
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Detecting strongly connected components in large
distributed state spaces

S.M. Orzan, J.C. van de Pol

REPORT SEN-E0501 JANUARY 2005

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Detecting strongly connected components in large
distributed state spaces

ABSTRACT
Detecting cycles in a state space is a key task in verification algortihms like LTL/CTL model
checking and, less well known, reduction modulo branching bisimulation. This paper focuses on
the problem of finding cycles (strongly connected components) in very large distributed state
spaces. We present a collection of state space transformations meant as building blocks for
custom algorithms. We also describe two example algorithms and show that they perform well
on practical case studies.

2000 Mathematics Subject Classification: 68N30; 68W15
Keywords and Phrases: verification; strongly connected components; distributed tools

Detecting Strongly Connected Components in
Large Distributed State Spaces ∗

Simona Orzan1,2 Jaco van de Pol2,1

S.M.Orzan@tue.nl Jaco.van.de.Pol@cwi.nl
1Dept. of Math. and Comput. Sci., Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Detecting cycles in a state space is a key task in verification algorithms
like LTL/CTLmodel checking and, less well known, reduction modulo branch-
ing bisimulation. This paper focuses on the problem of finding cycles (strongly
connected components) in very large distributed state spaces. We present a
collection of state space transformations meant as building blocks for cus-
tom algorithms. We also describe two example algorithms and show that
they perform well on practical case studies.

1 Introduction

A strongly connected component (SCC) of a directed graph is a maximal sub-
graph in which every vertex is reachable from every other vertex. The problem
of decomposing a graph into SCCs is a well known and studied one and has an
elegant sequential solution given by Tarjan [24]. The SCC detection problem has
applications in many different areas, from data mining to scientific computing to
computer-aided design and model checking. Our motivation to study it comes from
verification by enumerative model checking and our graphs of interest are state
spaces. The SCC detection occurs in at least two stages of the verification pro-
cess. Firstly, the algorithms for branching bisimulation reduction usually employ
a preprocessing step in which the cycles of invisible steps (τs) are eliminated, i.e.

∗Partially supported by PROGRESS, the embedded systems research program of the Dutch organ-
isation for Scientific Research NWO, the Dutch Ministry of Economic Affairs and the Technology
Foundation STW, grant CES.5009.

1

the SCCs of the τ -subgraph are detected and collapsed. Secondly, SCC detection
is useful for LTL model checking: finding counterexamples means finding cycles
reachable from the root state that contain some special accepting states.

Efforts towards building algorithms and tools for shared and distributed mem-
ory are being made in all segments of the verification process: state space gener-
ation [5, 13], equivalence reduction and equivalence checking [21, 6, 7, 16], LTL
model checking [4, 8].

In this paper we propose a distributed message-passing solution for the de-
tection of SCCs in state spaces. We describe a collection of algorithmic building
blocks that can be combined in various ways heuristically. The algorithms pro-
posed exploit the fact that state spaces, due to being generated as interleavings of
parallel processes, are not just random graphs, but usually have a specific structure:
there is a special initial state (root); their depth (longest distance between any state
and root) and diameter (longest shortest path between any two connected states)
are much smaller than the total number of states or transitions. SCCs are usually
not very long cycles, but small dense knots, and many larger SCCs are built up of
smaller ones. An analysis of typical state space characteristics has recently been
made in [20]. These characteristics do not imply any technical restriction on the
input of our algorithms. They are correct and will work for any graph.

We state the SCC problem and present the solution in the context of unlabeled
graphs The algorithms can immediately be applied to deal with labeled state spaces
in which only SCCs with a certain label must be found, for instance the τ -cycles
in the case of state spaces.

The sequential very efficient (linear in the input size) algorithm of Tarjan [24]
essentially uses depth-first-search and is therefore not likely to have an efficient
parallel implementation [22]. If we try to simulate this algorithm in a distributed
message-passing environment, the single messages would be very small, and the
nodes would most of the time wait for each other. We design our algorithms with
distribution in mind, that is such that individual messages can be buffered and sent
simultaneously, without introducing deadlocks or very long idle times. This is
one of the challenges for verification algorithms on distributed message-passing
environments.

Gaining time efficiency is not our [only/primary] interest for using a cluster. In
our experience, many verification problems generate state spaces that don’t fit in
one computer, so we are forced to look for distributed solutions. Fortunately, our
experiments show that having multiple processors not only compensates for the
extra price of message latencies, but also decreases the total time needed for cycle
elimination.

To solve the problem in a parallel/distributed setting, other methods have been
explored. For instance, a parallel algorithm for finding SCCs that uses matrix

2

multiplication and needs O (N2) processors (where N is the number of states)
is proposed in [14]. But this solution is not usable on a cluster, where the number
of processors available is much smaller than the input size.

Amore interesting approach for our application domain is taken in [11] and [17],
where a divide-and-conquer algorithm is described, analyzed and implemented.
However, that algorithm is aimed at another type of graph: typically much smaller
than our state spaces and with large outgoing degrees. The essential observation is
that the SCC of any state x is exactly the intersection of its successors and predeces-
sors sets. Our coloring transformation (Section 4.4) also uses this idea, but instead
of picking a pivot state and splitting the graph in three independent (no crossing
SCCs) parts, we use a set of prioritized colors and split the graph in many parts
at once. This rather brute force approach exhibits more parallelism and it works
quite well in practice. The trimming step used in [17] is similar to our detection of
atomic components.

In the verification world, the problem of detecting SCCs in a distributed graph
has so far received attention only in the context of (on-the-fly) LTL/CTL model
checking [3, 9]. Like in our approach, in [3] the DFS traversal is abandoned in
favor of BFS. But there the search for cycles is done on-the-fly, thus only some of
SCCs are detected, and moreover the idea advanced is that BFS alone is not effec-
tive in searching for cycles (which is true in the on-the-fly context) and therefore
is combined with DFS. The algorithm proposed in [9] is inspired by a symbolic
algorithm and it also contains a phase where atomic SCCs are eliminated (namely,
those SCCs containing just one state). The problem is again not finding the SCCs,
but finding just one reachable accepting cycle. Moreover, the systems on which
experiments were performed are rather small (mostly under 1 million states).

We encountered the SCC problemwhen building the distributed tool for branch-
ing bisimulation reduction presented in [7].

Outline. Section 2 introduces the main definitions, motivation and the SCC de-
tection problem from the verification point of view. Our distributed state space
transformation routines are described in quite some detail in Section 4. Then, in
Section 5, some experiments with two prototype implementations are presented.
Conclusions are summarized in Section 6.

2 Preliminaries

We will work with an unlabeled state space S ≡ (S, T), where S is a set of states
and T is a binary relation on S representing the possible transitions between states.
We assume that the elements of S are totally ordered. This is a reasonable as-
sumption, since most state space generation tools identify the states by assigning

3

them natural numbers. T ∗ denotes the reflexive transitive closure of T and T−1

the binary relation inverse to T . The incoming degree of a state is the number of
transitions that end in that state. Conversely, the outgoing degree of a state is the
number of transitions originating in that state.

The SCC detection problem is to find a representative function scc : S → S such
that ∀x, y : scc(x) = scc(y) iff (x, y) ∈ T ∗ ∩ T ∗−1.

SCC detection as verification problem. Our intended use of the SCC detec-
tion algorithm is as preprocessing step for two verification algorithms: branching
bisimulation reduction/equivalence and LTL model checking.

The preprocessing phase in the branching bisimulation algorithm consists of
merging the states that can reach each other on invisible paths, since they have
the same (branching bisimilar) behavior. In other words, it consists in collapsing
the SCCs in the state space obtained from the original one by ignoring the visible
transitions. Although observations on sequential implementations show that the
preprocessing phase is a big advantage, the distributed algorithm in [7] avoided
using it because a distributed cycle elimination algorithm that can handle very large
instances seemed to be a difficult and challenging problem in itself. This is our
main motivation to study the SCC problem.

For the LTL model checking algorithm the interesting information is whether an
accepting state belongs to a cycle, no matter what labels that cycle might contain.
In this case a useful preprocessing step is to detect the SCCs of the state space
obtained from the original one by ignoring the labels and to mark all the states
situated on a cycle. This procedure consists of computing scc, then performing an
extra test for self-loops.

Sequential SCC detection. The classical approach to the detection of strongly
connected components is the Tarjan algorithm [24], which is based on depth-first
traversal and solves the problem in linear time. We take this algorithm, well ex-
plained and proved correct in [2], as a primitive named SCCTarjan (S).

3 Distribution

In this section, we prepare the descriptions of the transformations from Section 4.
We explain the parallel computation model, the distribution of the state space and
the data structures and communication primitives underlying the distributed imple-
mentations.

Framework. Our target architecture is a cluster whose nodes are connected by
a high bandwidth network (Distributed Memory Machine). The number of nodes
available is much smaller than the problem size (W << size(S)). We assume

4

that both the nodes and the network are reliable (no nodes failure, no message loss)
and that the order of messages between nodes is preserved.

Distribution of the state space. The state space S is distributed to theW machines
as follows:

S = S0 ∪ · · · ∪ SW−1 and ∀i �= j : Si ∩ Sj = ∅.
T =

⋃

0≤i,j<W

Tij , where Tij = {(x, y) ∈ T | x ∈ Si and y ∈ Sj}

The node (or: processor, machine, worker) i owns the states Si and the transitions
(∀j)Tij . The state spaces are produced in this format by the distributed generation
tool [5] from the µCRL toolset. We also assume a globally known hash function
worker : S → {0 · · ·W − 1} that indicates to which worker every state belongs.
In our implementations the states are identified by pairs (worker, offset) and the
worker function is just a projection. We call transitions that cross worker bound-
aries (i.e. in Tij with i �= j) cross transitions. The performance of most algorithms
on distributed state spaces is influenced by the number of cross transitions. We
work with a random balanced distribution, that ensures about the same number of
states to every worker but does not try to minimize the number of cross transitions.
Of course, this could be improved; for instance, in [18] a method is proposed to
optimize the number of cross transitions, based on abstract interpretation.

Basic data structures: sets and lists. The basic data structures used are sets and
lists. On sets, the usual set union, intersection and difference (∪, ∩,−) are defined.
Lists are sequencesX = 〈x1.x2. · · · .xn〉. We write 〈 〉 for the empty list andX[i]
for the element at position i in the list X . Pairs of lists of equal size are used to
implement relations in a form suitable to distribution. For example, the relation
{(1, 1), (2, 1), (2, 5)} is represented as (〈1.2.2〉, 〈1.1.5〉). Two workers can now
store the two parts 〈1.2.2〉 and 〈1.1.5〉 and as long as the order is not altered, the
relation is implicitly kept by the index. Take the set of transitions between two
workers, Tij . The information about the source states are stored by i, and about
the destination states by j. When some information about the destination states,
for instance, needs to reach the corresponding source states, the information about
all destination states is sent, in the storage order. This ensures that at the recipient
worker the information about each destination reaches the corresponding source.
Note that, for this approach to be advantageous, we need algorithms that actually
do change a lot on their half of the transition list before requesting a transfer. The
penalty of sending large buffers does not pay off if only a small number of updates
is made. Our algorithms are designed to fit to this communication scheme.

To simplify the presentation of the algorithms later on, the following notations,
operations and predicates for lists are considered:

5

X.Y list concatenation
(X, Y) pair of lists with the same length
X − x remove all occurrences of x in X
X + x, (X, Y) + (x, y) X.〈x〉, respectively (X + x, Y + y)
x ∈ X there is at least an occurrence of x in X
(x, y) ∈ (X, Y) there is a position i such that X[i] = x and Y [i] = y
for x ∈ X , for (x, y) ∈ (X, Y) for every occurrence of x in X , or (x, y) in (X, Y).

The function scc extends naturally to sets and lists as follows:

scc(S) def= {scc(x) | x ∈ S} and scc(〈 〉) def= 〈 〉 and scc(〈x〉.X) def= 〈scc(x)〉.scc(X)

Distributed data structures. The worker i maintains the following data:

• Si = the set of owned states.

• scc(Si) = the current scc mapping of the owned states. scc is initialized as
identity.

• Tij = (Sourceij , Destij), for every worker j, including itself. The set of
transitions with the state source owned by worker i and destination owned by
worker j is implemented as a pair of lists, one containing the source states
(Sourceij) and the other the destinations (Destij). The order is the same
for both. So, (x, y) ∈ Tij if and only if there is an index p s.t. x is the pth
element in Sourceij and y the pth element in Destij .

• finalTij = the transitions that are definitely in the final set of transitions,
but possibly with another numbering. More precisely, if (x, y) ∈ finalTij

then (scc(x), scc(y)), with scc the final mapping, will be a transition in the
SCC-reduced state space.

Throughout the transformations, the current state space (S, T), the final set of tran-
sitions (finalT) and the current scc values are treated as global variables. Every
transformation expects them to have a special form, expressed by a precondition,
and modifies them such that a postcondition is ensured. We make the convention
that all sets or lists occurring in the pseudocode descriptions that are not listed as
input, are considered initialized as ∅ and 〈 〉, respectively.
Communication primitives. Processes communicate by executing nonblocking
send and receive operations, as well as two more complex communication patterns:

• SEND m TO i - messagem to worker i.

• RECEIVE m FROM i - messagem from worker i.

6

• DBSUM(xi , xall) - for an arbitrary set of local values x0 · · ·xW−1, col-
lectively compute their sum into a global value xall and store a copy of the
result on each worker. This is useful when all the workers are executing a
loop and the exit condition depends on a global value.

• REQ-REP j : B := f (B) - the worker executing this pattern (i) sends a
buffer (request) B to the worker j (not necessarily �= i) and expects j to do
the same, i.e. send to i a buffer B′. Upon receiving B′, i creates a list C ′ of
the same length as B′, where if B′[t] = x then C ′[t] = f(x). Then it sends
C ′ to j and waits for a similar reply from j, i.e. a listC. In the end, i replaces
B with the newly received list C and j replaces B′ with C ′. Thus, the effect
of the request-reply action is B := f(B) and B′ := f(B′).

To implement these primitives, we relied on the LAM/MPI (Message Passing In-
terface) library [23]. Occasionally, in the actual implementations we also used MPI
primitives that are more powerful than simple sends and receives. An example is
MPI AlltoAll, that transfers data, in parallel, from every worker to every worker in
a careful order so as to avoid deadlocks. To keep the presentation simple, we ab-
stract away from these details, and base the exposition of the distributed procedures
only on the primitives above.

4 Distributed state space transformations

In Sections 4.1- 4.5, we introduce the various building blocks for SCC detection.
An algorithm consists of a particular combination of these basic building blocks.
Section 4.6 gives two (extreme) examples of such algorithms.

4.1 Identification of atomic components

We start with a simple building block, which turns out to be quite effective in
practice. In fact, this procedure is sufficient if the state space contains no cycles.

Usually, a state space will contain a lot of states that do not connect via cycles
with any other state. They are SCCs on their own (atomic SCCs). We describe a
simple procedure that discovers some of them: mark all the states with incoming
degree 0 as atomic components and remove them from the current state space,
together with their outgoing transitions; repeat until all states have at least one
incoming transition. Note that after a number of iterations there will be more than
one state with incoming degree 0.

7

elim-atomic-fwd
Postcondition: ∀x ∈ S∃y ∈ S s.t. (y, x) ∈ T .
(i.e. all atomic components {x} reachable from a start node (node with incoming degree 0) have
been identified and removed)

1 /* compute all the incoming degrees */
2 for x ∈ Si do indegree[x] := 0 enddo
3 for all workers j do
4 SEND Destij TO j

�
RECEIVE Destji FROM j

5 for x ∈ Destji do indegree[x] := indegree[x] + 1 enddo
6 enddo
7 /* loop: eliminate all the states without predecessors */
8 /* and their outgoing transitions */
9 while there still are states with indegree 0 do
10 for all workers j : Bij := ∅
11 for x ∈ Si : indegree[x] = 0 do
12 Si := Si − {x}
13 for (x, y) ∈ Tij do
14 Tij := Tij − (x, y)
15 finalTij := finalTij + (x, y)
16 Bij := Bij + y
17 enddo
18 enddo
19 for all workers j do
20 SEND Bij TO j

�
RECEIVE Bji FROM j

21 for x ∈ Bji do indegree[x] := indegree[x] − 1 enddo
22 enddo
23 enddo

Figure 1: Forward BFS pass in order to identify atomic components and final tran-
sitions (worker i)

Correctness argument The states with incoming degree 0 are for sure atomic
components, otherwise they would be reachable from other states. Their scc will
not change anymore and it will also not influence the scc of other states, therefore
they can be further ignored. The transitions originating in atomic SCCs obviously
lead to states in other SCCs, thus they do not influence the scc function and can
also be ignored (removed).

Distributed implementation Fig.1 shows how to find the atomic components
distributedly. Workers begin by computing together (steps 2-6) the incoming de-
grees of all states, indegree. As already said, transitions Tij are stored by worker
i as a pair of lists (Sourceij , Destij). The incoming degree of an arbitrary state
x ∈ Sj is the number of transitions that have x as destination state and it is easily
computed by counting the occurrences of x in all lists Destij . To this end, every

8

list Destij is sent to worker j (step 4), where the number of occurrences is updated
(step 5). In the second part (steps 9- 23), all states without incoming transitions are
marked as atomic SCCs. Further, any transition with an atomic SCC as source will
also be removed (steps 14, 15). Then the destination state of such a transition has
to have its incoming degree updated: steps 19-22.

Complexity In steps 4-5, there will be one message for every pair of workers,
and the destination state of every transition will be transfered once. Therefore, the
message complexity (i.e., total number of messages sent) of computing the incom-
ing degrees is O (W 2) and the bit complexity (i.e., total size of all messages sent)
O (size(T)). The time complexity, under the balanced distribution assumption,
isO ((size(T) + size(S))/W). The total size of the buffers being exchanged in
the while loop is at most size(T). As for the total number of messages: in the
worst case, every buffer gets always only one transition, which leads to a message
complexity of O (size(T)).

In order to detect as many such atomic components as possible, this procedure
should be executed with regard to both forward and backward transitions. We
have discussed only the forward pass. The backward pass can be implemented by
reversing the graph (see steps 2 -4 in the heads-off routine, Fig.3) and calling the
forward pass (with the subtle difference that the transitions marked as final should
be reversed again).

Note that this procedure is sound, but not complete. The states placed “in
between” two cycles will never get the degree 0 as long as the cycles are still in
place.

4.2 Partial SCC detection

The Tarjan DFS algorithm can be exploited in a distributed environment as well,
in several ways. One possibility is to let it perform on the local subgraph (Si, Tii)
of each processor, in order to find and collapse the local components. For each
component, one of the states, say x, is chosen as representative and all the others
(y) are identified with it by means of the scc function: scc(y) := x. Then all tran-
sitions have to be renamed from (x, y) to (scc(x), scc(y)). At the other extreme,
SCCTarjan can be applied on the whole state space by a distinguished worker that
first collects the state space parts from all the other workers, then computes scc and
sends it back to the workers. This is of course only possible when the state space
is sufficiently small – possibly after a series of other transformations.

A good idea for when the graph is not small enough and the elimination of
local components does not shrink it substantially, is an intermediate approach: use

9

collapse-partial (SOME)
Postcondition:

(∀x, y ∈ SSOME) ((x, y) ∈ TSOME
∗ ∩ TSOME

∗−1 iff scc(x) = scc(y))

1 randomly pick a manager M ∈ ALL

2 /* send the local graph to the manager */
3 if i ∈ SOME then SEND Si,

S
j∈SOME Tij TO M fi

4 /* act as manager, if necessary */
5 if i = M then
6 for i ∈ SOME do RECEIVE Si,

S
j∈SOME Tij FROM i enddo

7 SCCTarjan (SSOME, TSOME, scc p)
8 for i ∈ SOME do SEND scc p(Si) TO i enddo
9 fi
10 /* get the new scc */
11 if i ∈ SOME then RECEIVE scc(Si) FROM M fi
12 update

collapse-partial-all (SOME1 · · · SOMEm)
Precondition: (∀i, j with 1 ≤ i < j ≤ m) SOMEi ∩ SOMEj = ∅

collapse-partial(SOME1, scc)
�
· · ·

�
collapse-partial(SOMEm, scc)

Figure 2: Partial SCC detection

more managers and apply the transformation above on disjoint subsets of workers,
in parallel. This way, the managers get a smaller global graph (this may make
the difference between not feasible and feasible). Moreover, the chance of finding
components is higher than when collapsing locally. By repeatedly collapsing SCCs
on random small sets of workers, we hopefully arrive at a global graph that is small
enough to be further reduced on one worker.

Distributed implementation Fig.2 shows two variants of the collapse-partial
transformation. Let SOME be the subset of workers under consideration and let
SSOME = (SSOME, TSOME) be the subgraph induced by the states owned by workers
in SOME. The idea is to simply send SSOME to a special worker M (step 3), that will
locally compute the scc function (step 7) and send it back (step 8) to the workers in
SOME. Note that the assigned scc values may not be the final answers; they can be
overwritten in future transformations that consider larger parts of the graph. Since
disjoint subsets of workers generate disjoint subgraphs, the partial SCC reduction
can be executed in parallel on more subsets of workers (collapse-partial-all).

10

Complexity The number of messages used in collapse-partial isO (size(SOME)),
with a total size of O (size(SSOME) + size(TSOME)). The time complexity is also
O (size(SSOME) + size(TSOME)).

4.3 Update

The two routines above (identify atomic SCCs and collapse-partial) only assign
values to the scc function, without actually replacing x with scc(x), that is without
renaming the transitions from (x, y) to (scc(x), scc(y)). This is the done by a
simple update routine: first the destination states of all transitions (let y be such
a state) are replaced by their new representative (scc(y)), then the source states
(x) replaced by scc(x) and moved to their respective new owners, and finally the
updated transitions are moved to their new owners. The implementation is rather
straightforward and we do not give a pseudocode for it.

4.4 Reducing the problem by coloring

With a certain state coloring, a partition of the set of states can be achieved, such
that if x and y are in the same SCC then x and y have the same color; this splits
the SCC problem in smaller disjoint instances. The coloring procedure starts with
an initial color function c : S → N satisfying a property that we call safety, which
ensures that whenever two states are colored the same they must be in the same
SCC:

∀x, y ∈ S if c(x) = c(y) then (x, y) ∈ T ∗ ∩ T ∗−1

If there is no a priori information available that allows the fast construction of a
safe initial coloring, we can choose the identity function, which trivially satisfies
the condition. We assume an order on the colors, <. The coloring procedure
consists in successively modifying c until no modification is possible anymore.
At each modification step, every state x passes its color to every successor y for
which c(x) < c(y). When the coloring is done, the transitions with the source and
destination colored differently are removed, because they cross SCCs. The result
is a set of disconnected and smaller state spaces, each of them uniformly colored.
Note also that every small state space has one or more special states that kept their
initial color – let us call them roots.

Properties of the final coloring. Let (Sstart, T start), col start be a state space
and an initial color function and let (S, T), col be the state space and color function
after the colorify action. Let us also define a set Roots = {x ∈ S | col start(x) =
col(x)}. The following facts are true:

11

• every SCC in T start (and T) is painted uniformly by col
Proof: at the end of the painting procedure, col [x] ≥ col [y] for every tran-
sition (x, y). This means that col [x] ≥ col [y] for any x, y s.t. (x, y) ∈ T ∗.
If two states x and y are in the same strongly connected component then
there are paths in T ∗ from x to y and from y to x. Thus col [x] ≥ col [y] and
col [y] ≥ col [x], hence equal.

• if (x, y) ∈ T ∗ then col(y) = col(x)
Proof: At the end of the coloring procedure, all the transitions (x, y) with
col(x) �= col(y) are eliminated.

• if col start is safe then: if x ∈ Roots then col(y) = col(x) iff (x, y) ∈ T ∗

Proof: Since col start is safe, all the states z with col start(z) = col start(x)
must be on a cycle with x. If col(y) = col(x) then there is a path (possibly
empty) from one of these states to y, because the colors propagate only on
paths. It follows that there is also a path from x to y. The other direction was
proved at the previous point.

Computing scc from the final coloring. These observations justify the claim
that the final coloring partitions S into subsets S0 · · ·Sn−1 such that any strongly
connected component from the initial graph is completely contained in one of the
subgraphs induced (S0, T 0) · · · (Sn−1, Tn−1). The subgraphs are actually the
forward reachability sets of a few selected states (roots). Moreover, solving the
problem of detecting the strongly connected components in the initial graph re-
duces to solving it for the n subgraphs. The final scc mapping is simply the union
of the scc sub-mappings thus resulted.

Distributed implementation. Fig.3(up) shows the distributed procedure colorify
that takes a color function col on the states of a graph and modifies it repeatedly
until it stabilizes, that is until col [x] ≥ col [y] for every transition (x, y). The mod-
ifying step identifies the transitions (x, y) that do not conform to this condition and
copies the color of the parent to the child.

The colorify routine finishes in about size(T)∗diameter steps, which is quite
reasonable for state spaces, that usually have a very small diameter.

Heads off. Optionally, we can exploit the colors somewhat more, by finding and
extracting some SCCs. Pick a root x. Since the initial coloring was safe, the states
wearing x’s color are precisely those reachable from x. Thus, the states belonging
to the SCC of x are those that are colored the same as x and can reach x.

12

colorify (colstart) returns col
Precondition: (safe) if colstart(x) = colstart(y) then (x, y) ∈ T ∗ ∩ T ∗−1

Postcondition: ∀x, y ∈ S ∀(x, y) ∈ T col(x) = col(y)
1 col := colstart

2 /* loop:the color of the parent propagates */
3 /* to the child, if the color of the child is weaker */
4 DBSUM(size(Si) , totalC)
5 Changed := Si

6 while totalC > 0 do
7 newC := ∅
8 for all workers j do
9 Bij := {(y, col [x]) | (x, y) ∈ Tij and x ∈ Changed}
10 SEND Bij TO j

�
RECEIVE Bji FROM j

11 for (y, c) ∈ Bji do
12 if (c < col [y]) then col [y] := c; newC := newC ∪ {y} fi
13 enddo
14 enddo
15 Changed := newC; DBSUM(size(Changed) , totalC)
16 enddo
17 /* mark as final all the transitions between */
18 /* states of different colors */
19 for all workers j do
20 REQ-REP j : Destij := col (Destij)
21 for (x, y) ∈ Tij s.t. col [x] �= col [y] do
22 Tij := Tij − {(x, y)}; finalT := finalT ∪ {(x, y)}
23 enddo
24 enddo
25 return col

heads-off (col, Roots)
Precondition: ∀(x, y) ∈ T col(x) = col(y)

∧ ∀x ∈ S ∃ a unique r ∈ Roots col(x) = col(r)
1 /* reverse the transitions */
2 for all workers j do
3 SEND Sourceij , Destij TO j; RECEIVE Destij , Sourceij FROM j
4 enddo
5 /* paint the roots with their old color */
6 for x ∈ Si do c[x] := size(S) + 1 enddo
7 for r ∈ Roots do c(r) := col(r) enddo
8 c := colorify(c)
9 for x ∈ Si do
10 if c(x) = col(x) then scc(x) := the unique r ∈ Roots s.t. col(r) = col(x) fi
11 enddo
12 /* reverse the transitions again */
13 for all workers j do
14 SEND Sourceij , Destij TO j; RECEIVE Destij , Sourceij FROM j
15 enddo
16 update

Figure 3: (Worker i) Graph coloring (up) and elimination of root components
(down)

13

The corresponding routine heads-off, described in Fig.3, gets as input a col-
oring of the state space together with a set of roots (one root per color) with the
property that every root can reach all (and only) the states painted in its color. This
means that the states that are reachable from their root also on backward paths,
form the root’s strongly connected component. An easy way to compute the back-
ward reachable states is reversing the state space (steps 2- 4) and coloring it again,
with an initial color function that leaves all the non-root states unpainted. The
nodes that get painted in this new coloring round are in their root’s SCC and can
be marked as such – and removed from S. In the end, the state space gets back to
the original orientation (13- 15).

4.5 Eliminate reflexive and multiple transitions.

As a result of other transformations, transitions of the form (x, x) and multiple
occurrences of the same transition can appear, that have no influence on the SCC.
Eliminating these reduces the size of the graph. Since for every state all the out-
going transitions are kept on the same worker, this is a simple local operation and
requires no network communication. Therefore, we will not explain it.

4.6 Two overall procedures

Note that every transformation eliminates some of the states and transitions, either
by collapsing SCCs or by proving that certain states are atomic or certain transi-
tions are definitely between different components. When discovered, the atomic
states are thrown away and the transitions between SCCs are stored in the set
finalT. After a number of transformations, the set of transitions left in the state
space will drop to ∅. At that moment, scc and finalT define the reduced graph,
which is the initial one modulo the strong connectivity equivalence relation. But it
is possible that scc of some states does not hook them directly to their head of com-
ponent, but via some intermediate states. To get the final scc definition, a flattening
phase must be performed, at the end of which ∀x ∈ S : scc(scc(x)) = scc(x).
The distributed implementation of this phase uses just one BFS pass of the graph.
This is possible because throughout all the transformations, the following invariant
is preserved:

∀x ∈ S ∃ a unique y ∈ S s.t.scc(y) = y ∧ scc(scc(· · · scc(x))) = y.

After flattening, the state space without cycles is:

Sscc = {scc(x) | x ∈ S}, T scc = {(scc(x), scc(y)) | (x, y) ∈ finalT}

14

CE1 - groups:
elim-atomic
groupsize = 1
while groupsize < W do

partition ALL in groups of size (at most) groupsize : ALL :=
S

0≤i<W/groupsize SOMEi

if ∃i :
P

j∈SOMEi
size(T j) > MAX

then ERROR : group too large
else
collapse-partial-all (SOME0 · · · SOMEm)
fi
groupsize := 2 ∗ groupsize

enddo

CE2 - colors:
while (T �= ∅) do

elim-atomic
c := colorify (Self)
Roots := {x ∈ S | c(x) = x}
heads-off (c, Roots)

enddo

Figure 4: Two overall procedures.

We implemented two SCC reduction algorithms based on the transformations pro-
posed, one using mainly the collapse-partial method, the second using colors (Fig.4).
For the first one, a constant MAX is needed to specify the maximum load (in number
of transitions) that a worker can handle.

CE1 - groups This algorithm is aimed at speed. It uses a series of collapse-
partial-all calls to reduce quickly the size of the distributed graph. The series begins
with finding, in parallel, the SCCs on the subgraphs local to every worker (level 0,
collapse-partial-all with groupsize 1). Then the groups of workers double in size
every step, until only one group including all the workers is considered. If at any
step the maximum load is reached, the algorithm stops with an error. This approach
will work well for relatively small state spaces and for dense ones, with many small
cycles inside of larger ones.

CE2 - colors This algorithm uses only the color-based transformations. Self de-
notes the identity function, Self(x) = x. The algorithm repeatedly colors the state
space starting with Self as initial color function and extracts the head components.
Note that, with Self as initial color, every color gets a unique root. This algorithm
may in general be slower, but it always terminates successfully, because its mem-
ory usage stays more-or-less constant and, moreover, the buffers can be restricted

15

to a convenient size (while in the CE1 case, the manager has to be able to simulta-
neously store the local graphs of several workers in its memory).

5 Experiments

We evaluated the performance of the two prototypes on a series of large distributed
state spaces generated for the verification of a system for lifting trucks [15] (lift5,
lift6), a cache coherence protocol [19] (cache), some instances of the Sokoban
game [1] (screen.706, screen.801, screen.1) and a sliding window protocol [12]
(swp piggy). We also included two state spaces without invisible cycles from the
VLTS [10] benchmark (vasy 8082, vasy 4338). The problem sizes and some other
relevant structural characteristics, together with the reduction times are summa-
rized in Fig.5. The times of the distributed algorithms were recorded on a cluster
of 4 dual AMD Athlon MP 1600+ nodes with 2G memory each, running Linux
and connected by Gigabit Ethernet. For the tests with the sequential algorithm, one
of the cluster machines was used. The CE1 and CE2 columns show the runtimes
of the two algorithms, not including the I/O operations.

Although the goal of these distributed algorithms is to allow handling state
spaces that do not fit in the memory of one machine, and not necessarily an im-
proved performance, nice speedups w.r.t. the sequential tool can be observed on
the larger state spaces. For the two smallest examples, the communication cost is
too large and leads to a slowdown. The low runtime of both CE algorithms on the
case studies with a high percentage of atomic SCCs (even much lower than the
sequential Tarjan algorithm!) is mainly due to elim-atomic, which isolates in one
pass all the states which are atomic SCCs. Note that in most cases CE1 is faster
than CE2. However, this is not true for the Sokoban screens, that have a very small
depth, which is very much to the advantage of CE2. The number of iterations in
CE2 depends on the diameter of the graph, which is usually rather small for state
spaces. In fact, in the experiments above this number was at most 5.

In order to justify that the cycle elimination algorithms can be useful as pre-
processing step for branching bisimulation reduction, we also show the runtimes of
a distributed branching bisimulation reduction tool [7] on the original state spaces
and on the SCC-reduced state spaces. The important observation here is that the
cycle reduction times are usually much smaller than the branching bisimulation
reduction times. This means that although the cycle elimination step is not al-
ways advantageous, it is also not harmful and could be always done, just in case it
might provide an important gain (like for the Sokoban screens). Moreover, the cur-
rent branching bisimulation algorithm is not optimized for the case when the input
state space is guaranteed not to contain cycles. There is much space for improving

16

in this direction and then the small penalty paid for eliminating the cycles would
completely pay off.

6 Conclusions

We designed and implemented distributed procedures for state space transforma-
tions, which, combined in various ways, solve the problem of detecting strongly
connected components in large state spaces.

Given that the best single-threaded solution for SCC detection is not efficiently
parallelizable, we proposed two (orthogonal) heuristics that approach the problem
by reducing it to smaller instances, solvable in parallel. The first idea is to use the
Tarjan sequential SCC detection algorithm on groups of workers. The local graphs
of several workers get sent to a manager, where the combined subgraph is solved
sequentially. Depending on the size of the workers’ group, this procedure ranges
from solving all local subgraphs in parallel to solving the whole global graph. Due
to memory limitations, this approach is not always successful. Therefore we also
proposed an alternative solution, based on a state coloring strategy which helps to
compute and intersect forwards and backwards reachability sets. This is done by
exclusively employing BFS traversals, which are well suitable for parallel imple-
mentations, especially since the state spaces usually have a small height.

A third heuristics that proved very helpful uses the observation that if a state is
on a non-trivial cycle then it must be reachable from at least one other state placed
on a cycle. Thus, the states without parents cannot be on cycles. They are their
own (atomic) SCC, and so are also all the states reachable only from atomic SCC.
Removing these states is quite cheap and the state space usually becomes signif-
icantly smaller. The same operation applied on the reversed state space reduces
it even more. The strongest effect of eliminating atomic components can be seen
on state spaces without cycles, when the SCC detection finishes in one pass, thus
linear time.

The reasonable performance of our algorithms demonstrates that cycle elim-
ination on very large distributed state spaces is feasible and useful. Since SCC
detection is one of the most popular graph problems, it is probable that applica-
tions for these algorithms can be found outside the verification area as well.

Future work. The obvious further step is to optimize the distributed branching
bisimulation algorithm of [7] under the assumption of absence of cycles and in-
tegrate the SCC detection as preprocessing phase there. Another attractive con-
tinuation is to implement an SCC detection algorithm that combines the methods
from CE1 and CE2. This algorithm would use the technique of partitioning by
colors only until the graph pieces are small enough to be collapsed by the groups

17

state
size

of
the

state
space

no.atom
ic

size
of

R
untim

es
(s)

R
untim

es
B
B
(s)

space
s
i
z
e
(S)

s
i
z
e
(T
)

τs
SC
C
s
largest

seq.
C
E
1

C
E
2

after
original

(in
10

6)
(in

10
6)

(in
10

6)
(in
%
of

S
)

SC
C

C
E

screen.706
1.2

2.7
2.4

6.6
38

4.4
7.7

12.4
9.6

106.8
lift5

2.1
8.7

3.8
98.9

165
17.8

8.6
14.7

79
86

vasy
4338

4.3
15.6

3.1
100.0

1
31.74

6
6

82
82

vasy
8082

8.0
42.9

2.5
100.0

1
103.9

11
11

27
27

screen.801
20.7

49.7
44.9

4.3
50

145.7
172

112.5
43.6

2819.2
sw
p
piggy

9.6
53.4

30.9
10.5

45
197.3

125
237

122
341

cache
7.8

59.1
22.8

99.5
248

153.6
45

47
1331

1394
screen.1

29.9
72.3

65.9
1.2

50
-

210
121

36.7
180

000
lift6

33.9
165.3

74.1
99.8

486
-

160
305

930
1039

Figure
5:
Som

e
case

studies:
size,structure,reduction

tim
es

18

technique. Further, using the distribution method presented in [18] could lead to a
significant performance improvement, especially for the partial SCC detection.

References

[1] Sokoban. http://www.cs.ualberta.ca/˜games/Sokoban/.

[2] A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms.
Addison-Wesley, 1983.

[3] J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model
checking. In Proceedings ASE’03, pages 106–115. IEEE Computer Society,
2003.

[4] J. Barnat, L. Brim, and J. Střı́brná. Distributed LTL model-checking in SPIN.
In Proceedings SPIN’01, volume 2057 of LNCS, pages 200–216, 2001.

[5] S.C.C. Blom, I. van Langevelde, and B. Lisser. Compressed and distributed
file formats for labeled transition systems. In Proceedings PDMC’03, vol-
ume 89 of ENTCS, 2003.

[6] S.C.C. Blom and S.M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. In Proceedings PDMC’02, volume 68 of ENTCS,
2002.

[7] S.C.C. Blom and S.M. Orzan. Distributed branching bisimulation reduction
of state spaces. In Proceedings PDMC’03, volume 89 of ENTCS, 2003.

[8] B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the al-
ternation free µ-calculus. In Proceedings TACAS’01, volume 2031 of LNCS,
pages 543–558, 2001.

[9] I. Černá and R. Pelánek. Distributed explicit fair cycle detection (set based
approach). In Proceedings SPIN’03, volume 2648 of LNCS, pages 49–73,
2003.

[10] CWI/SEN2 and INRIA/VASY. The VLTS benchmark. http:
//www.inrialpes.fr/vasy/cadp/resources/benchmark\
_bcg.html.

[11] L.K. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly con-
nected components in parallel. In Proceedings Irregular’00, volume 1800 of
LNCS, pages 505–512, 2000.

19

[12] W. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol. Verifying a
sliding window protocol in µCRL. In Proceedings AMAST’04, LNCS, 2004.

[13] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construc-
tion for model-checking. In Proceedings SPIN’01, volume 2057 of LNCS,
pages 217–234, 2001.

[14] H. Gazit and L. Miller. An improved parallel algorithm that computes the
BFS numbering of a directed graph. Information Processing Letters, 28:61–
65, 1988.

[15] J.F. Groote, J. Pang, and A.G. Wouters. Analyzing a distributed system for
lifting trucks. Journal of Logic and Algebraic Programming, 55(1–2):21–56,
2003.

[16] C. Joubert and R. Mateescu. Distributed on-the-fly equivalence checking. In
Proceedings PDMC’04, ENTCS, 2004.

[17] W. C. McLendon III, B.A. Hendrickson, S.J. Plimpton, and L. Rauchwerger.
Identifying strongly connected components in parallel. In Proceedings SIAM
PP01, 2001.

[18] S.M. Orzan, J.C. van de Pol, and M. Valero Espada. A state space distribution
policy based on abstract interpretation. In Proceedings PDMC’04, ENTCS,
2004.

[19] J. Pang, W.J. Fokkink, R. Hofman, and R. Veldema. Model checking a
cache coherence protocol for a Java DSM implementation. In Proceedings
FMPPTA’03, 2003.

[20] R. Pelánek. Typical structural properties of state spaces. In Proceedings
SPIN’04, volume 2989 of LNCS, 2004.

[21] S. Rajasekaran and I. Lee. Parallel algorithms for relational coarsest partition
problems. IEEE Transactions on Parallel and Distributed Systems, 9(7):687–
699, 1998.

[22] J.H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, 1985.

[23] J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI.
In Proceedings of the 10th European PVM/MPI Users’ Group Meeting, vol-
ume 2840 of LNCS, 2003.

20

[24] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1:146–160, 1972.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

