section 2.2, three different scenarios were tested: standalone, synchronized and de-
synchronized. We compare 3 different execution strategies: an unmodified PostgreSQL approach, and
attach and relevance strategies presented in Section 3.

As the upper part of Table 4 shows, for the homogeneous queries all approaches behave equally
well in the synchronized scenario. However, with queries de-synchronized, the traditional PostgreSQL
method clearly looses to the new attach and relevance strategies. Note that since both queries have
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Standalone Synchronized De-synchronized
Q1 Q2 Q1 Q2 Q1 Q2

HomogeneousRun
PostgreSQL 127 133 132 132 478 477

Attach 126 128 127 127 131 131
Relevance 126 126 128 128 130 134

HeterogeneousRun
PostgreSQL 127 249 339 367 480 538

Attach 126 239 265 313 171 272
Relevance 126 244 129 258 130 258

Table 4: Performance of two homogeneous and two heterogeneous queries on modified PostgreSQL
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Figure 8: Heavy-load performance with MonetDB/X100

the same CPU requirements, the relevance approach does not introduce any benefit over the attach
strategy.

For the heterogeneous run, the PostgreSQL performance degrades in both synchronized and de-
synchronized scenarios. The attach approach improves the performance, mainly due to requesting large
chunks, hence limiting disk interference. Still, when queries run de-synchronized, the performance
drops significantly. This experiment shows the full potential of the relevance approach. In all test
cases its performance stays more or less the same.

5.2 Heavy query-load with MonetDB/X100
Since PostgreSQL can only handle a few concurrent queries due to high CPU cost, we have decided to
investigate the CScan performance with MonetDB/X100 [BZN05], a high-performance query processing
engine geared both at high CPU efficiency and processing large (disk-resident) datasets. Its use of
a vertically decomposed storage model limits per-query disk bandwidth requirements compared to
other DBMSs. However, its highly CPU-efficient execution results in a very low cycle-per-byte ratio,
increasing the hunger for disk bandwidth dramatically. We extended MonetDB/X100 with a slightly
simplified relevance policy implementation. For our tests, we used a lineitem table of scale factor 30
(ca. 180M tuples). The columns used by Query 6 occupy ca. 3GB in this setting.

In the experiment, batches with varying numbers of queries (from 1 to 48) have been issued with
a delay inversely proportional to the size of the batch. Figure 8 shows the results for both the
traditional approach and the CScan implementation. The traditional strategy results in a sharp increase
of execution time up to 8 queries. After that point, an interesting phenomenon can be noticed. Since
the delay between the queries decreases, some of them may reuse already cached results of the previous
ones, resulting in the forming of “convoys” (like in the attach approach), and a decrease of average
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query cost. In the CScan experiments the queries cooperate in disk I/O, resulting in a constant
execution time for up to 32 queries! With more than 32 queries, the CPU becomes overloaded and
the performance of both approaches starts to degrade slowly.

6. Related work
Disk scheduling policies are a topic that originated from operating systems research [TP72]. Various
such policies have been proposed, including First Come First Served, Shortest Seek Time First, SCAN,
LOOK and many others. Most relevant for our work is SCAN, also known as the “elevator” algorithm.
In this approach, a disk head performs a continuous movement across all the relevant cylinders,
servicing requests it finds on its way. As we present in Section 3, this idea can be re-used for servicing
query requests in the DBMS buffer manager. Other related operating system work is in the area of
virtual memory and file system paging policies, for which generally LRU schemes are used. Some more
recent work in this area focuses on policies that handle large multimedia streams efficiently [SV98].

A seminal paper in the area of buffer management for database systems is by Chou and De-
Witt [CD85], that identifies the crucial advantage that DBMS buffer managers have over operating
systems in that the queries that approach the buffer manager for pages convey access patterns up-
front through their query plans that can be taken into account in the buffer scheduling algorithm.
The proposed DBMIN algorithm applies a different buffering strategy for each of a predefined set of
access patterns. This work was refined to take into account the actual availability of buffer pages
in [FNS91, NFS91]. Another line of extension improved the estimated access patterns with feedback
from actual queries [SS86, CR93].

In contrast with this work, we focus on only one of the identified access patterns, namely sequential
scan (although in Section 4.2 we extend this to index-scan and repetitive scan as well). The previous
work on buffer replacement strategies considers this an “easy” case, where the suggested policy is to
not buffer any pages. Such a policy diminishes the chance of buffer page reuse by concurrent scans.
The previous work does not consider concurrent queries apart from the fact that queries may compete
for buffer manager pages [FNS91, NFS91].

The interaction and optimization of concurrent queries are studied in the research area of multi-
query optimization [KdB94, MPK00, SSB00]. The general idea is to identify common work that is
encountered in a query batch into a generalized query. The materialized results of this generalized
query are then re-used multiple times to (partially) answer the queries from the batch. When compared
with our work, multi-query optimization is performed on a higher level, namely on the level of query
processing operators that may be shared. However, it is still possible that two queries need the same
disk pages using two different query processing algorithms (i.e. a sequential scan and an index-scan).
Also, like the “elevator” approach, multi-query optimization introduces delays to gather a sufficient
batch of queries, which may not always be acceptable.

A related approach is multi-query execution (rather than optimization). The NonStop SQL/MX
server [ea99] introduced a special SQL construct, named ‘TRANSPOSE’, that allows to explicitly
specify multiple selection conditions and multiple aggregate computations in a single SQL query,
and which is executed internally as a single scan. This extension was aimed at helping data mining
performance.

Outside the DBMS area, some of the multi-query optimization ideas have also been proposed. Müller
and Henrich [MH04] discuss how a multi-media retrieval server can batch queries over VA-files [WB97]
at multiple resolutions, applying the technique of query generalization to use the lowest resolution
still sufficient to answer all queries with high precision. Similarly, Jónsson et al. [JFS98] presented a
method for buffering an inverted index [Fal85]. It modifies the query execution order to first examine
pages that are already buffered. Also, it introduces a new page replacement algorithm that assigns a
special “importance” value to every page. Apart from not integrating these techniques in a DBMS
buffer management context, this work differs in that it considers giving partial and non-precise query
answers progressively, by basing the first answers on the cached page subset only.

Ideas close to our algorithm have been proposed in research related to using tertiary storage.
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Sarawagi and Stonebraker [SS96] propose a solution that reorders query execution to maximize data
sharing among the queries. Yu and DeWitt [YD97] present a solution that uses pre-execution to
first determine the exact access pattern of a query and then exploit this knowledge to optimize the
order of reads from a storage facility. Moreover, they use query batching to even further improve
performance in a multi-query environment. Our ideas, although strongly related, go higher in DBMS
storage hierarchy, and additionally efficiently manage queries with varying CPU requirements.

Finally, Ramamurty and DeWitt recently proposed a query optimization framework that takes
actual buffer content into account [RD05]. Note that choosing a sequential scan over an index scan if
the (part of) relation happens to be cached, achieves a similar effect as our proposal to divert index
scans into the active buffer manager. Still, buffer-aware query optimization will not help concurrent
scan queries as we seek not a modification of the query plan but rather of the buffer management
policy.

7. Conclusion
In this paper we considered application scenarios where multiple concurrent queries involving a table
scan should be answered efficiently. Such environments are not supported well by current DBMS
technology for two reasons: (i) pages needed by multiple concurrent queries are not shared, and (ii)
I/O costs may strongly increase as multiple concurrent queries fight for disk bandwidth.

Our simple extension to the DBMS buffer manager infrastructure called cooperative scans addresses
these problems effectively. This approach is extensible with different scheduling policies. We use
simulation to describe a number of such policies and identify their main characteristics. Our recom-
mended “relevance” policy can be efficiently implemented, as demonstrated in PostgreSQL, for which
we present experimental results that show that DBMS performance under concurrent scans can be
strongly improved. We also extend our approach from scan-only to index-scans, such that a wide class
of join- and aggregation- and selection-queries can benefit from it.

A final advantage of adopting our approach is that the buffer manager can flexibly integrate I/O on
the granularity of single pages (which benefits latency-bound OLTP queries) with large chunk-based
I/O that extracts much higher bandwidth from modern disk hardware on queries that involve large
data volumes.
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[BRK98] P. Boncz, T. Rühl, and F. Kwakkel. The Drill Down Benchmark. In Proc. VLDB, New
York, USA, 1998.

[BZN05] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution.
In Proc. CIDR, Asilomar, CA, USA, 2005.

[CD85] H.-T. Chou and D. DeWitt. An Evaluation of Buffer Management Strategies for Relational
Database Systems. In Proc. VLDB, Stockholm, Sweden, 1985.

[CJL89] M. Carey, R. Jauhari, and M. Livny. Priority in DBMS Resource Scheduling. In Proc.
VLDB, Amsterdam, Netherlands, 1989.

[CR93] C.-M. Chen and N. Roussopoulos. Adaptive database buffer allocation using query feed-
back. In Proc. VLDB, Dublin, Ireland, 1993.

[ea99] J. Clear et al. NonStop SQL/MX primitives for knowledge discovery. In Proc. KDD, San
Diego, CA, USA, 1999.

[Fal85] Christos Faloutsos. Access methods for text. ACM Comput. Surv., 17(1), 1985.

[FNS91] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control for flexible buffer allocation. In
Proc. VLDB, Barcelona, Spain, 1991.

[JFS98] B. Jónsson, M. Franklin, and D. Srivastava. Interaction of query evaluation and buffer
management for information retrieval. In Proc. SIGMOD, Seattle, USA, 1998.

[KdB94] M. Kersten and M. de Boer. Query Optimisation Strategies for Browsing Sessions. In Proc.
ICDE, 1994.

[MH04] W. Müller and A. Henrich. Reducing I/O Cost of Similarity Queries by Processing Several
at a Time. In Proc. MDDE, Washington, DC, USA, 2004.



References 20

[MPK00] S. Manegold, A. Pellenkoft, and M. Kersten. A Multi-Query Optimizer for Monet. In Proc.
BNCOD, Exeter, United Kingdom, 2000.

[MyS] MySQL. http://www.mysql.com.

[NFS91] R. Ng, C. Faloutsos, and T. Sellis. Flexible buffer allocation based on marginal gains. In
Proc. SIGMOD, Denver, USA, 1991.

[PGK88] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proc. SIGMOD, Chicago, USA, 1988.

[Pos] PostgreSQL. http://www.postgresql.org.

[RD05] R. Ramamurthy and D. DeWitt. Buffer pool aware query optimization. In Proc. CIDR,
Asilomar, CA, USA, 2005.

[SS86] G. Sacco and M. Schkolnick. Buffer management in relational database systems. ACM
Trans. Database Syst., 11(4), 1986.

[SS96] S. Sarawagi and M. Stonebraker. Reordering query execution in tertiary memory databases.
In Proc. VLDB, Mumbai, 1996.

[SSB00] Pand S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi
query optimization. In Proc. SIGMOD, Dallas, USA, 2000.

[SV98] Prashant J. Shenoy and Harrick M. Vin. Cello: a disk scheduling framework for next
generation operating systems. In Proc. SIGMETRICS, Madison, Wisconsin, United States,
1998.

[TP72] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling policies. Commun.
ACM, 15(3), 1972.

[Tra02] Transaction Processing Performance Council. TPC Benchmark H version 2.1.0, 2002.
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

[WB97] R. Weber and S. Blott. An approximation based data structure for similarity search.
Technical Report 24, ESPRIT project HERMES (no.9141), October 1997.

[YD97] J.-B. Yu and D. DeWitt. Query pre-execution and batching in paradise: A two-pronged
approach to the efficient processing of queries on tape-resident raster images. In Proc.
SSDBM, Olympia, WA, USA, 1997.


