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Pathfinder: relational XQuery over multi-gigabyte
XML inputs in interactive time

ABSTRACT
Using a relational DBMS as back-end engine for an XQuery processing system leverages
relational query optimization and scalable query processing strategies provided by mature
DBMS engines in the XML domain. Though a lot of theoretical work has been done in this area
and various solutions have been proposed, no complete systems have been made available so
far to give the practical evidence that this is a viable approach. In this paper, we describe the
ourely relational XQuery processor Pathfinder that has been built on top of the extensible
RDBMS MonetDB. Performance results indicate that the system is capable of evaluating
XQuery queries efficiently, even if the input XML documents become huge. We additionally
present further contributions such as loop-lifted staircase join, techniques to derive order
properties and to reduce sorting effort in the generated relational algebra plans, as well as
methods for optimizing XQuery joins, which, taken together, enabled us to reach our
performance and scalability goals.
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ABSTRACT

Using a relational DBMS as back-end engine for an XQuery processing system leverages relational query op-

timization and scalable query processing strategies provided by mature DBMS engines in the XML domain.

Though a lot of theoretical work has been done in this area and various solutions have been proposed, no

complete systems have been made available so far to give the practical evidence that this is a viable approach.

In this paper, we describe the purely relational XQuery processor Pathfinder that has been built on top of the

extensible RDBMS MonetDB. Performance results indicate that the system is capable of evaluating XQuery

queries efficiently, even if the input XML documents become huge. We additionally present further contri-
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the generated relational algebra plans, as well as methods for optimizing XQuery joins, which, taken together,

enabled us to reach our performance and scalability goals.
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1. INTRODUCTION
Since XQuery has been proposed as the W3C standard query language for XML data, both the database research
community and industry have been trying to create systems that efficiently implement XQuery on large XML
databases. This poses a non-trivial challenge due to the inherent tree structure of XML data coupled with the
iterative and recursive nature of the XQuery language.

Roughly, there are two approaches being pursued. The bottom-up variant of the “native” approach to XQuery
processing advocates the use of the tree data structure as a basic building block deep in the database storage
system. These tree data structures are then processed with tree algebras. The top layer of such systems trans-
lates XQuery into algebraic plans [JLST01]. A top-down variant of the native approach are “stream” oriented
systems that enrich an XML parser with on-the-fly query processing functionality, which may be supported by
tree algebra operators and tree data structures [KSSS04, FHK+04].

In contrast, we follow the alternative approach of supporting XQuery using relational database technology,
in order to leverage mature relational query optimization techniques as well as efficient and scalable relational
query processing operators. XML documents are stored in “shredded” form in relational tables in a schema-
oblivious fashion and XQuery expressions are translated into relational algebra queries.

In this paper, we report on Pathfinder powered by MonetDB, a full-fledged implementation of this approach.
We build on earlier work on relational storage schemes for XML that allow for efficient evaluation of all
XPath axes (“staircase join” [GvKT03]) and a mapping of XQuery language constructs onto relational alge-
∗Work was done while visiting CWI.
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bra [GST04]. The final outcome is an open-source system1 that provides a serious implementation of XQuery,
currently using the MonetDB open-source RDBMS as its back-end [BK99].

Contributions. Our main contribution is to provide empirical evidence that the “relational approach” works.
The performance results presented here greatly surpass those of all other known XQuery systems. Also, unsur-
passed scalability is demonstrated by the interactive time in which all XMark queries can be run on XML input
documents of up to 11 GB data size. Few other systems support this size, let alone in interactive time.

In order to get these results, we have extended the state of the art of “relational XQuery” with the following
additional contributions:

Loop-Lifted Staircase Join. The loop-lifted staircase join is an extension of the staircase join, which is nec-
essary to be able to efficiently apply this technique—originally developed in the XPath domain—in XQuery.
Briefly, staircase join is fast because it can evaluate XPath axis steps in a single sequential pass over the shred-
ded document. However, in XQuery, path expressions may appear nested in for -loops, which ultimately leads
to many sequential passes (one for each loop iteration). The loop-lifted staircase join allows execution of XPath
steps for multiple sequences of context nodes in a single pass by keeping more state and exploiting XPath axis
properties.

Join Optimization. In XQuery, a join may be expressed using a variety of equivalent syntactic forms. We
introduce a simple yet effective join recognition logic which operates on the level of normalized XQuery Core
expressions and uses information on free query variables to emit efficient relational joins for such queries.
XQuery’s general comparison operators (< , = , . . . ) have existential semantics. This is exploited by Pathfinder
if these operators are used in join predicates.

Physical Algebra and Order Awareness. In contrast to relational algebra plans that evaluate SQL queries,
plans for XQuery tend to impose tight control over tuple ordering throughout query processing. We build on
previous work for denoting and deriving sorting properties over physical relational algebra operators [SSM96,
WC03] with a generalized secondary ordering criterion A|B, meaning “for all equal values in column B, the
values in column A are sorted”. This turns out to be the minimal property over relational tuples required to retain
XQuery sequence order. Also, we identify a new pipelined relational sorting operator called RefineSort that
extends an existing ordering with additional attributes by sorting in a chunk-like fashion. Taken together, these
contributions allow us to reduce the cost of sorting in the generated relational plans.

This paper is structured as follows. Section 2 is a refresher of staircase join and the XQuery-to-relational-
algebra compilation approach we employ. Sections 3, 4, and 5 discuss our contributions in the area of loop-
lifted staircase join, join optimization, and physical algebra (and order awareness), respectively. In Section 6,
we delve into some MonetDB-specific details of our implementation, before discussing performance and scal-
ability experiments in Section 7. We wrap up by discussing related work in Section 8, and outlining our
conclusions and future work in Section 9.

2. RELATIONAL XQUERY
Obviously, there is a gap between the tabular data model supported by the back-end relational database system
and the two principal data types which form the backbone of the XQuery data model, namely ordered, unranked
trees of nodes and ordered, finite sequences of items. To bridge this gap, we introduce relational encodings of
both data types and then describe how the relational back-end may act as an XQuery processor by manipulating
these encodings. It will turn out that once the relational representation of item sequences is fixed, much of the
relational XQuery processing strategy may be rather straightforwardly derived.

Encoding Item Sequences. The evaluation of any XQuery expression yields an ordered sequence of n > 0
items xi, denoted (x1,x2, . . .,xn) . In the XQuery data model, a single item x and the singleton sequence (x)
are identified. We will use a relational sequence encoding that explicitly reflects sequence order by means of

1Pathfinder will be released with MonetDB/XQuery.
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pos item
1 x1
2 x2
...

...
n xn

a pos column as depicted here. Item x is represented as the singleton relation of type pos|item
containing the tuple 〈1,x〉, the empty relation of type pos|item encodes the empty sequence () . An
XQuery item either is of an atomic type or of type node. To represent the former, we choose an
implementation type t supported by the relational back-end such that the domain of t either (i) can
represent the corresponding XQuery type directly (e.g., integer, string), or (ii) allows encoding the
domain of the XQuery type (e.g., a string of the form "--MM-DD" can encode values of the XQuery type
gMonthDay).

Nodes are represented by surrogates that can reflect document order and node identity: for two nodes v1,v2
and their surrogates γv1 ,γv2 , we require v1 << v2⇔ γv1 < γv2 and v1 is v2⇔ γv1 = γv2 . The database community
has devised a variety of ways to implement such node representations [LM01, OOP+04], below we will discuss
one alternative, preorder ranks, in more detail.

pos item
1 2
2 "x"
3 γa

In XQuery, sequences host items of arbitrary type. The sequence (2,"x",<a/>) leads to the
depicted relational encoding (where γa denotes the surrogate of the XML node constructed by the
node constructor <a/> ) with a polymorphic item column. For simplicity, we stick to this represen-
tation here, but Section 6 will discuss how a back-end that implements monomorphic columns only
may support this encoding nevertheless.

Encoding XML Fragments. In [GvKT03], we described a relational encoding of XML fragments that is a
true isomorphism with respect to the tree structure. The encoding is based on preorder and postorder traversal
ranks and yields node surrogates exhibiting the required properties. Here, we use an equivalent encoding variant
in which the location of a node v in the document tree is represented as the 3-tuple 〈pre(v),size(v), level(v)〉,
recording v’s preorder rank, the number of nodes in the subtree below v, and the distance from the tree’s
root, respectively. (From this, the postorder rank may be recovered via post(v) = pre(v)+ size(v)− level(v).)
Since the unique preorder traversal rank pre(v) reflects document order, we set γv ≡ pre(v). Figure 1 depicts

<a>
<b/>
<c>
<d/><e/>

</c>
</a>

pre size level
0 4 0
1 0 1
2 2 1
3 0 2
4 0 2

Figure 1: Tree encoding.

an XML fragment and the encoding we assign to this fragment. The sys-
tem maintains further tables to capture more node properties (e.g., tag
name, node kind, text content), as described in Section 6. This tree repre-
sentation exhibits a number of salient characteristics, among which el-
ement (or tree) construction through pasting of encodings [GT04] and
highly efficient XPath processing are especially relevant in the XQuery
context. The staircase join [GvKT03] evaluates XPath location steps for a
given sequence of context nodes by means of a single sequential scan over the tree encoding table. During the
scan, staircase join exploits the isomorphism between the XML tree and its tabular encoding to (i) reduce the
context sequence size, (ii) completely avoid the generation of duplicate nodes in the result, and (iii) skip con-
siderable parts of the encoded tree. An off-the-shelf B-tree index on columns pre|size supports the operation
of staircase join perfectly and also guarantees that the resulting output node sequence may directly be emitted
in document order as required by the XPath semantics.

Relational XQuery Evaluation
Since the XQuery processor is hosted by a relational back-end, relational algebra is the target language of
XQuery compilation. A number of research teams have investigated such relational XQuery compilers [DTCÖ03,
DT03], but here we will adopt the approach developed in [GST04, GT04]. The resulting system can compile
the XQuery Core dialect sketched in Figure 2. We will briefly review the fundamental ideas of this compilation
strategy here—refer to [GST04, GT04] for details.

Relational algebra is a combinator style language and thus lacks variables, a core XQuery concept. We will
thus discuss compilation of variables bound in for -loops first.

Consider the following XQuery for -loop:
for $v in (x1,x2, . . .,xn) return e .

We have already seen the representation of the sequence (x1,x2, . . . , xn) above. Loop body e is evaluated in
n iterations, with variable $v successively bound to exactly one xi in each iteration. A relational representation
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atomic literals document order (e1 << e2)
sequences (e1,e2) node identity (e1 is e2)
variables ($v) arithmetics (+ ,- ,* ,idiv ,. . . )
let $v:= e1 return e2 comparisons (eq ,lt ,. . . )
for $v1 [at$ v2]in e1 return e2 Boolean connectives (and , or )
if e1 then e2 else e3 fn:doc( e)
typeswitch e1 case e2 default e3 fn:root( e)
element {e1}{e2} fn:data( e)
text {e1}{e2} fn:distinct-doc-order( e)
e1 order by e2, . . .,en fn:count( e) , fn:sum( e)
XPath (e/α[[e] ]) fn:empty( e)
function application fn:position( e) , fn:last( e)

Figure 2: Supported XQuery Core dialect, expressions may be composed arbitrarily; α denotes an XPath axis.

iter
1
2
3
4

(a)

iter pos item
1 1 false
2 1 true
3 1 false
4 1 true

︸ ︷︷ ︸

e1

EE σ¬item πiter
≡

iter
1
3
×

pos item
1 "odd"

︸ ︷︷ ︸

e3

.
∪ ≡

iter pos item
1 1 "odd"
2 1 "even"
3 1 "odd"
4 1 "even"

yy σitem πiter ≡
iter
2
4
×

e2
︷ ︸︸ ︷

pos item
1 "even"

(b)

iter pos item
1 1 "odd"
1 2 "even"
1 3 "odd"
1 4 "even"

(c)

Figure 3: Relational XQuery evaluation: (a) loop relation in scope sv, (b) evaluation of conditional, (c) final
result in outermost scope.

iter pos item
1 1 x12 1 x2
...

...
...

n 1 xn

of $v would thus be the relation shown here. This iter|pos|item encoding will be pervasive in
the following: a tuple 〈i, p,x〉 in this representation indicates that in the i-th iteration, the item
at position p in the represented sequence has value x. Note that the database system can easily
derive the representation of a variable from the representation of the sequence it gets bound to:
(i) attach a new iter column, densely numbered from 1 . . .n in the order given by the pos column,
(ii) then set the pos column to constant 1.

The row-numbering in step (i) is characteristic for this approach and we assume the availability of a relational
operator ρA:C1,...,Cn/Cg(R) that, for each group defined by column Cg, extends relation R with a densely numbered
column A respecting the ordering specified by the columns Ci.2 Section 5 will discuss measures to implement
this operation efficiently (or to avoid it, if possible).

Note how the iter column encodes the iteration performed by the for -loop. The most important idea of this
compilation approach is that each query subexpression is compiled in dependence of all enclosing for -loops,
the latter being represented by a unary iter relation (this unary relation is referred to as the loop relation in the

iter
1
2
...
n

iter pos item
1 1 42
2 1 42
...

...
...

n 1 42

sequel). In the query above, loop body e is in the scope of the n-fold iteration encoded
by the relation loop depicted here on the right. When a constant subexpression e′ of loop
body e is compiled into its relational algebra equivalent, q′ say, q′ is lifted according to the
current loop to give loop× q′. To exemplify, the XQuery constant 42 represented by the
pos|item tuple 〈1,42〉, is lifted to give the relation on the right (to be read as: in each of the
n iterations, the constant assumes the value 42).

Note that it is both, a consequence of the XQuery semantics and this approach, that in a nested iteration like3

for $v1 in (x1,x2, . . .,xn) return

sv1

{
for $v2 in (y1,y2, . . .,ym) return

sv1·v2

{
e

,

2As observed in [GST04], ρ exactly embodies the functionality of SQL:1999’s OLAP extension DENSE RANK() OVER (ORDER BY
C1, . . . ,Cn PARTITION BY Cg) AS A.

3We denote a variable scope by sv1 ···vn if variables $v1, . . . ,$vn are visible in that scope.
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the representation of the sequence (y1,y2, . . .,ym) in scope sv1 as well as the representation of variable $v2 in
the innermost scope sv1·v2 contain n ∗m tuples due to the necessary loop lifting (each yi occurs n times). The
avoidance of the computation of such “Cartesian products” will be the subject of Section 4.

In order to provide an intuition of the typical algebraic plans emitted by the XQuery compiler, let us briefly
review the compilation and execution of the XQuery expression

for $v in (3,4,5,6) return

sv
{
if ($ v mod 2 eq 0

︸ ︷︷ ︸

e1

) then "even"
︸ ︷︷ ︸

e2

else "odd"
︸ ︷︷ ︸

e3

.

The current loop relation in scope sv is shown in Figure 3(a). For brevity, we already show the intermediate
result obtained through the evaluation of the predicate subexpression e1 on the very left of Figure 3(b). In the
third iteration, for example, the predicate evaluates to the single item false. Dependent on the outcome of the
predicate, in one iteration of the loop we need to either evaluate the then branch e2 or the else branch e3.
Two independent selections compute the respective set of iter values (σA(R) selects all tuples with value true
in column A, σ¬A(R) selects the complement). Figure 3(b) shows the resulting loop relations which are used
for loop-lifting in the then and else branches, respectively. The evaluation of the conditional is completed by
forming the disjoint union of the intermediate results in both branches. Note that this result is still represented
with respect to scope sv (each iteration contributes one item to the result). A back-mapping step (a single
equi-join of the intermediate result with a so-called scope map relation [GST04]) then yields the final result
sequence of length 4 (Figure 3(c)).

To wrap up, note that this type of XQuery compiler targets a rather standard logical relational algebra—in
addition to ρ mentioned above, we require σ, π, 1, ×, \,

.
∪ (disjoint union) as well as a means to evaluate

arithmetic and comparison operators.

3. EMBEDDED XPATH EVALUATION
The efficient evaluation of XPath location steps—rooted in arbitrarily located context nodes and along arbitrary
axes—proved to be quite a challenging research topic in itself. Evaluating XPath sub-expressions embedded in
XQuery expressions adds yet another twist.

In general, XQuery expressions occur in nested iteration scopes (Section 2) and the same is true for XPath
sub-expressions. Consider the query

for $v in (x1,x2, . . .,xn) return
e($v)/descendant::t , (Q1)

in which e($v) denotes an expression that yields a context node sequence for each of the n bindings of variable
$v. This initiates n XPath traversals along the descendant axis, each rooted in a different context node se-
quence. Any XQuery implementation will face the challenge to evaluate XPath traversals embedded in possibly
deeply nested iterations.

iter pos item
1 1 γ1,1
1 2 γ1,2...

...
...

1 s1 γ1,s1...
...

...
n 1 γn,1...

...
...

n sn γn,sn

Rephrased in the terminology of our relational XQuery processor, the evaluation of expression
e($v) will yield a relation like the one depicted here: in each of the n iterations, e($v) evaluates
to a sequence of node preorder ranks (γi,1, . . .,γi,si) of length si (1 6 i 6 n). (Note that we might
have si = 0 for some i: in this case, no tuple with iter value i will occur.)

As already mentioned in Section 2, we decided to implement XPath location step evaluation
based on staircase join, a carefully tuned join algorithm that can evaluate an XPath location step
for a whole context node sequence (i.e., for one of the above sequences (γi,1, . . .,γi,si) ) during
a single scan over a pre|size|level encoded XML document. Nevertheless, the evaluation of the
loop body of query (Q1) requires n invocations of staircase join (one for each iter group) and as
many sequential scans over the document encoding table. This surely seems wasteful.

Loop-lifted Staircase Join
To save the relational back-end from performing this significant amount of work repeatedly (for huge XML
input documents, the encoding tables will be huge as well), we propose loop-lifted staircase join, a variant of
staircase join [GvKT03]. Loop-lifted staircase join inherits many beneficial features of staircase join, like the
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guarantee to produce duplicate-free node sequences in document order as required by the XPath semantics, but
the new variant is a considerably better fit for the XQuery compilation approach pursued here. Much of the
efficiency of loop-lifted staircase join is due to its strict sequential table access discipline. Section 7 reports on
performance improvements of approximately a factor of 5. For space reasons, we limit our discussion to the
XPath descendant axis. Similar, if not identical, adaptions apply to the remaining XPath axes supported by
staircase join [GvKT03].

First, note that the sequence order of the input context node sequences is irrelevant for XPath location
step evaluation: the XPath semantics [BBC+04] require the result of any location step to be in document
order regardless of the context node sequence order. Column pos in the context sequence encoding is thus
completely ignored (neither inspected nor generated) by the loop-lifted staircase join algorithm ll scj desc

shown in Figure 4: the join algorithm receives the tabular XML representation doc as well as an encoding of
the n context sequences in a binary iter|item table (column pos projected away) and emits an iter|item table, say
R. Once the join completes, the required explicit sequence order information, i.e., the pos column, in the final
result may then be derived from the document order encoded in the node surrogates stored in the item column
(in other words: document order determines sequence order in XPath results):

ρpos:item/iter (R) .

Since the loop-lifted staircase join algorithm emits the result table in [item] | [iter] order (in each iter group,
the item column is sorted in document order, see Section 5 for a detailed discussion of such order properties),
this final row-numbering step may be implemented by means of the cheap MergeRowNumber physical algebra
operator (Section 5).

Loop-lifted staircase join performs a single sequential forward scan over the document encoding as well as the
context sequences, regardless of the number of iterations. To achieve this, the algorithm of Figure 4 reorders
the input iter|item table on [item, iter], i.e., brings it into document order.

In contrast to the original staircase join algorithm in which a single context node was “active” at a time, in
the loop-lifted variant up to n iterations may be active. In the case of the descendant axis, an iter|item tuple
〈i,c〉 in the context sequence defines iteration i to be active if the current document node’s preorder rank lies
within the interval (pre(c),pre(c) + size(c)].4 The algorithm maintains the currently active iterations on the
active stack. If a descendant node v of c is found, 〈i,v〉 is appended to the result table for all distinct active
iterations i, sorted by i (procedure inner loop desc). This avoids the generation of duplicate result nodes.
Finally, loop-lifted staircase join generates the requested ordering by sorting result on [iter, item].

When processing a multi-step path, we do skip this final sort for all but the last step in the path, leaving result
in [item, iter] order. Thus, the subsequent step gets its input already in [item, iter] order, i.e., we also save the
initial sort in all but the first step in the path.

4. XQUERY JOIN PROCESSING
Much like in the relational setting, efficient join evaluation remains a tough problem for XQuery processors.
In reports on XMark benchmark [SWK+02] performance, for example, XQuery systems typically exhibit
quadratic complexity for queries with join predicates (Q8–Q12, see Table 2).

4.1 Join Recognition
In Pathfinder, the problem surfaces as a direct consequence of the loop-lifting technique introduced in Section 2.
The canonical algebraic plan for query

s0







for $u in (30, 20)

su

{
for $v in (1, 2, 3)

su·v

{
where $u eq $v * 10
return "match"

(Q2)

is shown in Figure 5. The loop body in scope su·v is evaluated 6 times and the loop-lifted relational representa-
tions of the subexpressions $u and $v * 10 on the very left of Figure 5 reflect this explicitly. In effect, the plan

4Note that loop-lifted staircase join for the descendant axis does not depend on level(c). This is different for some other axes, e.g.,
following-sibling .
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ll scj desc (doc : TABLE(pre,size), iter item : TABLE(iter, item))
BEGIN

iter item ← SORT iter item ON (item, iter); /* doc. order */
result ← NEW TABLE(iter, item); /* the result */
active ← NEW STACK(iter,eos); /* stack of active iters */
nxt ← FIRST TUPLE FROM iter item;
lst ← LAST TUPLE FROM iter item;
WHILE (nxt ≤ lst) DO /* iterate over all context nodes */

cur item ← nxt.item;
nxt ← NEXT TUPLE FROM iter item;
/* push all not yet active iters of the current item on stack */
WHILE (nxt ≤ lst AND nxt.item = cur item) DO

IF (nxt.iter NOT ON active) THEN
eos ← nxt.item+doc[nxt.item].size;
PUSH 〈nxt.iter,eos〉 ON active;

nxt ← NEXT TUPLE FROM iter item;
IF (nxt ≤ lst) THEN

IF (nxt.item ≤ TOP(active).eos) THEN
/* next node is descendant of current node

(TOP(active)); find all results til nxt */
cur item ← inner loop desc(cur item,nxt);

ELSE
/* next node is no descendant of current node,

finish all active scopes that end before nxt */
WHILE (TOP(active).eos < nxt.item) DO

cur item ← finish scope desc(cur item);
/* no context node left; finish all remaining active scopes */
WHILE (active IS NOT EMPTY) DO

cur item ← finish scope desc(cur item);
result ← SORT result ON (iter, item); /* result order */
RETURN result;

END

finish scope desc (first)
BEGIN

eos ← TOP(active).eos;
/* find all results in the current scope */
first ← inner loop desc(first,eos);
/* back to enclosing scope: remove all iters that are done */
WHILE (TOP(active).eos ≤ eos) DO

POP(active);
RETURN first;

END

inner loop desc (first, last)
BEGIN

/* iterate over all doc nodes in the given preorder range */
FOR v FROM first TO last DO

/* add a result tuple to each active iter */
FOREACH DISTINCT 〈i, 〉 ON active DO

APPEND 〈i,v〉 TO result;
RETURN last +1;

END

Figure 4: Loop-lifted staircase join: descendant axis.
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1iter1=iter2

???

iter1 pos1 item1
1 1 30
2 1 30
3 1 30
4 1 20
5 1 20
6 1 20

︸ ︷︷ ︸

$u in su·v

ÄÄ
Ä

iter2 pos2 item2
1 1 10
2 1 20
3 1 30
4 1 10
5 1 20
6 1 30

︸ ︷︷ ︸

$v * 10 in su·v

eq item:〈item1,item2〉 σitem πiter:iter1 ≡
iter
3
5

×

//

²²pos item
1 "match"

︸ ︷︷ ︸

ereturn

≡
iter pos item
3 1 "match"
5 1 "match"

Figure 5: Relational evaluation of XQuery example Q2. Evaluation of predicate eq requires both operands
($u and $v * 10 ) to be represented loop-lifted with respect to the inner for loop. iter values that satisfy the eq
predicate form the loop relation for the loop-lifted evaluation of the return clause.

1item1 eq item2

++++

iter1 pos1 item1
1 1 30
2 1 20

︸ ︷︷ ︸

$u in su

¶¶
¶¶

iter2 pos2 item2
1 1 10
2 1 20
3 1 30

︸ ︷︷ ︸

$v * 10 in sv

ρiter:iter1,iter2 πiter ≡
iter
1
2
×

11

°°pos item
1 "match"

︸ ︷︷ ︸

ereturn
Figure 6: Join plan for the evaluation of example Q2. Both join operands are computed independently. The
join result ultimately serves as relation loop to compile the return part.

computes the Cartesian product of the two input sequences (30,20) and (1,2,3) participating in the join,
ultimately leading to the scalability problems mentioned above.

The key observation here is that if the inputs to such an XQuery join may be evaluated independently of each
other—for Q2 this is trivial since the inputs are constant item sequences—loop-lifting may be avoided. This
independence observation is then used by the compiler to emit a relational join between the two inputs instead.
Pathfinder recognizes such join scenarios on the level of normalized and simplified XQuery Core expressions
such that the syntactic diversity of XQuery does not impact join recognition. For example, this detects all joins
in the XMark benchmark set [SWK+02] as well as those joins listed in Appendix G.1 (“Joins”) of the W3C
XQuery Working Draft [BCF+04].

The join recognition logic is triggered whenever a XQuery Core pattern
for $v in ein
return if ( p(e1,e2)) then ereturn else () . (P1)

is found at arbitrary query nesting depth. Independence is then detected based on the presence of free variables
and their binding sites. If (i) variable $v does not appear free in e1

5, (ii) variables occurring free in e2 and ein are
bound in any enclosing scope, except for the scope that directly encloses P1, and (iii) predicate p is supported
by the theta-join implementation of the relational back-end (i.e., typically, p will be eq , lt , . . . , or one of the
XQuery general comparison operators with existential semantics like = , < ; see Section 4.2), then ein, e1, e2,
ereturn are not loop-lifted. Instead, the compiler directly emits a p-theta-join. Figure 6 depicts the resulting plan
for the example query Q2. Section 7 sheds light on the effectiveness of this approach.

4.2 Existential Semantics of Join Predicates
In XQuery, a general comparison e1=e2 (< , <= , . . . ) uses existential semantics: if any item in sequence e1 is
equal to any item in sequence e2 the comparison yields true. The W3C XQuery Working Draft specifies that
an implementation may process a general comparison using shortcut evaluation: as soon as a matching pair of
items is found, the processor may return true.

Since general comparisons are pervasive in XQuery, Pathfinder generates the corresponding relational plans
5The roles of e1, e2 may be arbitrarily swapped.
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1item1 eq item2

,,,

iter1 item1
1 20
2 30
2 20

µµ
µiter2 item2

1 20
1 20
2 10
2 30

πiter1,iter2 ≡

iter1 iter2
1 1
1 1
2 1
2 1
2 2

δ · · ·

(a)

1item1 lt item2

minitem1/iter199

iter1 item1
1 5
2 20
2 15

maxitem2/iter2
¦¦iter2 item2

1 1
1 10
2 25
2 30

πiter1,iter2 ≡

iter1 iter2
1 1
1 2
2 2

(b)

Figure 7: Implementing the existential semantics of XQuery’s general comparison operators: (a) duplicate
elimination after join, (b) join pushed beyond aggregates.

with care, especially if such comparisons are used in join predicates. Consider
for $u in e1, $v in e2
where $u/ p1/@ a1 = $v/ p2/@ a2
return $u ,

(Q3)

which qualifies as a join in the sense of Section 4.1, i.e., $u does not occur free in e2. Figure 7(a) exemplifies
the evaluation of the corresponding relational join plan (in this example, the atomization of the path expression
$u/ p1/@ a1 shall evaluate to the sequences (20) and (30,20) for the bindings of $u to the two items of e1,
respectively). Pathfinder executes a theta-join using the corresponding value comparison (here: eq ) in the
predicate. In general, this leads to duplicate 〈iter1, iter2〉 pairs in the join result since we were comparing
sequences. A subsequent duplicate elimination (operator δ) reduces this to unique pairs and thus implements
the required existential semantics. In anticipation of the following section, note that the physical algebra used
by Pathfinder (on MonetDB) is order-aware and ensures that intermediate result relations are sorted on [iter,pos]
(and thus iter). The theta-join respects the order of its inputs such that δ will be applied to a sorted relation,
making this step particularly efficient.

Further, if one of the general comparison operators {< ,<= ,>= ,>} is used in a join predicate, the generation
of duplicates may be avoided a priori. Consider Figure 7(b) in which < occurs in the predicate. Since, in each
iteration, it suffices to find any pair of items in the lt -relationship, we might as well only compare the smallest
and largest items of the sequences. To exploit this observation, the system applies min and max aggregates in
each iter-group of the left and right inputs, respectively. Note that the grouping is for free due to the iter order
of both input relations. After aggregation, the iter values in both join inputs will be unique. The theta-join will
thus deliver unique 〈iter1, iter2〉 pairs directly.

5. PHYSICAL ALGEBRA AND ORDER AWARENESS
The mapping of XQuery onto relational query plans, as described in Section 2, maintains order information in
the relations that encode the input XML documents and in the (intermediate) results of XQuery expressions.
Document order is reflected by the node surrogates (preorder ranks). Likewise, sequence order is maintained
in the iter and pos columns of the intermediate relational results.

This mapping would allow keeping track of order information without the need for explicit sorting in
the physical relational query plans. However, it turns out that all conceivable implementations of the row-
numbering operator ρA:C1,...,Cn/Cg(Rin) impose some ordering on their input relation as a precondition. This
may thus lead to a large number of sorts in the physical plans.

RDBMS query optimizers often decorate physical query plans with order properties. This idea stems from
System R [SAC+79] (“interesting orders”) and was significantly extended to annotate each physical operator
with rules for propagation of multi-column order and also grouping information in [SSM96, WC03]. The
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authors show that, when known functional (key) dependencies and order propagation are combined, the DBMS
query optimizer can detect that certain required orderings are already present. This may lead to significant sort
pruning.

5.1 Order Propagation Framework
A lexicographical ordering O on columns C1 (major) and C2 (minor) of a relation R is denoted O = [C1,C2].
The refinement of an ordering is expressed with +:

[C1,C2]+ [C3] = [C1,C2,C3] .

iter pos item ord
1 1 "one" a
1 2 "two" a
2 1 "four" a
1 1 "three" b
2 1 "five" b

Relation R.

All orderings that hold on a relation R are denoted orders(R) = {O |O holds for R}.
This ordering framework is similar to [WC03]. However, we introduce O1|O2 as a gen-
eralization of the “secondary ordering” condition to hold for all tuples rather than for
a particular tuple subset. Its meaning hence becomes “all tuples with the same value
in the columns of O2 appear in an order that respects O1”. One can see that the ex-
ample relation R (shown here) is neither sorted on [iter] nor [pos], but nevertheless re-
spects [ord,pos] | [iter]. Intermediate results with similar ordering properties are characteristic for the relational
XQuery compilation approach pursued by Pathfinder.

Order Propagation in Physical Operators Table 1 specifies the propagation of order properties as pre- and
post-conditions for a number of physical implementations of the (logical) relational algebra used in our XQuery
translation (Section 2, but extended with sort).

Select and Join. Table 1 specifies that the ScanSelect implementation of σ propagates all order properties
from the input relation to the output. In the case of 1, the HashJoin (resp. IndexJoin ) iterates over an outer
relation, looking up matches in permuted order in the inner relation via a hash table (or a search tree). Thus,
it propagates only the order properties of the outer relation to the result. In contrast, the NestedLoopJoin
generates matches for each outer tuple in the inner relation order, thus concatenating the order properties of the
inner relation as minor ordering columns to the result as well.

Disjoint Union and Row-Numbering. Disjoint union (
.
∪) can be implemented by a MergeUnion that con-

serves orderings that are common to both input relations in the output. The alternative AppendUnion , which
just appends relations, is less CPU intensive as it does not need to merge. Also, in a pipelined execution model,
the latter requires fewer memory resources, because the query subtrees that produce the input relations may run
sequentially rather than concurrently.

Disjoint union is used for sequence construction (i.e., XQuery’s comma operator ·, ·) in relational XQuery.
In the example of relation R, a sequence lifted over a loop with two iterations was constructed from two sub-
sequences using AppendUnion . The sequence construction compilation rule [GST04] uses projection to add a
constant ord column to each subsequence first, in order to ensure that elements from the second sequence come
after those of the first (in the example relation R, we have a < b). The next step in sequence construction is to
create a new pos column and eliminate the ord column. This is done by the row-numbering operator(ρ):

πiter,pos′,item

(
ρpos′:ord,pos/iter(R)

)
,

iter pos’ item
1 1 "one"
1 2 "two"
2 1 "four"
1 3 "three"
2 1 "five"

yielding the relation on the side that encodes the sequences ("one","two","three") and
("four","five") . In case relation R would already have been sorted on [iter,ord,pos], the
MergeRowNumber implementation could have been be used. It just fills the new pos′ column
with a counter that starts at 1, increments it at each tuple, and resets it to 1 whenever a new
iter value is seen.

However, in the example just given, R is not ordered on [iter, ord, pos], so MergeRowNumber is not applicable.
Still, in this case we can use HashRowNumber . It creates a hash-table on iter which maintains a counter that is
initialized to 1 for each bucket. For each hashed tuple, this counter is looked up, emitted into the result and
incremented. This requires that for each iter, the tuples in the HashRowNumber input have to appear in sequence
order, i.e., HashRowNumber indeed needs the [ord,pos]|[iter] order on R as a precondition (see Table 1).
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σC(Rin)
ScanSelect( Rin,Rin.C = true) → Rout

post: orders(Rout )⊃orders(Rin)
Rl 1C1 θC2 Rr θ ∈ {<,>,=,6,>}

HashJoin( Rl ,Rr,C1 = C2) → Rout

IndexJoin( Rl ,Rr,C1 θC2) → Rout

post: orders(Rout )⊃orders(Rl)
post: key(Rl .Cx)⇒ orders(Rout ) ⊃ orders(Rl )+[Cx]

NestedLoopJoin( Rl ,Rr,C1 θC2) → Rout

HashOrderJoin( Rl ,Rr,C1 = C2) → Rout

post: orders(Rout )⊃{ Ol+Or|Ol ∈orders(Rl ), Or∈orders(Rr)}
post: key(Rl .Cx)⇒ orders(Rout )⊃

{ Ol+[Cx]+Or|Ol ∈orders(Rl), Or∈orders(Rr)}
CartProd( Rl ,Rr) → Rout

post: orders(Rout )⊃{ Ol+Or|Ol ∈orders(Rl ), Or∈orders(Rr) }
Rl

.
∪C1 ,...,Cn Rr

MergeUnion( Rl ,Rr, [C1, . . . ,Cn]) → Rout

pre: [C1, . . . ,Cn] ∈ (orders(Rl ) ∩ orders(Rr))
post: [C1, . . . ,Cn] ∈ orders(Rout )

AppendUnion( Rl ,Rr) → Rout

post: [Cm+1, . . . ,Cn]|[C1, . . . ,Cm−1] ∈ (orders(Rl) ∩ orders(Rr)
∧ max(Rl .Cm) < min(Rr.Cm)
⇒ [Cm, . . . ,Cn]|[C1, . . . ,Cm−1] ∈ orders(Rout )

ρCr :C1 ,...,Cn/Cg (Rin)

MergeRowNumber( Rin,Cg, [C1, . . . ,Cn]) → Rout

pre: [Cg,C1, . . . ,Cn] ∈ orders(Rin)
post: [Cg,Cr] ∈ orders(Rout )

HashRowNumber( Rin,Cg, [C1, . . . ,Cn]) → Rout

pre: [C1, . . . ,Cn]|[Cg] ∈ orders(Rin)
post: [Cr]|[Cg] ∈ orders(Rout )

sortC1 ,...,Cn (Rin)
StandardSort( Rin, [C1, . . . ,Cn]) → Rout

post: [C1, . . . ,Cn] ∈ orders(Rout )
StableSort( Rin, [C1, . . . ,Cn]) → Rout

pre: [Cn+1, . . . ,Cn+m] ∈ orders(Rin)
post: [C1, . . . ,Cn+m] ∈ orders(Rout )

RefineSort( Rin, [C1, . . . ,Cn], [Cn+1, . . . ,Cn+m]) → Rout

pre: [C1, . . . ,Cn] ∈ orders(Rin)
post: [C1, . . . ,Cn+m] ∈ orders(Rout )

Table 1: Physical algebra with pre– and postconditions on order properties.

Sorting. The StandardSort (QuickSort, in MonetDB) just introduces the sort order as the only new order
of the result. StableSort algorithms (like RadixSort) conserve orderings on the input as minor orderings to
the new sort order. Finally, the RefineSort algorithm exploits the knowledge that the input relation is already
sorted on a major subset of the required order. This algorithm is pipelinable, as it just needs to merge through
the input relation, identifying sub-ranges with equal values on the already sorted major ordering columns. Only
the current subrange needs to be buffered and sorted on the minor columns, before new tuples are returned. To
our knowledge, MonetDB is the only DBMS that currently employs RefineSort .

5.2 Order Optimization in Relational XQuery
Relational XQuery order optimization may take two forms: (i) in the logical plan, we may omit all effort to
generate pos columns, if these columns are not used later on, (ii) on the physical level, we should exploit
ordering propagation to avoid sorting of relations that are already sorted.

Although order is a pervasive concept in XQuery, there may indeed be sub-plans in the generated algebraic
query which may not depend on order at all. Examples include the sub-plans which evaluate the arguments
to XQuery aggregate functions (e.g., fn:sum() , fn:count() ), quantifiers (some , every ) as well as general
comparison operators. Additionally, the XQuery keyword unordered explicitly indicates that item order in its
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argument sequence may be arbitrary. Such sub-plans need not produce or maintain pos information at all.
Pathfinder generates a physical algebra subquery for each XQuery translation rule [GT04]. Currently, it

enforces that all generated sequence encodings are ordered on [iter,pos]. We do optimize the way in which
this ordering is created: already sorted relations are not re-sorted and partially sorted relations are only refined
with RefineSort . For instance, sequence construction is evaluated via MergeUnion with merging on [iter,ord,
pos]:

MergeRowNumber
(

pos′, MergeUnion (R1,R2, [iter,ord,pos]), iter, [ord,pos]
)

.

Our ordering framework allows us to conclude that the result relation must be in [iter,pos′] order.
Similar optimized translations have been made for joins. The full sorting policy leads to both input relations

R1,R2 being ordered on [iter] and the requirement for the result to be ordered on [iterR1 , iterR2 ]. The standard
operator chosen is now HashJoin producing a result in [iterR1 ] order, which means that we need a RefineSort
on iterR2 . Here, we exploit the run-time query optimization of MonetDB to check if the join selectivity is low
and if so use a NestedLoopJoin , which has the advantage that it already yields a [iterR1 , iterR2 ] output without
reordering. In other cases, the superior performance of HashJoin outweighs the cost of the extra RefineSort .

Future Optimizations. In Table 1 we already mention a HashOrderJoin operator. The idea behind this hash
join is to enforce that the collision lists in the hash-table are in tuple order of the hashed relation. By adding
such an operator to the relational back-end, we would get a join that produces results with the major ordering
of the outer relation and the minor ordering of the inner, eliminating the need for further RefineSort .

6. IMPLEMENTATION ON TOP OF MONETDB
Pathfinder is backed by the open-source RDBMS MonetDB, following the architecture depicted in Figure 8.
MonetDB is an extensible system and this feature has been used to introduce an XQuery runtime module. It
extends the MIL6 algebra of MonetDB with a few additional operators, mainly the loop-lifted staircase join
(Section 3).

Server
MonetDB

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

XML

XQuery
Client XQuery

MIL

Compiler Module

− Normalization
− XQuery Parsing

− MIL Generation

Runtime Module

− XML Schema Import

MonetDB Kernel

− (Loop−lifted) Staircase Join

− XML Serialization
− multijoin

Figure 8: System architecture.

We implemented the front-end as an XQuery compiler that translates XQuery expressions into MIL code for
execution on MonetDB. Pathfinder currently employs several XQuery Core optimization techniques (including
the join optimization logic of Section 4), as well as XML Schema import and full static type checking. The
compiler is designed to be re-targetable: the internal relational algebra may be implemented on any relational
system that supports the operators mentioned in Section 2.

6MIL stands for MonetDB Interpreter Language.
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Figure 9: Storage of polymorphic XQuery item sequences in MonetDB.

Sequence and Document Representation
For any XQuery Core construct, the compiler emits a set of MIL commands that constitute our physical algebra.
The translation follows the ideas in [GT04] with the refinement that any intermediate result is a relation of type
iter|pos|item, fully ordered on [iter,pos].

In [GT04] we assumed the presence of a polymorphic item column, a feature that is typically not present
in relational DBMSs (including MonetDB). We thus use a boxed representation of column item, as sketched
in Figure 9. We substitute column item by the combination of the two columns ref and kind and represent a
polymorphic value v as the pair 〈ref (v),kind(v)〉, where kind(v) identifies v’s implementation type, and ref (v)
is a foreign key (of MonetDB type oid). ref (v) references the actual value of v in the value container associated
with type kind(v). Such a value container is maintained for each atomic type. In case of type node, ref (v) is
the preorder rank assigned to the represented node.

All value containers in our system use densely numbered key columns (1,2,3, . . . ), a setup that is particularly
well supported by MonetDB in terms of the void type (“virtual oid”, [BK99]). A column c that is declared void
may be read as “for row number i, attribute c takes the value i.” MonetDB does not explicitly store void values,
eliminating space overhead for the key column. Access by void keys is implemented using a positional lookup
and thus highly efficient.

The backbone of any XQuery execution engine is the storage of XML trees and fragments. Our system uses
the aforementioned pre|size|level encoding to encode both, persistently stored documents, as well as fragments
constructed on-the-fly during query evaluation.

This pre|size|level table (see Section 2) is enriched with further columns to hold additional node properties.
Relevant properties for XML tree nodes depend on the node’s kind (e.g., element, text node,. . . ). We use a
set of property containers for the different node kinds (much like the representation of the polymorphic item
column in the foregoing). Figure 10 lists the property containers and their respective column schema (name
space and local name for XML elements, textual content for text and comment nodes, and a target/value pair
for XML processing instructions). Again, we benefit from MonetDB’s void column to efficiently access node
properties.

With possibly multiple documents contributing to the query, we hold a separate instance of this storage layout
(that we refer to as a document container) for any referenced document. An additional document container
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Figure 10: Horizontally partitioned XML storage in document containers.

hosts all transient nodes computed during query evaluation (e.g., the result of XQuery’s element construction
operator). To keep nodes from disjoint tree fragments apart in this container, we introduce the frag column
that uniquely identifies each XML tree fragment (cf. [GST04]). A loaded document table keeps track of any
document container currently active.

As already observed by [GT04], the pre|size encoding allows for a particularly efficient implementation of
subtree copying: the corresponding region may simply be copied verbatim from the pre|size table to capture
the structural properties of the subtree. Our implementation extends this idea and provides shallow copying
for the further node properties. We introduce the cont column that references the document container in which
each node’s properties are to be found. We copy ref, kind, and cont along with the structural part, retaining ref
as a reference to its original container.

7. QUANTITATIVE ASSESSMENT
We claim that, to date, Pathfinder powered by MonetDB provides one of the most scalable and fastest XQuery
implementations available. This section reports on experiments which back up this claim.

In our experiments, we focused on XMark [SWK+02], which is the most frequently used benchmark for
evaluating XQuery efficiency and scalability. The experimentation platform was a 1.6 GHz AMD Opteron 242
(1 MB L2 cache) processor with 8 GB RAM and a RAID-5 disk subsystem (3ware 7810, configured with eight
250 GB IDE disks of 7200 RPM). The operating system was Linux 2.6.9, using a 64-bit address space. We
used the XMark benchmark with scaling factors from 0.1 up to 100 (which yields documents from 11 MB up
to 11 GB), using Pathfinder as well as the latest versions of Galax (0.5.0) [FSC+03] and X-Hive (6.0) [X-H].

Galax was used as it is the most popular XQuery engine available in open-source. From the performance
results reported in [DTCÖ03], we concluded that X-Hive is one of the faster native XML database systems,



7. Quantitative Assessment 15

so we included it in our evaluation. We were able to significantly reduce the run time of X-Hive on a number
of queries by creating value indices on the paths buyer/@person and profile/@income . The former index
reduces the run time of XMark query Q8 from quadratic to linear, significantly surpassing all results reported
for that query in [DTCÖ03].

Regrettably, Galax failed to process the queries once the XMark documents were beyond a size of 110 MB.
Galax is a file-oriented system that parses the XML file on each query which often dominates run time. We
thus used the Galax monitor feature to account for the separate query processing phases and—for all systems—
excluded document loading as well as result serialization times.

For Pathfinder, we ran the XQuery compiler to generate MIL scripts. The compiler itself used between 60
and 100 msec (this is excluded from the performance results).

Results
Loop-Lifted Staircase Join. Figure 11 shows the effect of using loop-lifted staircase join. Loop-lifted staircase
join evaluates a path step in one sequential pass over the pre|size table for multiple sequences of context nodes
in one go. The normal (i.e., iterative) staircase join needs to make a sequential pass for each set. As we can see,
on the 110 MB XMark document, query performance improves by a factor of 10. Some queries (Q3,Q11-14),
where path step cost is relatively small, in general benefit less (factor 2.5-5). Query Q15 processes a particularly
long path expression of 13 axis steps. In this case, loop-lifted staircase join suffers from the additional internal
state keeping overhead (the active stack) and performs worse than the iterative staircase join.
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Figure 11: Benefits of loop-lifted staircase join.

Join Optimization. Before we installed the join optimizations of Section 4, Pathfinder was unable to evaluate
the XMark join queries Q8–Q12 on document sizes beyond 110 MB. This turned out to be due to the generation
of huge intermediate Cartesian products, a consequence of loop-lifting. Figure 12 contrasts the results for the
11 MB document with the performance we obtained with join recognition enabled in our MIL generation. It
is obvious that the execution of XQuery statements with join predicates simply requires join recognition when
the query is run on significant XML document sizes.

Order Awareness. The next step is to analyse the performance improvements that are provided by the order
aware physical algebra operators as presented in Section 5. These operators allow us to save sort operations
which would otherwise be necessary to ensure that intermediate results are in document (respectively sequence)
order, wherever this is required by the XQuery semantics. For the 110 MB document, Figure 13 compares the
performance using the order aware operators to the normalized performance with the respective non-order
aware operators, adding sort operations where required. The difference is quite significant. On average, we
observe an improvement of about factor 2.

Scalability. Figure 14 shows the performance results of Pathfinder, where all numbers are normalized to the
elapsed time on the 110 MB document. The graph shows that our system scales linearly with document size.
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11 MB 110 MB 1.1 GB 11 GB
Q Galax X-Hive Pf/M Galax X-Hive Pf/M X-Hive Pf/M Pf/M
1 0.06 0.37 0.05 0.72 1.29 0.41 9.9 1.2 13
2 0.03 0.45 0.07 0.31 1.75 0.30 33.0 2.4 25
3 0.14 0.65 0.28 1.76 5.66 1.51 25.1 12.5 126
4 0.22 0.10 0.08 2.91 1.00 0.45 18.1 3.8 36
5 0.05 0.13 0.05 0.63 0.90 0.16 20.7 1.2 11
6 1.30 1.07 0.02 13.29 10.17 0.05 178.1 0.3 3
7 2.68 1.57 0.03 30.01 24.84 0.07 278.4 0.4 4
8 0.16 0.85 0.14 2.12 3.51 0.75 49.1 10.4 208
9 113.23 32.25 0.20 DNF 12280.66 0.87 DNF 12.9 289

10 1.74 5.28 0.80 18.61 442.37 5.31 DNF 55.0 1882
11 2.62 98.91 0.18 DNF 19927.29 3.48 DNF 960.9 DNF
12 1.44 23.39 0.14 DNF 5100.19 1.66 DNF 431.3 DNF
13 0.03 0.10 0.07 0.66 1.03 0.22 12.9 1.3 13
14 1.92 0.72 0.26 99.53 11.16 2.20 110.2 21.3 959
15 0.02 0.03 0.09 0.20 0.49 0.28 10.6 1.7 16
16 0.03 0.03 0.11 0.46 0.52 0.26 10.9 1.8 18
17 0.06 0.09 0.07 0.82 0.85 0.30 11.8 2.8 26
18 0.07 0.08 0.04 0.73 0.64 0.13 14.8 0.9 9
19 1.17 0.67 0.11 14.73 12.15 0.55 254.5 5.3 88
20 0.28 0.11 0.24 2.98 1.40 0.62 24.6 4.9 50

Table 2: Overview of XMark query evaluation times (elapsed time in seconds).

The only outliers are queries Q11/12. The bottleneck in both queries is a theta-join (comparison via > ) that
generates an intermediate result with about 120 K up to 120 G tuples for the 11 MB and 11 GB document sizes,
respectively. Note that this concerns the query result, whose computation cannot be avoided (though the end
result becomes small, due to subsequent aggregation). Any XQuery system must necessarily exhibit quadratic
scaling with document size on Q11/12.

Comparison with Galax. Table 2 lists our full experimental results. For the smaller document sizes (11 MB
and 110 MB), Galax is on par with the other systems and sometimes performs fastest although by a small
margin. For the join queries Q8–12, the optimizer in Galax 0.5.0 seems to spot the XQuery joins in Q8 and
Q10 but fails to do so otherwise. The test runs crashed with materialization out of bounds errors, most probably
due to the quadratic join complexity we have mentioned before.

Comparison with X-Hive. X-Hive [X-H] has no trouble importing the 1.1 GB XML document and allows
the execution of non-join queries in reasonable time. As mentioned before, the join query Q8 also runs fast
due to the value indices we created in X-Hive. However, the quadratic performance on Q9–Q12 indicates
that such indices only help on a small class of queries. Table 2 shows that Pathfinder clearly outperforms X-
Hive on these queries. If the queries join intermediate query results, indices cannot be used and performance
degrades strongly. Another conclusion is that queries such as Q6 and Q7, which rely heavily on XPath traversals
(descendant axis), appear to run significantly slower on X-Hive than on our system.

Comparison with Timber. To compare with Timber [JLST01], we use the results for the 110 MB XMark setup
published in [PWLJ04]7. Neglecting the hardware differences—1.833 GHz Athlon vs. 1.6 GHz Opteron—,
Timber manages to outperform both Galax and X-Hive on most queries. On the non-join queries, Timber
shows very similar performance as Pathfinder. On the join queries, however, Timber appears to be slower than
Pathfinder by a factor 3 to 15. We are not aware of any reported Timber results for XMark documents larger
than 110 MB.

The overall conclusion of the experiments is that Pathfinder powered by MonetDB is highly scalable, can handle
XPath-intensive queries well (due to the loop-lifted staircase join), handles queries with theta-join predicates
in linear time, and appears to outperform the current generation of XQuery systems by quite a big margin.

7Timber is “only” available for Windows systems.
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8. RELATED RESEARCH AND SYSTEMS
The present work builds on both an XPath-aware relational encoding of XML trees [GvKT03] and a rela-
tional XQuery compiler [GST04] to turn a relational database back-end into an XQuery processor. To date, as
suggested by a recent survey article [KKN03], this work developed the first instance of a relational XQuery
processor that really exhibits the efficiency and scalability needed to process XML input documents of up to
11 GB size in interactive time.

In [DTCÖ03], the authors describe an XQuery compiler that was originally designed to emit SQL code.
Since the compiler is aware of the XQuery order semantics—at least partially: the system does not distinguish
between sequence and document order—the generated SQL queries contain the expected necessary yet signif-
icant sorting overhead. Experiments with a prototypical relational engine led the authors to observations that
match those we have made here: (i) built-in order-awareness and (ii) XQuery join recognition are key features
if the system is to process XML documents of serious size ([DTCÖ03] describes an XQuery join pattern that
resembles the query pattern discussed in Section 4.1, but it largely remains unclear how to derive a relational
join plan). Performance-wise, we really reap the benefits of using an extensible RDBMS kernel as an XQuery
runtime environment: the XMark benchmark figures obtained here surpass those reported in [DTCÖ03] by two
orders of magnitude.

Quite timely, the order-aware optimization of relational queries has received renewed attention [WC03,
MN04]. Inspired by the foundational work on “interesting orders” in System R [SAC+79] and based on the
idea to derive order properties of intermediate results from functional dependencies introduced by the appli-
cation of operators of the relational algebra [SSM96], Wang and Cherniack describe order property inference
rules [WC03]. These rules are capable of inferring secondary orderings, i.e., minor orderings respected in a
group of tuples. As described, possibilities to exploit such orderings, here denoted by O1|O2, pervade in the
algebraic plans emitted by our XQuery compiler.

Our work on loop-lifted staircase join was mainly driven by the insight that the relational back-end may
devote a significant share of evaluation time to XPath navigation in nested for -loops. This renders the work
on Nested XML Tableaux (NEXT) especially interesting: [DPX04] reports on an algorithm that minimizes
redundant XPath axis traversals across nested subqueries. Ultimately, this can help minimizing the number of
required loop-lifted staircase joins in compiled queries.

Note that the node surrogates γ (Section 2) constitute a rather generic concept: any XML tree encoding that
is true to document order and node identity may be used in place of preorder ranks. The database research
and industry communities have developed a variety of possible alternatives, among these [OOP+04, LM01,
ZND+01, TVB+01]. Preorder ranks provide node surrogates of fixed byte-width, which greatly simplifies
their storage and manipulation. Such fixed-size node encodings are known to incur significant inherent costs
if general structural tree updates (e.g., node insertions, subtree deletions) are to be processed [CKM02]. In
contrast, variable-length surrogates such as, for example, ORDPATH labels [OOP+04], are designed to allow
“low-cost” updates while still encoding document order. However, these features come at the expense of higher
storage and manipulation costs, and, more importantly, non-denseness, prohibiting the application staircasejoin
for efficient location step evaluation.

In this work, we focus on XQuery, where trees are solely built through the application of node constructors.
The copy semantics of these constructors are efficiently supported by pasting of subtree encodings as described
in [GT04].

In a future version of Pathfinder, we plan to also support document updates. Update basically require in-
sertion or deletion of pages “somewhere” in the pre|size|level table that stores the encoded XML document.
To maintain the dense preorder ranks, all the pre values in all subsequent pages have to be incremented or
decremented accordingly. In MonetDB, however, this is not necessary, as Pathfinder stores preorder ranks us-
ing void-columns [BK99]. These void columns are virtual (they resolve to the tuple position in the table; see
Section 6) and are never materialized on disk; thus they need not be updated.

As of today, Galax [FSC+03] seems to be the primary XQuery “playground” and reference system for the
database community. For good reason: Galax adheres closely to the W3C XQuery Working Drafts [BCF+04]
and implements the complete language semantics (with minor exceptions). In versions up to 0.4, Galax’ ad-
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herence to the XQuery Formal Semantics might have even been too close: all nested for -loops were actually
evaluated in an iterative nested-loops fashion. Starting with version 0.5.0, the Galax compiler includes hooks to
emit algebraic plans that exploit joins (as far as we are aware, these efforts were not published yet). We would
be most interested in investigating how a Galax front-end could benefit from the relational XQuery runtime we
are developing in this work.

9. CONCLUSIONS AND FUTURE WORK
This work delivers the proof that relational databases may be turned into highly efficient XQuery runtime
systems. We implemented an XQuery processor that is backed by the extensible MonetDB RDBMS. Mainly
based on the ideas of [GST04, GT04], our system exploits a number of enhancements that make the resulting
setup stand out among the XQuery implementations available today. The loop-lifted staircase join continues
the work of [GvKT03] and executes XPath location steps for multiple sequences of context nodes in a single
pass over an encoded XML document. A carefully designed join processing framework reduces the quadratic
complexity of XQuery joins to scale linearly with the input document size. Exploitation of order properties in
our physical algebra avoids the extensive use of sort operators in the execution plan.

At the final count, these contributions enabled us to assemble an XQuery processor that makes the scalability
of relational back-ends available for XQuery processing. The system’s code base currently undergoes a cleaning
stage after which it will be released under an open-source license.

Apart from code-level work, we are now investigating possibilities for far-reaching algebraic optimization of
XQuery. The generated algebraic plans exhibit a number of interesting properties (constant columns, key-joins
over identical domains, multi-valued dependencies indicating expression independence, to name a few) which
we will use to further enhance the quality of the emitted relational code.
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