
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

Updating the pre/post plane in MonetDB/XQuery

P.A. Boncz, S. Manegold, J. Rittinger,

REPORT INS-E0506 APRIL 2005

INS
Information Systems

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

Updating the pre/post plane in MonetDB/XQuery

ABSTRACT
We outline an efficient ACID-compliant mechanism for structural inserts and deletes in relational
XML document storage that uses a region based pre/size/level encoding (equivalent to the
pre/post encoding). Updates to such node-numbering schemes are considered prohibitive (i.e.
physical cost linear to document size), because structural updates cause shifts in all pre-
numbers after the update point, and require updates of the size of all ancestors, such that the
root of the tree becomes a locking bottleneck. We show how such locking can be avoided by
updating the size of ancestors using delta-increments, which are transaction-commutative
operations. We also reduce the physical cost to the minimum (i.e. linear to update volume) by
carefully exploiting the virtual column feature of MonetDB to store pre numbers (virtual columns
are never materialized, and thus need not be updated). In our evaluation, we show the
overhead of the update-feature in MonetDB/XQuery in terms of added XMark evaluation cost to
stay within an acceptable limit (<30% on average).

1998 ACM Computing Classification System: H.2.4, H.2.3, H.2.2, E.1
Keywords and Phrases: XML; XQuery; XUpdate; Pathfinder; MonetDB; pre/post plane; ACID transactions
Note: Work carried out under projects MultimediaN N3 "Ambient Multimedia Databases" and Bricks IS2 "Petabyte Data
Mining".

Updating the Pre/Post Plane in MonetDB/XQuery

Peter Boncz4 Stefan Manegold4 Jan Rittinger♦

4CWI Amsterdam, Netherlands ♦University of Konstanz, Germany

{boncz,manegold}@cwi.nl rittinge@inf.uni-konstanz.de

ABSTRACT
We outline an efficient ACID-compliant mechanism for structural inserts and deletes in relational XML document

storage that uses a region based pre/size/level encoding (equivalent to the pre/post encoding). Updates to

such node-numbering schemes are considered prohibitive (i.e. physical cost linear to document size), because

structural updates cause shifts in all pre-numbers after the update point, and require updates of the size of all

ancestors, such that the root of the tree becomes a locking bottleneck. We show how such locking can be avoided

by updating the size of ancestors using delta-increments, which are transaction-commutative operations. We

also reduce the physical cost to the minimum (i.e. linear to update volume) by carefully exploiting the virtual
column feature of MonetDB to store pre numbers (virtual columns are never materialized, and thus need not

be updated). In our evaluation, we show the overhead of the update-feature in MonetDB/XQuery in terms of

added XMark evaluation cost to stay within an acceptable limit (<30% on average).

1998 ACM Computing Classification System: H.2.4, H.2.3, H.2.2, E.1

Keywords and Phrases: XML, XQuery, XUpdate, Pathfinder, MonetDB, pre/post plane, ACID transactions

Note: Work carried out under projects MultimediaN N3 “Ambient Multimedia Databases” and Bricks IS2

“Petabyte Data Mining”.

1. Introduction

The MonetDB/XQuery system1, allows to store schema-free XML documents in MonetDB and query
them with XQuery. Figure 1 shows the system to consist of the Pathfinder XQuery-to-Relational
Algebra compiler [GST04], and a small set of relational algebra extensions. Here, Pathfinder gen-
erates physical plans in MIL, the physical algebra on the binary relational model implemented by
MonetDB [Bon02]. Pathfinder currently supports almost the full XQuery standard, closely follow-
ing the W3C Formal Semantics. MonetDB/XQuery is the first relational XQuery system we are
aware of that fully supports both document and sequence order, XML schemas, and even recursive
user-defined functions. MonetDB/XQuery also provides unsurpassed performance and scalability: the
combination of efficient nested XPath axis evaluation with loop-lifted staircase join, algebraic order
optimizations, and join expression translation and optimization into relational join plans, allows it to
e.g. obtain interactive response times on all XMark queries even for the 1 GB document size on a
standard PC [BGM+05].

When comparing XML database solutions with file-based management of XML documents, however,
fast query performance is only one side of the story. The main other reason why XML databases are to
be preferred over file-based XML document management, is update support. File-based XML storage
causes a full re-write of the entire document on each change, and does not provide any concurrency.
Therefore, efficient and ACID-compliant XML document update functionality is an important selling
point of XML database technology.

Sticking to our approach of using relational technology to provide XML database functionality,
the challenge of this paper is to map XML update requests, as formulated in a language like XUp-
date [XUp], into update actions on the underlying relational XML document encoding. The particular

1MonetDB/XQuery and the Pathfinder compiler will be released in open-source in May 2005.

2

Server
MonetDB

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

XML

XQuery
Client XQuery

MIL

Pathfinder Compiler

− Normalization
− XQuery Parsing

− MIL Generation

Pathfinder Runtime Module

− XML Schema Import

MonetDB Kernel

− (Loop−lifted) Staircase Join

− XML Serialization
− multijoin

Figure 1: MonetDB/XQuery Architecture

encoding used in MonetDB/XQuery, maps all document nodes onto pre/post tuples (explained in Sec-
tion 2.2). This XML document representation is exploited to full advantage when evaluating XPath
steps efficiently, enabling cheap node order tests as well as significant positional node skipping in
staircase join [GvKT03]. However, the naive implementation of this encoding poses two update per-
formance challenges: (i) high physical update cost, and (ii) low granularity of transaction locking.
Because of this, the pre/post plane is currently perceived to be a read-only representation of XML
documents.

The main contribution of this paper is to show that both challenges can actually be met, converting
the pre/post plane into a suitable representation to implement dynamic updates that are both efficient
and allow concurrency. In the evaluation, we show that the overhead of our update scheme on large
instances of the XMark benchmark (up to 1.1 GB) is limited to about 30%, such that even under
updates, MonetDB/XQuery is still highly efficient and scalable.

1.1 Outline
In Section 2, we make our problem statement, by defining the update queries and identifying structural
updates in the pre/post plane as the main challenge, both in terms of absolute update performance
as well as concurrency. Then in Section 3, we describe how a logical page administration can help to
keep update cost down. This scheme can be realized efficiently in MonetDB thanks to its concept of
virtual columns, and its use of virtual memory to hide the physical page order (that after updates
may differ from document node order) from query execution primitives such as staircase join. We also
show how locking can be minimized by using transaction-commutative delta operations. We evaluate
the overhead imposed on XQuery by our update scheme in Section 4.1. Finally, in Section 4.2 we
provide an overview of related work before concluding in Section 5.

2. Problem Statement

We first define the XML updates that we need to support, then shortly introduce and summarize
the pre/size/level variant of pre/post encoding for XML documents and its use for XPath evaluation,
before discussing the impact of XML updates on this encoding.

2. Problem Statement 3

fb

a

d

g

i

2

03 8 5 j9 6

c
46 77

h

1

90

8

e4 1

53

2

0
1
2
3
4
5
6
7
8
9

9
3
2
0
1

4
7
5
6

8

post

<a>

 <c>
 <d></d><e></e>
 </c>

 <f>
 <g></g>
 <h>
 <i></i><j></j>
 <h>
 </f>

po
st

pre

(i) XML
Document

(ii) Tree Representation
with Pre/Post numbers

(iii) XPath axes in
the Pre/Post plane

(post = pre+size−level)

pre size level

9
3
2
0
0
4
0
2
0
0

0
1
2
3
3
1
2
2
3
3

(iv) Relational
 Storage

a

d
e

f

h

i
j

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

g

ancestor

precedingb

c

following

descendant

Figure 2: Relational Storage With pre/size/level To Support Efficient XPath Axis Traversal

2.1 XML Updates
XML updates can be classified as: (i) value updates, which include node value changes (be it text,
comment or processing instructions), and any change concerning attributes (attribute value changes,
attribute deletion and insertion). Other modifications are (ii) structural updates, that insert or delete
nodes in an XML document. In MonetDB/XQuery, value updates map quite trivially to updates in
the underlying relational tables. Therefore, we focus this paper on structural updates.

Until the W3C formulates a standard for XML updates, the most often used update language is
XUpdate [XUp]. We shortly summarize the syntax and semantics of its structural update commands:
<xupdate:remove select="expr"/> removes all nodes (and entire subtrees) to which the XPath expr
evaluates.
<xupdate:insert-before select="expr">element</xupdate:insert-before> inserts an element node as
a directly preceding sibling to all nodes in the result set of the XPath expr.
<xupdate:insert-after select="expr">element</xupdate:insert-after> behaves identically, except that
the new node becomes the direct successor of the selected context nodes.
<xupdate:element name="name">XML</xupdate:element> specifies the top-level element to be inserted.
It may contain nested XML, such that entire subtrees can be inserted.
<xupdate:append select="expr" child="integer">element</xupdate:append> appends the new node as
a child of the context-nodes. The optional integer child expression indicates the position of the new
child node (by default, it is appended as last child).

2.2 The pre/post Plane
Figure 2, consisting of four parts, depicts how MonetDB/XQuery encodes schema-free XML documents
in relational tables. Part (i) shows the example document. In part (ii), nodes of the XML tree are
assigned pre and post ranks, which count how many tags have been opened and closed, respectively,
as seen when parsing the document sequentially. In part (iii), which plots all document nodes in a
pre/post plane, we clearly recognize the tilted XML tree. It also shows that for each node (in this
case the context node is g), the quadrants of the pre/post plane correspond to the major XPath axes:
descendant, following, ancestor and preceding. As such, this representation allows to express all
XPath axes as simple comparisons on the pre and post columns, which can be evaluated efficiently in
an SQL-speaking RDBMS [Gru02]. Finally, part (iv) of Figure 2 shows the actual relational XML
representation used in MonetDB/XQuery, which instead of the post column stores two columns holding
a tree level and subtree size. This pre/size/level encoding is equivalent to pre/post since post = pre +
size - level.

While XPath axes can be executed perfectly well using SQL queries on the pre, level and size

4

h

i
j

0
1
2
3
4
5
6
7
8
9

pre size level

9
3
2
0
0
4
0
2
0
0

0
1
2
3
3
1
2
2
3
3

b
c
d
e
f
g
h
i
j

a

k

l
m

h

i
j

a

d
e

f

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

g

precedingb

c

following

ancestor

descendant

pre

a

d
e

f

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

g

precedingb

c

following
pre size level

3
2
0
0
7
3

0
1
2
3
3
1
2

a
b
c
d
e
f
g

0
1
2
3
4
5
6

descendant

ancestor

2
0
0

2
3

h
i
j

2
0
0

3
4
4

k
l
m9

size+3

new
nodes

pre+3

12

3
7
8

10
11
12

pre

 <k> <l/> <m/> </k>
<xupdate:append select=’/a/f/g’>

Figure 3: The impact of Structural Updates on pre/size/level XML Storage

columns, extra efficiency can be won because these pre, level and size columns do not hold random
integer values, but a tree representation. The staircase join [GvKT03] exploits this property, which
allows it to conclude that certain regions of pre values cannot contain any result nodes for a XPath
step. In such situations, the staircase join avoids any data access or computation and skips over these
tuples. This makes its performance superior to relational nested index-lookup join.

The actual reason why MonetDB/XQuery uses size/level instead of post, is related to this node
skipping. By “separating” the information, more skipping can be performed. For example, finding
all children of a node prex works by checking the first child prey=prex+1 and skipping to its siblings
prey = prey+size[prey]+1 until the last node in prex is reached (prex+size[prex]).

Node skipping is particularly well-supported in MonetDB, as it stores the pre column using the
void type. A void column holds a densely ascending node sequence (0,1,2,...). Such void columns are
actually not stored at all: they take zero space. More importantly, careful design and implementation
of relational tables in MonetDB allows to support lookup of void values using positional algorithms,
such as positional select and positional join, that use highly efficient array-lookups. Thus, skipping to
a particular node in staircase join comes down to array-lookup with the proper index, at the cost of
a single CPU instruction.

When pre numbers are stored in another RDBMS than MonetDB, the pre values are materialized
in the tuples, and lookup is usually accelerated using a B-tree index, which is still fast (O(log(N))),
but not constant in cost such as in MonetDB. We think that the representation of node numbers as
simple pre integers that can be located positionally is the prime reason for the performance advantage
of MonetDB/XQuery over other XQuery systems. It may seem that this choice is a trade-off too
much skewed towards read-only efficiency only, since maintaining the densely populated physical
representation of pre in MonetDB, poses a serious challenge to update efficiency, as described in the
following.

Structural Update Problems Figure 3 illustrates how the pre/size/level document encoding is affected
by a subtree insert (cf. delete): all pre values of the nodes following the insert point change, as well
as the size of all ancestor nodes. The former issue imposes an update cost of O(N), with N the
document size, because on average half of the document are following nodes. The latter issue is
not so much a problem in terms of update volume (because there are only O(log(N)) ancestors) but
rather one of locking: the document root is an ancestor of all nodes and thus must be locked by every
update. We treat transaction processing in Section 3.2, and concentrate on the problem of the shifts
in pre here.

An advantage of using size/level instead of post, is that neither level nor size values are affected by
structural updates, while post is. Still, updating the pre column, is impossible if it is designated to
be a primary key. Even if not, the impact of maintaining (B-tree) indices when each XML update

3. Updateable XML Encoding 5

0
1
2
3
4
5
6
7
8
9

pre nodesize level

9
3
2
0
0
4
0
2
0
0

0
1
2
3
3
1
2
2
3
3

a
b
c
d
e
f
g
h
i
j

vs. Updatable RepresentationRead−Only

pos

6
7
8
9

size level

0
0

0
1
2
3
4
5

9
3
2
0
0
4

0
1
2
3
3

a
b
c
d
e

10
11
12
13
14
15

1
0

2
null
null

null

1 f
2 g

null

null
null4

3

2
0
0

2
3
3

h
i
j

pagesize = 8
unused space:

level = NULL
size set to unite

 consecutive space

first try to handle the insert inside a page

 <k> <l/> <m/> </k>
<xupdate:append select=’/a/f/g’>

pos

6
7

size level

3

0
1
2
3
4
5

12
3
2
0
0
7

0
1
2
3
3
1
2

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2 3

1
0

2
null
null
null
null4

3

0
0
5

4
4
null

null

1
0

2
null
null

null
null
null4

3

2
0
0

2
3
3

pre/size/level is a memory−mapped view with pages in logical order

pre is a virtual column (void), therefore it adapts automatically

if full, append pages (NULL padded)

pre size level

3

12
3
2
0
0
7

0
1
2
3
3

a
b
c
d
e

1 f
2 g

1
0

2
null
null

null
null
null4

3

1
0

2
null
null

null
null
null4

3

0
0
5

4
4

l
m

2
0
0

2
3
3

h
i
j

null

2 3 k
6
7

0
1
2
3
4
5

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure 4: Updates With Logical Pages

leads to half of the tuples changing value, will be prohibitive. In the case of MonetDB, where pre
is stored as a void column, the result depicted in Figure 3 is even technically impossible, because
void columns may never be modified! Thus, we conclude that the storage scheme used until now in
MonetDB/XQuery and which produced the XMark results in [BGM+05] is a read-only solution.

3. Updateable XML Encoding

Figure 4 shows the changes introduced in MonetDB/XQuery to handle structural updates in the
pre/size/level table.

The key observations are:

• the table is called pos/size/level now.

• it is divided into logical pages.

• each logical page may contain unused tuples.

• new logical pages are appended only (i.e., at the end).

• the pre/size/level table is a view on pos/size/level with all pages in logical order. In MonetDB,
this is implemented by mapping the underlying table into a new virtual memory region.

Figure 4 shows the example document being stored in two logical pages. The logical size is measured
in an amount of tuples (here: 8) instead of bytes. The document shredder already leaves a certain
(configurable) percentage of tuples unused in each logical page. Initially, the unused tuples are located
at the end of each page. Their level column is set to NULL, while the size column holds the amount of
directly following consecutive unused tuples. This allows the staircase-join to skip over unused tuples
quickly.

The advantage of unused tuples is that structural deletes just leave the tuples of the deleted nodes
in place (they become unused tuples) without causing any shifts in pre numbers. Also, inserts of
subtrees whose size does not exceed the amount of unused tuples on the logical page, do not cause
shifts on other logical pages. Larger inserts, only use page-wise table appends. This is the main

6

textqualified names processing
instructions

comments
(attributes + elements)

attribute valuesattributes

level

pre|level|size table

’attr’ table directly refers to ’pre’

key for efficient positional access
All tables use a void column as

Read−Only XML storage scheme

problem:

ns com val ins val

’kind’ determines to

size kindrefpre

loc val targettextqn

attr prop

which table ’ref’ refers

pre qn prop val

Figure 5: Original Read-Only Schema

pageOffset

node−IDs
immutable attributes attribute values

"logical"
 pages

(used in MonetDB for staircase join)

level

level

pos|level|size table

mmap−ed view
refsize kind node

pos refsize kind node

pg off

propnodeattr qnposnode valprop

pre

Figure 6: New Updateable Schema

reason to replace pre by pos. The pos column is a densely increasing (0,1,2,...) integer column, which
in MonetDB can be efficiently stored in a virtual (non-materialized) void column.

A logical page does not necessarily correspond to a single physical disk page. MonetDB uses
virtual memory to load persistent data into memory, so we refer to virtual memory pages as physical
pages here. We set the logical page size to the virtual memory-mapping granularity (usually 65536),
such that logical page boundaries always coincide with virtual memory page boundaries. We also
introduced new functionality in MonetDB to map the underlying disk pages of a table in a different
non-sequential order into virtual memory. Thus, by mapping in the virtual memory pages of the
pos/size/level table in logical page order, overflow pages that were appended to it, become visible
“halfway” in the pre/size/level view.

In the example of Figure 4, three new nodes k, l and m are inserted as children of context node g.
This insert of three nodes does not fit the free space (the first page that holds g only has one unused
tuple at pos=7). Therefore, a new logical page must be inserted in-between. Thus, we insert eight new
tuples, of which only the first two represent real nodes (l and m), the latter six are unused. Thanks
to the virtual column feature of MonetDB, in the resulting pre/size/level view, all pre numbers after
the insert point automatically shift, at no update cost at all!

3.1 Storage Schema
Figure 5 shows the original relational schema of MonetDB/XQuery. The main tables are:

• pre/size/level, with one tuple for each document node.

• attr, with one tuple for each attribute.

• prop, holding all unique attribute values (as strings).

• qn, with one tuple for each qualified name (element or attribute).

• text,com and ins, that hold node values.

Each table uses a void column as a key, indicated by a white column with dotted lines. This allows
MonetDB to use fast positional join when queries navigate through the schema over foreign keys.

In the new, updateable schema, all pre columns are replaced by pos. Even though the logical page
mechanism limits node shifts to within a page, typically thousands of tuples are affected. This remains
a problem for the attribute table, which refers back to pre (now pos) values. Thus, each structural
update would incur significant maintenance in the attribute table. For this reason, we decided to give

3. Updateable XML Encoding 7

0 0
1 2

offpg

2 1

0 0
1 1

offpg

0 0
1 1

offpg pos size level node node pos

pre size level node

insert
point

node pospos size level node

pos size level node node pos

(2a) ’within page’ insert

insert volume

mapped
view

(1) start situation:

move
modify

modify

insert

move

insert

(2b) page
overflow

Figure 7: Structural Insert with Bulk Updates

each node a unique node number that never changes through its lifetime. It is added as a column to
the pos/size/level table. At shredding time, node numbers are identical to pos numbers (the latter
ones may change later under updates).

The final shape of the XML storage scheme is summarized in Figure 6. A new pageOffset table is
maintained to maintain a logical page order under updates. In MonetDB, this pageOffset table is used
by the new adaptive memory mapping primitive to construct the pre/size/level view.

To translate unique node numbers into pre values, first a (positional) lookup into a new node/pos
table is done. The resulting pos numbers can be “swizzled” into a pre values, by a lookup into the
pageOffset table and some simple bitwise arithmetic: pageOffset[pos >> 16] << 16 + pos & 65535

Figure 7 depicts the update work needed for two scenarios: (a) when the insert can be handled
within a logical page and (b) when a new logical page is needed. The tuples after the insert point are
moved forward in the page first. Then, the new pos of the moved tuples has to be modified in the
node/pos table. Finally, the newly inserted nodes are written into the pos/size/level table. They need
a unique node number, which can generally be found inside the logical page in the node/pos table by
scanning for NULL pos values (if not, tuples are appended to the node/pos table). If a new logical
page had to be inserted (case (b)), then a new entry for it is appended to the pageOffset table, and
the offset of all pages after the insert point is incremented.

While we omit the formal descriptions here, the our update mechanism can be captured in a
straightforward fashion in rules that translate XUpdate statements in bulk relational (SQL) update
queries on the pos/size/level, pageOffset, and pos/node tables; thus extending the relational XQuery
mapping framework presented in [GST04].

3.2 ACID properties
Read-only XQuery queries just acquire a global read-lock while they run. XML update requests use
the algorithm described in Figure 8, which implements multi-version strict two-phase locking with
write-ahead logging (WAL). We summarize how the ACID properties are maintained:

isolation The standard MonetDB isolation mechanism is to create a temporary view backed by a
copy-on-write memory-map on the base table [Bon02]. In such a memory-map, all pages are initially
shared with the base table, but the OS transparently replaces all pages that get changed by new pages

8

write-transaction()

incrementally:

- read-lock pages during XPath execution

- write-lock all pages that need to be updated

for each table update:

- create a copy-on-write memory-mapped view on the base table

- perform updates in this view (so others don’t see the changes yet)

- keep a differential-list with all changes made

except bulk-updates in pre/size/level and node/pos (see Figure 7):

- only write into newly appended pages (thus not seen by others)

- when done, flush those pages to disk

- reference these pages in a private pageOffset table

prepare a list of affected ancestors, and delta-sizes for them

run XML document validation (if there is a schema)

get global write-lock

compute the size of all affected ancestors

write into the WAL:

- new size of all affected ancestors

- shifts introduced in pageOffset table

- the differential lists made for the copy-on-write table views

/* commit succeeded */

write size of all affected ancestors into /pre/size/level table

make a new pageOffset table

carry through the differential-lists into the base tables

release all page-locks

release global write-lock

Figure 8: Transaction Management Pseudo-Code

from the swap-file, such that the base table is never altered. MonetDB keeps delta-tables (differential
lists) for all changes made, that allow propagating those changes later to the base table when the
transaction commits. Special treatment is given to the bulk-updated areas in the pos/size/level and
node/pos tables (depicted in Figure 7). These areas are written only in newly appended logical pages,
that are referenced (and thus seen) only by the transaction in its private copy of the pageOffset table.

atomicity Before getting the global write-lock, transactions have only written in isolation. All of
these changes are carried through either by propagating the differential lists to the base tables, or
in the case of the pos/level/size table, by creating a new pageOffset table that includes the modified
logical pages. Writing the WAL is the crucial stage in transaction commit, it consists of a single I/O.

consistency As a last stage before trying to commit the transaction, the new XML document should
be validated, using the mechanism described in [GK04]. If this (or any other action) fails, the trans-
action is aborted.

4. Evaluation 9

durability In case of a crash during commit, we may lose the new version of the pageOffset table,
the new size values of all ancestors, and parts of the changes to the other tables carried through with
differential-lists. All this information is present in the WAL, such that during recovery an up-to-date
version of the database can be restored.

Notice that while a transaction runs, the size of some affected ancestors as well as the pageOffset
tables may be changed by concurrent transactions (that insert/delete nodes located in different logical
pages) that commit earlier. Our transaction protocol has been made immune to such changes by
working with delta rather than new absolute values. For example, a transaction computes how much
a size value must be incremented, rather than the absolute new value. As delta operations are
commutative, it does not matter in which order they are executed. This allows MonetDB/XQuery to
avoid locking all ancestors during the entire transaction.

4. Evaluation

We have described a mechanism that allows to update XML documents encoded in the pre/size/level
plane. The main idea is to use a logical paging scheme, to limit shifts in pre-numbers to stay within
a logical page. The logical pages can be laid out in a logical order, which may be different from the
physical tuple order in the pos/size/level table. In the case of MonetDB, we can use memory-mapping
techniques to re-create the pre/size/level table as a view on the pos/size/level table, such that the
staircase join need not even be aware of this. This allowed us to use staircase join unmodified, still
using positional skipping.

This does not mean, though, that our mechanism only works in MonetDB. Using a pos/size/level
table, where pos is e.g. a SQL 2003 generated column, will work fine in any RDBMS, and the computa-
tion of pre from pos using a pageOffset table is perfectly expressible in SQL. Just like original staircase
join, a RDBMS will not be able to use positional lookup2, but can still be accelerated with B-tree
indices. Instead of using the memory-mapped view on pre, as MonetDB does, the implementation
of staircase join in an extensible RDBMS (as demonstrated in Postgres [MGvKT04]) could be made
aware of the difference between pos and pre and perform the required calculations using the pageOffset
table explicitly.

4.1 Experiments
We implemented the new updateable pos/size/level schema with the additional node/pos table in
an experimental version of MonetDB/XQuery. To quantify the overhead over the original read-only
pre/size/level schema, we ran the XMark benchmark. For the updateable schema, we created a sce-
nario where about 20% of the logical pages were kept unused. This scenario mimics the state of the
database after a series of XUpdate operations (e.g., inserts and deletes). We ensured that the docu-
ment sizes were equal with both schemas. Hence, the pos/size/level table of the updateable schema
occupies about 25% more space than the pre/size/level table of the read-only mapping. Moreover, the
updateable schema contains the extra node column in the pos/size/level table and has the additional
node/pos table that is positionally joined each time an attribute is looked up after an XPath step
(that yields pre numbers).

The queries were run on an Opteron 1.6 GHz Linux machine with 8 GB RAM. 3 Figure 9 shows
the overhead, i.e., increase in evaluation time, of the updateable schema over the read-only schema.
With small documents (1.1 MB and 11 MB) the overhead never exceeds 7% and 33%, respectively,
with an average of about 15% for the 11 MB document. In the 110 MB XMark document size, 8 out
of the 20 queries exhibit a running time increase of less than 10%, another 4 queries stay below 25%,
6 queries incur an overhead between 25% and 50%, and only 2 queries require 56% respectively 78%

2We do think that RDBMSs could introduce positional-select and positional-join as physical algorithms for accessing
SQL 2003 generated columns.

3On that machine, MonetDB/XQuery also runs the 11 GB XMark efficiently; it needs RAM in order of the document
size.

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

ov
er

he
ad

 [%
]

1.1 MB
11 MB
100 MB

1.1 MB 11 MB 110 MB 1.1 GB
Q ro up ro up ro up ro up
1 0.034 0.035 0.045 0.053 0.170 0.204 1.334 1.939

2 0.043 0.045 0.067 0.088 0.317 0.462 2.483 4.136

3 0.120 0.124 0.241 0.283 1.458 1.800 12.656 16.427

4 0.053 0.055 0.066 0.069 0.459 0.459 3.927 4.190

5 0.039 0.041 0.051 0.063 0.163 0.241 1.211 2.254

6 0.020 0.020 0.023 0.023 0.060 0.060 0.368 0.408

7 0.024 0.025 0.029 0.029 0.083 0.083 0.544 0.607

8 0.071 0.073 0.118 0.133 0.730 0.800 10.198 11.268

9 0.109 0.112 0.161 0.191 0.873 1.027 12.439 14.575

10 0.279 0.297 0.657 0.825 5.088 6.686 51.843 67.198

11 0.083 0.084 0.162 0.186 3.426 3.584

12 0.083 0.086 0.127 0.140 1.717 1.750

13 0.050 0.053 0.066 0.087 0.208 0.372 1.436 3.341

14 0.050 0.052 0.213 0.221 1.789 1.881 17.918 18.371

15 0.065 0.068 0.082 0.099 0.255 0.399 1.855 3.736

16 0.072 0.075 0.093 0.101 0.253 0.320 2.043 2.879

17 0.047 0.049 0.067 0.085 0.307 0.422 2.652 4.137

18 0.032 0.032 0.042 0.047 0.136 0.167 1.091 1.577

19 0.064 0.066 0.107 0.138 0.583 0.837 5.152 7.940

20 0.130 0.133 0.173 0.174 0.578 0.601 4.988 5.507

Figure 9: read-only ’ro’ vs. updateable ’up’ schema (XMark performance in seconds)

more evaluation time. For the 1.1 GB document size, the impact increases, but stays on average below
30%. This we deem an acceptable result, especially given the increases (> 25%) in the storage size of
the schema as described above.

4.2 Related work
We introduced a mechanism, which allows updates on fixed size keys. The work in [TIHW01] describes
a different approach to insert new nodes, which (like we) uses fixed size keys, relying on a marking
scheme or a perfect hash. However, even the fastest variant proposed completely enumerates all keys,
which is something we manage to avoid.

Another alternative are indexing schemes built on keys with variable length. These realize inserts by
extending the key of one of the adjacent siblings. The prominent approach is ORDPATH [OOP+04],
which uses a bit-compressed Dewey Order. Another variable key length index (P-PBiTree), which
claims to minimize key length and renumbering costs is presented in [YLML05]. While an insert

5. Conclusion 11

operation in such indexing schemes may be cheaper than the ancestor step used in our mechanism, we
lack any comparative data (or even an XML update benchmark) to properly assess this. On the other
hand, the variable-length keys have a comparison cost that is higher than simple integer comparison,
and positional skipping is not possible. Also, the key length of such schemes may degenerate on
repeated inserts into the same subtree.

5. Conclusion

We have presented a mechanism that allows efficient updates in the pre/size/level variant of the
pre/post plane. This is achieved by limiting shifts in pre-numbers to within so-called logical pages.
Within a logical page, the nodes are stored in document order, but the pages no longer need to be
consecutively ordered physically, thus allowing to insert new pages in-between at low cost. Locking
contention due to shifts in properties of the root node, is avoided by carrying out such changes using
commutative delta-operations.

This mechanism will be used in a future version of the MonetDB/XQuery system, which uses the
Pathfinder XQuery-to-Algebra compiler. In MonetDB, the update mechanism uses memory-mapping
techniques to conserve the efficient positional-skipping used in staircase join, causing the overhead of
allowing updates to stay within acceptable limits.

12

References

[BGM+05] P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: Relational
XQuery Over Multi-Gigabyte XML Inputs In Interactive Time. Technical Report INS-
E0503, CWI, Amsterdam, The Netherlands, March 2005.

[Bon02] P. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications.
PhD thesis, University of Amsterdam, May 2002.

[GK04] T. Grust and S. Klinger. Schema Validation and Type Annotation for Encoded Trees. In
<XIME-P/>, June 2004.

[Gru02] T. Grust. Accelerating XPath Location Steps. In Proc. SIGMOD Conf., June 2002.

[GST04] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. VLDB Conf., August
2004.

[GvKT03] T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS to
Watch its Axis Steps. In Proc. VLDB Conf., September 2003.

[MGvKT04] S. Mayer, T. Grust, M. van Keulen, and J. Teubner. An Injection of Tree Awareness:
Adding Staircase Join to PostgreSQL. In Proc. VLDB Conf., August 2004.

[OOP+04] P.E. O’Neil, E.J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATH:
Insert-Friendly XML Node Labels. In Proc. SIGMOD Conf., Paris, France, June 2004.

[TIHW01] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc. SIGMOD
Conf., 2001.

[XUp] XUpdate. http://www.xmldb.org/xupdate/.

[YLML05] J. Xu Yu, D. Luo, X. Meng, and H. Lu. Dynamically Updating XML Data: Numbering
Scheme Revisited. World Wide Web Consortium, 8(1), March 2005.

