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ABSTRACT

This technical report contains the papers submitted to and presented at the 1st Workshop on
Aspect Reverse-Engineering, held in conjunction with the 11th Working Conference on Reverse
Engineering (WCRE), in Delft, The Netherlands. The aims of this workshop was to bring
together researchers and practitioners within the field of aspect reverse engineering, to review
the state-of-the-art and state-of-the-practice and to identify a list of interesting open issues that
remain to be studied. The workshop was organised as a structured discussion, based on
interesting and relevant topics extracted from position papers.
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Abstract

This technical report contains the papers submitted to and presented at'tiiéoikshop on Aspect Reverse-Engineering,
held in conjunction with the ¥4 Working Conference on Reverse Engineering (WCRE), in Delft, The Netherlands. The aims
of this workshop was to bring together researchers and practitioners within the field of aspect reverse engineering, to review
the state-of-the-art and state-of-the-practice and to identify a list of interesting open issues that remain to be studied. The
workshop was organised as a structured discussion, based on interesting and relevant topics extracted from position papers.

1 Introduction

Aspect-oriented software development [1] aims at improving the handling of crosscutting concerns by capturing them
explicitly in well-modularised entities, called aspects. In this way, it tries to improve the overall quality of an application,
since improved modularisation should lead to better evolvability, maintainability, understandability, reusability, and so on [1,
2].

A large body of research exists on the development of aspect-oriented programming languages and mechanisms. As this
research starts to mature, AOSD techniques are adopted in many new applications. Much less attention is paid, however,
to how already existing applications can be improved by adopting these techniques. In particular, we should study how
applications developed without AOSD techniques can be migrated into aspect-oriented applications. Additionally, even
applications using AOSD from their inception might need to be re-engineered because concern code becomes less well-
organised over time and because opportunities for aspects might not be apparent when different developers are working on
the same code base independently.

The subject of aspect reverse engineering thus raises several interesting issues and questions:

e How can we identify aspects in the source code? Can we automate this process? Which techniques can we apply?

e How can we extract aspects from the source code? How do we define appropriate, understandable and high-quality
aspects? What criteria should we use to determine the quality of an aspect?

e When should we prefer an aspect-oriented solution over an object-oriented solution?

e How can we restructure the ordinary source code so that the aspects are removed from it?



e What is the impact of the aspect language on the extraction process? Should specific aspect languages be developed
or do general aspect languages as they exist today suffice?

e How can we ensure the behaviour of the original applications is preserved after the migration? Can we use existing
tests to ensure this, or do we need other kinds of tests?

o Will aspect-oriented techniques improve the overall quality of applications? How can we measure this quality im-
provement?

e Do these techniques scale up to applications spanning multiple millions of lines of code?

The goal of this workshop was to address these questions, identify possible other relevant and important issues in this
domain and bring together researchers interested in and working on the subject.

2 Workshop Format

The half-day workshop was split into three sessions:
1. an opening session, that introduced the topics of discussion.
2. asession consisting of position paper presentations and discussion.

3. a summary and wrap-up session, where open questions, interesting future trends and possible collaborations were
discussed.

Based on the submitted position papers, two interesting tracks were scheduled: a teagecnminingand a track on
aspect refactoringThe papers were presented as follows, with the presenters underlined:

Aspect Mining

1. Silvia Breu:Towards Hybrid Aspect Mining: Static Extensions to Dynamic Aspect Mining
2. Jens Krinkeand Silvia Breu:Control-Flow-Graph-Based Aspect Mining

3. David Shepherdleffrey Palm and Lori Pollockfhe Fast Prototyping and Evaluation of Aspect Mining Analyses
via Timna

4. Magiel Bruntink Aspect Mining using Clone Class Metrics

Aspect Refactoring

1. Marius Marin Refactoring JHOTDRAWS Undo concern to ASPECTJ
2. Magiel Bruntink, Arie van Deursen and Tom To@wsolating Crosscutting Concerns in System Software

3. Andy ZaidmanToon Calders, Serge Demeyer and Jan Pared&aactive Introduction of Aspects for Program
Comprehensian

4. Mariano Ceccatand Paolo TonellaMeasuring the Effects of Software Aspectization

The remainder of this technical report includes all of these papers for easy reference. The presentations that accompany the
papers can be downloaded from tIM\REwebsite, to be found at the following URL: http://www.cwi.nl/ tourwe/ware.html.

The success of this workshop was mainly due to the people that attended it, presented their ideas and participated in the
discussions. We would like to thank all of these people and hope you enjoy reading their contributions.
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Towards Hybrid Aspect Mining: Static Extensions to Dynamic Aspect Mining

Silvia Breu
MCT/NASA Ames Research Center
silvia.breu@gmail.com

Abstract also drawn to the question how AOP can serve the commu-
nity in re-engineering legacy systems.

Aspect mining tries to identify crosscutting concerns in A major problem in re-engineering legacy code based
legacy systems and thus supports the refactoring into anon aspect-oriented principles is to find and to isolate these
aspect-oriented design. This position paper describgs crosscutting concerns. This task is calladpect min-
nAMIT, the first aspect mining tool that detects crosscut- ing [13]. Detected concerns can be re-implemented as
ting concerns based on dynamic analysis. Furthermore, it Separate aspects, thereby improving maintainability and ex-
presents the results of several case studies, and estimatetensibility as well as reducing complexity. Aspect mining
the quality of theDynAMIT approach. Based on that, we can also provide insights that enable us to classify com-
propose a possible combination with static program infor- mon aspects which occur in different software systems,
mation such as static object and inheritance information to such as logging, timing, and communication. Several ap-
extend and improve the dynamic approach. proaches based on static program analysis techniques have

been proposed for aspect mining [4, 7, 8, 10, 11, 15]. This
position paper describd3ynAMIT [1, 2, 3], the first dy-
namic program analysis approach that mines aspects based
L on program traces, presents an overview of some case stud-
1. Motivation ies, evaluates the approach’s strengths and limitations, and

- ) ~ proposes a possible direction of extensions and improve-
With increasing needs, software systems grow in size ment.

and become more and more complex. The complexity does
not only lie in the requirements on the programs but also
in the problem of so-callethngled codg9]. This notion .
refers to code that exists several times in the system but2' DynAMIT

cannot be encapsulated by separate modules using tradi-

tional techniques (e.g., object-oriented design principles). DynAMIT is a dynamic aspect mining approach based
The problem occurs if underlying functionality crosscuts on program traces that are generated during program exe-
the whole software system. Thus, tangled code makes softcution. These traces are then investigated for recurring ex-
ware systems more difficult to maintain, to understand, andecution relations. Different constraints specify when an ex-
to extend.Aspect-Oriented Programmin@AOP) [9] pro- ecution relation is “recurring”, such as the requirement that
vides new separation mechanisms for such compiless- the relations have to exist more than once or even in differ-
cutting concerng12]. AOP is a design technique that re- ent calling contexts in the program trace. The dynamic anal-
tains the advantages of object-oriented programming andysis approach has been chosen because it is a very power-
aims at avoiding theyranny of the dominant decomposi- ful way to make inferences about a system: It dynamically
tion. Traditional languages and modularisation mechanismsmonitors actual, i.e., run-time program behaviour instead of
suffer from that limitation: The program can be modularised potential behaviour, as static program analysis does. The ap-
in only one way at a time, and the many kinds of con- proach has been implemented in a prototye cdllgdAMIT
cerns that do not align with that modularisation end up scat- (Dynamic AspectMining Tool) and evaluated in several
tered across many modules and tangled with one anothercase studies over systems with more than 80 kLoC. Case
This new programming paradigm with its extensions to pro- studies have shown that the technique is able to ideatify
gramming languages (e.g., Aspectd [14], AspectC++ [6]) tomaticallyboth seeded and existing crosscutting concerns
has attracted attention as it enhances design and developn software systems. The full results of both algorithms can
ment of software systems. However, attention is increased be found in [1].



2.1. DynAMIT Approach to be defined. The constraints will implicitely also formal-
ize what crosscutting means. However, for technical reasons

The data on whiclDynAMIT works are program traces. we have to encode that there is no further method execution
Within these traces we identify recurring execution patterns between nested method executions or between method in-
which describe certain behavioural aspects of the softwarevocation and method exit. This absence of method execu-
system. We expect that recurring execution patterns are podtions is represented by the designated empty method sig-
tential crosscutting concerns which describe recurring func- naturee. Therefore, the definition of execution relations is
tionality in the program and thus are possible aspects. extended such that each sublist of a program tf&eén-

In order to detect these recurring patterns in the programduces not Only relations defined above but also additional
traces, a classification of possible pattern forms is required.relations involvinge. The program trace remains as defined
Therefore, we introduce so-calleslecution relationsThey ~ before with method signatures froiip whereas the exe-
describe in which relation two method executions are in the cution relations now can consist of method signatures from
program trace. Intuitively, a program trace is a sequence ofVp U {¢}. Thus, the set§—, S, ST, andS<+ also in-
method invocations and exits. We only consider entries into clude execution relations involving Now, we can define
and exits from method executions because we can then eaghe constraints for the dynamic analysis.
ily keep track of the relative order in which method exe- Formally, an execution relation = uov € S°,
cutions are started and finished. We focus on method ex-o € {—,~— e+,€, }, is calleduniformif Vw o v € S° :
ecutions because we want to analyse object-oriented sysu = w,u,v,w € Np U {e} holds, i.e., it exists in always the
tems where logically related functionality is encapsulated same compositiori/° is the set of execution relationse
in methods. Formally, arogram tracel’» of a programP S° which satisfy this requirement. This constraint is easy
with method signatured/p is defined as a lisft1, . . ., ¢, to explain. Consider an outside-before-execution relation
of pairst; € (Np x {ent, ext}), whereent marks enter- v — v. This is defined as recurring pattern if each execu-
ing, andext marks exiting a method execution. tion of v is preceded by an executionwf The argumenta-

Crosscutting concerns are now reflected by the two dif- tion for outside-after-execution relations is analogous. The
ferent execution relationghat can be found in program uniformity-constraint also applies to inside-execution rela-
traces: A method can be executed either after the preceedtions. An inside-execution relatiom €+ v (oru €, v)
ing method execution is terminated, or inside the execu-can only be a recurring pattern in the given program trace
tion of the preceeding method call. However, this distinc- if v never executes another method thaas first (or last)
tion alone is not yet sufficient for aspect mining. For exam- method inside its body.
ple, if there exists more than one method execution inside  \We now drop the-relations and define two further anal-
another method execution the information which of those ysis constraints: An execution relatiogh= uwov € U°
methods inside comes first is lost. We thus define formally: is callednon-trivial if s €, U°,k > 1 holds, i.e., it oc-

u— v, u,v € Np, is called aroutside-before-execution
relationif [(u, ext), (v,ent)] is a sublist oflp. S~ (Tp) is

curs more than once in the program tréEe. R° is the
set of execution relations € U° that satisfy this re-

the set of all outside-before-execution relationsinaprogramquirement. An execution relation = uwov € U° =

traceT’p. This relation can also be reversed, ixe4— u is
an outside-after-execution relatioifi u — v € S~ (Tp).

U\{uov | u = eVv = €} is calledcrosscuttingif
ds’ = uow € U° : w # v,u,v,w € Np holds, i.e.,

The set of all outside-after-execution relations in a program it occurs in more than a single calling context in the pro-

traceTp is then denoted witls“— (Tp).

u €T v, u,v € Mp is called arinside-first-execution re-
lation if [(v,ent), (u,ent)] is a sublist ofTp. u €, v is
called arinside-last-execution relatiof [(u, ext), (v, ext)]
is a sublist ofTp. S€7(Tp) is the set of all inside-first-
execution relations in a program tra€e, S€+(7p) is the
set of all inside-last-execution relations. In the following,
we dropT’p when it is clear from the context.

gram tracel’p. For inside-execution relations €+ v (or

u € v) the calling context is the surrounding method exe-
cutionv. For outside-execution relations— v (oru — v)

the calling context is the methadinvoked before (or after)
which always method is executedRR¢, is the set of execu-
tion relationss € U*° which satisfy this requirement. Ex-
ecution relations € R° ands € Rg. resp. are also called
aspect candidateas they represent the potential crosscut-

Based on the execution relations defined above, we carfing concerns of the analysed software system.

now try to identify crosscutting concerns in software sys-

The described constraints can be implemented by two

tems.Recurringexecution relations in the program traces relatively straightforward algorithnisasicandcrosscutting
can be seen as indicators for more general execution patalgorithmresp., in order to actually compute the sgtsof
terns. To decide under which circumstances certain execu-uniform, non-trivial execution relations, and the sggs of

tion relations are recurring patterns in traces and thus po-uniform, crosscutting execution relations that represent the
tential crosscutting concerns in a system, constraints haveaspect candidates.



2.2. DynAMIT Case Studies control flow within the Graffiti system and about its over-
all architecture. Thus, the lightweight dynamic aspect min-
Case Study “Graffit” Graffiti [5] is an industrial-sized ~ ing approach has easily helped to understand both crosscut-
editor for graphs and a toolkit for implementing graph vi- ting concerns in the system and the system itself.
sualisation algorithms, developed using Java. It currently
comprises about50 interfaces and classes, 3.100 meth-
ods and 82.000 lines, including comments. A tracing as-
pect, written in AspectJ, has been woven into the exist-
ing Graffiti system and the system obtained has been ex-
ecuted in seven different runs. In total, the traces consist " . .
of 33706 events. The analysis revealed 40 aspect candidate‘é’hICh are already extended by aspects written n AspecFJ?
from before-execution relations, 40 from after-executionre- _ FoF that purpose the telecom example which is in-
lations, 33 from first-execution relations, and 25 from last- cluded |n.the Q|str|but|on of Aspect) has been chosen:
execution relations. Those numbers show that the amount® Small simulation where one person calls another per-
of aspect candidates stays relatively small compared toS°" @nd then the second person calls a third person is
the software system’s size. Moreover, the candidates themINcluded. The simulation can be executed at three differ-
selves are quite compact; on average, a candidate exists of"t [8velsBasicSimulation  just performs the calls with
about four pairs of relations. the basic functionality r_1e§de<_j for maklng phone calls (call,
The case study showed that, in particuynAMIT has ;(;cnep:)t]é Q:ST(?S#: ulii%r?mmgvfllimm:“g:ning :sgéite\i(vt:iz;]
S:itsegtfe&et:hp?r%?gril :?;’Cg‘;g%o%%%cigé?aﬂ?ﬁg';[c;rgemag;ﬁlo OIkeeps track of a connection’s duration and cumulates a cus-

. tomer’s connection durationsBillingSimulation IS
format(LogRecord record) of classSimpleFormat- ) . -
; o a further extension with a billing aspect that adds func-
ter as first and/or last call inside several set- and add-

. L .~ tionality to calculate charges for phone calls of each
methods. A code investigation revealed that all executions : X
. : customer based on connection type and connection dura-
of those methods are logged in a log-file. For that, a log

ger provided by Java's classgger is used. We have not " tion. All three simulations have been traced and the result-
traced calls to the Java API but the logger uses a formatter 9 Program traces have been fed iBnAMIT. A compar-

\ .. _ison of the analysis results for the three simulation versions
to transform the system's log messages. The API provldes(basic timing, billing) clearly shows that the presented ap-
an abstract clagsormatter  which is implemented by sev- ' 9 9 y P P

: " proach identifies basic functionality and the functionality
eral special formatter classes but Graffiti's developers have :
) : ) . added by the two different aspects. The detected concerns
chosen to write their own clagmpleFormatter  imple-

. . . ! . tell the user in a simple way what functionality the applica-
menting only basic functionality. The analysis detects the tion has and what it does. They are even easier and faster
formatting of the log-messages and therefore, the crosscut- ; L )

) . ) e to understand than a code investigation. Reading the anal-
ting logging functionality is revealed and can be encapsu-

lated into an aspect in & re-endineering process ysis results is like reading a manual of the progression of
P 9 gp ' the different steps in a phone call. Of course, this is sup-

Graffiti can easily be extended with graph algorithms by o rteq by the fact that the simulation developers did choose
writing plugins. Before a plugin can be used, it has 0 be meaningful method names: The method signatures them-
registered, which requires a unique string as identifier. Thus,gg|yes give the information what the methods perform so

every plugin has to implement methgetName frominter- 5t analysis results as the following can be interpreted eas-
faceAlgorithm  that provides the name of the correspond- ily:

ing algorithm. This architectural principle is reflected in as-

Case Study “Aspect] exampldelecom " A small case
study has been conducted in order to verify how success-
ful the developed analysis approach can be applied to a
new problem: Can the Java-AspectJ implementatidnyef
NAMIT also detect crosscutting concerns in Java programs

pect candidates identified EyynAMIT. In all appropriate void t\%‘ifgot”;-;;”rﬁhféngslggéce‘ﬂsrfg;?ecmI(Ca”)4
algorithm classesgetName is always preceded by a call -~ '
to getAlgorithms  of class GenericPluginAdapter . A verification of the analysis results based on code in-

Since Graffiti contains thirteen different algorithm plugins, vestigation certifies the developed approach to be sound. It
DynAMIT detects thirteen individual aspect candidates; an captures the whole functionality added by the timing aspect.
automatic grouping reveals that they all reflect the same ar-The same applies for the billing aspect, except that only one
chitecture. after-advice is not detected. This is due to its implementa-
In summary, the analysis has shown that a lot of the func- tion: A public (!) field calledpayer of the connection is
tionality concerning actions like opening, saving, or edit- set directly. This is contrary to object-oriented design prin-
ing files or graphs is crosscutting Graffiti's architecture. Itis ciples, which would suggest a private field with appropriate
worth to consider restructuring the system accordingly. Ad- set- and get-methods. Unfortunately, only the get-method is
ditionally, DynAMIT provides a lot of information about the realised. As field accesses are not interesting for run-time



behaviour, they have not been traced. Thus, they cannot bé
detected bYDynAMIT.

i void doSth(A a) { A objl = new C1()
X interface | a.a(); A obj2 = new C2();
3. Evaluatlon a() a.c(); B obj3 = new B();

<) .

All conducted case studies show that the presented dy- / \ b
namic analysis approach fulfils its task with high preci- A B :
sion. It finds crosscutting concerns in small tools as well 20t a0t void dosth{® b) - {

doSth(objl);

c(f-}
as in industrial-sized systems. Furthermore, the introduced \ : b0 doSth(obi2);
aspect mining technique detects crosscutting functionality < . be()
which was added to systems following the AOP paradigm. [, | [t . T
oSth(obj3);

In order to work as intended the approach relies on
proper tracing of executed programs. HowegynAMIT
uses Aspect and is thus dependent on the implementa-  (a)nneritance hierarchy (b) Code fragments
tion of AspectJ. Therefore, the tool relies on an important  Figyre 1. Example excerpt of a software system
point: Functionality has to be encapsulated into methods
as assignments likemt x = 42;  are not traceable with ) )
Aspectd. This fact leads to a certain degree of impression®® redundant. Consider a program trace fragment like
which can be both, good or disadvantageous. If an assign AP0 { BcO {} Cd) {} ... }. Then it can hap-
ment is essential in every occurrence of a specific execu-PeN. that the analysis identifiédc() <+ Ab() and
tion relation as it changes object values used in one ofB-€0 — C.d( , which is redundant in this case. There-
the involved methods, it is a disadvantage that the analy-fore’ th_e analysis does not prowde perfect' results which can
sis results do not automatically provide that information. immediately be transfered into aspects without further pro-
On the other hand, if an assignment is not necessary indr@m code investigation, but it gives clear descriptions of

each case (maybe because it is dependent on certain prc;_ecurring execution pattern; and helps the devgloper to un-
gram conditions), it is good that the analysis—especially derstand a system’s behaviour and to re-factor it faster and

the uniformity-constraint—does not consider those assign-€aSIer: _ o
ments. The case distinctions can be made once the detected T0 Summarise, we can say that the aspect mining tech-
crosscutting concern will be implemented as an aspect.  Nique was able to identify automatically and with high pre-
There are some more drawbacks due to limitations of As- €iSion both seeded and existing crosscutting concerns in the
pectJ. Java APl method executions do not appear in the proSeftware systems while producing only a relatively small
gram traces if the classes itself are not present as sourc@Umber of false positives. Furthermore, the results provided
code. On the one hand, it is good that those methods ard®y both algorithms provided additional insights in the pro-
not traced as with each analysis we would also analyse Jav@rams’ general behaviour and architecture.
API classes. But on the other hand, this leads to false posi-
tives or imprecise aspect candidates in the analysis. Further4. Extensions to the Analysis Algorithms
more, noise in the resulting aspect candidates caused by dy-
namic binding complicates their retrieval in the program’s  Since the presented algorithms work on method signa-
source code. This problem also exists partly due to AspectJtures only, they can produce false positives due to dynamic
Thus, we can say that the realisation of the dynamic aspecbinding at run-time, i.e., methods with the same name but
mining approach suffers from certain AspectJ implementa- defined in different classes can get identified and thus re-
tion details, which cause some imprecision and incomplete-sult in wrong aspect candidates. It could thus be helpful to
ness in the analysis results. extend the existing data structure and relations with static
Moreover, both the basic and the crosscutting al- information about class name and/or line number where a
gorithm vyield redundant aspect candidates. This espe-method call is located in the source file. Details about the
cially happens if symmetric relations exist in the pro- static type of an object would also improve the outcomes of
gram traces. For inside-aspect candidates this sometimethe analysis.
means, that they really exist twice and in both direc-  Figure 1 outlines a small example to illustrate those im-
tions, e.g. inAb() { Cd() {} .. Cd) {} }, and provements. Figure 1(a) shows a part of the inheritance tree
sometimes not, e.g. iA.b() { C.d() {} }; in both situ- for the example: Thénterface | has two method dec-
ations the analysis would produce two inside-aspect can-larationsa() andc() . Theclass B implements that in-
didates:C.d() et Ab() ,andCd() €. Ab) . An terface, while theabstract class A only implements
inside- and an outside-aspect candidate together can alsmethoda() of I . Theabstract class A is extended by



cutting concern: Methods andb are invoked in succession

at different places in the code. Together with the static in-

Aa) {} Aa() L.a()

0 {0
cic) {} AcO) {} le) {}
Aa) {} Aa() {} a0 {}
c2.c) {} Ac) {} le) {}
Ba() {} Ba() {} a0 {}

0 0

BcO {} B.c() I.c()

(a) 'Traditionally’
dynamic

Figure 2. Dynamic vs 'static’ vs ‘inherited’ trace

(b) with static ob-
jectinfo

(c) Wwith inheri-
tance info

two subclasses, nameyl andC2 which both provide im-
plementations of method() whose declaration is inher-
ited froml (via A). Assume that the code fragments shown
in 1(b) exist in the system and are executed.

This scenario could result in traces including the part
shown in 2(a). There, the crosscutting algorithm would
identify incorrect before-aspect candidatea — Cl.c,
andA.a — C2.c. This kind of functionality exists only
once inthe code imoid doSth(A a) . If we now consider
for example the static type of the objects in the traces, the
program trace will look different, as we see in 2(b). In turn,
this would result in the crosscutting algorithm not detecting
the incorrect crosscutting concerns mentioned above (which
may be part of a real crosscutting concern, but are none on
their own). A similar improvement can be achieved if the
dynamic trace is augmented by the line number and source
file where a method call is located. Thus, an integration of
some or all of this static information into the traces and the
analysis could often avoid that an invocation of the same

functionality (i.e., one occurring only once in the code) ap- [10]

pears to be crosscutting in the traces.
The dynamic approach was chosen to monitor real run-
time behaviour of software systems. However, there are dif-

ferent facets in run-time behaviour which can be of interest. [11]

While sometimes we want to know which method imple-

mentation is used at run-time, the approach presented in [3][
is based on the dynamic information which functionalities

are executed after or within what other functionalities. Thus,
we could discard the run-time information about the used
implementation while executing methods and use the fully-
qualified signature of the method declarations, instead. That

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(13]

formation about source file and line number proposed be-
fore, the developer would easily find the appropriate occur-
rences of that pattern in the code. Thus, an impact in recall
could be achieved by combining the traces with informa-
tion of a program’s inheritance hierarchy before the analy-
sis algorithms are applied to the obtained aspect candidates.
The analysis results are then more accurate as noise pro-
duced by dynamic binding is gone.
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Abstract the patterns have to exist in different calling contexts in the

program trace. The dynamic analysis approach monitors ac-

Aspect mining tries to identify crosscutting con- tual (i.e., run-time) program behavior instead of potential
cerns in existing systems and thus supports the adaptionbehavior, as static program analysis does. To explore the
to an aspect-oriented design. This paper describes an au-differences between static and dynamic analyses in aspect
tomatic static aspect mining approach, where the control mining, we have started to develop a static analysis vari-
flow graphs of a program are investigated for recur- antof our approach. From early results we experienced two
ring execution patterns based on different constraints, things:
such as the requirement that the patterns have to ex-
ist in different calling contexts. A case study done with the ~® The results of the static and dynamic analysis are dif-
implemented tool shows that most discovered crosscut-  ferentdue to various reasons.

ting candidates are most often perfectly good style. e Crosscutting concerns are often perfectly good style,

because they result from delegation and coding style
guides.

1. Introduction The first point is obvious and thus, only the second point

will be discussed in the following. The next section contains

The notion oftangled codeefers to code that exists sev-  5n introduction to our dynamic aspect mining approach. A
eral times in a software system but cannot be encapsulatedtatic aspect mining approach based on the dynamic variant
by separate modules using traditional module systems bejs presented in Section 3. Section 4 contains a case study,

cause it crosscuts the whole system. This makes softwaresection 5 discusses the results and concludes, before Sec-
more difficult to maintain, to understand, and to extend. {jon 6 discusses related work.

Aspect-Oriented Programmirig] provides new separation
mechanisms for such complexrosscutting concerng]. ) o

A major problem in re-engineering legacy code based 2. Dynamic Aspect Mining
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also calsgect min- The basic idea behind dynamic analysis algorithms is to
ing. The detected concerns can be re-implemented as sepebserve run-time behavior of software systems and to ex-
arate aspects, thereby improving maintainability and exten-tract information from the execution of the programs. The
sibility as well as reducing complexity. Aspect mining can dynamic aspect mining approach introduced here is based
also provide insights that enable us to classify common as-on the analysis of program traces which mirror a system’s
pects which occur in different software systems, such asbehavior in certain program runs. Within these program
logging, timing, and communication. traces we identify recurring execution patterns which de-

Several approaches based on static program analysiscribe certain behavioral aspects of the software system. We
techniques have been proposed for aspect mining [3, 5, 6expect that recurring execution patterns are potential cross-
10, 8, 2]. We have developed a dynamic program analysiscutting concerns which describe recurring functionality in
approach [1] that mines aspects based on program traceghe program and thus are possible aspects.
During program execution, program traces are generated, Inorder to detect these recurring patterns in the program
which reflect the run-time behavior of a software system. traces, a classification of possible pattern forms is required.
These traces are then investigated for recurring executionTherefore, we introduce so-callegdecution relationsThey
patterns. Different constraints specify when an execution describe in which relation two method executions are in the
pattern is “recurring”. These include the requirement that program trace.



2.1. Classification of Execution Relations

The definition of execution relations in our analysis ap-

the set of all outside-before-execution relations in a program
traceT'». This relation can also be reversed, ie4— u is
an outside-after-execution relatiofi v — v € S~ (Tp).

proach is based on program traces. Intuitively, a programThe set of all outside-after-execution relations in a program
trace is a sequence of method invocations and exits. We onlytraceT is then denoted witls (Tp).

consider entries into and exits from method executions be-

u €T v, u,v € Np is called aninside-first-execution

cause we can then easily keep track of the relative order inrelation if [(v, ent), (u, ent)] is a sublist ofTp. u €, v is
which method executions are started and finished. We focuscalled arinside-last-execution relatidif [(u, ext), (v, ext)]
on method executions because we want to analyze objectis a sublist ofTp. S€T(Tp) is the set of all inside-first-

oriented systems where logically related functionality is en-
capsulated in methods. Formallypeogram traceT’» of a
programP with method signatured/» is defined as a list
[t1,...,t,] Of pairst; € (Np x {ent,ext}), whereent
marks entering a method execution, and marks exiting

a method execution.

To make the program traces easier to readgtfte and
ext-points are represented Byand } respectively, and the
redundantname-information is discarded from thext-
points as the trace structure implies to whighme the ext
belongs. Figure 1 shows an example trace.

execution relations in a program tra€g, S€+(7p) is the
set of all inside-last-execution relations. In the following,
we dropT’p when it is clear from the context.

For the example trace shown in Figure 1 we thus get the
following setS— of outside-before-execution relations:

S™ ={B0) ~AQ,G0) —H) ,A) - B0 ,CO ~J0 ,
BO) -~ FO .KO =10 ,FO —30 ,30 =G0,
HO - AQ ,B(O) - D0 ,CO) -~ G(),GO) —~F0 ,
CO) —~AQ ,BO) ~KO,I0 -~G(0,G()—~E(Q }
The setS“ of outside-after-execution relations can be
found directly in the trace or simply by reversing .

1 B() | 17 30 {3 33 The setsS<T of inside-first-execution relations anf+
2 ¢ { 18 } 34 1} inside-last- i i :
2 (HE(()) H ;g FOKO{ | 3 by { 0f|€n3|de last-execution relations are as follows
36 C() T = C TB ,G TC ,K TF ,C TD 5
5 ) 2 10 0 2 o8 S {Jo <! 0G0 €rC0 , KO erF() ,C( erD()
6 } 22 } 38 BO) { 0 10 }
g 38 %} 2431 35% g 39 , co {3 S€L = {H( €.C(),CO €.BO ,I0 €.BO ,10 .FQ ,
40
9 cO {} 25 H) {} 41 KO {3 FO €.B() ,J0) €10 ,EQ €.D( }
10 26 A0 {} 42 10 | . . .
11 AQ) {} 27 B) { 43 0 { 2.2. Execution Relation Constraints
12 B() { 28 CO {} 44}
s COGO{ 0 . ,(:3(()) ?’ P CE;(()) H Recurringexecution refations in the program traces can
15 HO {} 31 KO {} 47 } be seen as indicators for more general execution patterns.
16 32 0 {3 To decide under which circumstances certain execution re-

Figure 1. Example trace

Crosscutting concerns are now reflected by the two dif-
ferent execution relationghat can be found in program

lations are recurring patterns in traces and thus potential
crosscutting concerns in a system, constraints have to be
defined. The constraints will implicitly also formalize what
crosscutting means.

However, for technical reasons we have to encode that
there is no further method execution between nested method

traces: A method can be executed either after the precedexecutions or between method invocation and method exit.

ing method execution is terminated (e.d() in line 4is
executed afte&() in line 3), or inside the execution of the
preceding method call (e.g5() in line 2 is executed in-
sideB() inline 1). We distinguish between these two cases

This absence of method executions is represented by the
designated empty method signatar@herefore, the defini-
tion of execution relations is extended such that each sub-
list of a program trac&'p induces not only relations defined

and say that there are outside- and inside-execution relaabove but also additional relations involviagrable 1 sum-

tions in program traces. However, this distinction alone is marizes this conservative extension. It shows for each two-
not yet sufficient for aspect mining. For example, the exe- element sublist of the trace (on the left side) the execution
cution of B() in line 27 has three methods executed inside relations that follow from that sublist (on the right side). The

its executionC() , G() , andF() in lines28ff., but the in-
formation which of those methods comes first is lost. We
thus define formally:

u— v, u,v € Np, is called aroutside-before-execution
relationif [(u, ext), (v, ent)] is a sublist ofT’p. S~ (Tp) is

execution relations added by the introductiors efe anno-
tated with an asterisk{.

The program trace remains as defined before with
method signatures fro\p whereas the execution rela-
tions now can consist of method signatures fobfm U {c}.



’ Trace-sublist (V7)) | Refation s (Vy U{c]) ‘ the following sets of execution relations:

(u,ext) (vient) [u—wv,v—u U: ={B() - D( ,G0 ~E(Q ,G0 = H(O ,KO =10 }
(v,ent) (u,ent) | e—u*,u—€e  u€Tv U™ ={B0 —=A0,I0 =K0 }

BOL (u,ent) | e—uu—c,ucre UST ={C() e+B() ,C() e+D( ,K( e-F( }

(u,ext) (v,ext) |u—€,e—u*ue, v US+ ={EQ €.D( ,10 .F( }

(u,ext) EOL u—¢€c"e—u*,ue, € After we enforce the crosscutting constraint, we obtain the
(w,ent) (w,ext) | eeT w*, el w* final setsR° of aspect candidates which comply with uni-
BOL/EOL denote begin/end of list formity and crosscutting.

R™={G() ~H),G0~EQ }, R =0

Table 1. Extended execution relations RET ={C() exB() ,C() €:D() }, RE* = @

e _ 3. Static Aspect Mining
Thus, the set§—, S, S€7, and S+ also include exe-

cution relations involving:. Now, we can define the con- Based on the experience with the dynamic approach, we
straints for the dynamic analysis. implemented a similar static analysis. This analysis extracts
Formally, an execution relation = wowv € S°, the execution relations from a control flow graph of the an-
o € {—,~—,e1,€.}, is calleduniformif Yw o v € S° : alyzed program. In particular, we immediately extract uni-
u=w,u,v,w € NpU{e} holds, i.e., it exists in always the  form and crosscutting execution relations without a previ-
same compositiorff ° is the set of execution relationse ous step to extract unconstrained execution relations. How-

S° which satisfy this requirement. This constraint is easy ever, the extraction is different for outside and inside execu-
to explain. Consider an outside-before-execution relationtion relations. Here, we will only present inside-fir&q™)

u — v. This is defined as recurring pattern if each execu- and outside-before/{™") execution relations.

tion of v is preceded by an execution @f The argumenta-  |nside-First Execution Relationgzor these kind of exe-
tion for outside-after-execution relations is analogous. The cytion relations, we extract the method invocations im-
uniformity-constraint also applies to inside-execution rela- mediately following the entry of (invoked) methods from
tions. An inside-execution relatiom €t v (oru €1 v)  the control flow graph. Such a relation is uniform, if ev-
can only be a recurring pattern in the given program trace ery path through the method starts with the same method
if v never executes another method thaas first (or last)  call. Moreover, a possible simplification just considers the

method inside its body. single-entry-single-exit regions starting at the methods’ en-
We now drop thes-relations and define a further analy- try nodes. Such a relatiane+ v means now that methad

sis constraint: An execution relation= v ov € U° = is the first method invocation inside the single-entry-single-

UN{uov | u =¢€Vv = €} is called crosscuttingif exit region starting at the entry node of methadrhe def-

Js’ =uow € U° : w # v, u,v,w € Np holds, i.e., inition of crosscutting stays the same, thug a crosscut-

it occurs in more than a single calling context in the pro- ting method invocation if there are at least two uniform ex-
gram tracel’p. For inside-execution relations €+ v (or ecution relations, €t v andu €1 w (v # w).

u < v) the calling context is the surrounding method exe- oytside-Before Execution Relationidere we extract all

cutionw. For outside-execution relations— v (or u « v) pairs of method invocations, v if there exists a path from

the calling context is the methadinvoked before (or after) 5 invocation of method: to an invocation of methoa

which always method is executedRz” is the set of execu-  ithout any method invocation in between. Such a pair is

tion relationss € U° which satisfy this requirement. Exe- 5 yniform outside-before execution relatian— v, if all

cution relationss € R° are also calledspect candidatéss  paths from an invocation of methadcontain an invocation

they represent the potential crosscutting concerns of the anqt ;, a5 the next invocation. The first possible simplifications

alyzed software system. is to require that an invocation afis post-dominated by an
invocation ofv without another invocation in between. The
second simplifications is to require that any invocation of

2.3. Aspect Mining Algorithm methodu is followed by an invocation of in all single-
entry-single-exit regions containing an invocation.of

The constraints described above can be implemented by

a relatively straightforward algorithm to actually compute 4, Experiences

the setsk® of uniform, crosscutting execution relations that

represent the aspect candidates. In our running example, We have implemented the presented static mining on top

uniformity narrows down the potential aspect candidates to of the Soot framework [9], which is used to compute the



to access the current factory object, needed in many other

S|Zze rella2t|7o ns Sllée relTons methods of the system. This is clearly crosscutting, how-
3 55 15 N ever, not a refactorable aspect.
4 30 16 1 The second largest candidate consists of 32 relations for
5 12 17 2 the method “.DrawingView.view. This is again an acces-
6 9 18 1 sor method that returns the currently active view. Thus, itis
7 7 19 1 crosscutting but not refactorable.
8 7 20 1 The same holds for the third and fourth candidate,
9 3 22 1 which both consist of 24 relations. The relevant meth-
10 3 24 2 ods are “.DecoratorFigure.getDecoratedFigure and
11 3 32 1 “...AbstractHandle.ownérwhich are once again acces-
12 4 49 1 sor methods.
For the fifth candidate, things are not different: It
1236 relations R< ™) in 277 candidates consists of 22 relations for the method Undoad-
ableAdapter.undothat checks whether the current object
Table 2. Inside-First Execution Relations represents an undo-able action.
Things change for the sixth candidate consisting of
20 candidates for method ‘AbstractFigure.willChange
size relations| size relations That method informs a figure that an operation will change
2 53 8 1 the displayed content. This is the first candidate that is a
3 19 9 1 crosscutting concern which could be refactored into an as-
4 4 11 1 pect.
5 6 12 1
6 3 13 1
7 2 4.2. Outside-Before Relations

294 relations ™) in 92 candidates The largest discovered candidate consists of 13 uniform

and crosscutting execution relations for the methottér-.
ator.next. A closer look to the 13 invocations reveals that
this crosscutting is more or less incidental: An operation is
control flow graph of the analyzed program. Our tool tra- performed on the next element of a container.

verses these control flow graphs and extracts the uniform The second largest candidate is somewhat interest-
and crosscutting inside-first and outside-before executioning: It consists of 12 invocations before a call to Ab-
relations. As a first test case we have analyzed JHotDraw,stractCommand.exectitefrom which 11 are invocations
version 5.4b1. Tables 2 and 3 show the results. For inside-of method ‘treateUndoActivity The other is an in-
first execution relations, the tool has identified 277 candi- vocation of “.ZoomDrawingView.zoomViéw which
dates with 1236 uniform and crosscutting relations, and for seems to be amnomaly However, the other 12 invoca-
outside-before relations, 92 candidates with 294 relations. tions are of classes representing operations that change the

It is interesting, that there are many more candidates forfigure andzoomView(probably) does not change it.
inside-first than for outside-before. Furthermore, there are a  The next three largest candidates (consisting of 11, 9, and
lot of candidates with just a small amount of crosscutting, g relations) are again more or less incidental crosscutting
e.g., 127 candidates that just crosscut two methods. concerns related to methods RrawingView.drawing,

We will next discuss some of the identified candidates in «_ | ist.add, and « . DrawingView.view. However, it is in-
detail. However, due to the large amount of identified can- teresting to see thddrawingView.viewwas also part of a
didates, we will only present the six largest candidates of |arge inside-first candidate.
each category.

Table 3. Outside-Before Execution Relations

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
4.1. Inside-First Relations It consists of seven relations for method AbstractFig-

ure.willChangé. It is immediately called before methods

The largest candidate consists of 49 uniform and cross-that will change the displayed figure. However, it is interest-
cutting execution relations. The invoked method iCol- ing to see that this method has also appeared as an inside-
lectionsFactory.currerit It is obvious that this is a method first candidate, where the candidate is larger (20 relations).



5. Discussion, Conclusions, and Future Work

This initial evaluation of the static aspect mining tool
has shown that most of the identified crosscutting candi-
dates are not concerns refactorable into aspects. This is not

much different from results in our previous dynamic aspect [2

mining [1]. However, both approaches give interesting in-
sights into the crosscutting behavior of the analyzed pro-
gram. Moreover, as seen in the example for metiAbd
stractCommand.execytihey can probably be used to dis-
covercrosscutting anomaliegn anomaly in the discovered
execution relation pattern.

These results are preliminary because of the small
amount of analyzed candidates (12) in a single test pro-
gram. However, based on the previous results from the dy-
namic approach, our hypothesis is that the results will
not change and are general. This would mean that as-
pect mining will have hard times to identify candidates
that are really refactorable into aspects. Therefore, fu-
ture work will continue in three directions:

1. A large-scale analysis of discovered candidates for a
large set of programs with static and dynamic analy-
Sis.

2. Development of a filter which extracts the refactorable
candidates from the discovered candidates.

3. A comparison with other aspect mining approaches.

6. Related Work

There only exists a small set of automatic aspect mining

. 10
approaches. In most approaches one has to specify a pattelln ]

that can be searched for in the source code [3, 10].

Tourwe [8] uses concept analysis to identify aspectual
views in programs. The extraction of elements and attributes
from the names of classes, methods, and variables, formal
concept analysis is used to group those elements into con-
cepts that can be seen as aspect candidates.

Some other approaches rely on clone detection tech-
nigues to detect tangled code in the form of crosscutting
concerns:

Bruntink [2] evaluated the use of those clone detection
techniques to identify crosscutting concerns. Their evalua-
tion has shown that some of the typical aspects are discov-
ered very well while some are not.

Ophir [6] identifies initial re-factoring candidates using
a control-based comparison. The initial identification phase
builds upon code clone detection using program depen-
dence graphs. The next step filters undesirable re-factoring
candidates. It looks for similar data dependencies in sub-
graphs representing code clones. The last phase identifies
similar candidates and coalesces them into sets of similar
candidates, which are the re-factoring candidate classes.

(1]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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ABSTRACT

In this paper, we show how Timna, our framework for
combining aspect mining analyses, enables quick proto-
typing and evaluation of new mining analyses. Timna
can quickly determine the contribution of a new analy-
sis to the aspect mining field by measuring the increase
in effectiveness that the new analysis achieves.

1. INTRODUCTION

Aspect Oriented Software Development (AOSD) is a
software development paradigm that enables the separa-
tion of concerns. AOSD allows programmers to modu-
larize certain concerns that would be scattered through-
out code in other paradigms. Although AOSD improves
code readability and maintainability, software develop-
ers do not necessarily apply AOP techniques in every
situation that would produce benefits. They typically
avoid porting legacy systems into AOSD, primarily due
to (currently) high cost. Developers also miss many op-
portunities to apply AOSD, due to their limited under-
standing of AOSD and their limited view of code. Any
automation of the process of identifying potential as-
pects would increase the application of AOSD to new
software and ease the process of porting legacy pro-
grams.

The process of aspect mining involves three phases: The
identification of refactoring candidates (i.e. seeds) [8,
11, 3, 12, 7, 6], the expansion of candidates into full
concerns [9, 13|, and the refactoring of concerns [5]. We
believe that the most important research problem to
address first is the identification problem, because the
other problems depend on the results from identifying
candidates. Several researchers have already developed
individual analyses that mark a piece of code (at dif-
fering granularities) as a candidate [8, 11, 3, 12, 7, 6].
However, there has been no examination of the poten-

tial combination of the results of these mining analyses.
Intuitively, combining analyses’ results should increase
accuracy of a candidate identifier. If two analyses both
agree that a piece of code is a candidate, then we can
have more confidence in the marking than a marking by
only one analysis. Our framework, Timna, builds upon
this observation [10]. This paper focuses on describing
how Timna enables quick prototyping and evaluation of
individual analyses within the context of existing anal-
yses. We also show how Timna allows researchers to
quickly evaluate the contribution of new mining analy-
ses.

2. TIMNA ANALYSIS FRAMEWORK

A detailed description of the theoretical foundations of
Timna can be found in [10]. Timna is designed to lever-
age machine learning techniques to intelligently combine
the results of many aspect mining analyses. As shown
in Figures 1 and 2, Timna operates in two phases, the
learning phase, and the classifying phase.

In the learning phase, Timna takes as input a train-
ing program that has been manually marked such that
every marked method is considered to be a part of a
concern that was not modularized well. Timna per-
forms a set of analyses on this program, generating a
set of attributes for each method. A classification table
of method names, attributes, and classifications is then
fed to a machine learning algorithm, which generates
classification rules. The rules are propositional condi-
tions over attributes which result in a classification. For
example, if Timna was using the set of analyses:

{ Fan-in degree, Is Void, Has Parameters }
Mining Analyses would generate rows of:

<method name><number><booleanl><boolean2>
where number is the degree of fan-in in the call graph
for that method, boolean! is true if the method’s return
type is void, and boolean2 1is true if the method has
parameters. A rule generated by feeding a table of such

rows into Machine Learning could be:

If(Fan-in>2 and IsVoid = true)
Then Classification = Is a candidate



Classification Table

Mining Analyses

Augmented Classification Table

Method A Class 2

Program Mangal Method B Class 1
Tagglng Method C Class 1

Method D Class 3

Code Clone

Method A | Attributes | Class 2

Method B | Attributes | Class 1 Machine o
Method C | Attributes | Class 1 Leamning (R::izzlflcanon
Method D | Attributes | Class 3

Pairings

Figure 1: Learning Phase

Classification Table Mining Analyses

Augmented Classification Table

Completed Classification Table

Classifier

Method S Method S | Attributes
Method T Method T | Attributes
- - -
Method U Method U | Attributes
Method V Code Clone Method V| Attributes

Classification Rules

/

Figure 2: Classification Phase

In the classifying phase, the rules generated by the learn-
ing phase are used on new programs to classify methods
as refactoring candidates.

3. FRAMEWORK IMPLEMENTATION

We implemented Timna as a combination of an Eclipse
plug-in and several small Java applications. While using
Eclipse to explore a Java project (in the Java Perspec-
tive) a developer can trigger Timna’s mining analyses
via a menu attached to any Java item (shown in Figure
3). The learning phase outputs the augmented clas-
sification table to a file which the user can specify in
Eclipse’s preferences.

Table 1 shows an example of the classification table, out-
put by the learning phase. Here, the analyses’ return
types are specified at the top, next to each analysis’s
name. In the data section, the attribute vector, gener-
ated by each analysis, precedes the file and line number
corresponding to each given method.

This classification table, during the learning phase, is
processed by our Java application WekaCat or Weka-
Bool, which both generate classification rules using a
machine learning package [2]. WekaCat recognizes dif-
ferent categories of tagged candidates as distinct, while
WekaBool simply considers methods as either a candi-
date or not. Either WekaCat or WekaBool could be used
as the Machine Learning piece in Figure 1.

During the classification phase, users must manually in-
put these rules into TestRules, which is our Java Ap-
plication that uses the rules to classify a set of meth-
ods whose classification is unknown, or to check the ef-
fectiveness of rules on methods whose classification is
known. TestRules outputs file names and line numbers

[% Package Exp... ¥

Method S | Attributes | Classl
- Method T | Attributes | Class3
; Method U | Attributes | Classl
Method V| Attributes | Class 2

glE

Hierarchy | = O

&

-

» # JHotDraws4b1

b 522 PetStore3

New

Go Into

Open in New Windc
Open Type Hierarcl

Source

Refactor

£ Import...
£ Export...
" Refresh

Close Project

Run Timna

Run

Figure 3: Begin Learning Phase



@relation isCandidate

@attribute FanInAnalysis NUMERIC

@attribute HighestPairingAnalysis NUMERIC

@attribute IsPublicAnalysis y,n

@attribute IsClassified Analysis 0,1

@data

1,0,61,y,n,n,n,n,n,n,y,n,1,n,0,100,y,n,n,0 % PertFigure@172
4,25,0,n,n,n,y,n,n,n,y,n,1,n,0,0,y,n,n,0 % HTMLTextAreaFigure@1185
0,0,0,y,y,n,n,n,n,n,y,n,0,n,0,0,y,n,y,0 % PertFigure@39
0,0,0,n,n,n,y,;n,n,n,y,n,0,n,0,0,y,n,y,1 % StandardDrawingView@919

Table 1: Intermediary Output of Learning Phase

static class A extends AnalysisAdapter.Numeric {
public Object value(MethodDeclaration node) {

//implementation of analysis here

//return value for this analysis here
return new Integer(somelnt);

Figure 4: Generic Analysis

that point to methods that it classifies as candidates.
TestRules corresponds to the Classifier in Figure 2.

4. FASTPROTOTYPING OF ANALYSES

4.1 Methodology

Part of Timna’s goal is to provide quick prototyping
and evaluation for new aspect mining analyses. To this
end, we attempt to provide users with a simple tem-
plate for implementing new analyses, in the form of a
subclass of AnalysisAdapter.Numeric (shown in Figure 4)
or AnalysisAdapter.YesNo, which is very similar to Anal-
ysisAdapter.Numeric but returns a boolean instead of a
numeric value. These classes provide the method value
that is executed on every method declaration in a pro-
gram.

Prototyping an analysis in Timna is as simple as imple-
menting the method value for a new analysis, and then
including that new analysis in an array (specifically, the
array that CallGraphAnalysis.analyses() returns). Timna
runs all analyses in this array. The method value also
provides analysis implementors with access to Method-
Declaration, which is the JDT component corresponding
to that method [1]. This provides access to the powerful
functionality of Eclipse’s JDT, which we used to imple-
ment almost every analysis.

4.2 Case Studies

In order to illustrate how quickly and easily analyses
can be implemented within the Timna Framework, we

public Object value(MethodDeclaration node) {
Type t = node.getReturnType() ;
boolean is = false;
if(t instanceof PrimitiveType){
is = ((PrimitiveType)t).
getPrimitiveTypeCode () ==PrimitiveType.V0ID;
}

return Boolean.valueOf (is);

Figure 5: IsVoid Analysis’ value method

demonstrate the implementation of three analyses.

4.2.1 IsVoid

The first analysis, called IsVoid, returns a boolean at-
tribute. The value of the attribute is true if the corre-
sponding method’s return type is void, false if it is not.
Because of the power of Eclipse’s JDT, the implementa-
tion of this analysis is only a few lines long. Specifically,
the code (shown in Figure 5) accesses the JDT node, of
type MethodDeclaration, and finds its return type. The
code then checks to see if the return type is void, and
returns the appropriate boolean value. When perform-
ing manual mining on code, we found that methods that
had a void return type were often part of a poorly mod-
ularized concern.

4.2.2 OddLengthName

OddLengthName reports whether the length of a method’s
name is an odd number. Again, the code for this method,
since it leverages the JDT, is fairly short (shown in Fig-
ure 6). We do not believe that this analysis provides
any information that helps classify a piece of code. How-
ever, we include it in our evaluation to show how Timna
will determine that a useless analysis is in fact useless.
Finally, we discuss Fan-in analysis, because it is an ex-
ample of a more complex analysis [8]. Fan-in analysis
counts the number of incoming edges a method declara-
tion has in a call graph, which is the number of call sites
to that method in the system. Since Timna provides a
call graph to users, the implementation of this analysis



public Object value(MethodDeclaration node) {
SimpleName s = node.getName();

return
Boolean.value0f (s.getIdentifier() .1length()%2==0)
}
Figure 6: OddLength Name Analysis’ value
method

public Object value(MethodDeclaration node) {
CallGraph cg= callGraph();
Collection c = cg.getCallers(node);
return new Integer(c.size());

}

Figure 7: Fan-in Analysis’ value method

is straightforward (shown in Figure 7). Marius et al.
showed that the results of this analysis can be used to
identify poorly modularized concerns [8].

5. ENABLING EVALUATION

5.1 Maeasures of Effectiveness

When researchers perform aspect mining, the two most
important measures for evaluation of the miner’s effec-
tiveness are precision and recall, which are defined as
follows, for a particular code:

Precision For Technique T = (Number
Of Good Candidates Identified By T) / (To-
tal Number Of Candidates Identified By T)

Recall For T = (Number Of Good Candi-
dates Identified By T) / (Total Number of
Known Good Candidates)

Precision is easier to measure, because we must only
know or decide whether the results that technique T re-
turns are good candidates. In order to calculate recall,
we must know how many good candidates exist in the
entire code base. Precision and recall are weakly com-
plementary measures; the increase of one often leads to
the decrease of the other [10].

5.2 Evaluation of Analyses with Timna
Timna was designed to facilitate the quick evaluation
of mining analyses, especially in the context of exist-
ing analyses. Timna determines whether a new analysis
helps improve overall effectiveness (i.e., gives new in-
formation) or whether it finds the same candidates as
existing analyses.

In order to demonstrate Timna’s usefulness in evalu-
ating new analyses, we evaluated the IsVoid and Odd-
LengthName analyses. For simplicity, we did not use
Timna’s full set of analyses during this evaluation, but
only used:

Set Recall | Precision
Base 2.6% 70.4 %
Base+IsVoid 21.1% | 71.6%
Base+OddLengthName | 4.8% | 70.6 %

Table 2: Performance of Timna Configurations

{NoParameters, Fan-in, NumOfCallsAtBeginOrEnd}

as the existing set of analyses (we call this set Base).

NoParameters analysis reports whether the analyzed method

has any return value. NumOfCallsBeginOrEnd reports
the percentage of calls to a method that are either at
the beginning or the end of a method’s body. Fan-in
was described earlier. We first added OddLengthName
to this set, and we determined the effectiveness of the
generated rules on the training data. Then, we removed
OddLengthName and added IsVoid to the existing anal-
ysis set, and we again measured the effectiveness. We
performed measurements on the training data because
the training data’s classification is known, and we can
thus calculate recall as well as precision.

In this study we measured the recall of the candidate
methods and the precision of the overall system, in order
to highlight the changes in effectiveness due to adding
a single analysis.

5.3 Results

As Table 2 shows, the precision of all three configura-
tions of Timna is similar, but Base+IsVoid performs the
best by approximately one percent. When evaluating
the effectiveness of these configurations, it is important
to understand that the non-candidates greatly outnum-
ber the candidates. The non-candidates are (in the base
case) classified very accurately, and so the only improve-
ments come from classifying the candidates more ac-
curately than the base case. Therefore, we report the
recall of the candidates (not the non-candidates) only.
We still report the precision of the overall system, to
demonstrate how the improvement of the candidate’s
recall increases the precision of the overall system. Ta-
ble 2 shows that Base+IsVoid achieves much better re-
call than the base case or Base+OddLengthName, which
leads to slightly better system precision as well.

6. COMBINING ANALYSES

Timna allows researchers to combine many analyses quickly
and to determine which analyses are most relevant. There
are two specific ways in which researchers can use Timna
to evaluate the relative benefits of combining certain
mining analyses.

Similar to the way we evaluated new analyses in our
case study, researchers can use results from our frame-
work to determine whether new mining analyses help
improve effectiveness of Timna. If analyses do improve
Timna’s effectiveness, that means that the new analyses
provide new, important insight into classifying methods.
Conversely, if the analyses do not improve Timna’s ef-
fectiveness, then the new analyses are returning results



that are similar to previous analyses’ results, or they
are returning results that have no correlation with a
method’s candidacy.

Researchers can also simply include all known analy-
ses in Timna and observe which analyses appear in the
rules that Timna generates after training. The analyses
that Timna uses in these rules are the most important
analyses, because Timna learns from the training data
which analyses are most relevant to its classification.

7. RELATED WORK

Researchers have investigated several individual min-
ing analyses. These analyses are largely focused on the
identification of seeds. Once a miner finds seeds, and
has a high degree of confidence in those seeds, the ex-
ploratory tools can be used to expand those seeds into
a full concern. Of course, the higher the recall of an
analysis (the more seeds it finds out of the total possi-
ble seeds), the less work that the miner must do using
exploratory tools.

Two groups have investigated the use of code clone de-
tection tools for the discovery of seeds. Shepherd et
al. [11] used PDG-based clone detection to discover
seeds with very high precision. Magiel and van Deursen
compared token-based and AST-based clone detection
techniques for seed discovery, finding no clear winner be-
tween these methods, but confirming that cross-cutting
functionality is often implemented using code clones [4].

Silvia et al. [3] performed several experiments to use pro-
gram traces to identify seeds. They search for specific
patterns in a trace, identifying these methods as seeds.
This technique appears very promising; we hope to in-
tegrate it into our framework soon. Tonella et al. [12]
used formal concept analysis to analyze program traces.
They examined the generated concept lattice and used
it to assist in making a classification.

The call graph fan-in analysis by Marius et al. [8] is a
promising analysis. They produced reasonably precise
results with their automated tool, which they then re-
fined with a manual filtering. They provided a thorough
discussion of the candidates that they found.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how Timna facilitates
quick prototyping of analyses, and the evaluation of
these analyses. In the case study, we showed that Base-
+IsVoid achieves a significant improvement in effective-
ness over Base. If an analysis achieves similar improve-
ment in Timna’s effectiveness in practice, that analysis
should be added to Timna’s canonical set of analyses.

In the future, we hope to improve the implementation
of Timna, and perform experiments using combinations
of existing aspect mining analyses in order to determine
which analyses we should include in a canonical set. By
combining the results of all of the best analyses, we
hope to achieve performance that is greater than any

individual analysis. We also plan to improve Timna’s
integration into the Eclipse framework, and the integra-
tion of Timna’s phases.
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Abstract

This paper outlines how clone detection results can be fil-
tered such that useful aspect candidates remain. In particu-
lar, our goal is to identify aspect candidates that are inter-
esting for the purpose of improving maintainability. To reach
this goal, clone class metrics are defined that measure known
maintainability problems such as code duplication and code
scattering. Subsequently, these clone class metrics are com-
bined into a grading scheme designed to identify interesting
clone classes for the purpose of improving maintainability
using aspects.

1. Introduction

Large-scale industrial software applications are inherently
complex, and thus a good separation of concerns within such
applications is indispensable. Unfortunately, recent insight
reveals that current means for separation of concerns, i.e.
functional decomposition or object-oriented programming,
are not sufficient [17]. No matter how well large applica-
tions are decomposed using current means, some function-
ality, typically called crosscutting concerns, will not fit the
chosen decomposition. As a result, implementations of such
crosscutting concerns will be scattered across the entire sys-
tem, and become tangled with other code. Obviously, the
consequences for maintenance of the system, and its future
evolution, are dire.

Aspect-oriented software development (AOSD) has been
proposed as an improved means for separation of concerns.
Aspect-oriented programming languages add an abstraction
mechanism (called an aspect) to existing (object-oriented)
programming languages. This mechanism allows a devel-
oper to capture crosscutting concerns in a modular way. In
order to use this new feature, and make the code more main-
tainable, existing applications written in ordinary program-
ming languages should be transformed into aspect-oriented
applications. To that end, (scattered and tangled) code im-
plementing crosscutting concerns should be identified, and
subsequently be refactored into aspects.

Identifying crosscutting concerns is an important part of
a process referred to as aspect mining. One of the goals
of aspect mining is to identify opportunities for transform-
ing (parts of) the code of an application into aspect-oriented
code. Since aspects® are specifically designed to deal with
crosscutting concerns, aspect mining is naturally focused on
crosscutting concerns. In previous work we demonstrated
that two clone detection techniques can be used to identify
code fragments that belong to relevant crosscutting concerns
[4]. Given these encouraging results, we are now challenged
to apply these clone detection techniques in the field of as-
pect mining. In other words, how can we use clone detection
results to find good candidate aspects? In particular, can we
identify aspects which can be applied such that the maintain-
ability of the system is improved?

In this paper we will discuss a possible approach to the ap-
plication of clone detection to aspect mining. The basic idea
is to develop a method to filter the output of a clone detec-
tor, the so-called clone classes [10]. Based on observations
made during an earlier case study [4], we propose a hum-
ber of clone class metrics. These metrics are used to attach
a ‘grade’ to a clone class, which indicates how relevant the
clone class is for the aspect mining process. Clone classes
which score below a threshold value can then be filtered out,
and hopefully only relevant classes remain. Furthermore,
these metrics reflect our expectations of aspect mining: to
find aspects which can improve the maintainability of the
system by reducing the amount of scattering and code du-
plication.

In Sections 2 and 3 we give a short overview of existing
aspect mining and clone detection techniques, respectively.
Section 4 describes the system that we used for our case
study, and the crosscutting concerns we considered. Addi-
tionally, we mention some of our earlier results from [4].
The clone class metrics are described in Section 5, together
with some initial results and discussion.

1Different flavours of aspects exists within the aspect-oriented paradigm,
and therefore aspect mining could target any of them.



2. Aspect Mining

Aspect mining is typically described as a specialised reverse
engineering process, which is to say that legacy systems
(source code) are investigated (mined) in order to discover
which parts of the system can be represented using aspects.
This knowledge can be used for several goals, including re-
engineering and program understanding. Several tools are in
existence that may help automate this process [8, 7, 15, 20].
Aspect mining techniques vary mainly in the kind of infor-
mation they extract from a legacy system. Marin et. al. cal-
culate the fan-in metric for the methods in a system [13].
Shepherd et. al. perform PDG-based clone detection [16].
Breu and Krinke generate execution traces and identify re-
curring execution relations [3]. Tourwe and Mens group
identifiers using concept analysis [19]. Tonella and Ceccato
generate program traces using use cases, and employ con-
cept analysis to discover concepts and computational units
that are implemented in multiple modules which contribute
to multiple use cases [18].

3. Clone Detection

Clone detection techniques attempt at finding duplicated
code, which may have undergone minor changes afterward.
The typical motivation for clone detection is to factor out
copy-paste-adapt code, and replace it by a single procedure.

Several clone detection techniques have been described
and implemented:

e Text-based techniques [9, 6] perform little or no trans-
formation to the ‘raw’ source code before attempting to
detect identical or similar (sequences of) lines of code.
Typically, white space and comments are ignored.

e Token-based techniques [10, 1] apply a lexical analysis
(tokenization) to the source code, and subsequently use
the tokens as a basis for clone detection.

e AST-based techniques [2] use parsers to first obtain a
syntactical representation of the source code, typically
an abstract syntax tree (AST). The clone detection al-
gorithms then search for similar subtrees in this AST.

e PDG-based approaches [11, 12] go one step further
in obtaining a source code representation of high ab-
straction. Program dependence graphs (PDGSs) contain
information of semantical nature, such as control- and
data flow of the program.

e Metrics-based techniques [14] are related to hashing
algorithms. For each fragment of a program the values
of a number of metrics is calculated, which are subse-
quently used to find similar fragments.

Figure 1. Scattering of the parameter checking con-
cern.

Concern LOC | Fraction
Error handling 1716 | 9%
Dynamic execution tracing 1539 | 8%
Function parameter checking | 1441 | 7%
Memory allocation handling | 1110 | 6%
Total 5806 | 31%

Table 1. Code percentages devoted to various con-
cerns, in a 20 KLOC component.

Following Walenstein [21], clone detection adequacy de-
pends on application and purpose. Finding crosscutting con-
cerns is a completely new application area, potentially re-
quiring specialized types of clone detection.

4. Case Study

4.1. Background

Our paper is based on a software component (called CC) of
20,000 lines of C code, part of the larger code base (com-
prising over 10 million lines of code) of ASML, the world
market leader in lithography systems based in Veldhoven,
The Netherlands. The CC component is responsible for the
conversion of data between several data structures and other
utilities used by communicating components.

Developers working on this component express the feel-
ing that a disproportional amount of effort is spent imple-
menting ‘boiler plate’ code, i.e., code that is not directly re-
lated to the functionality the component is supposed to im-
plement. Instead, much of their time is spent dealing with
concerns like error handling and parameter checking (ex-
plained below).



This problem is not limited to just the component we se-
lected; it appears in nearly the entire code base. Since the de-
velopers at ASML use an idiomatic approach to implement
these crosscutting concerns in all applicable modules, similar
pieces of code are scattered throughout the system. Clearly,
large benefits in code size, quality and comprehensibility are
to be expected if such concerns could be handled in a more
systematic and controlled way.

4.2. Crosscutting Concerns

A domain expert manually marked places in the CC compo-
nent dealing with four different crosscutting concerns. Each
line in the application was annotated with at most one mark,
and as a result, each line belongs to at most one of the con-
cerns described below, or to no concern.

e Error handling. General error handling and adminis-
tration; this code is responsible for roughly three tasks:
the initialisation of variables that will hold return val-
ues of function calls, the conditional execution of code
depending on the occurrence of errors and finally ad-
ministration of error occurrences in a data structure.

e Tracing. Dynamic execution tracing; logging the val-
ues of input and output parameters of C functions to
facilitate debugging.

e Parameter checking. Responsible for two require-
ments: (1) making sure that parameters of type pointer
are checked against null values before they are derefer-
enced, and (2) checking whether parameter values are
within allowable ranges.

e Memory error handling. Dedicated handling of errors
originating from C memory management.

All together, these concerns comprise roughly 31% of the
code. The details are shown in Table 1, while Figure 1 il-
lustrates the scattered nature of these concerns by highlight-
ing the code fragments belonging to the parameter check-
ing concern. The vertical bars represent the files of the 20
KLOC component, and within each vertical bar, horizontal
lines of pixels correspond to lines of source code within the
file. Coloured lines are part of the memory error handling
concern. The other concerns exhibit a similarly scattered dis-
tribution.

4.3. PreviousResults

In [4] we demonstrated to what extent two clone detec-
tion techniques (AST-based and token-based) can be used
to identify crosscutting concern code. The experiment com-
pared lines of code belonging to the concerns described
above to the output of two clone detectors, Bauhaus’ ccdiml
(AST-based) and CCFinder (token-based).

The first step of the experiment consisted of obtaining so-
called clone classes from the clone detectors. A clone class
is a set of code fragments that are duplicated (or cloned) ac-
cording to a clone detector. Subsequently, for each clone
class it was determined how many lines of each concern are
covered by the clone class. A line of a concern, i.e. one of the
four concerns described above, is covered by a clone class if
the line occurs in one of code fragments of the clone class.

The final evaluation of the clone detection techniques con-
sisted of finding the number of clone classes required to
reach an acceptable level of coverage (80%) for each con-
cern. Complementary to evaluating the clone detectors based
on coverage, the experiment also considered the resulting
precision. The ideal case is a clone class that includes noth-
ing but lines of code belonging to one of the concerns de-
scribed above. However, as the results in [4] have shown,
many clone classes also include other lines of code. Clone
classes that have a high ratio of other lines compared to lines
belonging to a concern, are evidence that a clone detector
is not a suitable tool to identify the code of that particular
concern.

Code belonging to either the parameter checking or mem-
ory error handling concerns tends to be covered well by
both clone detection techniques, while tracing and error han-
dling code is not. Furthermore, the results showed that clone
classes which have good coverage of one of the concerns,
tend to have a higher precision in case of the AST-based tech-
nique than in case of the token-based technique.

5. Approach

5.1. Goals

The main goal of mining for aspects (and subsequent re-
engineering) in the CC component —and the entire ASML
source base— is improving its maintainability. In other words,
the mining process should point out opportunities for re-
engineering using aspects such that the maintainability of the
component/system can be improved. It is out of the scope of
this paper to detail how to validate the actual maintainability
improvement offered by the aspects that are found. However,
this is an important issue that will require future attention
by the aspect mining community. Aspect mining techniques
should be designed for specific purposes, and careful valida-
tion is needed to justify the use of aspect mining techniques
instead of more traditional techniques (like re-engineering
using objects or procedures). Furthermore, comparison of
aspect mining techniques requires that the purposes of these
techniques are specified and compatible.

A maintainability issue with the current CC component
(and the entire ASML code base) is duplication of code be-
longing to known crosscutting concerns. This issue was ex-
plored in [4], and summarised in Section 4. The validation



of the use of aspects to improve the maintainability of the
parameter checking concern is work in progress [5]. Since
results of this validation have been promising, aspect min-
ing for the purpose of improving maintainability is (at least)
required to identify the parameter checking concern as an
opportunity for aspect use. Additionally, the aspect mining
technique should suggest aspects for concerns that are simi-
lar in nature.

5.2. CloneClassMetrics

To reach the goals outlined above, we propose to employ
clone detection in combination with a set of metrics to filter
the resulting clone classes. The use of clone class metrics
in order to filter clone detection results was previously sug-
gested and implemented by Kamiya et. al. [10]. However,
their work does not focus on the mining of aspects.

In order to find aspects that could improve maintainabil-
ity, the metrics should be designed such that they capture
maintainability problems (of the ASML source base). Du-
plication of code is a well-known cause for maintainability
problems, which justifies the use of clone detection tech-
niques. Clone class metrics that capture the severity of code
duplication are thus interesting for the purpose of main-
tainability improvement. The following metrics capture the
severity of code duplication for a clone class C, such that
higher values correspond to more severe cases of code dupli-
cation:

e Number of Clones (NC). The number of clones that
are included in C. Equivalent to the POP(C) metric
defined by Kamiya et. al. [10].

e Number of Lines (NL). The number of (distinct) lines
of code (SLOC, non-comment/white space) in C.

e Average Clone Size (ACS). The number of lines (NL)
divided by the number of clones (NC).

Many instances of code duplication can be resolved by
means of traditional re-engineering techniques, like replac-
ing clones with calls to a procedure which factors out the
duplicated code. Therefore, metrics are required that dif-
ferentiate between the “simple” cases of code duplication,
i.e. those that can be fixed by traditional means, and those
cases that require aspects. The parameter checking concern
is known to benefit from the use of aspects, due to its scat-
tered nature [5]. In particular, the parameter checking con-
cern implements the requirement that every public function
has to make sure that parameters of type pointer are checked
against null before they are dereferenced. It turns out that
a high percentage of the scattered implementation is cov-
ered by a small number of clone classes [4]. These clone
classes therefore contain clones from many different mod-
ules of the system. The following two metrics capture the
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Figure 2. First 20 highest graded clone classes.

notion of scattering for a clone class, such that higher values
correspond to higher amounts of scattering:

e Number of Files (NFI). The number of distinct files in
which the clones of C occur.

e Number of Functions (NFU). The number of distinct
functions in which the clones of C occur.

The set of metrics defined above is not intended to be
complete or minimal. A clone class also needs to be eval-
uated with respect to the constructibility of an aspect for
that clone class. It is also required to consider the system-
wide implications of re-engineering a clone class using as-
pects. With regard to minimality, some of the metrics de-
fined above may measure the same factors (for example,
NL(C) = ACS(C) - NC(C)), and thus some may turn out
to be redundant.

5.3. Grading

Using the clone class metrics a ‘grade’ can be attached to
each clone class. For our purpose, such a grade should give
an indication of the maintainability improvement obtained
if the clone class is re-engineered using aspects. Clearly a
large number of grading schemes is possible, even given the
limited set of metrics defined here. This paper will focus
only on the following simple grading scheme:

Grade(C) = NL(C) - NFU(C)

Consequently, clone classes which are both big (NL) and
scattered (NFU) will be assigned high grades. For purposes
other than maintainability improvement, different grading
schemes or metrics may be more applicable. The use of dif-
ferent metrics and grading schemes is the subject of further
research.

5.4. Initial Results

The component described in Section 4 was used to gener-
ate some initial results of the aspect mining process using



the grading scheme defined above. First, clone classes were
calculated using the AST-based clone detector (ccdiml) of
the Bauhaus toolkit?>. The minimum clone length was set
to 2 lines, leaving all other settings at their defaults. 756
clone classes were found by the clone detector. Second, for
each clone class, the clone class metrics and the resulting
grades were calculated. Figure 2 shows the grades of the
first 20 highest graded clone classes, ranked according to
their grades. Observe that a small number of clone classes
has high grades, while the remaining grades are near the av-
erage. For the purpose of maintainability improvement this
is a desirable property, since large improvements (as defined
by the grading scheme) can be obtained by using aspects for
a small number of clone classes.

The clone class with the highest grade consists of a large
number (265) of very small clones (1.43 average size), that
are scattered across 134 functions. A number of clones from
this class contains code belonging to the error handling con-
cern, in particular the code responsible for initialising the
variables used for error administration. However, a large
number of other clones from this class contain similar pieces
of initialisation code which are not related to error handling.
For this reason, the use of an aspect for this clone class is
probably not desirable. Class 17 is an anomalous result in
the sense that many of its clone are overlapping. It consists
of 1252 clones, but the average clone size is only 0.29. This
particular class does not cover any known concerns.

Clones classes 2, 3, 6, 9, 10-12 and 19 cover large parts of
the parameter checking concern. This result is as expected,
since the clone class metrics and the grading scheme were
designed with this particular concern in mind. Concerns
which are known to be similar, in particular the tracing and
memory error handling concerns, are represented in the top
20 as well. Clone classes 4, 5, 7, 8 and 14 cover parts of the
tracing concern, while the remaining classes 13, 15, 16, 18,
20 cover parts of memory error handling. Thus, except for
classes 1 and 17, the 20 highest graded classes all cover parts
of the four known crosscutting concerns. As was shown in
[4], most of these clone classes also contain varying amounts
of noise, i.e. lines of code that do not belong to any known
concerns.

6. Conclusions

This paper outlined how clone detection results can be fil-
tered such that useful aspect candidates remain. For the pur-
pose of improving the maintainability of a component of a
large C code base, a number of clone class metrics was de-
fined that capture the severity of code duplication and scat-
tering of a clone class. Subsequently, these metrics were
combined into a grading scheme that allows interesting clone
classes to be pointed out. It was shown that the approach

2URL: htt p: / / www. bauhaus- st utt gart. de/

can point out a concern which is known to have a benefi-
cial implementation using aspects. Additionally, concerns
of similar scattered and duplicated nature are also identified.
Future work lies in the extension of the clone class metrics
and refinement of the grading scheme. Other open issues in-
clude the constructibility of aspects for a given clone class,
and measurement of the impact of aspect use at the system
level.
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Abstract

In this paper we discuss an approach to the aspect-oriented
refactoring of the Undo concern in an open-source Java
system. A number of challenges and considerations of the
proposed solution are analyzed for providing useful feed-
back about how the employed aspect language could better
support the refactoring to aspects. We also consider the
unpluggability property of a concern as an estimate of its
refactoring costs and propose a number of research ques-
tions to measure the improvements due to aspect refactor-

ing.

1. Introduction

Aspect oriented programming(AOP) is aimed at overcom-
ing the modularization limitations of object orientation,
and in particular at reducing code tangling and scattering.
Refactoring is a technique for improving the internal struc-
ture of the code without affecting its external behavior [1].
Refactoring object oriented systems to aspects is a natural
step towards AOP adoption. However, it is important to see
how the existing approaches to AOP can support the refac-
toring process. Starting from this consideration, we pro-
pose an aspect solution to the Undo crosscutting concern in
an open-source Java system, using ASPECTJ ! as the imple-
mentation language. The analyzed system is JHOTDRAW 2,
a model framework for two-dimensional graphics of around
18,000 non-comment lines of code.

The case for the aspect refactoring of the Undo concern
in JHoTDRAW was introduced in our previous work [2],
where fan-in analysis was employed to identify crosscutting
concerns. The results have shown about 30 undo activities
defined for various elements of the graphical framework. A
classification of these elements would comprise command,
tool, and handle classes as well as one class for dragging
figures. We will discuss the refactoring of the commands
group as the largest in terms of defined undo activities and

Twww.eclipse.org/aspectj/
2jhotdraw.org, v.5.4b1

DrawingEditor

UndoableActivity
UndoManager
execute() pushUndo
activityVyrapper
<interface> <interface> .
Activity Undoable Figure
doActivit affectedFi
execute() undoActivity undo() igureg
1 1
ConcreteActivity — — — 31 ConcreteUndoable
has nested clgss

Figure 1. Participants for undo in JHOTDRAW.

also as a very common (undoable) task in a drawing appli-
cation.

2. Current Undo implementation

A number of activities in JHOTDRAW, such as handling
font sizes and colors, image rotation, or inserting the clip-
board’s content into a drawing, support the undo functional-
ity. A representation of the elements in the implementation
of the undo concern is given in figure 1.

The Activity components participate in the implementa-
tion of the Command design pattern. The pattern provides a
generic interface (Activity) for the operations to be executed
when menu items are selected by the user, which allows to
separate the user-interface from the model. Item-selection
actions result in invocations to the execute method of the
associated, specific activities. Many of these activities also
have support for undo functionality, which in JHOTDRAwW
is implemented by means of nested (undo) classes. The
nested class knows how to undo the given activity and main-
tains a list of affected figures whose state is also affected if
the activity must be undone. Whenever the activity mod-
ifies its state, it also updates fields in its associated undo-



activity needed to actually perform the undo. The appli-
cation supports repeated undo operations (the Undo Com-
mand) by recording the last executed commands in reversed
order. This is achieved by wrapping the commands that
can be undone into an Undoable Command object, which
serves three roles: first, it assumes the request to execute
the command, second, delegates the command’s execution
to the wrapped command, and last, acquires a reference to
the undo activity associated with the wrapped command and
pushes it into a stack managed by an UndoManager object.
When executing an Undo Command, the top undo activity
in the stack is extracted and, after the execution of its undo()
method, is pushed into a redo stack managed by the same
UndoManager object.

The Command hierarchy in JHOTDRAw, shown in fig-
ure 5, implements the design pattern bearing the same
name. The (12) undo-able commands store a reference to
their associated undo activity. These references are obtained
in the control flow of the command’s execution through ded-
icated factory methods.

Given the described implementation, it is apparent that
the primary decomposition of Command is crosscut by a
number of elements, as follows:

(1) the field declared by AbstractCommand for storing
the reference to the associated undo activity,

(2) the accessors for this field implemented by the
same class,

(3) the UndoActivity nested classes implemented by
most of the concrete commands that support undo
functionality,

(4) the factory methods for the undo activities declared
by each concrete command that can be undone,

(5) the references to the before enumerated elements
from non-undo related members, e.g., the execute()
method of the command class.

These crosscutting elements are outlined in the figures 2
and 6 for two command classes: (1) ChangeAttribute Com-
mand modifies the predefined attributes of a figure, such
as the text color or the font size for a Text Figure, and (2)
Paste Command is an activity that supports the insertion of
the clipboard content into the active drawing of the graph-
ics editor. The same elements are also used as criteria for
grouping the command classes in figure 5, as it will be de-
scribed in section 4.

public class ChangeAttri buteCommand ext ends Abstract Conmand {
//constructor and private fields ...

//the command’ s execute() nethod
public void execute() {
super . execute();

set UndoActivity(createUndoActivity())
get UndoActivity().set AffectedFi gures(
ie .selection());

Fi gureEnuneration fe = get UndoActivity().
get Af f ect edFi gures();
while (fe.hasNextFigure()) {
fe.nextFigure().setAttribute(fAttribute, fValue);
}

vi ew() . checkDamage() ;

return new ChangeAttri but eConmand. UndoActi vi ty(
view(), fAttribute, fValue);

Tc static class UndoActivity extends Undoabl e
/1inplenmentation of the undo nested functionality...
public void undo() {...}; // ...

Figure 2. The original ChangeAttributeCommand
class to change a figure’s attribute.

public void execute() {
/I super. execute(); - added by a separate aspect, not
//undo-related, with a higher priority than the undo aspect
Fi gureEnuneration fe = view().selection();
while (fe.hasNextFigure()) {
fe.nextFigure().setAttribute(fAttribute, fValue);
}

vi ew() . checkDamage() ;

}

Figure 3.
mand.

The refactored ChangeAttributeCom-

public privileged aspect ChangeAttributeCommandUndoActivity {

this(crmd) &&
execution(void ChangeAttributeCommand. execute());

bef or e( ChangeAttri but eConmand cnd) :
i nChangeAttri but eConmand(cnd) {
cnd. set UndoActi vi ty(cnd. creat eUndoActivity());
cnd. get UndoActivity().set AffectedFi gures(
crd. view() . sel ection());
}

Undoabl e ChangeAttributeConmand. creat eUndoActivity() {
return new ChangeAttri but eCommandUndoActivity.
UndoActivity(view), fAttribute, fValue);

}
public static class UndoActivity extends Undoabl eAdapter {

}

}

poi ntcut i nChangeAttri but eCommand( ChangeAttri but eComrand cnd) :

/1 the sanme inplenmentation as for the original nested class

Figure 4. The aspect solution for ChangeAt-
tributeCommand.
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Figure 5. Command hierarchy in JHOTDRAW.

3. Examplerefactorings

3.1. Tirsen’s Generic Undo Aspect

A general solution for handling the undo functionality was
proposed by Tirsen [3]. It mainly consists of keeping track
of the fields that are set when a command executes. How-
ever, the solution suffers from several limitations when con-
sidering the undo implementation in JHOTDRAW: it does
not capture all the state modifications caused by a com-
mand’s execution, such as changes in data structures, and
it requires filtering the set fields, as not all these fields are
of interest to the undo process. Given the complexity of the
undo process in JHOTDRAW and the way it is handled, the
approach is problematic.

3.2. A Simple Case: Undoing the ChangeAt-
tribute Command

The systematic refactoring we propose for the undo func-
tionality consists of several steps. First, an undo-dedicated
aspect is associated to each undo-able command. The as-
pect will implement the entire undo functionality for the
given command, while the undo code is removed from the
command class. By convention, each aspect will consis-
tently be named by appending “UndoActivity” to the name
of its associated command class to enforce the relation be-
tween the two, as in figure 4. In a successive step, the com-
mand’s nested UndoActivity class moves to the aspect. The

factory methods for the undo activities (createUndoActiv-
ity()) also move to the aspect, from where are introduced
back, into the associated command classes, using inter-type
declarations. Lastly, the undo setup is attached to those
methods from which was previously removed, namely the
execute() method, by means of an advice. Figure 2 shows
the original implementation of the command, while fig-
ures 3 and 4 illustrate the refactored class and the aspect
solution, respectively.

3.3. A Complex Case. Undoing the Paste
Command

The general strategy outlined above for the case of the
ChangeAttribute Command requires some supplementary
steps for commands with a higher degree of tangling for the
undo functionality. An interesting case for its complexity is
that of the PasteCommand class, shown in figure 6. Both the
command’s main logic and the undo-related setup depend
on common condition checks. The proposed solution looks
for a clean separation of the two concerns, hence it captures
the calls that set the variables checked in the command’s
execution, and re-uses the same values when executing the
undo functionality as a separate, post-command operation.
The common conditions, emphasized in figure 6, are also
shown in figure 7 and have the associated pointcuts marked
in figure 8. The aspect defines its own set of variables that
are set to the same values as the ones checked in the control



flow of the advised (execute) method.

4. Levesof Unpluggability

The refactoring we propose tries to stay close to the original
design of the application and to ensure an easy migration to
the aspect-based solution. After identifying the crosscutting
concern, this is removed from the system and re-added in an
aspect-specific manner, as previously discussed. However,
the concern’s removal has different levels of complexity for
various commands. Given the identified elements of the
crosscutting concern, it is possible to distinguish common
characteristics for grouping the commands as a complexity
assessment. The classification shown as colors in figure 5 is
based on two main criteria:

1. the degree of tangling of the undo setup in the
command’s logic, particularly the activity’s execute()
method, and

2. the impact of removing the undo-related part from its
original site, which can be estimated by the number of
references to the factory method and to the methods of
the nested undo activity.

These characteristics define the concern as unpluggable;
that is, the core logic of the method executing the command
is separated in the method’s flow from the crosscutting undo
elements, thus making possible to have the command ex-
ecuting correctly after removing the lines of code apper-
tained to undo.

The “green”(ChangeAttributeCommand) group exhibits
a number of properties that permit a clean feature extrac-
tion:

- the references to the nested undo activities and the fac-
tory methods for these activities are exclusively from
inside the enclosing class, or from other (extending)
undo activities,

- the undo-related code in the enclosing classes is un-
pluggable as previously described, and thus suitable
for extraction and refactoring by means of advice con-
structs 3

- the other methods related to the crosscutting function-
ality of undo (set/getUndoActivity) are inherited from
top level classes (and not overridden locally) where
they can be refactored by means of introduction.

The “red” group (InsertimageCommand) of commands
does not exhibit the undo unpluggability. The commands

SIn practice, small local refactorings that eliminate one layer of indi-
rection are needed before having the concern’s statements separated from
therest of the code. In fi gures 2 and 3, for instance, the enumeration of the
selected fi guresin the view, fe, is obtained differently.

/1 The cl ass extends Abstract Command that inpl enents
//the accessors for the associated UndoActivity
public class Past eConmand
ext ends Fi gureTransfer Command {
...
public void execute() {
super . execute();

Point lastdick = view).lastdick();
Fi gureSel ection sel ection =
(Fi gureSel ection)Cipboard. get Cipboard().
get Cont ents();
if (selection != null) {
OACtT VI ty(creat eUndoAC T ;
get UndoActivity().set Af fect edFi gures(
(Fi gureEnuner at or) sel ecti on. get Dat a
St andar dFi gur eSel ecti on. TYP

if- (1getUndoActivity().getAffectedFi gures().

hasNext Fi gure
<set UndoAct i vi ty(nul 3=

return;

Rectangl e r = get Bounds(get UndoActi vity().
get Af f ect edFi gures());
view().clearSel ection();

/1 get an enuneration of inserted figures
Fi gureEnuneration fe = insertFigures(
get UndoActivity().get AffectedFigures(),
lastCick.x-r.x, lastdick.y-r.y);

@tivity().setm‘fectedﬁ@

vi ew() . checkDamage() ;

Ctory nmethod for undo activity
protected Undoabl e createUndoActivity() {
return new Past eConmand. UndoActi vity(view));

class UndoActivity
ext ends Undoabl eAdapter {
/1inplenmentation of the nested class ..

Figure 6. The original PasteCommand class - com-
mand to insert clipboard’s content into the draw-

ing.

can not yield the expected results in the absence of the func-
tionality defined by the nested undo-related classes. This
dependency has been considered a candidate for a prelim-
inary (object-oriented) refactoring with more implications
for the original code, but able to produce the concerns’ un-
coupling.

The refactoring of the “yellow” group (PasteCommand)
affects a larger number of classes. The multiple references
from outside the class enclosing the UndoActivity to the
corresponding factory method or to the undo constructor
are specific to this group. Moreover, the undo-related calls
from the various methods can be more tangled than for the
“green” group.
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public void execute() {
super . execute();
Point lastdick = view).lastdick();
Fi gureSel ection sel ection = (FigureSel ection)
Cl i pboard. get Cl i pboard().getContents();
if (selection !=null) {
/lintroduced variable for affected figures
Fi gur eEnuner at or fi gEnum = (Fi gur eEnuner at or)
sel ecti on. get Dat a( St andar dFi gur eSel ecti on. TYPE) ;
if (! figEnum hasNext Fi gure())
return;
Rectangl e r = get Bounds(fi gEnum;
view().cl earSel ection();
figEnumreset();
//the 'fe’ enuneration is not needed here anynore
insertFigures(figEnum lastdick.x-r.x,
lastdick.y-r.y);
vi ew() . checkDamage() ;

}
}
Figure 7. The refactored execute() method in
PasteCommand.

5. Improved Language Support for
Refactoring to Aspects

We generally appreciate the results of the refactoring pro-
cess as leading to a cleaner separation of concerns and to a
better modularization. By aspect-refactoring, the two con-
cerns are separately modularized and the secondary concern
of undo is no longer tangled into the implementation of the
primary one. Our systematic approach is intended to ensure
a gradual and possible automatic process of migration, with
some of the steps turned into general refactorings, as for
instance, migrating nested classes to aspects or extracting
features into inter-type declarations. However, a number of
drawbacks that, we think, can be overcome by a better as-
pect language support, can be discussed in relation to this
experiment.

The original design uses static nested classes to enforce a
syntactical relation between the undo activity and its enclos-
ing command class. Since the ASPECTJ mechanisms do not
allow introduction of nested classes, the post-refactoring as-
sociation will only be an indirect one, based on naming con-
ventions. This is a weaker connection than the one provided
by the original solution.

Another drawback is the change of the visibility for the
methods introduced from aspects, i.e. inter-type declara-
tions. The visibility declared in the aspect refers to the as-
pect and not to the target class. For instance, it is not possi-
ble in AsPeECTJ to introduce members into a class that are
protected for that class. This is the case for the undo factory
methods whose visibility cannot be preserved by the refac-
toring process. Having caller methods unable to access the
callee after refactoring will require changes in the visibil-
ity that can weaken the boundaries imposed by the original
design.

For the discussed case of the “yellow” group, code in

5

public aspect PasteComandUndoActivity {

//store the Cipboard s contents - conmmon condition
Fi gureSel ecti on sel ecti on;

poi ntcut execute_cal | O i pboardget Contents() :
cal | (Object dipboard. getContents())
&& wi t hi ncode(voi d Past eCommand. execute());

after() returning(Object select) :
execut e_cal | C i pboardget Contents() {
sel ection_= (FigureSel ection)select;

}

/1 The variable stores the value returned by insertFigures()
Fi gur eEnunrer ati on i nsertedFi gur esEnuner ati on;

poi ntcut execute_cal linsertFigures() :
cal | (Fi gureEnuneration FigureTransfer Comrand.
insertFigures(FigureEnuneration, int, int))
&& wi t hi ncode(voi d Past eCommand. execute());

after() returning(FigureEnuneration figs) :
execute_cal linsertFigures() {
insertedFi guresEnuneration = figs;

}
Fi gur eEnuner at or sel ect edDat a;

poi ntcut execute_call sel ectiongetData() :
cal | (Obj ect FigureSelection.getData(String))
&& wi t hi ncode(voi d Past eCommand. execute());

after() returning(FigureEnuneration dataSel) :
execut e_cal | sel ectiongetData() {
ArrayList al = new ArrayList();
whi | e(dat aSel . hasNext Fi gure()) {
al . add(dat aSel . next Fi gure());

}
dat aSel . reset ();
sel ectedData = new Fi gureEnunerator ((Col | ection)al);

}

poi nt cut execut ePast eCommand( Past eCormand cnd) :
this(crmd) &&
execution(void PasteCommand. execute());

/**

* Execute the undo setup.

*/

voi d after(PasteCommand cnd) execut ePast eConmand(cnd) {
//the values for the variables that have to be checked here,
/le.g., selection, have been captured by neans of advices

/1 the same condition as in the advised nethod
if(selection !=null) {
cnd. set UndoActi vity(cnd. creat eUndoActivity());
cnd. get UndoActivity().set AffectedFi gures(sel ectedDat a);
/1 the same condition as in the advised method
if- (1 cnd. get UndoActivity(). get Af fectedFigures() .
hasNext Fi gure()) {
cmd. set UndoActivity(null’);
return;

}
cnd. get UndoActi vity().set AffectedFi gures(
i nsertedFi guresEnuneration);

}
/**
* Factory nmethod for undo activity - cannot be protected anynore
*/
Undoabl e Past eConmand. cr eat eUndoActi vity() {
return new Past eConmandUndoActivity.
UndoActivity(view));
}

//the nested class nobves to the aspect
public static class UndoActivity

ext ends Undoabl eAdapter {

/1 the undo actvity nested class

Figure 8. The undo aspect for PasteCommand.
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both the method’s logic and the undo setup part is executed
if a common condition holds. This means that the same
condition will be checked in the advice executing the undo
setup functionality and in the advised method, too. While
we believe this is not a reason for concern from the design
point of view, it can be from the perspective of the com-
piler work. In the same time, the conditions strengthen the
relation between the two concerns, and affect the modular
reasoning about the undo concern, which has to be aware of
the execution particularities of its associated command.

5.1. Research questions

The downsides of the proposed aspect solution, despite an
overall improvement, pose several questions.

How to measure the code improvements due to refac-
toring to aspects? Is it possible to define a set of met-
rics for this?

Would it be possible to use these metrics to compare
different aspect solutions? How can these solutions be
compared from the perspective of easy migration?

What is a good aspect solution? Could we define a set
of good practices in aspect oriented programming?

We think that some of these questions can be answered by
improving the support of the aspect language for the refac-
toring process. Preserving the advantages of the original
implementation will prove beneficial in eliminating poten-
tial tradeoffs. A set of good AOP practices is an open issue,
and just as the language itself, is part of the evolution pro-
cess of the aspect oriented technique. Reliable solutions to
common problems, as the undo functionality one, are also
critical to avoid intrusive code due to the language mecha-
nisms. All these are important concerns for building confi-
dence in an AOP adoption for existing systems.

6. Conclusions

The solution achieved by applying the aspect oriented tech-
niques to refactor the undo concern in an existing, well-
designed object-oriented system shows improvements in
terms of modularity and separation of concerns. Yet,
the downsides of the aspect-based solution raise questions
about how the improvements can be quantified and what are
the desired aspect solutions for specific crosscuttings. The
unpluggability property gives a measure of how clear the
concern is distinguished in the original code and is a good
estimate of the refactoring costs.
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ABSTRACT approach over the idioms-based approach. We do this by compar-

This paper reports upon our experience in automatically migrating N9 the quallt_y of both approac_hes_ In terms of the amount of tan-
the crosscutting concerns of a large-scale software system, writ-9/ing. scattering and code duplication, the lines of code devoted to
ten in C, to an aspect-oriented implementation. We zoom in on one the concern and the correctness and consistency of its implementa-

particular crosscutting concern, and show how detailed information tion.

about it is extracted from the source code, and how this information ]1_1 Approach

enables us to characterise this code and define an appropriate aspec o . . .
automatically. Additionally, we compare the already existing solu- Our approa_ch to achieving our goals is to zoom in on one partic-
tion to the aspect-oriented solution, and discuss advantages as welllar crosscutting concern, thgarameter checkingoncern. Based

as disadvantages of both in terms of selected quality attributes. OurOn the existing source code and the requirements extracted from

results show that automated migration is feasible, and can lead toth® manuals, we implement@ncern verifierfor the parameter

significant improvements in source code quality. _checking concern. Its primary tz_isk is to reason about_ the.current
implementation of the concern in order to “characterise” it: the
verifier reports where the code deviates from the standard idioms,
1. INTRODUCTION P

which allows developers to correct the code when necessary. Man-

Aspect-oriented software development (AOSD) [5] aims at im- yal inspection may also reveal that a particular deviation is in fact
proving the modularity of software systems, by capturing crosscut- on purpose, in which case it will be markediatended Addition-
ting concerns in a well-modularised way. In order to achieve this, ally, the verifier also recovers the specific locations where particular
aspect-oriented programming languages add an extra abstractiotharameters are checked.
mechanism, amspect on top of already existing modularisation The information recovered by the concern verifier is used by the
mechanisms such as functions, classes and methods. aspect extractoand theconcern eliminator The former defines an

In the absence of such a mechanism, crosscutting concerns arexppropriate aspect for the parameter checking concern. This aspect
implemented explicitly using more primitive means, such as nam- will add parameter checks to the source code wherever necessary,
ing conventions and coding idioms (an approach we will refer to as and will make sure this code is not added for the intended devia-
theidioms-based approadhroughout this paper). The primary ad-  tions. The latter will remove the parameter checking concern from
vantage of such techniques is that they are lightweight, i.e. they do the original source code.
not require special-purpose tools, are easy to use, and allow devel- The aspect extractor outputs the aspect in a special-purpose as-
opers to readily recognise the concerns in the code. The downsidepect language. This definition is then translated automatically by
however is that these techniques require a lot of discipline, are par-our DSL Comp"erto an a|ready_existing’ genera|_purpose aspect
ticularly prone to errors, make concern code evolution extremely |anguage, that can weave the parameter checking concern back into
time consuming and often lead to code size explosion. the source code.

In this paper, we report on an experiment involving a large-scale,  Once the correct aspect has been constructed, we can assess

embedded software system written in the C programming language. the quality of the aspect-oriented solution and compare that to the
that features a number of typical crosscutting concerns implemen-jdioms-based solution.

ted using naming conventions and coding idioms. Our first aim

is to investigate how this idioms-based approach can be turned1.2 Outline

into a full-fledged aspect-oriented approach automatically. In other  The remainder of the paper is structured as follows. The next
words, our goal is to provide tool support for identifying the con-  section introduces the parameter checking concern, its requirements
cern in the code, implementing it in the appropriate aspect(s), and and the idioms used to implement it. Section 3 discusses the con-
removing all its traces from the code. Our second aim is then {0 cern verifier, its implementation, and the results of running it on our
evaluate the benefits as well as the penalties of the aspect-oriente@ase study.. Section 4 presents the domain-specific aspect language

*Also affiliated with Delft University, Software Evolution Research we |mplemepteq for the parameter check.mg concem, discusses Its
Laboratory (SWERL), Faculty of Electrical Engineering, Mathe- implementation in terms of an already-existing aspect weaver, and

matics and Computer Science (EEMCS), Mekelweg 4, 2628 CD compares this solution to the idioms-based solution. Section 5
Delft, The Netherlands. then discusses the (conservative) migration of the idioms-based ap-

proach to the aspect-oriented approach. Section 6 considers vari-
ous quality attributes to compare the aspect-oriented solution to the




idioms-based solution. Finally, Section 7 presents our conclusionsthat already contains a value, because the function will overwrite
and future work. the pointer to that value. Since the original value is then never
freed, a memory leak could occur. In order to avoid such leaks, the

2. CURRENTPARAMETER CHECKING ID- following test is added for each output pointer parameter:

IOM if(item_data 1= (void *) NULL) {
: : : : r = CC_PARAMETER_ERR;
The subject system upon which we perform our experiments is CC_LOG(r0,("%s: Oufput parameter %s may already "
an embedded system developed at ASML, the world market leader “contain data (INULL). This data will "
in lithography systems. The entire system consists of more than "be overwritten, which may lead to memory "
10 million lines of C code. Our experiment, however, is based on leaks.", "queue_extract’, "item_data"));

a relatively small, but representative, software component (which }

we will call the CC component in this paper), consisting of about

. The only difference with the previous test lies in the condition
19.000 lines of code.

. . of theif , that now checks whether the dereferenced parameter
Because the C Iangua_ge_ Iack_s explicit support for crosscutting already contains some dats (NULL ), and in the string that is
concerns, ASML uses an idiomatic approach forimplementing such , it 1'to the log file.

concerns, based on coding idioms. As a consequence, a large a-
mount of the code of each component is “boiler plate” code. A
code template is typically reused and adapted slightly to the con- 3. CONCERN VERIFIER

text. The concern verifier is an automated tool that reasons about the
. . idioms-based implementation of the parameter checking concern.
2.1 Parameter Checking Requirements This section motivates why we need such an automated tool, ex-

The parameter checking concern is responsible for implement- plains the information that it recovers from the source code, the
ing pointer checks for function parameters and raising warnings coding idioms used, as well as the implementation of the algorithm
whenever such a pointer contains a non-expeddL({) value. that verifies these idioms, and the results of running this algorithm
The requirement for the concern is that each parameter that hason our case study.
type pointer and is defined by a public (i.e. static ) function L.
s);lpoulr:j be checked agaif$tLLvalues. If aNULLvalue occurs, an 3.1 Motivation
error variable should be assigned, and an error should be logged in  If we want to transform the idioms-based approach into an aspect-
the global log file. Some exceptions to this requirement exist, as a oriented one, we should first “characterise” the implementation. In

limited number of functions can explicitly deal withULL values, other words, we should first locate places where parameters checks

so the corresponding parameters should not be checked. occur and mandatory parameter checks are missing, and identify
The implementation of a check depends onktmel of parame- parameters that do not need to be checked.

ter. The ASML code distinguishes between three different kinds: ~ We achieve this characterisation by implementimgacern ver-

input, outputand the special case ofitput pointemparameters. In- ifier which checks the implementation of the concern with respect

put parameters are used to pass a value to a function, and can béo the coding idioms that hold for it. The verifier outputs a list
pointers or values. Output parameters are used to return valuesof locations i.e. functions where parameter checks occur, and a
from a function, and are represented as pointers to locations thatlist of deviations i.e. locations in the source code that lack a pa-
will contain the result value. The actual values returned can be ref- rameter check although it should be present according to the id-
erences themselves, giving rise to a double pointer. The latter kindioms. This latter list is inspected by a domain expert, who iden-
of output parameters are calleditput pointerparameters. Note tifies theintendedandunintendeddeviations. The intended devi-
that the set of output pointer parameters is a subset of the set ofations indicate exceptional cases (e.g, parameters that are allowed
output parameters. Since output and output pointer parameters areo be NULL), whereas unintended deviations indicate parameters
always of type pointer, they should always be checked, but only for which a check was forgotten and should be implemented. As
input parameters that are passed as pointers should be checked. we will see later on, our concern verifier is able to identify some
. intended deviations automatically. In those cases, these deviations

2.2 ldioms Used are not reported, but simply registered as exceptions.

Parameter checks occur at the beginning of a function and always Thus the following important information is recovered from this
look as follows: code:

if(queue == (CC_queue *) NULL) {

t = CC_PARAMETER ERR. e the list of intended deviations informs us which parameters

CC_LOG(r,0,("%s: Input parameter %s error (NULL)", form an exception to the rule. As such, this important in-

"CC_queue_empty", "queue”)); formation becomes explicitly available, whereas it was not

} before;

where the type cast of course depends on the type of the variable ¢ the number of unintended deviations is a measure for the

(queue in this case). The second line sets the error that should quality of the idioms-based approach. The smaller this num-

be logged, and the third line reports that error in the global log ber, the better the quality of the implementation. We expect

file. It is not strictly specified which string should be passed to the this number to increase linearly with the size of the source

CCLOGfunction. Checks for output parameters look exactly the code;

same, except for the string that is logged.
Since output pointer parameters are output parameters as well, e the verifier identifies the specific location in the code where a

they should also be checked for null values. Additionally, one extra particular parameter is checked. Remember that the require-
check is required to prevent memory leaks. The requirement at ment does not specify where the check should occur, as long
ASML is that output pointer parameters may not point to a location as it occurs before the parameter is used.



required actually deviations  unintended intended

checked detected deviations  deviations
pecication concens
input 57 40 26 17 9
output 143 94 49 49 0

out pntr 45 15 35 30 5 oo ot o
total || 245 149 110 96 14 Spocticaton Comper Weaver
Table 1: Number of top level parameter checks found for the CC

component. Figure 2: Merging C and DSL code

As we will see in the next sections, this information is vital to

our aspect extractor. The aspect it defines should add all neces4. ADOMAIN-SPECIFIC LANGUAGE FOR
sary parameter checks to the code, but should not insert checks for PARAMETER CHECKING

exceptional parameters. Additionally, it should make sure thatthe |, order to arrive at a more rigorous treatment of parameter checks
aspect preserves the behaviour of the original idioms-based imple- 5,6iding the situation that as many as 40% of them deviated from
mentation, WhICh it does by simply implementing the checks at the o specifications), we propose a domain-specific language (DSL)
same |ocations. _ . _ _ for representing the kind of parameter checks that are required. In
We continue this section by explaining the implementation of the s section we describe the language and corresponding tool sup-
concern verifier in more detail. port — in the next we explain how existing components can be
- . migrated to this target solution.
3.2 Verifier Implementation g 9
The concern verifier has been developed pluginin the Code- 4.1 Specification

Surfer source code analysis and navigation tooThis tool pro- The idea underlying the language is that a developer annotates

vides us with programmable access to data structures such as sys, function’s signature, by documenting the specific kind of its pa-

tem- and program-dependence graphs, and defines advanced analyameters, i.e. either input or output. Output parameters that are of

sis techniques over these structures, such as control- and data-flovbutput pointer kind can also be specified. When a parameter does

analysis and program slicing. not require a check, for whatever reason, this can be annotated as
Our verifier needs to consider each public function and verify g Additionally, the developer can specifgvice codgi.e. the

if the necessary parameter checks occur in it or in the functions it -gde that will perform the actual check. Since this code can dif-

calls. This requires knowledge about the particular kind of a param- fer for the different kinds of parameters, we allow advice code for

eter: whether it is input, output or output pointer. Our verifier first input, output and output pointer parameters to be specified sepa-

extracts this knowledge from the source code by simply checking rately. Although in this paper we do not need it, the DSL also has

for assignments to a parameter, lookingt (or def) statements  royisions to express advice code for deviations.

for that parameter inside a function’s body. - _ As an example, consider the (partial) specification of the pa-
Once the particular kind of a parameter is determined, we can yameter checking aspect for the CC component as depicted in Fig-

verify whether the necessary checks for it occur in the implementa- ;e 1. |t states that the paramet&@queue *queue andvoid

tion. If a parameter is not checked, the concern verifier tries to infer =queue _data of the functionsCCqueue _peek _front and

if the function is robust for exceptional values, before it registers an CCqueue _peek _back are output and output pointer parameters,

unintended deviation. for the parameter At the moment, it uses arespectively, and that parame@€queue *queue of function

simple heuristic: if the function compares the value of a parameter CCqueue _init is an output parameter, whereas paramsetit

to NULL each time before it uses that parameter, we assume it canxqueue _data does not need to be checked. Additionally, the ad-

deal with aNULL value. This heuristic does not suffice for identi-  yjce code implements the required checks for input, output and out-

fying all exceptions, however. Distinguishing intended from unin- put pointer parameters. The special-purptiieParameter

tended deviations thus still requires a manual effort. More elaborate y5riaple denotes the parameter currently being considered by the

heuristics are possible, but are considered future work. aspect, and exposes some context information, such as the name
.p . and the type of the parameter and the function defining it. In this
3.3 \Verification Results respect, it is similar to ththisJoinPoint ~ construct in AspectJ.

Applying the verifier to the case at hand yields the data displayed Due to the generality introduced by this variable, we only need to
in Figure 1. The CC component implements 157 functions, with provide three advice definitions in order to cover the implementa-
386 parameters in total. 245 of these parameters must be checkedjon of the concern in the complete ASML source code.
since they are defined by public functions and have pointer type. L .

This is indicated in the first column of Figure 1, which also pro- 4.2 Compilation and Weaving

vides the distribution among the different kinds of parameters. The  Rather than implementing our own aspect weaver for the param-
locations obtained from the verifier tell us which of these 245 pa- eter checking DSL, we translate it into an already-existing general-
rameters are actually checked, as displayed in the second columnpurpose aspect language for the C programming language. As such,
It turns out that only 149 (i.e., 60%) of the parameters requiring a we get the benefits of both worlds: we can use a special-purpose,
check are in fact checked. intuitive and concise DSL, for which we don not need to imple-

The deviations obtained from the verifier aim to help in identi- ment a sophisticated weaver ourself. This process is illustrated in
fying the remaining 96 parameters that need to be checked. TheFigure 2.

verifier reports a total of 110 deviations (column 3). Manual in- The general-purpose aspect language is a stripped-down variant
spection of these deviations eliminated 14 intended deviations (for of the AspectC language [2]. It has only one kind of joinpoint,

9 input parameters and 5 output pointer parameters, cfr. column 5).function exection, and allows us to specify around advice only. Of
course, before and after advice can be simulated easily using such
Iwww.grammatech.com around advice. Figure 4 contains an example, which shows how




component CC {
CC_queue_peek_front( output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_peek_back( output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_empty( input CC_queue *queue, output bool *empty);
CC_queue_init( output CC_queue *queue, deviation void *queue_data);

input advice
if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Input parameter %s error (NULL)",
thisParameter.function.name, thisParameter.name));
}
}
output advice {
if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s error (NULL)",
thisParameter.function.name, thisParameter.name));

}

output  pointer  advice
if(*thisParameter.name != (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s may already contain a value. This value will be"
"overwritten, which may lead to a memory leak",
thisParameter.function.name, thisParameter.name));

Figure 1: DSL specification of the parameter checking concern

| Lines of code

Original C code 961
Verifier Extractor Specification Specification
AspectC code 1200

Table 2: Lines of code figures for various parameter checking rep-
resentations

Source DSL
Code e J— Compiler

‘ be checked(2+7) + 8 lines for the three different kinds of advice

Figure 3: Migrating Existing Components to the DSL required, and a start and an end line.

AspeciC
Weaver

5. MIGRATION

theadvice on keyword is used to specify advice code for a par- . .
ticular function. 5.1 Motivation

The translation process itself proceeds as follows: the transla- The steps involved in migration of the idioms-based approach to
tor considers each parameter of each function in the original DSL the DSL approach are depicted in Figure 3. The key steps involved
specification, looks at its kind(s), retrieves the corresponding ad- are the extraction of aspect code from the source code, and the elim-
vice code, expands that code into the actual check that should beination of the parameter checking code from the original sources.
performed, and inserts the expanded code in the function where theAs we will see, for both steps, the locations obtained by the verifier
parameter is defined. The expansion phase is responsible for asdiscussed in Section 3 provides essential information. Moreover,
sembling and retrieving the necessary context information (i.e. set- these locations will play a role in the DSL compiler, which can use
ting up thethisParameter  variable), and substituting it in the  them in order to regenerate code that is as close as possible to the
advice code where appropriate. At the end, this advice code will original code.
call the original function by calling the speciptoceed func- .
tion, but only if none of the parameters contain an illegal value 9.2 Aspect Extraction
(i.e. the error variable is still equal to ti@<constant). Note that, When developing new code, a developer can use the DSL to
two checks are implemented for a parameter of output and output specify parameter checking aspects, instead of implementing the
pointer kind, since both the output and output pointer advices are checks manually. In a migration setting, however, we don’t want

substituted for such parameters. developers to wade trough millions of lines of already existing source
. . . code to annotate function signatures and define an appropriate as-
4.3 Application in Case Study pect. Rather, we want to extract such an aspect definition from the

The parameter checking concern in the original CC implemen- existing code automatically. The information required to perform
tation required 961 lines of C code (see Figure 2). Using the pa- this extraction consists of just (i) tHend of each parameter; (i)
rameter checking DSL, only 133 lines are needed instead: One linewhether it requires a check or not; and (iii) if so, the code that needs
for each of the 109 functions that require one their parameters to to be executed for such a check (i.e. the advice code). Apart from



int advice on (queue_extract) {
int r = OK;
if(queue == (CC_queue *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: " Output parameter %s error (NULL)", "queue_extract", "queue"));

}
if(item_data == (void **) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:" Output parameter %s error (NULL)", "queue_extract", "item_data"));

}
if(item_data != (void **) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:"Output paramater %s may already contain data (INULL). This data will be"
"overwritten which may lead to memory leaks", "queue_extract", "item_data"));

}
if (r == OK)

r = proceed ();
return r;

Figure 4: AspectC specification of the parameter checking concern

this advice code, all this information has already been computed ' J
by the concern verifier. Recall from Section 3 that the verifier au-

tomatically identifies input, output and output pointer parameters,
and that the list of deviations is split into intended and unintended
deviations. Our aspect extractor thus merely reuses this informa-
tion. The advice code, on the other hand, is not considered by our
concern verifier. As explained in Section 2, the advice code for

input, output and output pointer parameters always consists of an
if-test, an assignment and a call to a log function. Our aspect ex-
tractor simply constructs this code as the advice code definition.

i

L

(LI T

Figure 5: Parameter checking code in the CC component

5.3 Concern Elimination

Besides extracting the aspect specification, the code originally
implementing the concern has to be removed from the source codecall thequeue _extract ~ function, and both parameters of those
as well. The locations obtained by the verifier indicate where the former functions are checked in thgueue _extract  func-
checks occur, and can be used for these purposes. We currentltion in the original code. When translating the specification of
use a fairly simple solution to eliminate the concern code, based onthe CCqueue _peek _front andCCqueue _peek _back func-
a prototype implementation in Perl. This is possible because the tions, the translator consults the verifier to see where their parame-

parameter checking concern is not tangled with the other code, andters are checked, and generates advice code correspondingly.
is easy to recognise and remove. This works well enough for the

cases under study at the moment. 6. DISCUSSION
5.4 Conservative Translation In this section we discuss the pros and cons of the DSL approach
The DSL code recovered can be used directly to generate inter-for the parameter checking concern.

media;te ASpﬁ.Cf’ COdT.' which thﬁn in turn can be woven with the C 44 SizeThe aspect-oriented solution reduces the code size of the
code from which we e |m_|nated the concern code. . . component by 7%, since the DSL allows us to specify the parame-
However, when adopting the generated C code in a production o checking concern in a concise way. The complete aspect defini-

:anwrhonmen(tj, we .WOUIC: “kilto ellmlrll(atehas ma”_yl risks as possm_le. tion is specified in only 132 lines, whereas the parameter checking
notherwords, itis preferable to make the compiler as conservative .,,cqr in the original component comprised a total of 961 lines.

as possible, trying to stay very close to the original C code. For Naturally, reduced code size alone is an insufficient indicator for

that reason, the DSL compiler offers the possibility to re-introduce j,rea5eq code quality. However, less code does give the benefits
the parameter checks at exactly the same locations as where theyy¢ o ver chances of error, fewer lines to write or understand, and,

were found originally. To that end, it uses information obtained following Boehm's maintenance cost prediction model [1],, lower
from the verifier (as indicated by the dashed arrow in Figure 3). maintenance costs.

Naturally, this is only possible for parameters that were already

checked correctly, and not for newly introduced checks. Scattering and Tangling Figure 5 (generated using the Aspect-
An illustration of the translation of the specification of Fig- Browser [4]) shows how the parameter checking concern, imple-

ure 1 is given in Figure 4. The example states that the mented using the idioms-based approach, is distributed over the

gueue _extract  function should implement two output pa- code of the CC component.

rameter checks and one output pointer parameter checks. This The aspect-oriented solution cleanly captures the concern in a

function is a non-public function, and a specification for it modular and centralised way, and thus removes the scattering all

did thus not appear in the DSL specification. The reason together. This does not only make the concern more explicit and

it is included in the AspectC specification is that both the tangible in the source code, but also improves its reusability, un-

CCqueue _peek _front andCCqueue _peek _back functions derstandability and maintainability



Apart from system-wide benefits, the adoption of the DSL has can be generalised to larger components, developed by other devel-
consequences for the quality of the parameter checking concernopers. This may have an effect on the way the parameter checking
implementation as well. concern is implemented, for example.

Unintended Deviationsin Section 3 we have seen that as many as

40% of the parameters that ought to be checked are in fact never7' CONCLUDING REMARKS

checked. In this paper, we have shown how a idioms-based solution to
It is not immediately clear why so many parameters are left un- Crosscutting concerns as occurring in systems software can be mi-

checked. One reason is probably that the punishment or reward forgrated automatically into a domain-specific aspect-oriented solu-

the developer is uncertain, and much later in time, happening only tion. The approach is illustrated by zooming in on a particular con-

when another developer starts using the component in a wrong waycern, namely parameter checking. Our approach includes a number

that could have been prevented by a proper null pointer warning. of different elements:

Moreover, this figure seems to indicate that developers consider

implementing this concern for each parameter too much effort, e Characterization of the idioms-based approach, resulting in a

concern verifiethat can check the way the concern is coded;
Intended Deviations13% of the reported deviations are intended
deviations, i.e. parameters that need not be checked. Although
we are presently investigating this issue, we do not see many op-
portunities to further refine our verifier in order to reduce this fig-
ure. These checks are simply “exceptions to the rule” to which the
code should adhere. Note however, that it is important to identify
these exceptions, because the aspect extractor relies on this infor-
mation. Moreover, it can improve the understandability of the code. ~ We also discussed the advantages of the aspect-oriented solution
For example, we observed that most intended deviations for output compared to the idioms-based solution. Our results indicate that in-
pointer parameters are due to the parameter being usecuasa troducing aspects significantly reduces the code size, removes the
when iterating over a composite data structure. Since the parame-Scattering and code duplication, and improves the correctness and
ter points to an item in the list, it doesn't matter that it's value is consistency of the concern implementation as well as the under-
overwritten, and hence, no output pointer check is needed. standability of the application.

e Representation of the concern in an aspect-oriented domain-
specific language, which can be mapped to a dialect of the
general purpopse AspectC language;

e A migration strategy for existing components, including an
aspect extractor and a conservative translator.

Uniform Parameter Checking The advice code specifies how a REFERENCES
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and reused afterwards. Consequently, all parameters are checkegb] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Us-
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DocumentationOne of the benefits of using a declarative DSL, is
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[3]. In particular, the parameter checking aspect acts as documen-
tation of the component’s functions, or it can be used as input to
a documentation generator. In the current implementation of the
component, the kind of the parameter is documented inside com-
ments. These comments are often not consistent with the source
code however, and are sometimes outdated (e.g. a function de-
fines new parameters that are not document, or vice versa). More-
over, such documentation does not include information about the
exceptional parameters that do not need to be checked. The aspect
however, makes all this information explicit, and thus improves the
understandability of the concern. Additionally, since the aspect is
extracted from the source code automatically, it is up to date, and as
already explained, we believe it will remain so because developers
profit from it.
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Abstract to efficiently reconcile application source code with system
goals. The bottom-up model is often applied by program-
We propose a technique that uses webmining princi- mers working on unfamiliar code [4]. To comprehend the
ples on event traces for uncovering important classes in application, they build mental models by evaluating pro-
a system’s architecture. These classes can form startinggram code against their general programming knowledge
points for the program comprehension process. Further- [11].
more, we argue that these important classes can be used to  For |arge industrial-scale systems, the program compre-
define pointcuts for the introduction of aspects. Based on apensjon process requires the inspection and study of a sig-
medium-scale case study — Apache Ant—and detailed archinificant number of packages, classes and code. As such,
tectural information from its deVeIOperS, we show that the a semi-automated proceSS in which an ana|ysis tool Sup_
important classes found by our technique are prime candi- ports the identification of key classes in a system’s architec-
dates for the introduction of aspects. ture and presents these to the user suits the hybrid cognitive
model that is frequently used in large-scale systems [11].

Program understanding can be attained by using one of
1 Introduction several strategies, namely (1) static analysis, i.e., by exam-
ining the source code, (2) dynamic analysis, i.e., by exam-
Program comprehension is the process of understandingning the program’s behavior, or (3) a combination of both.
a system through feature and documentation analysis [11]/n the context of object-oriented systems, due to polymor-
Gaining understanding of a program is a time-consuming Phism, static analysis is often imprecise with regard to
task taking up to 40% of the time-budget of a maintenance the actual behavior of the application. Dynamic analy-
operation [15]. The manner in which a programmer gets SiS, however, allows to create an exact image of the pro-
understanding of a software system varies greatly and de-gram’s intended runtime behavior. Our actual goal is to find
pends on the individual, the magnitude of the program, the frequently occurring interaction patterns between classes.
level of understanding needed, the kind of system, ... [10] These interaction patterns can help us (1) build up under-
Studies and experiments reveal that the success of des_tandin_g of the software, and (2) locate candidate introduc-
composing a program into effective mental models dependstion points for aspects.
on one’s general and program-specific domain knowledge. In this paper we propose a technique that applies
While a number of different models for the cognition pro- datamining techniques to event traces of program runs. As
cess have been identified, most models fall into one of threesuch, our technique can be catalogued in the dynamic analy-
categories: top-down comprehension, bottom-up compre-sis context. The technique we use was originally developed
hension or a hybrid model combining the previous two to identify importanthubson the Internet, i.e., pages with
[12]. The top-down model is traditionally employed by many links to authorative pages, based on only the links be-
programmers with code domain familiarity. By drawing tween web pages [9]. Hence, the Internet is viewed as a
on their existing domain knowledge, programmers are ablelarge graph. We verify that important classes in the pro-



gram correspond to the hubs in the dynamic call-graph of a 1
program trace. Launcher > Locator
We apply the proposed technique to a medium-scale case \

study, namely Apache Ant. The results show thattthbi-
nesss indeed a good measure for finding important classes
in the system’s architecture. Furthermore, based on these
results we verify the hypothesis that these classes are good
candidates for aspect introduction.

The organization of the paper is as follows. First, in Sec-
tion 2, we give an overview of the different steps in the pro-
cess and the different algorithms we use. Section 3 explains DefaultinputHan
the datamining algorithm in detail, while in Section 4 the dler
results of applying our technique on the case study are dis-
cussed. Section 5 explores related work, while Section 6
points to future research and concludes the paper.

ProjectHelper Diagnostics

Defaultlogger

Figure 1. A compacted call graph.

2 Overview of our proposed technique call graph The compacted call graph is derived from the
dynamic call graph; it shows an edge between two classes
The technique we propose can be seen as a 4-steft — B if an instance of class A sends a message to an

process. In this section we explain each of the 4 steps.  instance of class B. The weights on the edges give an
indication of the tightness of the collaboration as it is the

Define execution scenario. Applying dynamic analy-  number of unique messages that are sent between instances

sis requires that the program is executed at least once. Th@f both classes.

execution scenario, i.e., which functionality of the program This compacted call graph is the input to the datamining
gets executed, is very important as it has a great influencedlgorithm that is presented in detail in section 3.

on the results of the technique. For example, if the software

engineer is reverse engineering a banking application andSelective introduction of aspects. The goal we wish
more specifically wants to know the inner workings of how to attain is guiding the software engineer through the
interest rates are calculated, the execution scenario shoulgoftware in order to help him/her in his/her program
at least contain one interest rate calculation. Furthermore,.comprehension process. Because the original event trace is
by keeping the execution scenario specific, i.e., only (1) too large to study directly (even in a visualized form),

calculating the interest rate, the final results will be more and (2) shows too many unimportant sections, e.g. long
precise. loops in the execution, we want to be able to deliver the

software engineer with a number gfices of the trace
Non-selective profiling. Once the execution scenario that form good starting points for program understanding
has been defined, the program must be executed accordin§Urposes.
to the defined scenario. During the execution all calls to To the user, these starting points can be:
and returns from methods are logged in the event trace. For
this step, we relied on a custom-made JVRpYofiler.
Please note however that even for small and medium-scale
software systems and precisely defined execution scenarios
event traces become very large (for our case study the trace
consisted of 24 270 064 events for an execution time of
23s).

e Pointers to classes: the user should begin his/her inves-
tigation from these classes and analyze them and their
collaborating classes manually.

e A visualization, e.g. an interaction diagram, of the
classes deemed important and their immediate collab-
orators. This set of classes can e.g. be found by intro-
ducing aspects with theflow  pointcut designator [8]

Datamining. By examining the event trace we want on all classes deemed important.

to discover the classes in the system that play an active role

in the execution scenario. Classes that have an active roleas 5 side effect of this heuristical detection of important

are qlasses that call upon many other classes to perfornuasses, we expect to find opportunities for aspect refactor-
functions for them. ings [14, 13].

In Figure 1 we show an example of @mpacted

1Java Virtual Machine Profiler Interface: for more information see: AS Va_"dation we propose to verify whether the cla_sses our
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html technique marks as important are also deemed important




be good hubs, antdwill be a less good hub. The authority

@ @ @ of 2 will be larger than the authority &f, because the only
in-links that they do not have in common are— 2 and
2 — 3, andl is a better hub tha®. 4 and5 are better hubs
thanl, as they point to better authorities.

@ @ The HITS algorithm works as follows. Every paggets

assigned two numbers; denotes the authority of the page,
while h; denotes the hubiness. Let- j denote that there

is a hyperlink from pageéto pagej. The recursive relation

Figure 2. Example web-graph between authority and hubiness is captured by the following

formula’s.
by the developers. Furthermore, we will also compare the hi = Z aj (1)
importance of these classes with ti®upling Between v
Objects(CBO) metric [3]. CBO can be seen as a typical a; = Z h; (2)
static coupling measure which can help in identifying -

classes with a coordinating role. ) L
The HITS algorithm starts with initializing ak’s anda’s

) . . to 1, and repeatedly updates the values for all pages, using
3 Applying Webmlnl_ng techniques for pro-  he formula’s (1) and (2). If after each update the values are
gram comprehension normalized, this process converges to stable sets of author-

ity and hub weights [9].

In datamining, many successful techniques have been It is also possible to add weights to the edges in the
developed to analyze the structure of the web [2, 5, 9]. Typ-graph. Adding weights to the graph can be interesting
ically, these methods consider the Internet as a large graphto capture the fact that some edges are more important
in which, based solely on the hyperlink structure, important than others. This extension only requires a small modi-
web pages can be identified. In this section we show howfication to the update rules. Let[i, j] be the weight of
to apply these successful web mining techniques to a com-the edge from pagéto pagej. The update rules become
pacted call graph of a program trace, in order to uncoverhi = >, ; wli,j] - aj anda; = >, wli, j] - hs.
important classes.

First we introduce the HITS webmining-algorithm [9] to Example For the graph given in 2, the hub and authority
identify so-called hubs and authorities on the web. Then, weights converge to the following (normalized) values:
the HITS algorithm is combined with the compacted call

graph. We argue that the classes that are associated with hy = 64 a = 0
good “hubs” in the compacted call graph are good candi- hy = 48 az = 100
dates for the introduction of aspects as well. hy = 0 az = 94
h4 = 100 a, = 24
3.1 Identifying hubs in large webgraphs hs = 100 a5 = 0

In the context of webmining, the identification of hubs

In [9], the notions ohubandauthoritywere introduced.  and authorities by the HITS algorithm has turned out to
Intuitively, on the one hand, hubs are pages that rather re-he very useful. Because HITS only uses the links between
fer to pages containing information then being informative \yeppages, and not the actual content, it can be used on ar-

themselves. Standard examples include web directoriespitrary graphs to identify important hubs and authorities.
lists of personal pages, ... On the other hand, a page is

called an aut.hority if it contgins u;eful in.formation.. Hence, 32 Identifying aspect candidates

a web-page is a good hub if it points to important informa-

tion pages, e.g., to good authorities. A page can be consid- \ysithin our problem domain, hubs can be considesed
ered a good authority if itis referred to by many good hubs. ,inating classeswhile authorities correspond to classes
The HITS algorithm is based on this relation between hubs ,,\iging small functionalities that are used by many other

and authorities. classes. As such, the hub classes play a pivotal role in a

system’s architecture. Therefore, hubs are excellent candi-
Example Consider the webgraph given in Figure 2. In dates for the introduction of aspects to monitor the runtime
this graph2 and3 will be good authorities, angéland5 will behavior of these coordinators.



Furthermore, by using theflow pointcut designator, Class Proposed| CBO | Antdocs
we are not only able to monitor these coordinating classes, algorithm
but also the classes that get their orders from these coordi{ Project X X X
nators. This strategy can furthermore be used for efficient| UnknownElement X X
dynamic slicing. AntTypeDefinition X
Task X X X
4 Case study — Apache Ant ComponentHelper X X
Main X X X
Ant is an XML based Java build tool. We chose Apache Introspect.|onHeIper X X X
N . . AbstractFileSet X X
Ant 1.6.1 because we consider it to be a medium-size pro- ProiectHelper « « «
gram (98 681 LOC, 127 classes) and because of the ex- Ruritimecgnfi urable « «
tensive design information that is publicly made available 9
: SelectSelector X
by the developers. As such we have clear evidence abou DirectorvScanner «
the classes the developers consider to be impdttartiis y
. ) S . Target X X
knowledge will help us in validating our technique.
: . . | TaskAdapter X
As execution scenario we have chosen to let Ant build ElementHandler « «
itself, i.e., we supplied the XML build file that comes with FileUtils «
the Apache Ant 1.6.1 source code edition. This scenario BaseSelectorContainer «
was chosen because (1) the Ant build file is representative
. . / . ! XMLCatalog X
for typical Ant functionality and (2) it allows for easy veri-
N O AntClassLoader X
fication of the results presented in this paper. FilterChain N
We applied our technique two times on our case study. :
TaskContainer X

The first time, we set the weights of the compacted call
graph all to 1, for the second experiment we used as weights
the number of methods called upon from another class; see Taple 1. Correlation between hubiness, static
also Section 2. coupling, and expert opinion.
In Table 1 we list the result of the first experiment. We
show the highest 15% of classes according to their hubiness.
We compare these classes with the CBO metric and with the
opinion of the Ant development team. Close inspection of the project’s source code reveals that the
Table 1 shows that: results can be explained by a mixture of the above reasons.
All classes that are highly-ranked through their hubiness are
in fact classes that haveaaordinating rolein the system
and as such make them interesting for program comprehen-

e The number ofalse positivesi.e. classes reported but
not considered important by the developers, is 6 out of
15 (40%). In the case of the CBO metric this amounts purposes.

0,
t0 7/12 (58%). Furthermore, Table 1 shows there is a big difference in

o False negativeen the other hand remain limited to just Precision with regard to the CBO metric.
1 out of 10. For the CBO metric this number equals 5  The results of the second experiment, where we used
out of 10. the real weights calculated during the transformation from

i ) a call graph to a compacted call graph, are very similar. The
The number of false negatives can be considered very 10w, ant classes are now however not strictly in the upper

and shows the value of using our technique. The number ofy 5o, 1t more in the upper 25%. Furthermore, a number
false positives however is —at first sight — alarmingly high. ¢ he|per classes to the classes deemed important, now also
This can be attributed to several facts: have a high degree of hubiness. This comes from the fact

1. the developers opinion sibjectiveand only mentions  that many of these helper classes make use of only a limited

those classes (or constructions) they are most proud offumber of classes, but do use a lot of different methods.
or they themselves find most interesting. Hence, these helper classes do not use many other classes,
but the ones they do use, are used very intensively. This in-
2. the classes our technique finds should also be considtensity results in a large weight, which, on its turn, increases
ered important, albeit less important than those men-the relative hubiness.

tioned in the design documents. Keeping this in mind, we advocate the use of ¢tflew
2The design documentaion of Ant can be found at: poiptcut on the impor_tant classes of the experimerjt with the
http://codefeed.com/tutorial/anbnfig.html weights set to 1. This way, the helper classes will also be



touched by the pointcut. e It can be interesting to find frequently occurring se-
guences in event traces. This problem might be solved

5 Related work by applying episode mining algorithms.

As can be seen from this list of candidates, the possibil-
Tourwé and Mens [13] describe an experiment in which ities for applying datamining for automating program un-
formal concept analysis is used to mine &spectual views  derstanding are numerous. For an overview of the datamin-
An aspectual view is a set of source code entities, such asng techniques, see [7]. We believe this approach is very
class hierarchies, classes and methods, that are structurallgromising, and therefore think that it can become an impor-
related in some way, and often crosscut a particular applica-tant research direction.
tion. These aspectual views are used for aspect mining, but
also for program comprehension purposes. References
Breu and Krinke experimented with finding sets of meth-
ods that are always executed in the same sequence [1]. They[l] S. Breu and J. Krinke. Aspect mining using dynamic analy-
argue that the found sets of classes are candidates for aspect sis, 2003.
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Abstract

The aim of Aspect Oriented Programming (AOP) is the
production of code that is easier to understand and evolve,
thanks to the separation of the crosscutting concerns from
the principal decomposition. However, AOP languages in-
troduce an implicit coupling between the aspects and the
modules in the principal decomposition, in that the latter
may be unaware of the presence of aspects that intercept
their execution and/or modify their structure. These invis-
ible connections represent the main drawback of AOP. A
measuring method is proposed to investigate the trade-off
between advantages and disadvantages obtained by using
the AOP approach. The method that we are currently study-
ing is based on a metrics suite that extends the metrics tra-
ditionally used with the OO paradigm.

1 Introduction

When existing software is migrated to Aspect Oriented
Programming (AOP), crosscutting concerns are separated
from the principal decomposition and are encapsulated in-
side dedicated modul arization units (aspects). Maintenance
of the resulting code is expected to be easier, thanks to the
possibility of modifying locally the crosscutting behavior.
However, a novel kind of (implicit) coupling is introduced
by AOP languages. In fact, the codethat belongsto the prin-
cipa decomposition might be unaware of the presence of
aspects that intercept its execution and/or modify its struc-
ture. This creates a twofold dependence: on one hand, the
aspect code works properly only under given assumptions
on the code in the principal decomposition. Such assump-
tions may become invalid during code evolution. On the
other hand, the overall behavior depends both on the code
in the principal decomposition and on the aspect code, so
that a change in the latter might affect the former. If not
controlled, such kind of coupling might reduce or cancel
a al the potential benefits coming from the separation of

crosscutting functionalities from the principal decomposi-
tion.

The position of the authorsis that the trade-off between
the advantages obtained from the separation of concerns
and the disadvantages caused by the coupling introduced
by the aspects must be investigated in more detail, in or-
der for AOP to gain a wider acceptance. Empirical studies
should be conducted to evaluate costs and benefits offered
by the AOP solution with respect to the more traditional,
Object-Oriented (OO) one, in terms of code understand-
ability, evolvability, modularity and testability. Moreover,
aternative AOP solutions could be contrasted empirically,
in order to identify good/bad AOP practices, to be possibly
encoded into a catalog of AOP patterns/anti-patterns.

Thefirst step in this direction is the definition of a set of
metrics to quantitatively assess the effects of the software
“aspectization”. Such metrics can be based on those widely
used with OO software. Although some extensions of OO
metrics to AOP are available in the literature [8, 9, 10, 11,
12, 13], none seems to address explicitly al the different
kinds of coupling that aspects and objects can have between
each other.

In the remaining of this paper we discuss OO metrics
(Sec. 2) and consider their extension to AOP (Sec. 3). Then,
our AOP metrics tool is described (Sec. 4), followed by its
usage on an example (Sec. 5). Related works (Sec. 6) and
conclusions (Sec. 7) terminate the paper.

2 OO metrics

The inadeguacy of the metrics in use with procedura
code (size, complexity, etc.), when applied to OO sys
tems, led to the investigation and definition of several met-
rics suites accounting for the specific features of OO soft-
ware. However, among the avail able proposals, the one that
is most commonly adopted and referenced is that by Chi-
damber and Kemerer [4]. We argue that a shift similar to
the one leading to the Chidamber and Kemerer’'s metricsis
necessary when moving from OO to AOP software.



Some notions used in the Chidamber and Kemerer’ssuite
can be easily adapted to AOP software, by unifying classes
and aspects, as well as methods and advices. Aspect intro-
ductions and static crosscutting require minor adaptations.
However, novel kinds of coupling are introduced by AOR,
demanding for specific measurements. For example, the
possibility that a method execution is intercepted by an as-
pect pointcut, triggering the execution of an advice, makes
the intercepted method coupled with the advice, in that its
behavior is possibly altered by the advice. In the reverse
direction, the aspect is affecting the module containing the
intercepted operation, thus it depends on its internal prop-
erties (method names, control flow, etc.) in order to suc-
cessfully redirect the operation’s execution and produce the
desired effects.

In the following section, the Chidamber and Kemerer's
metrics suite is revised. Some of the metrics are adapted
or extended, in order to make them applicable to the AOP
software.

3 AOP metrics

Since the proposed metrics apply both to classes and
aspects, in the following the term module will be used to
indicate either of the two modularization units. Similarly,
the term operation subsumes class methods and aspect ad-
viceg/introductions.

WOM (Weighted Operations in Module): Number of
operationsin a given module.

Similarly to the related OO metric, WOM captures the
internal complexity of a module in terms of the number of
implemented functions. A morerefined version of this met-
ric can be obtained by giving different weightsto operations
with different internal complexity.

DIT (Depth of Inheritance Tree): Length of the longest
path froma given moduleto the class/aspect hierarchy
root.

Similarly to the related OO metric, DIT measures the
scope of the properties. The deeper a class/aspect is in
the hierarchy, the greater the number of operationsit might
inherit, thus making it more complex to understand and
change. Since aspects can alter the inheritance relationship
by means of static crosscutting, such effects of aspectization
must be taken into account when computing this metric.

NOC (Number Of Children): Number of immediate sub-
classes or sub-aspects of a given module.

Similarly to DIT, NOC measures the scope of the prop-
erties, but in the reverse direction with respect to DIT. The

number of children of a module indicates the proportion of
modules potentially dependent on propertiesinherited from
the given one.

CAE (Coupling on Advice Execution): Number of as-
pects containing advices possibly triggered by the exe-
cution of operationsin a given module.

If the behavior of an operation can be altered by an as-
pect advice, dueto apointcut intercepting it, thereisan (im-
plicit) dependence of the operation from the advice. Thus,
the given module is coupled with the aspect containing the
advice and a change of the latter might impact the former.
Such kind of coupling is absent in OO systems.

CIM (Coupling on Intercepted Modules): Number of
modules or interfaces explicitly named in the pointcuts
belonging to a given aspect.

This metric isthe dual of CAE, being focused on the as-
pect that intercepts the operations of another module. How-
ever, CIM takes into account only those modules and inter-
faces an aspect is aware of — those that are explicitly men-
tioned in the pointcuts. Sub-modules, modules implement-
ing named interfaces or modules referenced through wild-
cards are not counted in this metric, while they are in the
metric CDA (see below), the rationale being that CIM (dif-
ferently from CDA) capturesthe direct knowledge an aspect
has of the rest of the system. High values of CIM indicate
high coupling of the aspect with the given application and
low generality/reusability.

CMC (Coupling on Method Call): Number of mod-
ules or interfaces declaring methods that are possibly
called by a given module.

This metric descends from the OO metric CBO (Cou-
pling Between Objects), which was split into two (CMC and
CFA) to distinguish coupling on operations from coupling
on attributes. Aspect introductions must be taken into ac-
count when the possibly invoked methods are determined.
Usage of a high number of methods from many different
modul esindicates that the function of the given modul e can-
not be easily isolated from the others. High coupling is as-
sociated with a high dependence from the functionsin other
modules.

CFA (Coupling on Field Access): Number of modules or
interfaces declaring fields that are accessed by a given
module.

Similarly to CMC, CFA measures the dependences of a
given module on other modules, but in terms of accessed
fields, instead of methods. In OO systems this metric is
usually closeto zero, but in AOP, aspects might access class



fields to perform their function, so observing the new value
in aspectized software may be important to assess the cou-
pling of an aspect with other classes/aspects.

RFM (Response For a Module): Methods and advices
potentially executed in response to a message received
by a given module.

Similarly to the related OO metric, RFM measures the
potential communication between the given module and the
other ones. The main adaptation necessary to apply it to
AOP software is associated with the implicit responses that
are triggered whenever a pointcut intercepts an operation of
the given module.

LCO (Lack of Cohesion in Operations): Pairs of op-
erations working on different class fields minus pairs
of operations working on common fields (zero if nega-
tive).

Similarly to the LCOM (Lack of Cohesion in Methods)
OO0 metric, LCO is associated with the pairwise dissimilar-
ity between different operations bel onging to the same mod-
ule. Operations working on separate subsets of the mod-
ulefields are considered dissimilar and contribute to the in-
crease of the metric’s value. LCO will be low if al opera-
tionsin a class or an aspect share a common data structure
being manipulated or accessed.

CDA (Crosscutting Degree of an Aspect): Number of
modul es affected by the pointcuts and by the introduc-
tionsin a given aspect.

This is a brand new metric, specific to AOP software,
that must be introduced as a completion of the CIM met-
ric. While CIM considers only explicitly named modules,
CDA measures all modules possibly affected by an aspect.
This gives an idea of the overall impact an aspect has on
the other modules. Moreover, the difference between CDA
and CIM gives the number of modules that are affected by
an aspect without being referenced explicitly by the aspect,
which might indicate the degree of generality of an aspect,
in terms of its independence from specific classes/aspects.
High values of CDA and low values of CIM are usually de-
sirable.

The proposed metric suite has no completeness claim
and needs to be adapted for specific measurement goals
(e.g., following the GQM approach [1]). While all the pro-
posed metrics can be used to compare aternative AOP im-
plementations, not all of them can be applied when an OOP
program is migrated to AOP. CAE and CIM do not make
sense in OOP, thus an overall TC (Total Coupling) metric
should be used instead, counting the total number of cou-
pling relationships between modules (either of type CAE,
CIM, CMC or CFA). Of coursg, this is not the sum of the

OO Structure Analysis

Intertype Declarations Resolution

Method-calls & Field-accesses Resolution

Pointcuts Resolution

Metrics computation

Figure 1. Metricstool.

four metrics. Individual coupling metrics are still of inter-
est to understand where a given TC value originates from.
Similarly to CAE and CIM, CDA does not apply to OOP.
However, its value for the migrated AOP program is inter-
esting when compared to CIM, as explained above.

4 Metricstool

To assess the proposed metrics suite, we developed an
AOP metrics tool that computes al the proposed measures
for code written in the AspectJ [7] language. The tool ex-
ploits a static analyzer developed in TXL [5]. Figure 1
shows the internal organization of the tool, focusing on the
modules required to compute the AOP metric val ues.

The first module of the tool takes as input all the source
classes, interfaces and aspects and performs some standard
static OO code analysis, to detect the structure of the mod-
ules, in terms of their fields, operations and inheritance re-
lationships. Such information is stored in a data base.

After the first module, the second one can be run, per-
forming more accurate analysis. Each aspect is processed
for a second time in order to detect the inter-type decla-
rations, in terms of field introductions, method introduc-
tions and changes of clasg/interface inheritance relation-
ships. The resulting data are stored in the same data base,
being associated to the target class as if the information
came from the analysis of the class itself. The name of
the aspect responsible for such introductions is however
recorded. In thisway thefirst step of the weaving algorithm
isredized.

The next module of the tool detects the method-call re-
lationship. Moreover, it discovers the field-access relation-
ship between operations and fields (both belonging to the
same module or to other modules). For such an analysis a



symbol table, mapping the variables to the respective type,
is maintained and pushed onto the stack whenever a new
scope is opened. The symbol tableis required to know the
type of each method invocation target, return value and ac-
cessed field. Such typeinformationis stored in the database
under construction. Polymorphic calls are resolved conser-
vatively with all methods that possibly override the invoked
one.

The fourth step is the most complex one. It completes
weaving by resolving al the pointcuts in the aspect code,
thus producing the corresponding join points in the inter-
cepted code. The agorithm for this phase starts coping with
the primitive pointcuts, which are resolved using the inher-
itance, invocation and access information collected so far.
Then, it composesthe join points according to the union, in-
tersection and negation operators used in the pointcut spec-
ifications. When all the pointcuts are resolved, the advices
can be associated to the advised methods, storing this rela-
tionship in the available data base

The final step concerns the computation of the metrics.
The value of a metric for a given module is obtained just
by running a query on the database. The overall value of a
metric for the whole system is computed as the median of
the values computed for all the modulesin the system.

5 Example

The proposed metrics have been computed for a small
example, taken from the implementation of some design
patterns [6] provided by Jan Hannemann! both in Java and
in AspectJ.

Our test is the implementation of the Observer design
pattern[6], in which there are two distinct roles, the Subject
and the Observer. The Subject is an entity that can be in
severd different states. Some of the state changes are of
interest to the Observer, which may take some actions in
response to the change.

The Observer pattern requiresthat the Observer registers
itself on those Subjects it intends to observe. The Subject
maintains a list of the Observers registered so far. When
the Subject changesits state, it notifies the Observers of the
change, so that the Observers can take the appropriate ac-
tions.

In the OO implementation by Jan Hannemann, this de-
sign pattern consists of two interfaces, ChangeSubj ect
and ChangeQbser ver, with the abstract definitions of
the Subject and Observer roles. Moreover, the implementa-
tion contains the Poi nt and the Scr een classes, the first
playing the role of Subject whereas the second plays both
roles in two different instances of the pattern. The Mai n
class contains the code to set up the two different pattern

Lhttp://www.cs.ubc.cal/jan/AODPs

instances and run them. In the first pattern instance Poi nt
acts asthe Subject and Scr een asthe Observer. In the sec-
ond case, an instance of the class Scr een is the Subject,
while other instances of the same class are its Observers.

The AOP implementation contains a different version of
the classes Poi nt and Scr een, with no code regarding
the Subject/Observer roles. Gbser ver Prot ocol isan
abstract aspect defining the general structure of the aspects
that implement the Observer pattern. This abstract aspect is
extended by Scr eenCbser ver, Col or Cbser ver and
Coor di nat eCbser ver . These concrete aspects contain
the actual implementation of the protocol. By means of
inter-type declarations, they impose roles onto the involved
classes and by means of appropriate pointcuts they spec-
ify the Subject actions to be observed. Moreover, these as-
pects contain the mapping that connects a Subject to its Ob-
servers. The class Mai n runsthe code for the initialization
of the patterns an for their execution.

verson | WOM DIT NOC TC RFM LCO CDA
java 3 1 0 2 7 112 NA.
aspect] 1 2 0 3 2 0 3

Table 1. Metrics for the Observer design pattern.

verson | CAE CIM CMC CFA | TC
java 0 0 2 0 2
aspect] 0 2 1 0 3

Table 2. Coupling Metrics for the Observer design
pattern.

We applied our metric suite to the two implementations
of the Observer pattern. The median values produced by
the tool are shown in Table 1. The value of LCO for the
OO code is indicated as 1-12, since these two values are
adjacent to the median point. The TC column contains the
value for total coupling. Detailed values for al different
coupling kinds are shown in Table 2.

We can notice a genera improvement of some met-
rics (WOM, LCO, and RFM), no change a metric (NOC)
and a worse value of DIT (due to the super-aspect
Qbser ver Prot ocol ) and of TC. While in general the
values change only a little bit, for RFM the change is rel-
atively high, passing from 7 to 2. LCO is also affected
positively, going from 1-12 to 0. The cost to be paid for
such improvements is an increase of the coupling metric
TC as expected. Looking at Table 2, we can have a detailed
insight on the reasons for the coupling increase. Even if



there is a decrease of the method coupling (CMC) thereis
a much bigger increasing of the coupling regarding the as-
pects which intercept method executions (CIM). However,
the fact that the value of CAE is higher than that of CIM
indicates that the aspects have only a partial knowledge of
the classes they are affecting and contain quite generic, in-
dependent pointcut definitions.

6 Reated work

The cohesion measure called Modul e-Attribute Cohesion
in [13] is based on the same dependences between opera-
tions and fields that we consider in our LCO metric, but,
differently from our metric, it is not an extension of the
LCOM metric proposed in [4]. As regards the proposed
coupling metrics, while CIM, CMC and CAE correspond
to the Pointcut-class, Method-method and Pointcut-method
dependence measures presented in [12], CDA has no coun-
terpart in [12].

Similarly to us, the authors of [9, 10] considered the
Chidamber and Kemerer's metric suite, properly adapted
to AOP. However, they do not recognize the different na-
ture of the various kinds of coupling introduced by the as-
pects. The authors of [8] added afew metricsto capture the
level of scattering of the application concerns. However, the
definition of such metrics (SoC metrics) is not operational,
thus making it difficult to compute them automatically. The
expected effects of AOP on the Chidamber and Kemerer's
metrics are analyzed in [11].

Theindicationsin[2, 3] onthe definition of cohesion and
coupling metrics for OO systems will be considered in our
future work, in order to possibly refine the proposed AOP
metrics for such attributes.

7 Conclusions

Most research in AOP is focused on new design pro-
cesses, languages and frameworks to support the new
paradigm. However, no strong empirical evaluation was
conducted to assess the effects of AOP adoption. The first
step in this direction consists of defining a metrics suite
for AOP software, designed so as to capture the novel fea
turesintroduced by this programming style. We contributed
to the ongoing discussion on such metrics by distinguish-
ing among the different kinds of coupling relationships that
may exist between modules and by proposing a new metric
for the crosscutting degree of an aspect (CDA). Moreover,
we conducted a small case study to evaluate the informa-
tion carried by the proposed metrics when applied to an OO
system and to the same system migrated to AOP. Resultsin-
dicate that meaningful properties, such as the proportion of
the system impacted by an aspect and the amount of knowl-
edge an aspect has of the modulesit crosscuts, are captured

by the proposed metrics (CDA and CIM repsectively). We
envisage the definition of a common set of AOP metrics,
to be adopted by the AOP community, in order to simplify
the comparison of the results obtained by different research
teams and to have a standard eval uation method.

References

[1] V. Basili, G. Caldiera, and D. H. Rombach. The Goal Ques-
tion Metric Paradigm, Encyclopedia of Software Engineer-
ing. John Wiley and Sons, 1994.

[2] L. Briand, J. Daly, and J. Wuest. A unified framework for
cohesion measurement in object-oriented systems. Empiri-
cal Software Engineering, 3(1):65-117, 1998.

[3] L. Briand, J. Daly, and J. Wuest. A unified framework for
coupling measurement in object-oriented systems. |EEE
Transactions on Software Engineering, 25(1):91-121, 1999.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. |EEE Transactions on Software En-
gineering, 20(6):476-493, June 1994.

[5] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL trans-
formation system. Information and Software Technology,
44(13):827-837, 2002.

[6] E. Gamma, R. Helm, R.Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley Publishing Company, Reading, MA, 1995.

[7] I. Kiselev. Aspect-Oriented Programming with AspectJ.
Sams Publishing, Indianapoalis, Indiana, USA, 2002.

[8] C.Sant’Anna, A. Garcig, C. Chavez, A.von Staa, and C. Lu-
cena. On the reuse and maintenance of aspect-oriented soft-
ware: An evaluation framework. In 170. Smpsio Brasileiro
de Engenharia de Software, pages 19-34, 2003.

[9] S.L.Tsang, S. Clarke, and E. Baniassad. An evaluation of
aspect-oriented programming for java-based real-time sys-
tems development. |In The 7th IEEE International Sympo-
sium on Object-oriented Real-time distributed Computing,
1SORC, 2004.

[10] S.L.Tsang, S. Clarke, and E. L. A. Baniassad. Object met-
rics for aspect systems: Limiting empirical inference based
on modularity. 2000.

[11] A. A. Zakaria and H. Hosny. Metrics for aspect-oriented
software design. In AOM: Aspect-Oriented Modeling with
UML, AOSD, March 2003.

[12] J. Zhao. Measuring coupling in aspect-oriented systems. In
Proc. of the 10th International Software Metrics Symposium
(METRICS), Chicago, Illinois, USA, September 2004.

[13] J. Zhao and B. Xu. Measuring aspect cohesion. In Proc.
International Conference on Fundamental Approaches to
Software Engineering (FASE), LNCS 2984, pages 54-68,
Barcelona, Spain, March 2004. Springer-Verlag.





