
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

Automatic optimization of array queries

A.R. van Ballegooij, R. Cornacchia, A.P. de Vries

REPORT INS-E0507 APRIL 2005

INS
Information Systems

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

Automatic optimization of array queries

ABSTRACT
Non-trivial scientific applications often involve complex computations on large multi-dimensional
datasets. Using relational database technology for these datasets is cumbersome since
expressing the computations in terms of relational queries is difficult and time-consuming.
Moreover, query optimization strategies successful in classical relational domains may not
suffice when applied to the multi-dimensional array domain. The RAM (Relational Array
Mapping) system hides these issues by providing a transparent mapping between the scientific
problem specification and the underlying database system. This paper focuses on the RAM
query optimizer which is specifically tuned to exploit the characteristics of the array paradigm.
We detail how an intermediate array-algebra and several equivalence rules are used to create
efficient query plans and how, with minor extensions, the optimizer can automatically parallelize
array operations.

1998 ACM Computing Classification System: H.2.3 Languages; H.2.4 Systems
Keywords and Phrases: array query optimization

Automatic Optimization of Array Queries

Alex van Ballegooij Roberto Cornacchia Arjen P. de Vries
Alex.van.Ballegooij@cwi.nl R.Cornacchia@cwi.nl Arjen.de.Vries@cwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Non-trivial scientific applications often involve complex computations on large multi-dimensional datasets. Using

relational database technology for these datasets is cumbersome since expressing the computations in terms of

relational queries is difficult and time-consuming. Moreover, query optimization strategies successful in classical

relational domains may not suffice when applied to the multi-dimensional array domain. The RAM (Relational

Array Mapping) system hides these issues by providing a transparent mapping between the scientific problem

specification and the underlying database system. This paper focuses on the RAM query optimizer which is

specifically tuned to exploit the characteristics of the array paradigm. We detail how an intermediate array-

algebra and several equivalence rules are used to create efficient query plans and how, with minor extensions,

the optimizer can automatically parallelize array operations.

1. Introduction
Efficiently managing collections of e.g. scientific models or multimedia archives, is beyond the capa-
bilities of most database systems since indexing and retrieval functionality are tuned to completely
different workloads. Existing database systems support the relational model and they do not support
multidimensional arrays as a first class citizen. Maier and Vance have argued for long that the mis-
match of data models is the major obstacle for the deployment of relational database technology in
computation oriented domains (such as multimedia analysis) [MV93]. While storage of multidimen-
sional objects in relations is possible, it makes data access awkward and provides little support for
the abstractions of multidimensional data and coordinate systems. Support for the array data model
is a prerequisite for an environment suitable for computation oriented applications.

The RAM (Relational Array Mapping) system [vB04] bridges the gap caused by the mismatch
in data-models with a mapping layer between them. It provides the user with an array oriented
query language and data-model, which are internally mapped onto relational queries over relations
representing arrays. This way data storage and query evaluation can be delegated to an existing
database system.

Past experience with the implementation of multimedia retrieval and analysis in a database setting,
see [Nes01], has proved the potential value of relational bulk processing for multimedia analysis.
Similarly, given an effective query optimizer, the RAM system has shown the potential to rival the
performance of specialized solutions [CvBdV04]. However, with large collections, the amount of
computations required for a single query is prohibitive for querying to be interactive. This calls for
the parallel query evaluation, fortunately the structured nature of the array paradigm helps with the
automatic distribution of complex queries.

This paper presents the basic equivalence rules utilized by the RAM query optimizer and a discussion
on extending the optimizer for automatic query distribution.

2. The RAM System
The RAM system adds multidimensional array structures to existing database systems by internally
mapping array structures and operations to relations and relational queries respectively. Storing the

2. The RAM System 2

Table 1: Basic Array Operations

Operation Meaning
const(S, c) [c|̄ı < S]
grid(S, j) [ij |̄ı < S]
map(f,A1, . . . , Ak) [f(A1(̄ı), . . . , A(̄ı))|̄ı < SA]
apply(A, I1, . . . , Ik) [A(I1(̄ı), . . . , Ik(̄ı))|̄ı < SI]
choice(C,A,B) [if(C (̄ı)) then A(̄ı) else B(̄ı)|̄ı < SC]
aggregate(g, j, A) [g([A(x0, . . . , xj−1, ij , . . . , in−1)|x0, . . . , xj−1])|ij , . . . , in−1] , where n = |A|
concat(A,B) A + +B

array data as relations instead of a proprietary data structure allows the full spectrum of relational
operations to be applied to the array data. This indirectly guarantees complete query and data-
management functionalities, and, since the array extensions naturally blend in with existing database
functionalities, the RAM front-end can focus solely on problems inherent to the array domain.

The use of relational mapping is a distinguishing aspect of RAM as most array oriented database
efforts rely on proprietary data-structures. For example, the AQL language depends on a custom
prototype back-end [LMW96], and languages such as AML [MS97], designed for image processing,
and AQuery [LS03], designed for ordered data in the business domain, are realized by stand-alone
applications. A notable exception is the RasDaMan system [Bau99], which does use proprietary data
structures, but is implemented as an extension module for an object oriented database system.

2.1 Query Language
The RAM system provides an array database query language based on comprehension syntax (see
[BLS+94]), inspired by the AQL language detailed in [LMW96]. Array comprehensions allow users
to specify new arrays by declaring its dimensions and a function to compute the value for each of its
cells. The array constructor has the following form:

A = [f(i0, . . . , i(n−1))|i0 < S0
A, . . . , i(n−1) < S

(n−1)
A],

which specifies an array A with shape SA.
An n-dimensional array is defined by specifying its shape SA and associating its indexes ı̄ =

(i0, . . . , in−1) with their cell values f (̄ı). Function f may apply the operators defined on the base
type in the database layer to values indexed in previously defined arrays, the index values themselves
and constant values. The array indexes are defined as consecutive ranges of natural numbers starting
from 0, hence the shape of the array is defined completely by giving its index generators, ij < Sj

A:
{ij |ij ∈ N0, ij < Sj

A}.
The semantics of the comprehension syntax are simple. For example, expression [x + 10 ∗ y|x <

3, y < 3] defines an array with shape [3, 3], binds the (result of) function x + 10 · y to each of its cells,
and thus results in the following array:

0 1 2
10 11 12
20 21 22

2.2 RAM Array Algebra
The RAM front-end translates the high level comprehension style queries into an intermediate array-
algebra before the final transformation to the relational domain.

The RAM array algebra consists of 6 basic operators summarized in Table 1. In addition a separate
concatenation operator exists. This operator is superfluous, but its common occurrence in queries

3. Optimizer 3

warrants an efficient, direct, mapping to algebra for this operator.
The first two operators generate new arrays given a shape. The const operator fills a new array with

a constant value, whereas the grid operator creates an array with numbers taken from its index values.
The next pair of operators deals with function application. The map operator applies a function to
the elements of one or more arrays, whereas the apply operator applies an array, essentially a stored
function, to arrays of indexes. Finally, the choice operator allows elements from two arrays to be
merged based on a boolean condition and the aggregate operator applies an aggregation function over
axes of an array.

Translation of array comprehensions into the algebraic form is achieved by substitution of the
patterns detailed in Table 1 with their algebraic equivalent. Using these equivalences complex com-
prehensions can be translated:

Example 1 (Translating array comprehension) Consider the following array comprehension expres-
sion:

[f(ij , c)|̄ı < S].

This comprehension can be decomposed into three elementary parts, the use of an axis variable, a
constant value, and a function application: these correspond to the grid, const, and map operators
respectively.

A = [ij |̄ı < S] 7−→ grid(S, j)
B = [c|̄ı < S] 7−→ const(S, c)

[f(A,B)|̄ı < S] 7−→ map(f,A,B)

These translation patterns lead to this algebraic expression:

map(f, grid(S, j), const(S, c)).

For further details on the RAM data-model, query language, and translation see [vBdVK03].

3. Optimizer
Optimization techniques typically focus on those issues and patterns inherent to the expected query
load. Array processing results in patterns significantly different from typical relational queries. Also,
the process of mapping array queries into the foreign relational domain results in an inevitable loss of
context information.

Example 2 (Loss of context) Consider example query

[f(A(x))|x],

that specifies an array whose values correspond to the function f applied to the values in array A.
The system translates it into the following array algebra expression:

map(f, apply(A, grid(SA, 0))).

By representing array as sets of tuples consisting of index/value pairs (i, v), this can subsequently
mapped to the following relational query:

πI.i,f(A.v)(A 1A.i=I.v (I = grid(SA, 0))),

Many properties of the data can be communicated effectively to a relational system: for example,
it is known that the index-columns of an array-relation are key, and that the values in array I have

3. Optimizer 4

a foreign key relation to the index values of array A 1. Nevertheless, some contextual information is
inevitably lost.

In this case, the property information is insufficient for the relational system to discard the join
operation. The array algebra expression however, is easily recognized as an identity transformation
of array A and can immediately be reduced to:

map(f,A),

which maps to this relational query:
πA.i,f(A.v)(A).

This loss of context, caused by relational mapping, makes that relational engines may perform
sub-optimally on non-relational domains. A specialized query optimizer can remedy this problem by
exploiting domain-specific knowledge to produce a better relational query.

In the relational domain the selectivity of a particular operation is often difficult to estimate reliably,
this results in complex, expensive, and, inaccurate cost-models. In contrast, for arrays, the exact
dimensionality and size of each intermediate result is cheap to compute. This provides an array
specific optimizer with exact statistics about alternative query plans that are cheap to determine.

The RAM query optimizer operates natively in the array domain at the internal array-algebra
level. A set of equivalence rules allow it to reformulate the original query and generate alternative
query plans. In addition, several simple heuristics direct the rewriting by indicating the applicability
of individual rules in specific situations. Ultimately, the cheapest among alternative query plans is
chosen by a cost-model.

3.1 Optimizing array queries
The most basic equivalence rules provided to the RAM optimizer deal with the special case of constant
arrays. For example, a function performed over an array with constant values can be performed just
once over the constant value:

Equivalence 1
map(f, const(S, c)) ; const(S, f(c))

Another example is the application of a constant array to a set of indexes:

Equivalence 2
apply(const(S, c), I1, . . . , Ik) ; const(SI1, c)

A similar result can be obtained for constant transformations. The result of an identity transformation
is by definition identical to the original. Many identity transformations are easily identified – for ex-
ample persistent arrays, used in index-expressions, complicate detection – and such array applications
can be removed:

Equivalence 3
apply(A, I1, . . . , Ik) ; A

when
k ≡ |SA|, I1 ≡ grid(SA, 0), . . . , Ik ≡ grid(SA, k − 1)

1Many more properties are known, such as the ranges of index values.

3. Optimizer 5

In the relational domain, it is often beneficial to ‘push selections down’ through a query expression
tree to reduce data volume as soon as possible. Similar reasoning leads to the following rule in the
array domain:

Equivalence 4
apply(map(f,A), I1, . . . , Ik)

!
map(f, apply(A, I1, . . . , Ik))

Notice that this rule is bi-directional: it allows for the apply operator to be pushed both up and down
through other function applications. In general one can reason that if size(A) > size(I) it is beneficial
to push down (apply the rule from left to right) and vice versa.

An interesting aspect of array application is the fact that arrays are stored functions. For any array
expression applied to indexes it is possible to perform the application – evaluate the array function –
directly through substitution:

Equivalence 5
apply(A, I) ; A′

where any grid(SA, i) in A′ is substituted by Ii

Example 3 (Substitution) In the following expression,

[[f(z)|z < 4](x + y)|x < 3, y < 3]

we could substitute the index used in the array-application and obtain the result directly:

[f(x + y)|x < 3, y < 3].

The inverse of this can be used to reduce array expressions that are constant along some of the
axes it is defined for. Suppose there is an array (sub-)expression which is independent of some of the
axes in this shape. The expression can be evaluated over only the axes it depends on and extended
afterward to the desired shape:

Equivalence 6
A ; apply(A′, I)

where
SI = SA, |A′| < |A|, apply(A′, I) ≡ A

Example 4 (Dependencies) The calculus expression

[f(x)|x < 3, y < 4]

defines an array of shape [3, 4], however the values depend only on the x axis. If f is an expensive
function, it may be cheaper to re-formulate the query as follows:

[[f(x)|x < 3](x)|x < 3, y < 4],

where f is first evaluated for all values of x and subsequently duplicated for all values of y.

3. Optimizer 6

The RAM system has no direct control over low-level details such as memory usage, which depends
on the specific execution strategies decided by the relational back-end system. Nevertheless, the
way in which the query is formulated can assist the back-end system in formulating an efficient
execution plan. Intermediate results can require the relational back-end to materialize big tables,
posing severe memory management issues. Fortunately, predictable access patterns in array queries
offer opportunities for rewriting rules that allow for management of system resources. The evaluation
of aggregation functions turned out to be critical with respect to maximum memory usage. The
following equivalence can be (repeatedly) applied to any commutative and associative aggregate 2:

Equivalence 7
aggregate(

∑
, A)

;

map(+, aggregate(
∑

, A1), aggregate(
∑

, A2))
where concat(A1, A2) ≡ A

The importance of the transformations being driven by heuristics is clear in this equivalence: as it
does not reduce the size of the intermediate result, it would not be applied if only the cost-model were
taken into account.

3.2 Distributing array queries
In the field of high performance computing array computations are usually captured in complex algo-
rithms carefully designed to exploit parallelization. This is viable as the complexity of the operations
provides enough work to supply multiple CPUs with a sufficient workload in-between the inevitable
data exchange operations.

RAM queries are composed of many primitive operators, that are too simple to warrant a parallelized
implementation: the amount of work represented by a single operator is too small for the benefits of
distributed evaluation to outweigh communication overhead. However, the workload generated by a
complex query is vast enough to consider distributed evaluation at a higher granularity. This results
in parallelism through the concurrent evaluation of a number of queries each formulated to produce a
part of the complete result.

Distribution of RAM queries over multiple machines involves discovery of a suitable location in the
query plan to split it into disjunct sub queries that can be executed in parallel. In an algebra disjunct
sub-expressions are by definition independent: in the expression f(EA, EB) sub-expressions EA and
EB have no side effects and can potentially be evaluated in parallel. Any operator, with multiple
arguments, is an opportunity to split the query and parallelize sub queries.

However, when simply using those opportunities readily available in an existing query plan it is
hard to achieve a balanced query load across nodes: it is rare to find sub expressions that are equally
expensive to compute. Fortunately, the structured nature of array queries allows the creation of new,
balanced opportunities to split the query for distribution.

A straightforward approach to distribute a query over multiple nodes is to fragment the result space
in disjunct segments and compute each of those parts individually. This approach is simply mimicked
in RAM, generating a series of queries that each yield a specific fragment, and concatenating those
resulting fragments to produce a single result:

Equivalence 8
map(f,A)

!
concat(map(f,A1),map(f,A2))

where concat(A1, A2) ≡ A

2Equivalence 7 deals with the summation, rules for other commutative and associative aggregates are similar.

4. Summary and Discussion 7

Aggregations are also a suitable operation for the creation of balanced sibling sub queries. Equiva-
lence 7 shows how an aggregate can be split into fragments to be combined afterward. Again, a new
opportunity for balanced query distribution is introduced.

Rewriting the query plan like this introduces a new operator in the query, which represents a new
opportunity to split the query for distribution. Moreover, since the size of the various fragments
created can be controlled it is possible to ensure the costs are balanced.

The RAM optimizer is easily extended to include distribution of fragmented queries. The distribute
pseudo-operator distributes its arguments (sub-queries) over multiple machines and collects the results:

Equivalence 9
map(f,A1, A2) ; map(f, distribute(A1, A2))
concat(A1, A2) ; concat(distribute(A1, A2))

The term pseudo-operator is used to indicate that it does not operate on the data, instead it manipu-
lates the query execution itself. Notice that it performs a role similar to that of the exchange operator
introduced in the classical Volcano system [Gra94]. Balanced sub-queries can be created using rules
as Equivalence 7 and Equivalence 8.

3.3 Estimating Query Cost
The query optimizer uses a cost-model to determine the best (cheapest) alternative of the query plans
it produces with the equivalence rules.

The RAM cost-model is simple, it estimates the cost of an array expression based on the sum of all
intermediate result sizes. The underlying assumption of this cost-model is that the total volume of
data processed is the dominant factor in overall costs, not the type of processing required.

The cost-model computes a score for an expression by recursively adding the size of all intermediates
produced by sub-expressions of an operator to the size of its own result.

Example 5 (Cost function) The cost of this expression:

map(+, grid(S, 0), const(S, 1))

is computed as follows. The map produces an array of shape S thereby inducing a cost of |S|. Both
arguments of the map operator, the sub-expressions grid(. . .) and const(. . .), produce intermediate
results, in this case also of shape S. Thus the total estimated cost for the expression is 3|S|.

There is one exception, the distribute pseudo-operator. The distribute pseudo-operator gets assigned
only the maximum cost among its children, as they are evaluated in parallel, and an additional a cost
factor related to the data volume to be communicated.

4. Summary and Discussion
We presented a short overview of the RAM system. The paper focuses on the RAM query optimizer
and in particular on the equivalence rules used to rewrite query plans. The effectiveness of various
optimizations are convincingly shown in [CvBdV04]. In this case study, we showed that the optimized
RAM query plan performed on-par with the custom-built baseline application, while the naive query
plan, with all the optimizations disabled, suffered a performance gap of factor 16.

The distribution strategies presented are based on the assumption that each node has full access
to the complete data set to allow a focus on problems inherent to query distribution without data-
placement issues. Preliminary experiments in this setting on the parallelization of array queries
indicate that the RAM system can produce effective parallel query plans. In those cases examined a

4. Summary and Discussion 8

near-linear speed-up is achieved by automatically distributing a RAM query plan over a small cluster
of machines.

Open issues that remain for future work include the identification of more transformation rules, the
validation of the cost-model and the development of more advanced tactics for reducing the search
space of the optimizer.

9

References

[Bau99] P. Baumann. A database array algebra for spatio-temporal data and beyond. In Next
Generation Information Technologies and Systems, pages 76–93, 1999.

[BLS+94] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax.
SIGMOD Record, 23(1):87–96, 1994.

[CvBdV04] R. Cornacchia, A.R. van Ballegooij, and A.P. de Vries. A case study on array query opti-
misation. In First International Workshop on Computer Vision meets Databases (CVDB
2004), pages 3–10, Maison de la Chimie, Paris, France, June 2004. ACM Press. In coop-
eration with ACM SIGMOD.

[Gra94] Goetz Graefe. Volcano - an extensible and parallel query evaluation system. IEEE Trans.
Knowl. Data Eng., 6(1):120–135, 1994.

[LMW96] L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional arrays:
Design, implementation, and optimization techniques. In ACM SIGMOD 1996, pages
228–239. ACM Press, June 1996.

[LS03] Alberto Lerner and Dennis Shasha. AQuery: Query Language for Ordered Data. In
Proceedings of the International Conference on Very Large Databases VLDB, pages 345–
356, 2003.

[MS97] A.P. Marathe and K. Salem. A language for manipulating arrays. In Proceedings of the
23rd VLDB Conference, pages 46–55, 1997.

[MV93] D. Maier and B. Vance. A call to order. In Proceedings of the 12th ACM SIGACT-
SIGMOD-SIGART symposium on principles of database systems, pages 1–16. ACM Press,
1993.

[Nes01] N. Nes. Image Database Management Systems - Design Conciderations, Algorithms and
Architecture. PhD thesis, University of Amsterdam, December 2001.

[vB04] A.R. van Ballegooij. RAM: A Multidimensional Array DBMS. In Proceedings of the
ICDE/EDBT 2004 Joint Ph.D. Workshop, pages 169–174, 2004.

[vBdVK03] A.R. van Ballegooij, A.P. de Vries, and M. Kersten. Ram: Array processing over a
relational dbms. Technical Report INS-R0301, CWI, March 2003.

