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Abstract

This technical report contains the papers submitted to and presented at the 1st Workshop on Aspect Reverse-Engineering,
held in conjunction with the 11th Working Conference on Reverse Engineering (WCRE), in Delft, The Netherlands. The aims
of this workshop was to bring together researchers and practitioners within the field of aspect reverse engineering, to review
the state-of-the-art and state-of-the-practice and to identify a list of interesting open issues that remain to be studied. The
workshop was organised as a structured discussion, based on interesting and relevant topics extracted from position papers.

1 Introduction

Aspect-oriented software development [1] aims at improving the handling of crosscutting concerns by capturing them
explicitly in well-modularised entities, called aspects. In this way, it tries to improve the overall quality of an application,
since improved modularisation should lead to better evolvability, maintainability, understandability, reusability, and so on [1,
2].

A large body of research exists on the development of aspect-oriented programming languages and mechanisms. As this
research starts to mature, AOSD techniques are adopted in many new applications. Much less attention is paid, however,
to how already existing applications can be improved by adopting these techniques. In particular, we should study how
applications developed without AOSD techniques can be migrated into aspect-oriented applications. Additionally, even
applications using AOSD from their inception might need to be re-engineered because concern code becomes less well-
organised over time and because opportunities for aspects might not be apparent when different developers are working on
the same code base independently.

The subject of aspect reverse engineering thus raises several interesting issues and questions:

• How can we identify aspects in the source code? Can we automate this process? Which techniques can we apply?

• How can we extract aspects from the source code? How do we define appropriate, understandable and high-quality
aspects? What criteria should we use to determine the quality of an aspect?

• When should we prefer an aspect-oriented solution over an object-oriented solution?

• How can we restructure the ordinary source code so that the aspects are removed from it?



• What is the impact of the aspect language on the extraction process? Should specific aspect languages be developed,
or do general aspect languages as they exist today suffice?

• How can we ensure the behaviour of the original applications is preserved after the migration? Can we use existing
tests to ensure this, or do we need other kinds of tests?

• Will aspect-oriented techniques improve the overall quality of applications? How can we measure this quality im-
provement?

• Do these techniques scale up to applications spanning multiple millions of lines of code?

The goal of this workshop was to address these questions, identify possible other relevant and important issues in this
domain and bring together researchers interested in and working on the subject.

2 Workshop Format

The half-day workshop was split into three sessions:

1. an opening session, that introduced the topics of discussion.

2. a session consisting of position paper presentations and discussion.

3. a summary and wrap-up session, where open questions, interesting future trends and possible collaborations were
discussed.

Based on the submitted position papers, two interesting tracks were scheduled: a track onaspect miningand a track on
aspect refactoring. The papers were presented as follows, with the presenters underlined:

Aspect Mining

1. Silvia Breu:Towards Hybrid Aspect Mining: Static Extensions to Dynamic Aspect Mining

2. Jens Krinkeand Silvia Breu:Control-Flow-Graph-Based Aspect Mining.

3. David Shepherd, Jeffrey Palm and Lori Pollock:The Fast Prototyping and Evaluation of Aspect Mining Analyses
via Timna.

4. Magiel Bruntink: Aspect Mining using Clone Class Metrics.

Aspect Refactoring

1. Marius Marin: Refactoring JHOTDRAWs Undo concern to ASPECTJ.

2. Magiel Bruntink, Arie van Deursen and Tom Tourwé: Isolating Crosscutting Concerns in System Software.

3. Andy Zaidman, Toon Calders, Serge Demeyer and Jan Paredaens:Selective Introduction of Aspects for Program
Comprehension.

4. Mariano Ceccatoand Paolo Tonella:Measuring the Effects of Software Aspectization.

The remainder of this technical report includes all of these papers for easy reference. The presentations that accompany the
papers can be downloaded from theWAREwebsite, to be found at the following URL: http://www.cwi.nl/ tourwe/ware.html.

The success of this workshop was mainly due to the people that attended it, presented their ideas and participated in the
discussions. We would like to thank all of these people and hope you enjoy reading their contributions.
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Towards Hybrid Aspect Mining: Static Extensions to Dynamic Aspect Mining

Silvia Breu
MCT/NASA Ames Research Center

silvia.breu@gmail.com

Abstract

Aspect mining tries to identify crosscutting concerns in
legacy systems and thus supports the refactoring into an
aspect-oriented design. This position paper describesDy-
nAMiT , the first aspect mining tool that detects crosscut-
ting concerns based on dynamic analysis. Furthermore, it
presents the results of several case studies, and estimates
the quality of theDynAMiT approach. Based on that, we
propose a possible combination with static program infor-
mation such as static object and inheritance information to
extend and improve the dynamic approach.

1. Motivation

With increasing needs, software systems grow in size
and become more and more complex. The complexity does
not only lie in the requirements on the programs but also
in the problem of so-calledtangled code[9]. This notion
refers to code that exists several times in the system but
cannot be encapsulated by separate modules using tradi-
tional techniques (e.g., object-oriented design principles).
The problem occurs if underlying functionality crosscuts
the whole software system. Thus, tangled code makes soft-
ware systems more difficult to maintain, to understand, and
to extend.Aspect-Oriented Programming(AOP) [9] pro-
vides new separation mechanisms for such complexcross-
cutting concerns[12]. AOP is a design technique that re-
tains the advantages of object-oriented programming and
aims at avoiding thetyranny of the dominant decomposi-
tion. Traditional languages and modularisation mechanisms
suffer from that limitation: The program can be modularised
in only one way at a time, and the many kinds of con-
cerns that do not align with that modularisation end up scat-
tered across many modules and tangled with one another.
This new programming paradigm with its extensions to pro-
gramming languages (e.g., AspectJ [14], AspectC++ [6])
has attracted attention as it enhances design and develop-
ment of software systems. However, attention is increased,

also drawn to the question how AOP can serve the commu-
nity in re-engineering legacy systems.

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is calledaspect min-
ing [13]. Detected concerns can be re-implemented as
separate aspects, thereby improving maintainability and ex-
tensibility as well as reducing complexity. Aspect mining
can also provide insights that enable us to classify com-
mon aspects which occur in different software systems,
such as logging, timing, and communication. Several ap-
proaches based on static program analysis techniques have
been proposed for aspect mining [4, 7, 8, 10, 11, 15]. This
position paper describesDynAMiT [1, 2, 3], the first dy-
namic program analysis approach that mines aspects based
on program traces, presents an overview of some case stud-
ies, evaluates the approach’s strengths and limitations, and
proposes a possible direction of extensions and improve-
ment.

2. DynAMiT

DynAMiT is a dynamic aspect mining approach based
on program traces that are generated during program exe-
cution. These traces are then investigated for recurring ex-
ecution relations. Different constraints specify when an ex-
ecution relation is “recurring”, such as the requirement that
the relations have to exist more than once or even in differ-
ent calling contexts in the program trace. The dynamic anal-
ysis approach has been chosen because it is a very power-
ful way to make inferences about a system: It dynamically
monitors actual, i.e., run-time program behaviour instead of
potential behaviour, as static program analysis does. The ap-
proach has been implemented in a prototye calledDynAMiT
(Dynamic AspectMining Tool) and evaluated in several
case studies over systems with more than 80 kLoC. Case
studies have shown that the technique is able to identifyau-
tomaticallyboth seeded and existing crosscutting concerns
in software systems. The full results of both algorithms can
be found in [1].
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2.1. DynAMiT Approach

The data on whichDynAMiT works are program traces.
Within these traces we identify recurring execution patterns
which describe certain behavioural aspects of the software
system. We expect that recurring execution patterns are po-
tential crosscutting concerns which describe recurring func-
tionality in the program and thus are possible aspects.

In order to detect these recurring patterns in the program
traces, a classification of possible pattern forms is required.
Therefore, we introduce so-calledexecution relations. They
describe in which relation two method executions are in the
program trace. Intuitively, a program trace is a sequence of
method invocations and exits. We only consider entries into
and exits from method executions because we can then eas-
ily keep track of the relative order in which method exe-
cutions are started and finished. We focus on method ex-
ecutions because we want to analyse object-oriented sys-
tems where logically related functionality is encapsulated
in methods. Formally, aprogram traceTP of a programP
with method signaturesNP is defined as a list[t1, . . . , tn]
of pairsti ∈ (NP × {ent, ext}), whereent marks enter-
ing, andext marks exiting a method execution.

Crosscutting concerns are now reflected by the two dif-
ferent execution relationsthat can be found in program
traces: A method can be executed either after the preceed-
ing method execution is terminated, or inside the execu-
tion of the preceeding method call. However, this distinc-
tion alone is not yet sufficient for aspect mining. For exam-
ple, if there exists more than one method execution inside
another method execution the information which of those
methods inside comes first is lost. We thus define formally:

u ⇀ v, u, v ∈ NP , is called anoutside-before-execution
relation if [(u, ext), (v, ent)] is a sublist ofTP . S⇀(TP ) is
the set of all outside-before-execution relations in a program
traceTP . This relation can also be reversed, i.e.,v ↼ u is
an outside-after-execution relationif u ⇀ v ∈ S⇀(TP ).
The set of all outside-after-execution relations in a program
traceTP is then denoted withS↼(TP ).

u ∈> v, u, v ∈ NP is called aninside-first-execution re-
lation if [(v, ent), (u, ent)] is a sublist ofTP . u ∈⊥ v is
called aninside-last-execution relationif [(u, ext), (v, ext)]
is a sublist ofTP . S∈>(TP ) is the set of all inside-first-
execution relations in a program traceTP , S∈⊥(TP ) is the
set of all inside-last-execution relations. In the following,
we dropTP when it is clear from the context.

Based on the execution relations defined above, we can
now try to identify crosscutting concerns in software sys-
tems.Recurringexecution relations in the program traces
can be seen as indicators for more general execution pat-
terns. To decide under which circumstances certain execu-
tion relations are recurring patterns in traces and thus po-
tential crosscutting concerns in a system, constraints have

to be defined. The constraints will implicitely also formal-
ize what crosscutting means. However, for technical reasons
we have to encode that there is no further method execution
between nested method executions or between method in-
vocation and method exit. This absence of method execu-
tions is represented by the designated empty method sig-
natureε. Therefore, the definition of execution relations is
extended such that each sublist of a program traceTP in-
duces not only relations defined above but also additional
relations involvingε. The program trace remains as defined
before with method signatures fromNP whereas the exe-
cution relations now can consist of method signatures from
NP ∪ {ε}. Thus, the setsS⇀, S↼, S∈> , andS∈⊥ also in-
clude execution relations involvingε. Now, we can define
the constraints for the dynamic analysis.

Formally, an execution relations = u ◦ v ∈ S◦,
◦ ∈ {⇀,↼,∈>,∈⊥}, is calleduniform if ∀w ◦ v ∈ S◦ :
u = w, u, v, w ∈ NP ∪ {ε} holds, i.e., it exists in always the
same composition.̂U◦ is the set of execution relationss ∈
S◦ which satisfy this requirement. This constraint is easy
to explain. Consider an outside-before-execution relation
u ⇀ v. This is defined as recurring pattern if each execu-
tion of v is preceded by an execution ofu. The argumenta-
tion for outside-after-execution relations is analogous. The
uniformity-constraint also applies to inside-execution rela-
tions. An inside-execution relationu ∈> v (or u ∈⊥ v)
can only be a recurring pattern in the given program trace
if v never executes another method thanu as first (or last)
method inside its body.

We now drop theε-relations and define two further anal-
ysis constraints: An execution relations = u ◦ v ∈ U◦

is callednon-trivial if s ∈k U◦, k > 1 holds, i.e., it oc-
curs more than once in the program traceTP . R◦ is the
set of execution relationss ∈ U◦ that satisfy this re-
quirement. An execution relations = u ◦ v ∈ U◦ =
Û◦\{u ◦ v | u = ε ∨ v = ε} is calledcrosscuttingif
∃s′ = u ◦ w ∈ U◦ : w 6= v, u, v, w ∈ NP holds, i.e.,
it occurs in more than a single calling context in the pro-
gram traceTP . For inside-execution relationsu ∈> v (or
u ∈⊥ v) the calling context is the surrounding method exe-
cutionv. For outside-execution relationsu ⇀ v (or u ↼ v)
the calling context is the methodv invoked before (or after)
which always methodu is executed.R◦

C is the set of execu-
tion relationss ∈ U◦ which satisfy this requirement. Ex-
ecution relationss ∈ R◦ ands ∈ R◦

C resp. are also called
aspect candidatesas they represent the potential crosscut-
ting concerns of the analysed software system.

The described constraints can be implemented by two
relatively straightforward algorithmsbasicandcrosscutting
algorithmresp., in order to actually compute the setsR◦ of
uniform, non-trivial execution relations, and the setsR◦

C of
uniform, crosscutting execution relations that represent the
aspect candidates.
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2.2. DynAMiT Case Studies

Case Study “Graffiti” Graffiti [5] is an industrial-sized
editor for graphs and a toolkit for implementing graph vi-
sualisation algorithms, developed using Java. It currently
comprises about450 interfaces and classes, 3.100 meth-
ods and 82.000 lines, including comments. A tracing as-
pect, written in AspectJ, has been woven into the exist-
ing Graffiti system and the system obtained has been ex-
ecuted in seven different runs. In total, the traces consist
of 33706 events. The analysis revealed 40 aspect candidates
from before-execution relations, 40 from after-execution re-
lations, 33 from first-execution relations, and 25 from last-
execution relations. Those numbers show that the amount
of aspect candidates stays relatively small compared to
the software system’s size. Moreover, the candidates them-
selves are quite compact; on average, a candidate exists of
about four pairs of relations.

The case study showed that, in particular,DynAMiT has
detected the typical logging concern in Graffiti. The anal-
ysis of the program traces found several calls to a method
format(LogRecord record) of classSimpleFormat-

ter as first and/or last call inside several set- and add-
methods. A code investigation revealed that all executions
of those methods are logged in a log-file. For that, a log-
ger provided by Java’s classLogger is used. We have not
traced calls to the Java API but the logger uses a formatter
to transform the system’s log messages. The API provides
an abstract classFormatter which is implemented by sev-
eral special formatter classes but Graffiti’s developers have
chosen to write their own classSimpleFormatter imple-
menting only basic functionality. The analysis detects the
formatting of the log-messages and therefore, the crosscut-
ting logging functionality is revealed and can be encapsu-
lated into an aspect in a re-engineering process.

Graffiti can easily be extended with graph algorithms by
writing plugins. Before a plugin can be used, it has to be
registered, which requires a unique string as identifier. Thus,
every plugin has to implement methodgetName from inter-
faceAlgorithm that provides the name of the correspond-
ing algorithm. This architectural principle is reflected in as-
pect candidates identified byDynAMiT. In all appropriate
algorithm classes,getName is always preceded by a call
to getAlgorithms of class GenericPluginAdapter .
Since Graffiti contains thirteen different algorithm plugins,
DynAMiT detects thirteen individual aspect candidates; an
automatic grouping reveals that they all reflect the same ar-
chitecture.

In summary, the analysis has shown that a lot of the func-
tionality concerning actions like opening, saving, or edit-
ing files or graphs is crosscutting Graffiti’s architecture. It is
worth to consider restructuring the system accordingly. Ad-
ditionally,DynAMiTprovides a lot of information about the

control flow within the Graffiti system and about its over-
all architecture. Thus, the lightweight dynamic aspect min-
ing approach has easily helped to understand both crosscut-
ting concerns in the system and the system itself.

Case Study “AspectJ exampletelecom ” A small case
study has been conducted in order to verify how success-
ful the developed analysis approach can be applied to a
new problem: Can the Java-AspectJ implementation ofDy-
nAMiT also detect crosscutting concerns in Java programs
which are already extended by aspects written in AspectJ?

For that purpose the telecom example which is in-
cluded in the distribution of AspectJ has been chosen:
A small simulation where one person calls another per-
son and then the second person calls a third person is
included. The simulation can be executed at three differ-
ent levels:BasicSimulation just performs the calls with
the basic functionality needed for making phone calls (call,
accept, hang up etc.).TimingSimulation is the exten-
sion of BasicSimulation with a timing aspect which
keeps track of a connection’s duration and cumulates a cus-
tomer’s connection durations.BillingSimulation is
a further extension with a billing aspect that adds func-
tionality to calculate charges for phone calls of each
customer based on connection type and connection dura-
tion. All three simulations have been traced and the result-
ing program traces have been fed intoDynAMiT. A compar-
ison of the analysis results for the three simulation versions
(basic, timing, billing) clearly shows that the presented ap-
proach identifies basic functionality and the functionality
added by the two different aspects. The detected concerns
tell the user in a simple way what functionality the applica-
tion has and what it does. They are even easier and faster
to understand than a code investigation. Reading the anal-
ysis results is like reading a manual of the progression of
the different steps in a phone call. Of course, this is sup-
ported by the fact that the simulation developers did choose
meaningful method names: The method signatures them-
selves give the information what the methods perform so
that analysis results as the following can be interpreted eas-
ily:

void telecom.Call.hangup(Customer) ⇀
void telecom.Customer.removeCall(Call)

A verification of the analysis results based on code in-
vestigation certifies the developed approach to be sound. It
captures the whole functionality added by the timing aspect.
The same applies for the billing aspect, except that only one
after-advice is not detected. This is due to its implementa-
tion: A public (!) field calledpayer of the connection is
set directly. This is contrary to object-oriented design prin-
ciples, which would suggest a private field with appropriate
set- and get-methods. Unfortunately, only the get-method is
realised. As field accesses are not interesting for run-time
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behaviour, they have not been traced. Thus, they cannot be
detected byDynAMiT.

3. Evaluation

All conducted case studies show that the presented dy-
namic analysis approach fulfils its task with high preci-
sion. It finds crosscutting concerns in small tools as well
as in industrial-sized systems. Furthermore, the introduced
aspect mining technique detects crosscutting functionality
which was added to systems following the AOP paradigm.

In order to work as intended the approach relies on
proper tracing of executed programs. However,DynAMiT
uses AspectJ and is thus dependent on the implementa-
tion of AspectJ. Therefore, the tool relies on an important
point: Functionality has to be encapsulated into methods
as assignments likeint x = 42; are not traceable with
AspectJ. This fact leads to a certain degree of impression
which can be both, good or disadvantageous. If an assign-
ment is essential in every occurrence of a specific execu-
tion relation as it changes object values used in one of
the involved methods, it is a disadvantage that the analy-
sis results do not automatically provide that information.
On the other hand, if an assignment is not necessary in
each case (maybe because it is dependent on certain pro-
gram conditions), it is good that the analysis—especially
the uniformity-constraint—does not consider those assign-
ments. The case distinctions can be made once the detected
crosscutting concern will be implemented as an aspect.

There are some more drawbacks due to limitations of As-
pectJ. Java API method executions do not appear in the pro-
gram traces if the classes itself are not present as source
code. On the one hand, it is good that those methods are
not traced as with each analysis we would also analyse Java
API classes. But on the other hand, this leads to false posi-
tives or imprecise aspect candidates in the analysis. Further-
more, noise in the resulting aspect candidates caused by dy-
namic binding complicates their retrieval in the program’s
source code. This problem also exists partly due to AspectJ.
Thus, we can say that the realisation of the dynamic aspect
mining approach suffers from certain AspectJ implementa-
tion details, which cause some imprecision and incomplete-
ness in the analysis results.

Moreover, both the basic and the crosscutting al-
gorithm yield redundant aspect candidates. This espe-
cially happens if symmetric relations exist in the pro-
gram traces. For inside-aspect candidates this sometimes
means, that they really exist twice and in both direc-
tions, e.g. in A.b() { C.d() {} ... C.d() {} }, and
sometimes not, e.g. inA.b() { C.d() {} }; in both situ-
ations the analysis would produce two inside-aspect can-
didates:C.d() ∈> A.b() , and C.d() ∈⊥ A.b() . An
inside- and an outside-aspect candidate together can also

a(){...} a(){...}
c(){...}

A B

c()
a()

interface I

c(){...}

C2
c(){...}

C1

(a) Inheritance hierarchy

.

.

.
void doSth(A a) {

a.a();
a.c();

.

.

.
}

.

.

.
void doSth(B b) {
.
.
.

b.a();
b.c();
.
.
.

}

.

.

.

.

.

.
A obj1 = new C1();
A obj2 = new C2();
B obj3 = new B();

.

.

.

doSth(obj1);

.

.

.

doSth(obj2);

.

.

.

doSth(obj3);

.

.

.

(b) Code fragments

Figure 1. Example excerpt of a software system

be redundant. Consider a program trace fragment like
A.b() { B.c() {} C.d() {} ... }. Then it can hap-
pen, that the analysis identifiesB.c() ∈> A.b() and
B.c() ⇀ C.d() , which is redundant in this case. There-
fore, the analysis does not provide perfect results which can
immediately be transfered into aspects without further pro-
gram code investigation, but it gives clear descriptions of
recurring execution patterns and helps the developer to un-
derstand a system’s behaviour and to re-factor it faster and
easier.

To summarise, we can say that the aspect mining tech-
nique was able to identify automatically and with high pre-
cision both seeded and existing crosscutting concerns in the
software systems while producing only a relatively small
number of false positives. Furthermore, the results provided
by both algorithms provided additional insights in the pro-
grams’ general behaviour and architecture.

4. Extensions to the Analysis Algorithms

Since the presented algorithms work on method signa-
tures only, they can produce false positives due to dynamic
binding at run-time, i.e., methods with the same name but
defined in different classes can get identified and thus re-
sult in wrong aspect candidates. It could thus be helpful to
extend the existing data structure and relations with static
information about class name and/or line number where a
method call is located in the source file. Details about the
static type of an object would also improve the outcomes of
the analysis.

Figure 1 outlines a small example to illustrate those im-
provements. Figure 1(a) shows a part of the inheritance tree
for the example: Theinterface I has two method dec-
larationsa() andc() . The class B implements that in-
terface, while theabstract class A only implements
methoda() of I . Theabstract class A is extended by

4



...
A.a() {}
C1.c() {}
...
A.a() {}
C2.c() {}
...
B.a() {}
B.c() {}
...

(a) ’Traditionally’
dynamic

...
A.a() {}
A.c() {}
...
A.a() {}
A.c() {}
...
B.a() {}
B.c() {}
...

(b) With static ob-
ject info

...
I.a() {}
I.c() {}
...
I.a() {}
I.c() {}
...
I.a() {}
I.c() {}
...

(c) With inheri-
tance info

Figure 2. Dynamic vs ’static’ vs ’inherited’ trace

two subclasses, namelyC1 andC2 which both provide im-
plementations of methodc() whose declaration is inher-
ited from I (via A). Assume that the code fragments shown
in 1(b) exist in the system and are executed.

This scenario could result in traces including the part
shown in 2(a). There, the crosscutting algorithm would
identify incorrect before-aspect candidatesA.a ⇀ C1.c ,
and A.a ⇀ C2.c . This kind of functionality exists only
once in the code invoid doSth(A a) . If we now consider
for example the static type of the objects in the traces, the
program trace will look different, as we see in 2(b). In turn,
this would result in the crosscutting algorithm not detecting
the incorrect crosscutting concerns mentioned above (which
may be part of a real crosscutting concern, but are none on
their own). A similar improvement can be achieved if the
dynamic trace is augmented by the line number and source
file where a method call is located. Thus, an integration of
some or all of this static information into the traces and the
analysis could often avoid that an invocation of the same
functionality (i.e., one occurring only once in the code) ap-
pears to be crosscutting in the traces.

The dynamic approach was chosen to monitor real run-
time behaviour of software systems. However, there are dif-
ferent facets in run-time behaviour which can be of interest.
While sometimes we want to know which method imple-
mentation is used at run-time, the approach presented in [3]
is based on the dynamic information which functionalities
are executed after or within what other functionalities. Thus,
we could discard the run-time information about the used
implementation while executing methods and use the fully-
qualified signature of the method declarations, instead. That
information can be extracted from the inheritance hierar-
chy. For the small example in Figure 1 this would result in
an “inherited” trace (shown in Figure 2(c)). Instead of iden-
tifying only parts of the crosscutting concern (as with the
crosscutting algorithm in the “traditional” dynamic trace),
the basic algorithm would now find the full and real cross-

cutting concern: Methodsa andb are invoked in succession
at different places in the code. Together with the static in-
formation about source file and line number proposed be-
fore, the developer would easily find the appropriate occur-
rences of that pattern in the code. Thus, an impact in recall
could be achieved by combining the traces with informa-
tion of a program’s inheritance hierarchy before the analy-
sis algorithms are applied to the obtained aspect candidates.
The analysis results are then more accurate as noise pro-
duced by dynamic binding is gone.
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Abstract

Aspect mining tries to identify crosscutting con-
cerns in existing systems and thus supports the adaption
to an aspect-oriented design. This paper describes an au-
tomatic static aspect mining approach, where the control
flow graphs of a program are investigated for recur-
ring execution patterns based on different constraints,
such as the requirement that the patterns have to ex-
ist in different calling contexts. A case study done with the
implemented tool shows that most discovered crosscut-
ting candidates are most often perfectly good style.

1. Introduction

The notion oftangled coderefers to code that exists sev-
eral times in a software system but cannot be encapsulated
by separate modules using traditional module systems be-
cause it crosscuts the whole system. This makes software
more difficult to maintain, to understand, and to extend.
Aspect-Oriented Programming[4] provides new separation
mechanisms for such complexcrosscutting concerns[7].

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also calledaspect min-
ing. The detected concerns can be re-implemented as sep-
arate aspects, thereby improving maintainability and exten-
sibility as well as reducing complexity. Aspect mining can
also provide insights that enable us to classify common as-
pects which occur in different software systems, such as
logging, timing, and communication.

Several approaches based on static program analysis
techniques have been proposed for aspect mining [3, 5, 6,
10, 8, 2]. We have developed a dynamic program analysis
approach [1] that mines aspects based on program traces.
During program execution, program traces are generated,
which reflect the run-time behavior of a software system.
These traces are then investigated for recurring execution
patterns. Different constraints specify when an execution
pattern is “recurring”. These include the requirement that

the patterns have to exist in different calling contexts in the
program trace. The dynamic analysis approach monitors ac-
tual (i.e., run-time) program behavior instead of potential
behavior, as static program analysis does. To explore the
differences between static and dynamic analyses in aspect
mining, we have started to develop a static analysis vari-
ant of our approach. From early results we experienced two
things:

• The results of the static and dynamic analysis are dif-
ferent due to various reasons.

• Crosscutting concerns are often perfectly good style,
because they result from delegation and coding style
guides.

The first point is obvious and thus, only the second point
will be discussed in the following. The next section contains
an introduction to our dynamic aspect mining approach. A
static aspect mining approach based on the dynamic variant
is presented in Section 3. Section 4 contains a case study,
Section 5 discusses the results and concludes, before Sec-
tion 6 discusses related work.

2. Dynamic Aspect Mining

The basic idea behind dynamic analysis algorithms is to
observe run-time behavior of software systems and to ex-
tract information from the execution of the programs. The
dynamic aspect mining approach introduced here is based
on the analysis of program traces which mirror a system’s
behavior in certain program runs. Within these program
traces we identify recurring execution patterns which de-
scribe certain behavioral aspects of the software system. We
expect that recurring execution patterns are potential cross-
cutting concerns which describe recurring functionality in
the program and thus are possible aspects.

In order to detect these recurring patterns in the program
traces, a classification of possible pattern forms is required.
Therefore, we introduce so-calledexecution relations. They
describe in which relation two method executions are in the
program trace.
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2.1. Classification of Execution Relations

The definition of execution relations in our analysis ap-
proach is based on program traces. Intuitively, a program
trace is a sequence of method invocations and exits. We only
consider entries into and exits from method executions be-
cause we can then easily keep track of the relative order in
which method executions are started and finished. We focus
on method executions because we want to analyze object-
oriented systems where logically related functionality is en-
capsulated in methods. Formally, aprogram traceTP of a
programP with method signaturesNP is defined as a list
[t1, . . . , tn] of pairs ti ∈ (NP × {ent, ext}), whereent
marks entering a method execution, andext marks exiting
a method execution.

To make the program traces easier to read, theent- and
ext-points are represented by{ and} respectively, and the
redundantname-information is discarded from theext-
points as the trace structure implies to whichname theext
belongs. Figure 1 shows an example trace.

1 B() {
2 C() {
3 G() {}
4 H() {}
5 }
6 }
7 A() {}
8 B() {
9 C() {}

10 }
11 A() {}
12 B() {
13 C() {
14 G() {}
15 H() {}
16 }

17 J() {}
18 }
19 F() {
20 K() {}
21 I() {}
22 }
23 J() {}
24 G() {}
25 H() {}
26 A() {}
27 B() {
28 C() {}
29 G() {}
30 F() {
31 K() {}
32 I() {}

33 }
34 }
35 D() {
36 C() {}
37 A() {}
38 B() {
39 C() {}
40 }
41 K() {}
42 I() {
43 J() {}
44 }
45 G() {}
46 E() {}
47 }

Figure 1. Example trace

Crosscutting concerns are now reflected by the two dif-
ferent execution relationsthat can be found in program
traces: A method can be executed either after the preced-
ing method execution is terminated (e.g.,H() in line 4 is
executed afterG() in line 3), or inside the execution of the
preceding method call (e.g.,C() in line 2 is executed in-
sideB() in line 1). We distinguish between these two cases
and say that there are outside- and inside-execution rela-
tions in program traces. However, this distinction alone is
not yet sufficient for aspect mining. For example, the exe-
cution ofB() in line 27 has three methods executed inside
its execution,C() , G() , andF() in lines28 ff., but the in-
formation which of those methods comes first is lost. We
thus define formally:

u ⇀ v, u, v ∈ NP , is called anoutside-before-execution
relation if [(u, ext), (v, ent)] is a sublist ofTP . S⇀(TP ) is

the set of all outside-before-execution relations in a program
traceTP . This relation can also be reversed, i.e.,v ↼ u is
an outside-after-execution relationif u ⇀ v ∈ S⇀(TP ).
The set of all outside-after-execution relations in a program
traceTP is then denoted withS↼(TP ).

u ∈> v, u, v ∈ NP is called aninside-first-execution
relation if [(v, ent), (u, ent)] is a sublist ofTP . u ∈⊥ v is
called aninside-last-execution relationif [(u, ext), (v, ext)]
is a sublist ofTP . S∈>(TP ) is the set of all inside-first-
execution relations in a program traceTP , S∈⊥(TP ) is the
set of all inside-last-execution relations. In the following,
we dropTP when it is clear from the context.

For the example trace shown in Figure 1 we thus get the
following setS⇀ of outside-before-execution relations:

S⇀ = {B() ⇀ A() , G() ⇀ H() , A() ⇀ B() , C() ⇀ J() ,

B() ⇀ F() , K() ⇀ I() , F() ⇀ J() , J() ⇀ G() ,

H() ⇀ A() , B() ⇀ D() , C() ⇀ G() , G() ⇀ F() ,

C() ⇀ A() , B() ⇀ K() , I() ⇀ G() , G() ⇀ E() }

The setS↼ of outside-after-execution relations can be
found directly in the trace or simply by reversingS⇀.
The setsS∈> of inside-first-execution relations andS∈⊥

of inside-last-execution relations are as follows:

S∈> = {C() ∈>B() , G() ∈>C() , K() ∈>F() , C() ∈>D() ,

J() ∈>I() }
S∈⊥ = {H() ∈⊥C() , C() ∈⊥B() , J() ∈⊥B() , I() ∈⊥F() ,

F() ∈⊥B() , J() ∈⊥I() , E() ∈⊥D() }

2.2. Execution Relation Constraints

Recurringexecution relations in the program traces can
be seen as indicators for more general execution patterns.
To decide under which circumstances certain execution re-
lations are recurring patterns in traces and thus potential
crosscutting concerns in a system, constraints have to be
defined. The constraints will implicitly also formalize what
crosscutting means.

However, for technical reasons we have to encode that
there is no further method execution between nested method
executions or between method invocation and method exit.
This absence of method executions is represented by the
designated empty method signatureε. Therefore, the defini-
tion of execution relations is extended such that each sub-
list of a program traceTP induces not only relations defined
above but also additional relations involvingε. Table 1 sum-
marizes this conservative extension. It shows for each two-
element sublist of the trace (on the left side) the execution
relations that follow from that sublist (on the right side). The
execution relations added by the introduction ofε are anno-
tated with an asterisk (∗).

The program trace remains as defined before with
method signatures fromNP whereas the execution rela-
tions now can consist of method signatures fromNP ∪ {ε}.
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Trace-sublist (NP ) Relation s (NP ∪ {ε})
(u, ext) (v, ent) u ⇀ v, v ↼ u
(v, ent) (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> v
BOL (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> ε∗

(u, ext) (v, ext) u ⇀ ε∗, ε ↼ u∗, u ∈⊥ v
(u, ext) EOL u ⇀ ε∗, ε ↼ u∗, u ∈⊥ ε∗

(w, ent) (w, ext) ε ∈> w∗, ε ∈⊥ w∗

BOL/EOL denote begin/end of list

Table 1. Extended execution relations

Thus, the setsS⇀, S↼, S∈> , andS∈⊥ also include exe-
cution relations involvingε. Now, we can define the con-
straints for the dynamic analysis.

Formally, an execution relations = u ◦ v ∈ S◦,
◦ ∈ {⇀,↼,∈>,∈⊥}, is calleduniform if ∀w ◦ v ∈ S◦ :
u = w, u, v, w ∈ NP ∪{ε} holds, i.e., it exists in always the
same composition.̂U◦ is the set of execution relationss ∈
S◦ which satisfy this requirement. This constraint is easy
to explain. Consider an outside-before-execution relation
u ⇀ v. This is defined as recurring pattern if each execu-
tion of v is preceded by an execution ofu. The argumenta-
tion for outside-after-execution relations is analogous. The
uniformity-constraint also applies to inside-execution rela-
tions. An inside-execution relationu ∈> v (or u ∈⊥ v)
can only be a recurring pattern in the given program trace
if v never executes another method thanu as first (or last)
method inside its body.

We now drop theε-relations and define a further analy-
sis constraint: An execution relations = u ◦ v ∈ U◦ =
Û◦\{u ◦ v | u = ε ∨ v = ε} is calledcrosscuttingif
∃s′ = u ◦ w ∈ U◦ : w 6= v, u, v, w ∈ NP holds, i.e.,
it occurs in more than a single calling context in the pro-
gram traceTP . For inside-execution relationsu ∈> v (or
u ∈⊥ v) the calling context is the surrounding method exe-
cutionv. For outside-execution relationsu ⇀ v (or u ↼ v)
the calling context is the methodv invoked before (or after)
which always methodu is executed.R◦ is the set of execu-
tion relationss ∈ U◦ which satisfy this requirement. Exe-
cution relationss ∈ R◦ are also calledaspect candidatesas
they represent the potential crosscutting concerns of the an-
alyzed software system.

2.3. Aspect Mining Algorithm

The constraints described above can be implemented by
a relatively straightforward algorithm to actually compute
the setsR◦ of uniform, crosscutting execution relations that
represent the aspect candidates. In our running example,
uniformity narrows down the potential aspect candidates to

the following sets of execution relations:

U⇀ = {B() ⇀ D() , G() ⇀ E() , G() ⇀ H() , K() ⇀ I() }
U↼ = {B() ↼ A() , I() ↼ K() }

U∈> = {C() ∈>B() , C() ∈>D() , K() ∈>F() }
U∈⊥ = {E() ∈⊥D() , I() ∈⊥F() }

After we enforce the crosscutting constraint, we obtain the
final setsR◦ of aspect candidates which comply with uni-
formity andcrosscutting.

R⇀ = {G() ⇀ H() , G() ⇀ E() }, R↼ = ∅
R∈> = {C() ∈>B() , C() ∈>D() }, R∈⊥ = ∅

3. Static Aspect Mining

Based on the experience with the dynamic approach, we
implemented a similar static analysis. This analysis extracts
the execution relations from a control flow graph of the an-
alyzed program. In particular, we immediately extract uni-
form and crosscutting execution relations without a previ-
ous step to extract unconstrained execution relations. How-
ever, the extraction is different for outside and inside execu-
tion relations. Here, we will only present inside-first (R∈> )
and outside-before (R⇀) execution relations.

Inside-First Execution Relations.For these kind of exe-
cution relations, we extract the method invocations im-
mediately following the entry of (invoked) methods from
the control flow graph. Such a relation is uniform, if ev-
ery path through the method starts with the same method
call. Moreover, a possible simplification just considers the
single-entry-single-exit regions starting at the methods’ en-
try nodes. Such a relationu ∈> v means now that methodu
is the first method invocation inside the single-entry-single-
exit region starting at the entry node of methodv. The def-
inition of crosscutting stays the same, thusu is a crosscut-
ting method invocation if there are at least two uniform ex-
ecution relationsu ∈> v andu ∈> w (v 6= w).

Outside-Before Execution Relations.Here we extract all
pairs of method invocationsu, v if there exists a path from
an invocation of methodu to an invocation of methodv
without any method invocation in between. Such a pair is
a uniform outside-before execution relationu ⇀ v, if all
paths from an invocation of methodu contain an invocation
of v as the next invocation. The first possible simplifications
is to require that an invocation ofu is post-dominated by an
invocation ofv without another invocation in between. The
second simplifications is to require that any invocation of
methodu is followed by an invocation ofv in all single-
entry-single-exit regions containing an invocation ofu.

4. Experiences

We have implemented the presented static mining on top
of the Soot framework [9], which is used to compute the
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size relations size relations
2 127 13 4
3 55 15 2
4 30 16 1
5 12 17 2
6 9 18 1
7 7 19 1
8 7 20 1
9 3 22 1
10 3 24 2
11 3 32 1
12 4 49 1

1236 relations (R∈> ) in 277 candidates

Table 2. Inside-First Execution Relations

size relations size relations
2 53 8 1
3 19 9 1
4 4 11 1
5 6 12 1
6 3 13 1
7 2

294 relations (R⇀) in 92 candidates

Table 3. Outside-Before Execution Relations

control flow graph of the analyzed program. Our tool tra-
verses these control flow graphs and extracts the uniform
and crosscutting inside-first and outside-before execution
relations. As a first test case we have analyzed JHotDraw,
version 5.4b1. Tables 2 and 3 show the results. For inside-
first execution relations, the tool has identified 277 candi-
dates with 1236 uniform and crosscutting relations, and for
outside-before relations, 92 candidates with 294 relations.

It is interesting, that there are many more candidates for
inside-first than for outside-before. Furthermore, there are a
lot of candidates with just a small amount of crosscutting,
e.g., 127 candidates that just crosscut two methods.

We will next discuss some of the identified candidates in
detail. However, due to the large amount of identified can-
didates, we will only present the six largest candidates of
each category.

4.1. Inside-First Relations

The largest candidate consists of 49 uniform and cross-
cutting execution relations. The invoked method is “...Col-
lectionsFactory.current”. It is obvious that this is a method

to access the current factory object, needed in many other
methods of the system. This is clearly crosscutting, how-
ever, not a refactorable aspect.

The second largest candidate consists of 32 relations for
the method “...DrawingView.view”. This is again an acces-
sor method that returns the currently active view. Thus, it is
crosscutting but not refactorable.

The same holds for the third and fourth candidate,
which both consist of 24 relations. The relevant meth-
ods are “...DecoratorFigure.getDecoratedFigure” and
“...AbstractHandle.owner” which are once again acces-
sor methods.

For the fifth candidate, things are not different: It
consists of 22 relations for the method “...Undoad-
ableAdapter.undo” that checks whether the current object
represents an undo-able action.

Things change for the sixth candidate consisting of
20 candidates for method “...AbstractFigure.willChange”.
That method informs a figure that an operation will change
the displayed content. This is the first candidate that is a
crosscutting concern which could be refactored into an as-
pect.

4.2. Outside-Before Relations

The largest discovered candidate consists of 13 uniform
and crosscutting execution relations for the method “...Iter-
ator.next”. A closer look to the 13 invocations reveals that
this crosscutting is more or less incidental: An operation is
performed on the next element of a container.

The second largest candidate is somewhat interest-
ing: It consists of 12 invocations before a call to “...Ab-
stractCommand.execute”, from which 11 are invocations
of method “createUndoActivity”. The other is an in-
vocation of “...ZoomDrawingView.zoomView”, which
seems to be ananomaly. However, the other 12 invoca-
tions are of classes representing operations that change the
figure andzoomView(probably) does not change it.

The next three largest candidates (consisting of 11, 9, and
8 relations) are again more or less incidental crosscutting
concerns related to methods “...DrawingView.drawing”,
“...List.add”, and “...DrawingView.view”. However, it is in-
teresting to see thatDrawingView.viewwas also part of a
large inside-first candidate.

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
It consists of seven relations for method “...AbstractFig-
ure.willChange”. It is immediately called before methods
that will change the displayed figure. However, it is interest-
ing to see that this method has also appeared as an inside-
first candidate, where the candidate is larger (20 relations).
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5. Discussion, Conclusions, and Future Work

This initial evaluation of the static aspect mining tool
has shown that most of the identified crosscutting candi-
dates are not concerns refactorable into aspects. This is not
much different from results in our previous dynamic aspect
mining [1]. However, both approaches give interesting in-
sights into the crosscutting behavior of the analyzed pro-
gram. Moreover, as seen in the example for methodAb-
stractCommand.execute, they can probably be used to dis-
covercrosscutting anomalies, an anomaly in the discovered
execution relation pattern.

These results are preliminary because of the small
amount of analyzed candidates (12) in a single test pro-
gram. However, based on the previous results from the dy-
namic approach, our hypothesis is that the results will
not change and are general. This would mean that as-
pect mining will have hard times to identify candidates
that are really refactorable into aspects. Therefore, fu-
ture work will continue in three directions:

1. A large-scale analysis of discovered candidates for a
large set of programs with static and dynamic analy-
sis.

2. Development of a filter which extracts the refactorable
candidates from the discovered candidates.

3. A comparison with other aspect mining approaches.

6. Related Work

There only exists a small set of automatic aspect mining
approaches. In most approaches one has to specify a pattern
that can be searched for in the source code [3, 10].

Tourwe [8] uses concept analysis to identify aspectual
views in programs. The extraction of elements and attributes
from the names of classes, methods, and variables, formal
concept analysis is used to group those elements into con-
cepts that can be seen as aspect candidates.

Some other approaches rely on clone detection tech-
niques to detect tangled code in the form of crosscutting
concerns:

Bruntink [2] evaluated the use of those clone detection
techniques to identify crosscutting concerns. Their evalua-
tion has shown that some of the typical aspects are discov-
ered very well while some are not.

Ophir [6] identifies initial re-factoring candidates using
a control-based comparison. The initial identification phase
builds upon code clone detection using program depen-
dence graphs. The next step filters undesirable re-factoring
candidates. It looks for similar data dependencies in sub-
graphs representing code clones. The last phase identifies
similar candidates and coalesces them into sets of similar
candidates, which are the re-factoring candidate classes.
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ABSTRACT
In this paper� we show how Timna� our framework for
combining aspect mining analyses� enables quick proto�
typing and evaluation of new mining analyses� Timna
can quickly determine the contribution of a new analy�
sis to the aspect mining �eld by measuring the increase
in e�ectiveness that the new analysis achieves�

1. INTRODUCTION
Aspect Oriented Software Development �AOSD� is a
software development paradigm that enables the separa�
tion of concerns� AOSD allows programmers to modu�
larize certain concerns that would be scattered through�
out code in other paradigms� Although AOSD improves
code readability and maintainability� software develop�
ers do not necessarily apply AOP techniques in every
situation that would produce bene�ts� They typically
avoid porting legacy systems into AOSD� primarily due
to �currently� high cost� Developers also miss many op�
portunities to apply AOSD� due to their limited under�
standing of AOSD and their limited view of code� Any
automation of the process of identifying potential as�
pects would increase the application of AOSD to new
software and ease the process of porting legacy pro�
grams�

The process of aspect mining involves three phases� The
identi�cation of refactoring candidates �i�e� seeds� �	�


� �� 
�� � ��� the expansion of candidates into full
concerns ��� 
��� and the refactoring of concerns ���� We
believe that the most important research problem to
address �rst is the identi�cation problem� because the
other problems depend on the results from identifying
candidates� Several researchers have already developed
individual analyses that mark a piece of code �at dif�
fering granularities� as a candidate �	� 

� �� 
�� � ���
However� there has been no examination of the poten�

tial combination of the results of these mining analyses�
Intuitively� combining analyses� results should increase
accuracy of a candidate identi�er� If two analyses both
agree that a piece of code is a candidate� then we can
have more con�dence in the marking than a marking by
only one analysis� Our framework� Timna� builds upon
this observation �
��� This paper focuses on describing
how Timna enables quick prototyping and evaluation of
individual analyses within the context of existing anal�
yses� We also show how Timna allows researchers to
quickly evaluate the contribution of new mining analy�
ses�

2. TIMNA ANALYSIS FRAMEWORK
A detailed description of the theoretical foundations of
Timna can be found in �
��� Timna is designed to lever�
age machine learning techniques to intelligently combine
the results of many aspect mining analyses� As shown
in Figures 
 and �� Timna operates in two phases� the
learning phase� and the classifying phase�

In the learning phase� Timna takes as input a train�
ing program that has been manually marked such that
every marked method is considered to be a part of a
concern that was not modularized well� Timna per�
forms a set of analyses on this program� generating a
set of attributes for each method� A classi�cation table
of method names� attributes� and classi�cations is then
fed to a machine learning algorithm� which generates
classi�cation rules� The rules are propositional condi�
tions over attributes which result in a classi�cation� For
example� if Timna was using the set of analyses�

� Fan�in degree� Is Void� Has Parameters �

Mining Analyses would generate rows of�

�method name��number��boolean
��boolean��

where number is the degree of fan�in in the call graph
for that method� boolean� is true if the method�s return
type is void� and boolean� is true if the method has
parameters� A rule generated by feeding a table of such
rows into Machine Learning could be�

If�Fan�in�� and IsVoid � true�
Then Classi�cation � Is a candidate
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In the classifying phase� the rules generated by the learn�
ing phase are used on new programs to classify methods
as refactoring candidates�

3. FRAMEWORK IMPLEMENTATION
We implemented Timna as a combination of an Eclipse
plug�in and several small Java applications� While using
Eclipse to explore a Java project �in the Java Perspec�
tive� a developer can trigger Timna�s mining analyses
via a menu attached to any Java item �shown in Figure
��� The learning phase outputs the augmented clas�
si�cation table to a �le which the user can specify in
Eclipse�s preferences�

Table 
 shows an example of the classi�cation table� out�
put by the learning phase� Here� the analyses� return
types are speci�ed at the top� next to each analysis�s
name� In the data section� the attribute vector� gener�
ated by each analysis� precedes the �le and line number
corresponding to each given method�

This classi�cation table� during the learning phase� is
processed by our Java application WekaCat or Weka�
Bool� which both generate classi�cation rules using a
machine learning package ���� WekaCat recognizes dif�
ferent categories of tagged candidates as distinct� while
WekaBool simply considers methods as either a candi�
date or not� Either WekaCat or WekaBool could be used
as the Machine Learning piece in Figure 
�

During the classi�cation phase� users must manually in�
put these rules into TestRules� which is our Java Ap�
plication that uses the rules to classify a set of meth�
ods whose classi�cation is unknown� or to check the ef�
fectiveness of rules on methods whose classi�cation is
known� TestRules outputs �le names and line numbers

Figure �� Begin Learning Phase
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�relation isCandidate

�attribute FanInAnalysis NUMERIC
�attribute HighestPairingAnalysis NUMERIC
� � �
�attribute IsPublicAnalysis y�n
�attribute IsClassi�edAnalysis ��


�data

����
�y�n�n�n�n�n�n�y�n�
�n���
���y�n�n�� � PertFigure�
�
�������n�n�n�y�n�n�n�y�n�
�n�����y�n�n�� � HTMLTextAreaFigure�

	�
������y�y�n�n�n�n�n�y�n���n�����y�n�y�� � PertFigure���
������n�n�n�y�n�n�n�y�n���n�����y�n�y�
 � StandardDrawingView��
�
� � �

Table �� Intermediary Output of Learning Phase

static class A extends AnalysisAdapter�Numeric �
public Object value�MethodDeclaration node� �

� � �
��implementation of analysis here
� � �
��return value for this analysis here
return new Integer�someInt��

�
�

Figure �� Generic Analysis

that point to methods that it classi�es as candidates�
TestRules corresponds to the Classi�er in Figure ��

4. FASTPROTOTYPINGOFANALYSES
4.1 Methodology
Part of Timna�s goal is to provide quick prototyping
and evaluation for new aspect mining analyses� To this
end� we attempt to provide users with a simple tem�
plate for implementing new analyses� in the form of a
subclass of AnalysisAdapter�Numeric �shown in Figure ��
or AnalysisAdapter�YesNo� which is very similar to Anal�
ysisAdapter�Numeric but returns a boolean instead of a
numeric value� These classes provide the method value
that is executed on every method declaration in a pro�
gram�

Prototyping an analysis in Timna is as simple as imple�
menting the method value for a new analysis� and then
including that new analysis in an array �speci�cally� the
array that CallGraphAnalysis�analyses�� returns�� Timna
runs all analyses in this array� The method value also
provides analysis implementors with access to Method�
Declaration� which is the JDT component corresponding
to that method �
�� This provides access to the powerful
functionality of Eclipse�s JDT� which we used to imple�
ment almost every analysis�

4.2 Case Studies
In order to illustrate how quickly and easily analyses
can be implemented within the Timna Framework� we

public Object value�MethodDeclaration node� �
Type t � node�getReturnType���

boolean is � false�
if�t instanceof PrimitiveType��

is � ��PrimitiveType�t��
getPrimitiveTypeCode����PrimitiveType�VOID�

�

return Boolean�valueOf�is��
�

Figure �� IsVoid Analysis� value method

demonstrate the implementation of three analyses�

4.2.1 IsVoid
The �rst analysis� called IsVoid� returns a boolean at�
tribute� The value of the attribute is true if the corre�
sponding method�s return type is void� false if it is not�
Because of the power of Eclipse�s JDT� the implementa�
tion of this analysis is only a few lines long� Speci�cally�
the code �shown in Figure �� accesses the JDT node� of
type MethodDeclaration� and �nds its return type� The
code then checks to see if the return type is void� and
returns the appropriate boolean value� When perform�
ing manual mining on code� we found that methods that
had a void return type were often part of a poorly mod�
ularized concern�

4.2.2 OddLengthName
OddLengthName reports whether the length of a method�s
name is an odd number� Again� the code for this method�
since it leverages the JDT� is fairly short �shown in Fig�
ure ��� We do not believe that this analysis provides
any information that helps classify a piece of code� How�
ever� we include it in our evaluation to show how Timna
will determine that a useless analysis is in fact useless�
Finally� we discuss Fan�in analysis� because it is an ex�
ample of a more complex analysis �	�� Fan�in analysis
counts the number of incoming edges a method declara�
tion has in a call graph� which is the number of call sites
to that method in the system� Since Timna provides a
call graph to users� the implementation of this analysis
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public Object value�MethodDeclaration node� �
SimpleName s � node�getName���
return

Boolean�valueOf�s�getIdentifier���length���	��
��

�

Figure �� OddLength Name Analysis� value

method

public Object value�MethodDeclaration node� �
CallGraph cg� callGraph���
Collection c � cg�getCallers�node��
return new Integer�c�size����

�

Figure 	� Fan
in Analysis� value method

is straightforward �shown in Figure �� Marius et al�
showed that the results of this analysis can be used to
identify poorly modularized concerns �	��

5. ENABLING EVALUATION
5.1 Measures of Effectiveness
When researchers perform aspect mining� the two most
important measures for evaluation of the miner�s e�ec�
tiveness are precision and recall� which are de�ned as
follows� for a particular code�

Precision For Technique T � �Number
Of Good Candidates Identi�ed By T� � �To�
tal Number Of Candidates Identi�ed By T�

Recall For T � �Number Of Good Candi�
dates Identi�ed By T� � �Total Number of
Known Good Candidates�

Precision is easier to measure� because we must only
know or decide whether the results that technique T re�
turns are good candidates� In order to calculate recall�
we must know how many good candidates exist in the
entire code base� Precision and recall are weakly com�
plementary measures� the increase of one often leads to
the decrease of the other �
���

5.2 Evaluation of Analyses with Timna
Timna was designed to facilitate the quick evaluation
of mining analyses� especially in the context of exist�
ing analyses� Timna determines whether a new analysis
helps improve overall e�ectiveness �i�e�� gives new in�
formation� or whether it �nds the same candidates as
existing analyses�

In order to demonstrate Timna�s usefulness in evalu�
ating new analyses� we evaluated the IsVoid and Odd�
LengthName analyses� For simplicity� we did not use
Timna�s full set of analyses during this evaluation� but
only used�

Set Recall Precision
Base ���� ��� �
Base�IsVoid �
�
� 
���
Base�OddLengthName ��	� ��� �

Table �� Performance of Timna Con�gurations

�NoParameters� Fan�in� NumOfCallsAtBeginOrEnd�

as the existing set of analyses �we call this set Base��
NoParameters analysis reports whether the analyzed method
has any return value� NumOfCallsBeginOrEnd reports
the percentage of calls to a method that are either at
the beginning or the end of a method�s body� Fan�in
was described earlier� We �rst added OddLengthName
to this set� and we determined the e�ectiveness of the
generated rules on the training data� Then� we removed
OddLengthName and added IsVoid to the existing anal�
ysis set� and we again measured the e�ectiveness� We
performed measurements on the training data because
the training data�s classi�cation is known� and we can
thus calculate recall as well as precision�

In this study we measured the recall of the candidate
methods and the precision of the overall system� in order
to highlight the changes in e�ectiveness due to adding
a single analysis�

5.3 Results
As Table � shows� the precision of all three con�gura�
tions of Timna is similar� but Base�IsVoid performs the
best by approximately one percent� When evaluating
the e�ectiveness of these con�gurations� it is important
to understand that the non�candidates greatly outnum�
ber the candidates� The non�candidates are �in the base
case� classi�ed very accurately� and so the only improve�
ments come from classifying the candidates more ac�
curately than the base case� Therefore� we report the
recall of the candidates �not the non�candidates� only�
We still report the precision of the overall system� to
demonstrate how the improvement of the candidate�s
recall increases the precision of the overall system� Ta�
ble � shows that Base�IsVoid achieves much better re�
call than the base case or Base�OddLengthName� which
leads to slightly better system precision as well�

6. COMBINING ANALYSES
Timna allows researchers to combine many analyses quickly
and to determine which analyses are most relevant� There
are two speci�c ways in which researchers can use Timna
to evaluate the relative bene�ts of combining certain
mining analyses�

Similar to the way we evaluated new analyses in our
case study� researchers can use results from our frame�
work to determine whether new mining analyses help
improve e�ectiveness of Timna� If analyses do improve
Timna�s e�ectiveness� that means that the new analyses
provide new� important insight into classifying methods�
Conversely� if the analyses do not improve Timna�s ef�
fectiveness� then the new analyses are returning results
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that are similar to previous analyses� results� or they
are returning results that have no correlation with a
method�s candidacy�

Researchers can also simply include all known analy�
ses in Timna and observe which analyses appear in the
rules that Timna generates after training� The analyses
that Timna uses in these rules are the most important
analyses� because Timna learns from the training data
which analyses are most relevant to its classi�cation�

7. RELATED WORK
Researchers have investigated several individual min�
ing analyses� These analyses are largely focused on the
identi�cation of seeds� Once a miner �nds seeds� and
has a high degree of con�dence in those seeds� the ex�
ploratory tools can be used to expand those seeds into
a full concern� Of course� the higher the recall of an
analysis �the more seeds it �nds out of the total possi�
ble seeds�� the less work that the miner must do using
exploratory tools�

Two groups have investigated the use of code clone de�
tection tools for the discovery of seeds� Shepherd et
al� �

� used PDG�based clone detection to discover
seeds with very high precision� Magiel and van Deursen
compared token�based and AST�based clone detection
techniques for seed discovery� �nding no clear winner be�
tween these methods� but con�rming that cross�cutting
functionality is often implemented using code clones ����

Silvia et al� ��� performed several experiments to use pro�
gram traces to identify seeds� They search for speci�c
patterns in a trace� identifying these methods as seeds�
This technique appears very promising� we hope to in�
tegrate it into our framework soon� Tonella et al� �
��
used formal concept analysis to analyze program traces�
They examined the generated concept lattice and used
it to assist in making a classi�cation�

The call graph fan�in analysis by Marius et al� �	� is a
promising analysis� They produced reasonably precise
results with their automated tool� which they then re�
�ned with a manual �ltering� They provided a thorough
discussion of the candidates that they found�

8. CONCLUSIONSANDFUTUREWORK
In this paper� we have shown how Timna facilitates
quick prototyping of analyses� and the evaluation of
these analyses� In the case study� we showed that Base�
�IsVoid achieves a signi�cant improvement in e�ective�
ness over Base� If an analysis achieves similar improve�
ment in Timna�s e�ectiveness in practice� that analysis
should be added to Timna�s canonical set of analyses�

In the future� we hope to improve the implementation
of Timna� and perform experiments using combinations
of existing aspect mining analyses in order to determine
which analyses we should include in a canonical set� By
combining the results of all of the best analyses� we
hope to achieve performance that is greater than any

individual analysis� We also plan to improve Timna�s
integration into the Eclipse framework� and the integra�
tion of Timna�s phases�
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Abstract

This paper outlines how clone detection results can be fil-
tered such that useful aspect candidates remain. In particu-
lar, our goal is to identify aspect candidates that are inter-
esting for the purpose of improving maintainability. To reach
this goal, clone class metrics are defined that measure known
maintainability problems such as code duplication and code
scattering. Subsequently, these clone class metrics are com-
bined into a grading scheme designed to identify interesting
clone classes for the purpose of improving maintainability
using aspects.

1. Introduction

Large-scale industrial software applications are inherently
complex, and thus a good separation of concerns within such
applications is indispensable. Unfortunately, recent insight
reveals that current means for separation of concerns, i.e.
functional decomposition or object-oriented programming,
are not sufficient [17]. No matter how well large applica-
tions are decomposed using current means, some function-
ality, typically called crosscutting concerns, will not fit the
chosen decomposition. As a result, implementations of such
crosscutting concerns will be scattered across the entire sys-
tem, and become tangled with other code. Obviously, the
consequences for maintenance of the system, and its future
evolution, are dire.

Aspect-oriented software development (AOSD) has been
proposed as an improved means for separation of concerns.
Aspect-oriented programming languages add an abstraction
mechanism (called an aspect) to existing (object-oriented)
programming languages. This mechanism allows a devel-
oper to capture crosscutting concerns in a modular way. In
order to use this new feature, and make the code more main-
tainable, existing applications written in ordinary program-
ming languages should be transformed into aspect-oriented
applications. To that end, (scattered and tangled) code im-
plementing crosscutting concerns should be identified, and
subsequently be refactored into aspects.

Identifying crosscutting concerns is an important part of
a process referred to as aspect mining. One of the goals
of aspect mining is to identify opportunities for transform-
ing (parts of) the code of an application into aspect-oriented
code. Since aspects1 are specifically designed to deal with
crosscutting concerns, aspect mining is naturally focused on
crosscutting concerns. In previous work we demonstrated
that two clone detection techniques can be used to identify
code fragments that belong to relevant crosscutting concerns
[4]. Given these encouraging results, we are now challenged
to apply these clone detection techniques in the field of as-
pect mining. In other words, how can we use clone detection
results to find good candidate aspects? In particular, can we
identify aspects which can be applied such that the maintain-
ability of the system is improved?

In this paper we will discuss a possible approach to the ap-
plication of clone detection to aspect mining. The basic idea
is to develop a method to filter the output of a clone detec-
tor, the so-called clone classes [10]. Based on observations
made during an earlier case study [4], we propose a num-
ber of clone class metrics. These metrics are used to attach
a ‘grade’ to a clone class, which indicates how relevant the
clone class is for the aspect mining process. Clone classes
which score below a threshold value can then be filtered out,
and hopefully only relevant classes remain. Furthermore,
these metrics reflect our expectations of aspect mining: to
find aspects which can improve the maintainability of the
system by reducing the amount of scattering and code du-
plication.

In Sections 2 and 3 we give a short overview of existing
aspect mining and clone detection techniques, respectively.
Section 4 describes the system that we used for our case
study, and the crosscutting concerns we considered. Addi-
tionally, we mention some of our earlier results from [4].
The clone class metrics are described in Section 5, together
with some initial results and discussion.

1Different flavours of aspects exists within the aspect-oriented paradigm,
and therefore aspect mining could target any of them.
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2. Aspect Mining

Aspect mining is typically described as a specialised reverse
engineering process, which is to say that legacy systems
(source code) are investigated (mined) in order to discover
which parts of the system can be represented using aspects.
This knowledge can be used for several goals, including re-
engineering and program understanding. Several tools are in
existence that may help automate this process [8, 7, 15, 20].
Aspect mining techniques vary mainly in the kind of infor-
mation they extract from a legacy system. Marin et. al. cal-
culate the fan-in metric for the methods in a system [13].
Shepherd et. al. perform PDG-based clone detection [16].
Breu and Krinke generate execution traces and identify re-
curring execution relations [3]. Tourwe and Mens group
identifiers using concept analysis [19]. Tonella and Ceccato
generate program traces using use cases, and employ con-
cept analysis to discover concepts and computational units
that are implemented in multiple modules which contribute
to multiple use cases [18].

3. Clone Detection

Clone detection techniques attempt at finding duplicated
code, which may have undergone minor changes afterward.
The typical motivation for clone detection is to factor out
copy-paste-adapt code, and replace it by a single procedure.

Several clone detection techniques have been described
and implemented:

• Text-based techniques [9, 6] perform little or no trans-
formation to the ‘raw’ source code before attempting to
detect identical or similar (sequences of) lines of code.
Typically, white space and comments are ignored.

• Token-based techniques [10, 1] apply a lexical analysis
(tokenization) to the source code, and subsequently use
the tokens as a basis for clone detection.

• AST-based techniques [2] use parsers to first obtain a
syntactical representation of the source code, typically
an abstract syntax tree (AST). The clone detection al-
gorithms then search for similar subtrees in this AST.

• PDG-based approaches [11, 12] go one step further
in obtaining a source code representation of high ab-
straction. Program dependence graphs (PDGs) contain
information of semantical nature, such as control- and
data flow of the program.

• Metrics-based techniques [14] are related to hashing
algorithms. For each fragment of a program the values
of a number of metrics is calculated, which are subse-
quently used to find similar fragments.

Figure 1. Scattering of the parameter checking con-
cern.

Concern LOC Fraction
Error handling 1716 9%
Dynamic execution tracing 1539 8%
Function parameter checking 1441 7%
Memory allocation handling 1110 6%
Total 5806 31%

Table 1. Code percentages devoted to various con-
cerns, in a 20 KLOC component.

Following Walenstein [21], clone detection adequacy de-
pends on application and purpose. Finding crosscutting con-
cerns is a completely new application area, potentially re-
quiring specialized types of clone detection.

4. Case Study

4.1. Background

Our paper is based on a software component (called CC) of
20,000 lines of C code, part of the larger code base (com-
prising over 10 million lines of code) of ASML, the world
market leader in lithography systems based in Veldhoven,
The Netherlands. The CC component is responsible for the
conversion of data between several data structures and other
utilities used by communicating components.

Developers working on this component express the feel-
ing that a disproportional amount of effort is spent imple-
menting ‘boiler plate’ code, i.e., code that is not directly re-
lated to the functionality the component is supposed to im-
plement. Instead, much of their time is spent dealing with
concerns like error handling and parameter checking (ex-
plained below).
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This problem is not limited to just the component we se-
lected; it appears in nearly the entire code base. Since the de-
velopers at ASML use an idiomatic approach to implement
these crosscutting concerns in all applicable modules, similar
pieces of code are scattered throughout the system. Clearly,
large benefits in code size, quality and comprehensibility are
to be expected if such concerns could be handled in a more
systematic and controlled way.

4.2. Crosscutting Concerns

A domain expert manually marked places in the CC compo-
nent dealing with four different crosscutting concerns. Each
line in the application was annotated with at most one mark,
and as a result, each line belongs to at most one of the con-
cerns described below, or to no concern.

• Error handling. General error handling and adminis-
tration; this code is responsible for roughly three tasks:
the initialisation of variables that will hold return val-
ues of function calls, the conditional execution of code
depending on the occurrence of errors and finally ad-
ministration of error occurrences in a data structure.

• Tracing. Dynamic execution tracing; logging the val-
ues of input and output parameters of C functions to
facilitate debugging.

• Parameter checking. Responsible for two require-
ments: (1) making sure that parameters of type pointer
are checked against null values before they are derefer-
enced, and (2) checking whether parameter values are
within allowable ranges.

• Memory error handling. Dedicated handling of errors
originating from C memory management.

All together, these concerns comprise roughly 31% of the
code. The details are shown in Table 1, while Figure 1 il-
lustrates the scattered nature of these concerns by highlight-
ing the code fragments belonging to the parameter check-
ing concern. The vertical bars represent the files of the 20
KLOC component, and within each vertical bar, horizontal
lines of pixels correspond to lines of source code within the
file. Coloured lines are part of the memory error handling
concern. The other concerns exhibit a similarly scattered dis-
tribution.

4.3. Previous Results

In [4] we demonstrated to what extent two clone detec-
tion techniques (AST-based and token-based) can be used
to identify crosscutting concern code. The experiment com-
pared lines of code belonging to the concerns described
above to the output of two clone detectors, Bauhaus’ ccdiml
(AST-based) and CCFinder (token-based).

The first step of the experiment consisted of obtaining so-
called clone classes from the clone detectors. A clone class
is a set of code fragments that are duplicated (or cloned) ac-
cording to a clone detector. Subsequently, for each clone
class it was determined how many lines of each concern are
covered by the clone class. A line of a concern, i.e. one of the
four concerns described above, is covered by a clone class if
the line occurs in one of code fragments of the clone class.

The final evaluation of the clone detection techniques con-
sisted of finding the number of clone classes required to
reach an acceptable level of coverage (80%) for each con-
cern. Complementary to evaluating the clone detectors based
on coverage, the experiment also considered the resulting
precision. The ideal case is a clone class that includes noth-
ing but lines of code belonging to one of the concerns de-
scribed above. However, as the results in [4] have shown,
many clone classes also include other lines of code. Clone
classes that have a high ratio of other lines compared to lines
belonging to a concern, are evidence that a clone detector
is not a suitable tool to identify the code of that particular
concern.

Code belonging to either the parameter checking or mem-
ory error handling concerns tends to be covered well by
both clone detection techniques, while tracing and error han-
dling code is not. Furthermore, the results showed that clone
classes which have good coverage of one of the concerns,
tend to have a higher precision in case of the AST-based tech-
nique than in case of the token-based technique.

5. Approach

5.1. Goals

The main goal of mining for aspects (and subsequent re-
engineering) in the CC component –and the entire ASML
source base– is improving its maintainability. In other words,
the mining process should point out opportunities for re-
engineering using aspects such that the maintainability of the
component/system can be improved. It is out of the scope of
this paper to detail how to validate the actual maintainability
improvement offered by the aspects that are found. However,
this is an important issue that will require future attention
by the aspect mining community. Aspect mining techniques
should be designed for specific purposes, and careful valida-
tion is needed to justify the use of aspect mining techniques
instead of more traditional techniques (like re-engineering
using objects or procedures). Furthermore, comparison of
aspect mining techniques requires that the purposes of these
techniques are specified and compatible.

A maintainability issue with the current CC component
(and the entire ASML code base) is duplication of code be-
longing to known crosscutting concerns. This issue was ex-
plored in [4], and summarised in Section 4. The validation
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of the use of aspects to improve the maintainability of the
parameter checking concern is work in progress [5]. Since
results of this validation have been promising, aspect min-
ing for the purpose of improving maintainability is (at least)
required to identify the parameter checking concern as an
opportunity for aspect use. Additionally, the aspect mining
technique should suggest aspects for concerns that are simi-
lar in nature.

5.2. Clone Class Metrics

To reach the goals outlined above, we propose to employ
clone detection in combination with a set of metrics to filter
the resulting clone classes. The use of clone class metrics
in order to filter clone detection results was previously sug-
gested and implemented by Kamiya et. al. [10]. However,
their work does not focus on the mining of aspects.

In order to find aspects that could improve maintainabil-
ity, the metrics should be designed such that they capture
maintainability problems (of the ASML source base). Du-
plication of code is a well-known cause for maintainability
problems, which justifies the use of clone detection tech-
niques. Clone class metrics that capture the severity of code
duplication are thus interesting for the purpose of main-
tainability improvement. The following metrics capture the
severity of code duplication for a clone class C, such that
higher values correspond to more severe cases of code dupli-
cation:

• Number of Clones (NC). The number of clones that
are included in C. Equivalent to the POP(C) metric
defined by Kamiya et. al. [10].

• Number of Lines (NL). The number of (distinct) lines
of code (SLOC, non-comment/white space) in C.

• Average Clone Size (ACS). The number of lines (NL)
divided by the number of clones (NC).

Many instances of code duplication can be resolved by
means of traditional re-engineering techniques, like replac-
ing clones with calls to a procedure which factors out the
duplicated code. Therefore, metrics are required that dif-
ferentiate between the “simple” cases of code duplication,
i.e. those that can be fixed by traditional means, and those
cases that require aspects. The parameter checking concern
is known to benefit from the use of aspects, due to its scat-
tered nature [5]. In particular, the parameter checking con-
cern implements the requirement that every public function
has to make sure that parameters of type pointer are checked
against null before they are dereferenced. It turns out that
a high percentage of the scattered implementation is cov-
ered by a small number of clone classes [4]. These clone
classes therefore contain clones from many different mod-
ules of the system. The following two metrics capture the
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notion of scattering for a clone class, such that higher values
correspond to higher amounts of scattering:

• Number of Files (NFI). The number of distinct files in
which the clones of C occur.

• Number of Functions (NFU). The number of distinct
functions in which the clones of C occur.

The set of metrics defined above is not intended to be
complete or minimal. A clone class also needs to be eval-
uated with respect to the constructibility of an aspect for
that clone class. It is also required to consider the system-
wide implications of re-engineering a clone class using as-
pects. With regard to minimality, some of the metrics de-
fined above may measure the same factors (for example,
NL(C) = ACS(C) · NC(C)), and thus some may turn out
to be redundant.

5.3. Grading

Using the clone class metrics a ‘grade’ can be attached to
each clone class. For our purpose, such a grade should give
an indication of the maintainability improvement obtained
if the clone class is re-engineered using aspects. Clearly a
large number of grading schemes is possible, even given the
limited set of metrics defined here. This paper will focus
only on the following simple grading scheme:

Grade(C) = NL(C) · NFU(C)

Consequently, clone classes which are both big (NL) and
scattered (NFU) will be assigned high grades. For purposes
other than maintainability improvement, different grading
schemes or metrics may be more applicable. The use of dif-
ferent metrics and grading schemes is the subject of further
research.

5.4. Initial Results

The component described in Section 4 was used to gener-
ate some initial results of the aspect mining process using
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the grading scheme defined above. First, clone classes were
calculated using the AST-based clone detector (ccdiml) of
the Bauhaus toolkit2. The minimum clone length was set
to 2 lines, leaving all other settings at their defaults. 756
clone classes were found by the clone detector. Second, for
each clone class, the clone class metrics and the resulting
grades were calculated. Figure 2 shows the grades of the
first 20 highest graded clone classes, ranked according to
their grades. Observe that a small number of clone classes
has high grades, while the remaining grades are near the av-
erage. For the purpose of maintainability improvement this
is a desirable property, since large improvements (as defined
by the grading scheme) can be obtained by using aspects for
a small number of clone classes.

The clone class with the highest grade consists of a large
number (265) of very small clones (1.43 average size), that
are scattered across 134 functions. A number of clones from
this class contains code belonging to the error handling con-
cern, in particular the code responsible for initialising the
variables used for error administration. However, a large
number of other clones from this class contain similar pieces
of initialisation code which are not related to error handling.
For this reason, the use of an aspect for this clone class is
probably not desirable. Class 17 is an anomalous result in
the sense that many of its clone are overlapping. It consists
of 1252 clones, but the average clone size is only 0.29. This
particular class does not cover any known concerns.

Clones classes 2, 3, 6, 9, 10-12 and 19 cover large parts of
the parameter checking concern. This result is as expected,
since the clone class metrics and the grading scheme were
designed with this particular concern in mind. Concerns
which are known to be similar, in particular the tracing and
memory error handling concerns, are represented in the top
20 as well. Clone classes 4, 5, 7, 8 and 14 cover parts of the
tracing concern, while the remaining classes 13, 15, 16, 18,
20 cover parts of memory error handling. Thus, except for
classes 1 and 17, the 20 highest graded classes all cover parts
of the four known crosscutting concerns. As was shown in
[4], most of these clone classes also contain varying amounts
of noise, i.e. lines of code that do not belong to any known
concerns.

6. Conclusions

This paper outlined how clone detection results can be fil-
tered such that useful aspect candidates remain. For the pur-
pose of improving the maintainability of a component of a
large C code base, a number of clone class metrics was de-
fined that capture the severity of code duplication and scat-
tering of a clone class. Subsequently, these metrics were
combined into a grading scheme that allows interesting clone
classes to be pointed out. It was shown that the approach

2URL: http://www.bauhaus-stuttgart.de/

can point out a concern which is known to have a benefi-
cial implementation using aspects. Additionally, concerns
of similar scattered and duplicated nature are also identified.
Future work lies in the extension of the clone class metrics
and refinement of the grading scheme. Other open issues in-
clude the constructibility of aspects for a given clone class,
and measurement of the impact of aspect use at the system
level.
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Abstract

In this paper we discuss an approach to the aspect-oriented
refactoring of the Undo concern in an open-source Java
system. A number of challenges and considerations of the
proposed solution are analyzed for providing useful feed-
back about how the employed aspect language could better
support the refactoring to aspects. We also consider the
unpluggability property of a concern as an estimate of its
refactoring costs and propose a number of research ques-
tions to measure the improvements due to aspect refactor-
ing.

1. Introduction

Aspect oriented programming(AOP) is aimed at overcom-
ing the modularization limitations of object orientation,
and in particular at reducing code tangling and scattering.
Refactoring is a technique for improving the internal struc-
ture of the code without affecting its external behavior [1].
Refactoring object oriented systems to aspects is a natural
step towards AOP adoption. However, it is important to see
how the existing approaches to AOP can support the refac-
toring process. Starting from this consideration, we pro-
pose an aspect solution to the Undo crosscutting concern in
an open-source Java system, using ASPECTJ 1 as the imple-
mentation language. The analyzed system is JHOTDRAW 2,
a model framework for two-dimensional graphics of around
18,000 non-comment lines of code.

The case for the aspect refactoring of the Undo concern
in JHOTDRAW was introduced in our previous work [2],
where fan-in analysis was employed to identify crosscutting
concerns. The results have shown about 30 undo activities
defined for various elements of the graphical framework. A
classification of these elements would comprise command,
tool, and handle classes as well as one class for dragging
figures. We will discuss the refactoring of the commands
group as the largest in terms of defined undo activities and

1www.eclipse.org/aspectj/
2jhotdraw.org, v.5.4b1
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UndoManager
                     pushUndo

*

DrawingEditor

Figure 1. Participants for undo in JHOTDRAW.

also as a very common (undoable) task in a drawing appli-
cation.

2. Current Undo implementation

A number of activities in JHOTDRAW, such as handling
font sizes and colors, image rotation, or inserting the clip-
board’s content into a drawing, support the undo functional-
ity. A representation of the elements in the implementation
of the undo concern is given in figure 1.

The Activity components participate in the implementa-
tion of the Command design pattern. The pattern provides a
generic interface (Activity) for the operations to be executed
when menu items are selected by the user, which allows to
separate the user-interface from the model. Item-selection
actions result in invocations to the execute method of the
associated, specific activities. Many of these activities also
have support for undo functionality, which in JHOTDRAW

is implemented by means of nested (undo) classes. The
nested class knows how to undo the given activity and main-
tains a list of affected figures whose state is also affected if
the activity must be undone. Whenever the activity mod-
ifies its state, it also updates fields in its associated undo-
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activity needed to actually perform the undo. The appli-
cation supports repeated undo operations (the Undo Com-
mand) by recording the last executed commands in reversed
order. This is achieved by wrapping the commands that
can be undone into an Undoable Command object, which
serves three roles: first, it assumes the request to execute
the command, second, delegates the command’s execution
to the wrapped command, and last, acquires a reference to
the undo activity associated with the wrapped command and
pushes it into a stack managed by an UndoManager object.
When executing an Undo Command, the top undo activity
in the stack is extracted and, after the execution of its undo()
method, is pushed into a redo stack managed by the same
UndoManager object.

The Command hierarchy in JHOTDRAW, shown in fig-
ure 5, implements the design pattern bearing the same
name. The (12) undo-able commands store a reference to
their associated undo activity. These references are obtained
in the control flow of the command’s execution through ded-
icated factory methods.

Given the described implementation, it is apparent that
the primary decomposition of Command is crosscut by a
number of elements, as follows:

(1) the field declared by AbstractCommand for storing
the reference to the associated undo activity,

(2) the accessors for this field implemented by the
same class,

(3) the UndoActivity nested classes implemented by
most of the concrete commands that support undo
functionality,

(4) the factory methods for the undo activities declared
by each concrete command that can be undone,

(5) the references to the before enumerated elements
from non-undo related members, e.g., the execute()
method of the command class.

These crosscutting elements are outlined in the figures 2
and 6 for two command classes: (1) ChangeAttribute Com-
mand modifies the predefined attributes of a figure, such
as the text color or the font size for a Text Figure, and (2)
Paste Command is an activity that supports the insertion of
the clipboard content into the active drawing of the graph-
ics editor. The same elements are also used as criteria for
grouping the command classes in figure 5, as it will be de-
scribed in section 4.

public class ChangeAttributeCommand extends AbstractCommand {

//constructor and private fields ...

//the command’s execute() method
public void execute() {

super.execute();

setUndoActivity(createUndoActivity());
getUndoActivity().setAffectedFigures(

view().selection());
FigureEnumeration fe = getUndoActivity().

getAffectedFigures();
while (fe.hasNextFigure()) {

fe.nextFigure().setAttribute(fAttribute, fValue);
}

view().checkDamage();
}
// Factory method for undo activity
protected Undoable createUndoActivity() {

return new ChangeAttributeCommand.UndoActivity(
view(), fAttribute, fValue);

}
public static class UndoActivity extends UndoableAdapter {

//implementation of the undo nested functionality...
public void undo() {...}; // ...

}
}

Figure 2. The original ChangeAttributeCommand
class to change a figure’s attribute.

public void execute() {
//super.execute(); - added by a separate aspect, not
//undo-related, with a higher priority than the undo aspect
FigureEnumeration fe = view().selection();
while (fe.hasNextFigure()) {

fe.nextFigure().setAttribute(fAttribute, fValue);
}

view().checkDamage();
}

Figure 3. The refactored ChangeAttributeCom-
mand.

public privileged aspect ChangeAttributeCommandUndoActivity {

pointcut inChangeAttributeCommand(ChangeAttributeCommand cmd) :
this(cmd) &&
execution(void ChangeAttributeCommand.execute());

before(ChangeAttributeCommand cmd) :
inChangeAttributeCommand(cmd) {

cmd.setUndoActivity(cmd.createUndoActivity());
cmd.getUndoActivity().setAffectedFigures(

cmd.view().selection());
}

Undoable ChangeAttributeCommand.createUndoActivity() {
return new ChangeAttributeCommandUndoActivity.

UndoActivity(view(), fAttribute, fValue);
}

public static class UndoActivity extends UndoableAdapter {
// the same implementation as for the original nested class

}
}

Figure 4. The aspect solution for ChangeAt-
tributeCommand.
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Figure 5. Command hierarchy in JHOTDRAW.

3. Example refactorings

3.1. Tirsen’s Generic Undo Aspect

A general solution for handling the undo functionality was
proposed by Tirsen [3]. It mainly consists of keeping track
of the fields that are set when a command executes. How-
ever, the solution suffers from several limitations when con-
sidering the undo implementation in JHOTDRAW: it does
not capture all the state modifications caused by a com-
mand’s execution, such as changes in data structures, and
it requires filtering the set fields, as not all these fields are
of interest to the undo process. Given the complexity of the
undo process in JHOTDRAW and the way it is handled, the
approach is problematic.

3.2. A Simple Case: Undoing the ChangeAt-
tribute Command

The systematic refactoring we propose for the undo func-
tionality consists of several steps. First, an undo-dedicated
aspect is associated to each undo-able command. The as-
pect will implement the entire undo functionality for the
given command, while the undo code is removed from the
command class. By convention, each aspect will consis-
tently be named by appending “UndoActivity” to the name
of its associated command class to enforce the relation be-
tween the two, as in figure 4. In a successive step, the com-
mand’s nested UndoActivity class moves to the aspect. The

factory methods for the undo activities (createUndoActiv-
ity()) also move to the aspect, from where are introduced
back, into the associated command classes, using inter-type
declarations. Lastly, the undo setup is attached to those
methods from which was previously removed, namely the
execute() method, by means of an advice. Figure 2 shows
the original implementation of the command, while fig-
ures 3 and 4 illustrate the refactored class and the aspect
solution, respectively.

3.3. A Complex Case: Undoing the Paste
Command

The general strategy outlined above for the case of the
ChangeAttribute Command requires some supplementary
steps for commands with a higher degree of tangling for the
undo functionality. An interesting case for its complexity is
that of the PasteCommand class, shown in figure 6. Both the
command’s main logic and the undo-related setup depend
on common condition checks. The proposed solution looks
for a clean separation of the two concerns, hence it captures
the calls that set the variables checked in the command’s
execution, and re-uses the same values when executing the
undo functionality as a separate, post-command operation.
The common conditions, emphasized in figure 6, are also
shown in figure 7 and have the associated pointcuts marked
in figure 8. The aspect defines its own set of variables that
are set to the same values as the ones checked in the control
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flow of the advised (execute) method.

4. Levels of Unpluggability

The refactoring we propose tries to stay close to the original
design of the application and to ensure an easy migration to
the aspect-based solution. After identifying the crosscutting
concern, this is removed from the system and re-added in an
aspect-specific manner, as previously discussed. However,
the concern’s removal has different levels of complexity for
various commands. Given the identified elements of the
crosscutting concern, it is possible to distinguish common
characteristics for grouping the commands as a complexity
assessment. The classification shown as colors in figure 5 is
based on two main criteria:

1. the degree of tangling of the undo setup in the
command’s logic, particularly the activity’s execute()
method, and

2. the impact of removing the undo-related part from its
original site, which can be estimated by the number of
references to the factory method and to the methods of
the nested undo activity.

These characteristics define the concern as unpluggable;
that is, the core logic of the method executing the command
is separated in the method’s flow from the crosscutting undo
elements, thus making possible to have the command ex-
ecuting correctly after removing the lines of code apper-
tained to undo.

The “green”(ChangeAttributeCommand) group exhibits
a number of properties that permit a clean feature extrac-
tion:

- the references to the nested undo activities and the fac-
tory methods for these activities are exclusively from
inside the enclosing class, or from other (extending)
undo activities,

- the undo-related code in the enclosing classes is un-
pluggable as previously described, and thus suitable
for extraction and refactoring by means of advice con-
structs 3

- the other methods related to the crosscutting function-
ality of undo (set/getUndoActivity) are inherited from
top level classes (and not overridden locally) where
they can be refactored by means of introduction.

The “red” group (InsertImageCommand) of commands
does not exhibit the undo unpluggability. The commands

3In practice, small local refactorings that eliminate one layer of indi-
rection are needed before having the concern’s statements separated from
the rest of the code. In figures 2 and 3, for instance, the enumeration of the
selected figures in the view, fe, is obtained differently.

//The class extends AbstractCommand that implements
//the accessors for the associated UndoActivity
public class PasteCommand

extends FigureTransferCommand {
// ...
public void execute() {

super.execute();

Point lastClick = view().lastClick();
FigureSelection selection =

(FigureSelection)Clipboard.getClipboard().
getContents();

if (selection != null) {
setUndoActivity(createUndoActivity());
getUndoActivity().setAffectedFigures(

(FigureEnumerator)selection.getData(
StandardFigureSelection.TYPE));

if (!getUndoActivity().getAffectedFigures().
hasNextFigure()) {

setUndoActivity(null);
return;

}
Rectangle r = getBounds(getUndoActivity().

getAffectedFigures());
view().clearSelection();

// get an enumeration of inserted figures
FigureEnumeration fe = insertFigures(

getUndoActivity().getAffectedFigures(),
lastClick.x-r.x, lastClick.y-r.y);

getUndoActivity().setAffectedFigures(fe);

view().checkDamage();
}

}

// Factory method for undo activity
protected Undoable createUndoActivity() {

return new PasteCommand.UndoActivity(view());
}

public static class UndoActivity
extends UndoableAdapter {

//implementation of the nested class ...
}

}

Figure 6. The original PasteCommand class - com-
mand to insert clipboard’s content into the draw-
ing.

can not yield the expected results in the absence of the func-
tionality defined by the nested undo-related classes. This
dependency has been considered a candidate for a prelim-
inary (object-oriented) refactoring with more implications
for the original code, but able to produce the concerns’ un-
coupling.

The refactoring of the “yellow” group (PasteCommand)
affects a larger number of classes. The multiple references
from outside the class enclosing the UndoActivity to the
corresponding factory method or to the undo constructor
are specific to this group. Moreover, the undo-related calls
from the various methods can be more tangled than for the
“green” group.
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public void execute() {
super.execute();
Point lastClick = view().lastClick();
FigureSelection selection = (FigureSelection)

Clipboard.getClipboard().getContents();
if (selection != null) {

//introduced variable for affected figures
FigureEnumerator figEnum = (FigureEnumerator)

selection.getData(StandardFigureSelection.TYPE);
if (!figEnum.hasNextFigure())

return;
Rectangle r = getBounds(figEnum);
view().clearSelection();
figEnum.reset();
//the ’fe’ enumeration is not needed here anymore
insertFigures(figEnum, lastClick.x-r.x,

lastClick.y-r.y);
view().checkDamage();

}
}

Figure 7. The refactored execute() method in
PasteCommand.

5. Improved Language Support for
Refactoring to Aspects

We generally appreciate the results of the refactoring pro-
cess as leading to a cleaner separation of concerns and to a
better modularization. By aspect-refactoring, the two con-
cerns are separately modularized and the secondary concern
of undo is no longer tangled into the implementation of the
primary one. Our systematic approach is intended to ensure
a gradual and possible automatic process of migration, with
some of the steps turned into general refactorings, as for
instance, migrating nested classes to aspects or extracting
features into inter-type declarations. However, a number of
drawbacks that, we think, can be overcome by a better as-
pect language support, can be discussed in relation to this
experiment.

The original design uses static nested classes to enforce a
syntactical relation between the undo activity and its enclos-
ing command class. Since the ASPECTJ mechanisms do not
allow introduction of nested classes, the post-refactoring as-
sociation will only be an indirect one, based on naming con-
ventions. This is a weaker connection than the one provided
by the original solution.

Another drawback is the change of the visibility for the
methods introduced from aspects, i.e. inter-type declara-
tions. The visibility declared in the aspect refers to the as-
pect and not to the target class. For instance, it is not possi-
ble in ASPECTJ to introduce members into a class that are
protected for that class. This is the case for the undo factory
methods whose visibility cannot be preserved by the refac-
toring process. Having caller methods unable to access the
callee after refactoring will require changes in the visibil-
ity that can weaken the boundaries imposed by the original
design.

For the discussed case of the “yellow” group, code in

public aspect PasteCommandUndoActivity {
//store the Clipboard’s contents - common condition
FigureSelection selection;

pointcut execute_callClipboardgetContents() :
call(Object Clipboard.getContents())
&& withincode(void PasteCommand.execute());

after() returning(Object select) :
execute_callClipboardgetContents() {

selection = (FigureSelection)select;
}

//The variable stores the value returned by insertFigures()
FigureEnumeration insertedFiguresEnumeration;

pointcut execute_callinsertFigures() :
call(FigureEnumeration FigureTransferCommand.

insertFigures(FigureEnumeration, int, int))
&& withincode(void PasteCommand.execute());

after() returning(FigureEnumeration figs) :
execute_callinsertFigures() {

insertedFiguresEnumeration = figs;
}

FigureEnumerator selectedData;

pointcut execute_callselectiongetData() :
call(Object FigureSelection.getData(String))
&& withincode(void PasteCommand.execute());

after() returning(FigureEnumeration dataSel) :
execute_callselectiongetData() {

ArrayList al = new ArrayList();
while(dataSel.hasNextFigure()) {

al.add(dataSel.nextFigure());
}
dataSel.reset();
selectedData = new FigureEnumerator((Collection)al);

}

pointcut executePasteCommand(PasteCommand cmd) :
this(cmd) &&
execution(void PasteCommand.execute());

/**
* Execute the undo setup.
*/
void after(PasteCommand cmd) : executePasteCommand(cmd) {

//the values for the variables that have to be checked here,
//e.g., selection, have been captured by means of advices

// the same condition as in the advised method
if(selection != null) {

cmd.setUndoActivity(cmd.createUndoActivity());
cmd.getUndoActivity().setAffectedFigures(selectedData);
// the same condition as in the advised method
if (!cmd.getUndoActivity().getAffectedFigures().

hasNextFigure()) {
cmd.setUndoActivity(null);
return;

}
cmd.getUndoActivity().setAffectedFigures(

insertedFiguresEnumeration);
}

}
/**
* Factory method for undo activity - cannot be protected anymore
*/
Undoable PasteCommand.createUndoActivity() {

return new PasteCommandUndoActivity.
UndoActivity(view());

}

//the nested class moves to the aspect
public static class UndoActivity

extends UndoableAdapter {
// the undo actvity nested class

}
}

Figure 8. The undo aspect for PasteCommand.5
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both the method’s logic and the undo setup part is executed
if a common condition holds. This means that the same
condition will be checked in the advice executing the undo
setup functionality and in the advised method, too. While
we believe this is not a reason for concern from the design
point of view, it can be from the perspective of the com-
piler work. In the same time, the conditions strengthen the
relation between the two concerns, and affect the modular
reasoning about the undo concern, which has to be aware of
the execution particularities of its associated command.

5.1. Research questions

The downsides of the proposed aspect solution, despite an
overall improvement, pose several questions.

How to measure the code improvements due to refac-
toring to aspects? Is it possible to define a set of met-
rics for this?

Would it be possible to use these metrics to compare
different aspect solutions? How can these solutions be
compared from the perspective of easy migration?

What is a good aspect solution? Could we define a set
of good practices in aspect oriented programming?

We think that some of these questions can be answered by
improving the support of the aspect language for the refac-
toring process. Preserving the advantages of the original
implementation will prove beneficial in eliminating poten-
tial tradeoffs. A set of good AOP practices is an open issue,
and just as the language itself, is part of the evolution pro-
cess of the aspect oriented technique. Reliable solutions to
common problems, as the undo functionality one, are also
critical to avoid intrusive code due to the language mecha-
nisms. All these are important concerns for building confi-
dence in an AOP adoption for existing systems.

6. Conclusions

The solution achieved by applying the aspect oriented tech-
niques to refactor the undo concern in an existing, well-
designed object-oriented system shows improvements in
terms of modularity and separation of concerns. Yet,
the downsides of the aspect-based solution raise questions
about how the improvements can be quantified and what are
the desired aspect solutions for specific crosscuttings. The
unpluggability property gives a measure of how clear the
concern is distinguished in the original code and is a good
estimate of the refactoring costs.
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ABSTRACT
This paper reports upon our experience in automatically migrating
the crosscutting concerns of a large-scale software system, writ-
ten in C, to an aspect-oriented implementation. We zoom in on one
particular crosscutting concern, and show how detailed information
about it is extracted from the source code, and how this information
enables us to characterise this code and define an appropriate aspect
automatically. Additionally, we compare the already existing solu-
tion to the aspect-oriented solution, and discuss advantages as well
as disadvantages of both in terms of selected quality attributes. Our
results show that automated migration is feasible, and can lead to
significant improvements in source code quality.

1. INTRODUCTION
Aspect-oriented software development (AOSD) [5] aims at im-

proving the modularity of software systems, by capturing crosscut-
ting concerns in a well-modularised way. In order to achieve this,
aspect-oriented programming languages add an extra abstraction
mechanism, anaspect, on top of already existing modularisation
mechanisms such as functions, classes and methods.

In the absence of such a mechanism, crosscutting concerns are
implemented explicitly using more primitive means, such as nam-
ing conventions and coding idioms (an approach we will refer to as
theidioms-based approachthroughout this paper). The primary ad-
vantage of such techniques is that they are lightweight, i.e. they do
not require special-purpose tools, are easy to use, and allow devel-
opers to readily recognise the concerns in the code. The downside
however is that these techniques require a lot of discipline, are par-
ticularly prone to errors, make concern code evolution extremely
time consuming and often lead to code size explosion.

In this paper, we report on an experiment involving a large-scale,
embedded software system written in the C programming language,
that features a number of typical crosscutting concerns implemen-
ted using naming conventions and coding idioms. Our first aim
is to investigate how this idioms-based approach can be turned
into a full-fledged aspect-oriented approach automatically. In other
words, our goal is to provide tool support for identifying the con-
cern in the code, implementing it in the appropriate aspect(s), and
removing all its traces from the code. Our second aim is then to
evaluate the benefits as well as the penalties of the aspect-oriented

∗Also affiliated with Delft University, Software Evolution Research
Laboratory (SWERL), Faculty of Electrical Engineering, Mathe-
matics and Computer Science (EEMCS), Mekelweg 4, 2628 CD
Delft, The Netherlands.

approach over the idioms-based approach. We do this by compar-
ing the quality of both approaches in terms of the amount of tan-
gling, scattering and code duplication, the lines of code devoted to
the concern and the correctness and consistency of its implementa-
tion.

1.1 Approach
Our approach to achieving our goals is to zoom in on one partic-

ular crosscutting concern, theparameter checkingconcern. Based
on the existing source code and the requirements extracted from
the manuals, we implement aconcern verifierfor the parameter
checking concern. Its primary task is to reason about the current
implementation of the concern in order to “characterise” it: the
verifier reports where the code deviates from the standard idioms,
which allows developers to correct the code when necessary. Man-
ual inspection may also reveal that a particular deviation is in fact
on purpose, in which case it will be marked asintended. Addition-
ally, the verifier also recovers the specific locations where particular
parameters are checked.

The information recovered by the concern verifier is used by the
aspect extractorand theconcern eliminator. The former defines an
appropriate aspect for the parameter checking concern. This aspect
will add parameter checks to the source code wherever necessary,
and will make sure this code is not added for the intended devia-
tions. The latter will remove the parameter checking concern from
the original source code.

The aspect extractor outputs the aspect in a special-purpose as-
pect language. This definition is then translated automatically by
our DSL compilerto an already-existing, general-purpose aspect
language, that can weave the parameter checking concern back into
the source code.

Once the correct aspect has been constructed, we can assess
the quality of the aspect-oriented solution and compare that to the
idioms-based solution.

1.2 Outline
The remainder of the paper is structured as follows. The next

section introduces the parameter checking concern, its requirements
and the idioms used to implement it. Section 3 discusses the con-
cern verifier, its implementation, and the results of running it on our
case study.. Section 4 presents the domain-specific aspect language
we implemented for the parameter checking concern, discusses its
implementation in terms of an already-existing aspect weaver, and
compares this solution to the idioms-based solution. Section 5
then discusses the (conservative) migration of the idioms-based ap-
proach to the aspect-oriented approach. Section 6 considers vari-
ous quality attributes to compare the aspect-oriented solution to the

1



idioms-based solution. Finally, Section 7 presents our conclusions
and future work.

2. CURRENT PARAMETER CHECKING ID-
IOM

The subject system upon which we perform our experiments is
an embedded system developed at ASML, the world market leader
in lithography systems. The entire system consists of more than
10 million lines of C code. Our experiment, however, is based on
a relatively small, but representative, software component (which
we will call theCC component in this paper), consisting of about
19.000 lines of code.

Because the C language lacks explicit support for crosscutting
concerns, ASML uses an idiomatic approach for implementing such
concerns, based on coding idioms. As a consequence, a large a-
mount of the code of each component is “boiler plate” code. A
code template is typically reused and adapted slightly to the con-
text.

2.1 Parameter Checking Requirements
The parameter checking concern is responsible for implement-

ing pointer checks for function parameters and raising warnings
whenever such a pointer contains a non-expected (NULL) value.
The requirement for the concern is that each parameter that has
type pointer and is defined by a public (i.e. notstatic ) function
should be checked againstNULLvalues. If aNULLvalue occurs, an
error variable should be assigned, and an error should be logged in
the global log file. Some exceptions to this requirement exist, as a
limited number of functions can explicitly deal withNULLvalues,
so the corresponding parameters should not be checked.

The implementation of a check depends on thekind of parame-
ter. The ASML code distinguishes between three different kinds:
input, outputand the special case ofoutput pointerparameters. In-
put parameters are used to pass a value to a function, and can be
pointers or values. Output parameters are used to return values
from a function, and are represented as pointers to locations that
will contain the result value. The actual values returned can be ref-
erences themselves, giving rise to a double pointer. The latter kind
of output parameters are calledoutput pointerparameters. Note
that the set of output pointer parameters is a subset of the set of
output parameters. Since output and output pointer parameters are
always of type pointer, they should always be checked, but only
input parameters that are passed as pointers should be checked.

2.2 Idioms Used
Parameter checks occur at the beginning of a function and always

look as follows:

if(queue == (CC_queue *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Input parameter %s error (NULL)",

"CC_queue_empty", "queue"));
}

where the type cast of course depends on the type of the variable
(queue in this case). The second line sets the error that should
be logged, and the third line reports that error in the global log
file. It is not strictly specified which string should be passed to the
CCLOGfunction. Checks for output parameters look exactly the
same, except for the string that is logged.

Since output pointer parameters are output parameters as well,
they should also be checked for null values. Additionally, one extra
check is required to prevent memory leaks. The requirement at
ASML is that output pointer parameters may not point to a location

that already contains a value, because the function will overwrite
the pointer to that value. Since the original value is then never
freed, a memory leak could occur. In order to avoid such leaks, the
following test is added for each output pointer parameter:

if(*item_data != (void *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Output parameter %s may already "

"contain data (!NULL). This data will "
"be overwritten, which may lead to memory "
"leaks.", "queue_extract", "item_data"));

}

The only difference with the previous test lies in the condition
of the if , that now checks whether the dereferenced parameter
already contains some data (!= NULL ), and in the string that is
written to the log file.

3. CONCERN VERIFIER
The concern verifier is an automated tool that reasons about the

idioms-based implementation of the parameter checking concern.
This section motivates why we need such an automated tool, ex-
plains the information that it recovers from the source code, the
coding idioms used, as well as the implementation of the algorithm
that verifies these idioms, and the results of running this algorithm
on our case study.

3.1 Motivation
If we want to transform the idioms-based approach into an aspect-

oriented one, we should first “characterise” the implementation. In
other words, we should first locate places where parameters checks
occur and mandatory parameter checks are missing, and identify
parameters that do not need to be checked.

We achieve this characterisation by implementing aconcern ver-
ifier which checks the implementation of the concern with respect
to the coding idioms that hold for it. The verifier outputs a list
of locations, i.e. functions where parameter checks occur, and a
list of deviations, i.e. locations in the source code that lack a pa-
rameter check although it should be present according to the id-
ioms. This latter list is inspected by a domain expert, who iden-
tifies theintendedandunintendeddeviations. The intended devi-
ations indicate exceptional cases (e.g, parameters that are allowed
to be NULL), whereas unintended deviations indicate parameters
for which a check was forgotten and should be implemented. As
we will see later on, our concern verifier is able to identify some
intended deviations automatically. In those cases, these deviations
are not reported, but simply registered as exceptions.

Thus the following important information is recovered from this
code:

• the list of intended deviations informs us which parameters
form an exception to the rule. As such, this important in-
formation becomes explicitly available, whereas it was not
before;

• the number of unintended deviations is a measure for the
quality of the idioms-based approach. The smaller this num-
ber, the better the quality of the implementation. We expect
this number to increase linearly with the size of the source
code;

• the verifier identifies the specific location in the code where a
particular parameter is checked. Remember that the require-
ment does not specify where the check should occur, as long
as it occurs before the parameter is used.
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required actually deviations unintended intended
checked detected deviations deviations

input 57 40 26 17 9
output 143 94 49 49 0

out pntr 45 15 35 30 5
total 245 149 110 96 14

Table 1: Number of top level parameter checks found for the CC
component.

As we will see in the next sections, this information is vital to
our aspect extractor. The aspect it defines should add all neces-
sary parameter checks to the code, but should not insert checks for
exceptional parameters. Additionally, it should make sure that the
aspect preserves the behaviour of the original idioms-based imple-
mentation, which it does by simply implementing the checks at the
same locations.

We continue this section by explaining the implementation of the
concern verifier in more detail.

3.2 Verifier Implementation
The concern verifier has been developed as aplugin in theCode-

Surfer source code analysis and navigation tool1. This tool pro-
vides us with programmable access to data structures such as sys-
tem- and program-dependence graphs, and defines advanced analy-
sis techniques over these structures, such as control- and data-flow
analysis and program slicing.

Our verifier needs to consider each public function and verify
if the necessary parameter checks occur in it or in the functions it
calls. This requires knowledge about the particular kind of a param-
eter: whether it is input, output or output pointer. Our verifier first
extracts this knowledge from the source code by simply checking
for assignments to a parameter, looking atkill (or def) statements
for that parameter inside a function’s body.

Once the particular kind of a parameter is determined, we can
verify whether the necessary checks for it occur in the implementa-
tion. If a parameter is not checked, the concern verifier tries to infer
if the function is robust for exceptional values, before it registers an
unintended deviation. for the parameter At the moment, it uses a
simple heuristic: if the function compares the value of a parameter
to NULLeach time before it uses that parameter, we assume it can
deal with aNULLvalue. This heuristic does not suffice for identi-
fying all exceptions, however. Distinguishing intended from unin-
tended deviations thus still requires a manual effort. More elaborate
heuristics are possible, but are considered future work.

3.3 Verification Results
Applying the verifier to the case at hand yields the data displayed

in Figure 1. The CC component implements 157 functions, with
386 parameters in total. 245 of these parameters must be checked,
since they are defined by public functions and have pointer type.
This is indicated in the first column of Figure 1, which also pro-
vides the distribution among the different kinds of parameters. The
locations obtained from the verifier tell us which of these 245 pa-
rameters are actually checked, as displayed in the second column.
It turns out that only 149 (i.e., 60%) of the parameters requiring a
check are in fact checked.

The deviations obtained from the verifier aim to help in identi-
fying the remaining 96 parameters that need to be checked. The
verifier reports a total of 110 deviations (column 3). Manual in-
spection of these deviations eliminated 14 intended deviations (for
9 input parameters and 5 output pointer parameters, cfr. column 5).

1www.grammatech.com
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4. A DOMAIN-SPECIFIC LANGUAGE FOR
PARAMETER CHECKING

In order to arrive at a more rigorous treatment of parameter checks
(avoiding the situation that as many as 40% of them deviated from
the specifications), we propose a domain-specific language (DSL)
for representing the kind of parameter checks that are required. In
this section we describe the language and corresponding tool sup-
port — in the next we explain how existing components can be
migrated to this target solution.

4.1 Specification
The idea underlying the language is that a developer annotates

a function’s signature, by documenting the specific kind of its pa-
rameters, i.e. either input or output. Output parameters that are of
output pointer kind can also be specified. When a parameter does
not require a check, for whatever reason, this can be annotated as
well. Additionally, the developer can specifyadvice code, i.e. the
code that will perform the actual check. Since this code can dif-
fer for the different kinds of parameters, we allow advice code for
input, output and output pointer parameters to be specified sepa-
rately. Although in this paper we do not need it, the DSL also has
provisions to express advice code for deviations.

As an example, consider the (partial) specification of the pa-
rameter checking aspect for the CC component as depicted in Fig-
ure 1. It states that the parametersCCqueue *queue andvoid
**queue data of the functionsCCqueue peek front and
CCqueue peek back are output and output pointer parameters,
respectively, and that parameterCCqueue *queue of function
CCqueue init is an output parameter, whereas parametervoid
*queue data does not need to be checked. Additionally, the ad-
vice code implements the required checks for input, output and out-
put pointer parameters. The special-purposethisParameter
variable denotes the parameter currently being considered by the
aspect, and exposes some context information, such as the name
and the type of the parameter and the function defining it. In this
respect, it is similar to thethisJoinPoint construct in AspectJ.
Due to the generality introduced by this variable, we only need to
provide three advice definitions in order to cover the implementa-
tion of the concern in the complete ASML source code.

4.2 Compilation and Weaving
Rather than implementing our own aspect weaver for the param-

eter checking DSL, we translate it into an already-existing general-
purpose aspect language for the C programming language. As such,
we get the benefits of both worlds: we can use a special-purpose,
intuitive and concise DSL, for which we don not need to imple-
ment a sophisticated weaver ourself. This process is illustrated in
Figure 2.

The general-purpose aspect language is a stripped-down variant
of the AspectC language [2]. It has only one kind of joinpoint,
function exection, and allows us to specify around advice only. Of
course, before and after advice can be simulated easily using such
around advice. Figure 4 contains an example, which shows how
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component CC {
CC_queue_peek_front( output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_peek_back( output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_empty( input CC_queue *queue, output bool *empty);
CC_queue_init( output CC_queue *queue, deviation void *queue_data);
...
input advice {

if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Input parameter %s error (NULL)",

thisParameter.function.name, thisParameter.name));
}

}
output advice {

if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s error (NULL)",

thisParameter.function.name, thisParameter.name));
}

}
output pointer advice {

if(*thisParameter.name != (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s may already contain a value. This value will be"

"overwritten, which may lead to a memory leak",
thisParameter.function.name, thisParameter.name));

}
}

}

Figure 1: DSL specification of the parameter checking concern
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Figure 3: Migrating Existing Components to the DSL

theadvice on keyword is used to specify advice code for a par-
ticular function.

The translation process itself proceeds as follows: the transla-
tor considers each parameter of each function in the original DSL
specification, looks at its kind(s), retrieves the corresponding ad-
vice code, expands that code into the actual check that should be
performed, and inserts the expanded code in the function where the
parameter is defined. The expansion phase is responsible for as-
sembling and retrieving the necessary context information (i.e. set-
ting up thethisParameter variable), and substituting it in the
advice code where appropriate. At the end, this advice code will
call the original function by calling the specialproceed func-
tion, but only if none of the parameters contain an illegal value
(i.e. the error variable is still equal to theOKconstant). Note that,
two checks are implemented for a parameter of output and output
pointer kind, since both the output and output pointer advices are
substituted for such parameters.

4.3 Application in Case Study
The parameter checking concern in the original CC implemen-

tation required 961 lines of C code (see Figure 2). Using the pa-
rameter checking DSL, only 133 lines are needed instead: One line
for each of the 109 functions that require one their parameters to

Lines of code
Original C code 961
DSL representation 132
AspectC code 1200

Table 2: Lines of code figures for various parameter checking rep-
resentations

be checked,(2∗7)+8 lines for the three different kinds of advice
required, and a start and an end line.

5. MIGRATION

5.1 Motivation
The steps involved in migration of the idioms-based approach to

the DSL approach are depicted in Figure 3. The key steps involved
are the extraction of aspect code from the source code, and the elim-
ination of the parameter checking code from the original sources.
As we will see, for both steps, the locations obtained by the verifier
discussed in Section 3 provides essential information. Moreover,
these locations will play a role in the DSL compiler, which can use
them in order to regenerate code that is as close as possible to the
original code.

5.2 Aspect Extraction
When developing new code, a developer can use the DSL to

specify parameter checking aspects, instead of implementing the
checks manually. In a migration setting, however, we don’t want
developers to wade trough millions of lines of already existing source
code to annotate function signatures and define an appropriate as-
pect. Rather, we want to extract such an aspect definition from the
existing code automatically. The information required to perform
this extraction consists of just (i) thekind of each parameter; (ii)
whether it requires a check or not; and (iii) if so, the code that needs
to be executed for such a check (i.e. the advice code). Apart from
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int advice on (queue_extract) {
int r = OK;
if(queue == (CC_queue *) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: " Output parameter %s error (NULL)", "queue_extract", "queue"));

}
if(item_data == (void **) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:" Output parameter %s error (NULL)", "queue_extract", "item_data"));

}
if(item_data != (void **) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:"Output paramater %s may already contain data (!NULL). This data will be"

"overwritten which may lead to memory leaks", "queue_extract", "item_data"));
}
if (r == OK)

r = proceed ();
return r;

}

Figure 4: AspectC specification of the parameter checking concern

this advice code, all this information has already been computed
by the concern verifier. Recall from Section 3 that the verifier au-
tomatically identifies input, output and output pointer parameters,
and that the list of deviations is split into intended and unintended
deviations. Our aspect extractor thus merely reuses this informa-
tion. The advice code, on the other hand, is not considered by our
concern verifier. As explained in Section 2, the advice code for
input, output and output pointer parameters always consists of an
if-test, an assignment and a call to a log function. Our aspect ex-
tractor simply constructs this code as the advice code definition.

5.3 Concern Elimination
Besides extracting the aspect specification, the code originally

implementing the concern has to be removed from the source code
as well. The locations obtained by the verifier indicate where the
checks occur, and can be used for these purposes. We currently
use a fairly simple solution to eliminate the concern code, based on
a prototype implementation in Perl. This is possible because the
parameter checking concern is not tangled with the other code, and
is easy to recognise and remove. This works well enough for the
cases under study at the moment.

5.4 Conservative Translation
The DSL code recovered can be used directly to generate inter-

mediate AspectC code, which then in turn can be woven with the C
code from which we eliminated the concern code.

However, when adopting the generated C code in a production
environment, we would like to eliminate as many risks as possible.
In other words, it is preferable to make the compiler as conservative
as possible, trying to stay very close to the original C code. For
that reason, the DSL compiler offers the possibility to re-introduce
the parameter checks at exactly the same locations as where they
were found originally. To that end, it uses information obtained
from the verifier (as indicated by the dashed arrow in Figure 3).
Naturally, this is only possible for parameters that were already
checked correctly, and not for newly introduced checks.

An illustration of the translation of the specification of Fig-
ure 1 is given in Figure 4. The example states that the
queue extract function should implement two output pa-
rameter checks and one output pointer parameter checks. This
function is a non-public function, and a specification for it
did thus not appear in the DSL specification. The reason
it is included in the AspectC specification is that both the
CCqueue peek front andCCqueue peek back functions

Figure 5: Parameter checking code in the CC component

call thequeue extract function, and both parameters of those
former functions are checked in thequeue extract func-
tion in the original code. When translating the specification of
theCCqueue peek front andCCqueue peek back func-
tions, the translator consults the verifier to see where their parame-
ters are checked, and generates advice code correspondingly.

6. DISCUSSION
In this section we discuss the pros and cons of the DSL approach

for the parameter checking concern.

Code SizeThe aspect-oriented solution reduces the code size of the
component by 7%, since the DSL allows us to specify the parame-
ter checking concern in a concise way. The complete aspect defini-
tion is specified in only 132 lines, whereas the parameter checking
concern in the original component comprised a total of 961 lines.

Naturally, reduced code size alone is an insufficient indicator for
increased code quality. However, less code does give the benefits
of fewer chances of error, fewer lines to write or understand, and,
following Boehm’s maintenance cost prediction model [1],, lower
maintenance costs.

Scattering and Tangling Figure 5 (generated using the Aspect-
Browser [4]) shows how the parameter checking concern, imple-
mented using the idioms-based approach, is distributed over the
code of the CC component.

The aspect-oriented solution cleanly captures the concern in a
modular and centralised way, and thus removes the scattering all
together. This does not only make the concern more explicit and
tangible in the source code, but also improves its reusability, un-
derstandability and maintainability

5



Apart from system-wide benefits, the adoption of the DSL has
consequences for the quality of the parameter checking concern
implementation as well.

Unintended DeviationsIn Section 3 we have seen that as many as
40% of the parameters that ought to be checked are in fact never
checked.

It is not immediately clear why so many parameters are left un-
checked. One reason is probably that the punishment or reward for
the developer is uncertain, and much later in time, happening only
when another developer starts using the component in a wrong way
that could have been prevented by a proper null pointer warning.
Moreover, this figure seems to indicate that developers consider
implementing this concern for each parameter too much effort.

Intended Deviations13% of the reported deviations are intended
deviations, i.e. parameters that need not be checked. Although
we are presently investigating this issue, we do not see many op-
portunities to further refine our verifier in order to reduce this fig-
ure. These checks are simply “exceptions to the rule” to which the
code should adhere. Note however, that it is important to identify
these exceptions, because the aspect extractor relies on this infor-
mation. Moreover, it can improve the understandability of the code.
For example, we observed that most intended deviations for output
pointer parameters are due to the parameter being used as acursor
when iterating over a composite data structure. Since the parame-
ter points to an item in the list, it doesn’t matter that it’s value is
overwritten, and hence, no output pointer check is needed.

Uniform Parameter Checking The advice code specifies how a
parameter should be checked, and this code is specified only once
and reused afterwards. Consequently, all parameters are checked
and logged in the same way. This was not the case for the idioms-
based implementation, where the logged strings often differ, or
checks are implemented in slightly different ways. For example, all
functions except one implement the checks according to the format
explained in Section 2. When logging a possible error, 7 different
strings are logged for an input parameter error, 4 different strings
for an output parameter error and 4 for an output pointer parameter
error.

The uniformity of the log file is important for automated tools
that reason about the logged errors in order to identify and correct
the primary cause of a particular error.

DocumentationOne of the benefits of using a declarative DSL, is
that it can be used for additional purposes than compilation to C
[3]. In particular, the parameter checking aspect acts as documen-
tation of the component’s functions, or it can be used as input to
a documentation generator. In the current implementation of the
component, the kind of the parameter is documented inside com-
ments. These comments are often not consistent with the source
code however, and are sometimes outdated (e.g. a function de-
fines new parameters that are not document, or vice versa). More-
over, such documentation does not include information about the
exceptional parameters that do not need to be checked. The aspect
however, makes all this information explicit, and thus improves the
understandability of the concern. Additionally, since the aspect is
extracted from the source code automatically, it is up to date, and as
already explained, we believe it will remain so because developers
profit from it.

Scalability Although our tools and approach show promising re-
sults when applied on the CC component, it remains to be investi-
gated whether they scale up to other components of the ASML code
base. In particular, the question can be raised whether our results

can be generalised to larger components, developed by other devel-
opers. This may have an effect on the way the parameter checking
concern is implemented, for example.

7. CONCLUDING REMARKS
In this paper, we have shown how a idioms-based solution to

crosscutting concerns as occurring in systems software can be mi-
grated automatically into a domain-specific aspect-oriented solu-
tion. The approach is illustrated by zooming in on a particular con-
cern, namely parameter checking. Our approach includes a number
of different elements:

• Characterization of the idioms-based approach, resulting in a
concern verifierthat can check the way the concern is coded;

• Representation of the concern in an aspect-oriented domain-
specific language, which can be mapped to a dialect of the
general purpopse AspectC language;

• A migration strategy for existing components, including an
aspect extractor and a conservative translator.

We also discussed the advantages of the aspect-oriented solution
compared to the idioms-based solution. Our results indicate that in-
troducing aspects significantly reduces the code size, removes the
scattering and code duplication, and improves the correctness and
consistency of the concern implementation as well as the under-
standability of the application.
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Abstract

We propose a technique that uses webmining princi-
ples on event traces for uncovering important classes in
a system’s architecture. These classes can form starting
points for the program comprehension process. Further-
more, we argue that these important classes can be used to
define pointcuts for the introduction of aspects. Based on a
medium-scale case study – Apache Ant – and detailed archi-
tectural information from its developers, we show that the
important classes found by our technique are prime candi-
dates for the introduction of aspects.

1 Introduction

Program comprehension is the process of understanding
a system through feature and documentation analysis [11].
Gaining understanding of a program is a time-consuming
task taking up to 40% of the time-budget of a maintenance
operation [15]. The manner in which a programmer gets
understanding of a software system varies greatly and de-
pends on the individual, the magnitude of the program, the
level of understanding needed, the kind of system, ... [10]

Studies and experiments reveal that the success of de-
composing a program into effective mental models depends
on one’s general and program-specific domain knowledge.
While a number of different models for the cognition pro-
cess have been identified, most models fall into one of three
categories: top-down comprehension, bottom-up compre-
hension or a hybrid model combining the previous two
[12]. The top-down model is traditionally employed by
programmers with code domain familiarity. By drawing
on their existing domain knowledge, programmers are able

to efficiently reconcile application source code with system
goals. The bottom-up model is often applied by program-
mers working on unfamiliar code [4]. To comprehend the
application, they build mental models by evaluating pro-
gram code against their general programming knowledge
[11].

For large industrial-scale systems, the program compre-
hension process requires the inspection and study of a sig-
nificant number of packages, classes and code. As such,
a semi-automated process in which an analysis tool sup-
ports the identification of key classes in a system’s architec-
ture and presents these to the user suits the hybrid cognitive
model that is frequently used in large-scale systems [11].

Program understanding can be attained by using one of
several strategies, namely (1) static analysis, i.e., by exam-
ining the source code, (2) dynamic analysis, i.e., by exam-
ining the program’s behavior, or (3) a combination of both.
In the context of object-oriented systems, due to polymor-
phism, static analysis is often imprecise with regard to
the actual behavior of the application. Dynamic analy-
sis, however, allows to create an exact image of the pro-
gram’s intended runtime behavior. Our actual goal is to find
frequently occurring interaction patterns between classes.
These interaction patterns can help us (1) build up under-
standing of the software, and (2) locate candidate introduc-
tion points for aspects.

In this paper we propose a technique that applies
datamining techniques to event traces of program runs. As
such, our technique can be catalogued in the dynamic analy-
sis context. The technique we use was originally developed
to identify importanthubson the Internet, i.e., pages with
many links to authorative pages, based on only the links be-
tween web pages [9]. Hence, the Internet is viewed as a
large graph. We verify that important classes in the pro-



gram correspond to the hubs in the dynamic call-graph of a
program trace.

We apply the proposed technique to a medium-scale case
study, namely Apache Ant. The results show that thehubi-
nessis indeed a good measure for finding important classes
in the system’s architecture. Furthermore, based on these
results we verify the hypothesis that these classes are good
candidates for aspect introduction.

The organization of the paper is as follows. First, in Sec-
tion 2, we give an overview of the different steps in the pro-
cess and the different algorithms we use. Section 3 explains
the datamining algorithm in detail, while in Section 4 the
results of applying our technique on the case study are dis-
cussed. Section 5 explores related work, while Section 6
points to future research and concludes the paper.

2 Overview of our proposed technique

The technique we propose can be seen as a 4-step
process. In this section we explain each of the 4 steps.

Define execution scenario. Applying dynamic analy-
sis requires that the program is executed at least once. The
execution scenario, i.e., which functionality of the program
gets executed, is very important as it has a great influence
on the results of the technique. For example, if the software
engineer is reverse engineering a banking application and
more specifically wants to know the inner workings of how
interest rates are calculated, the execution scenario should
at least contain one interest rate calculation. Furthermore,
by keeping the execution scenario specific, i.e., only
calculating the interest rate, the final results will be more
precise.

Non-selective profiling. Once the execution scenario
has been defined, the program must be executed according
to the defined scenario. During the execution all calls to
and returns from methods are logged in the event trace. For
this step, we relied on a custom-made JVMPI1 profiler.
Please note however that even for small and medium-scale
software systems and precisely defined execution scenarios
event traces become very large (for our case study the trace
consisted of 24 270 064 events for an execution time of
23s).

Datamining. By examining the event trace we want
to discover the classes in the system that play an active role
in the execution scenario. Classes that have an active role
are classes that call upon many other classes to perform
functions for them.

In Figure 1 we show an example of acompacted

1Java Virtual Machine Profiler Interface: for more information see:
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html
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Figure 1. A compacted call graph.

call graph. The compacted call graph is derived from the
dynamic call graph; it shows an edge between two classes
A → B if an instance of class A sends a message to an
instance of class B. The weights on the edges give an
indication of the tightness of the collaboration as it is the
number of unique messages that are sent between instances
of both classes.
This compacted call graph is the input to the datamining
algorithm that is presented in detail in section 3.

Selective introduction of aspects. The goal we wish
to attain is guiding the software engineer through the
software in order to help him/her in his/her program
comprehension process. Because the original event trace is
(1) too large to study directly (even in a visualized form),
and (2) shows too many unimportant sections, e.g. long
loops in the execution, we want to be able to deliver the
software engineer with a number ofslices of the trace
that form good starting points for program understanding
purposes.
To the user, these starting points can be:

• Pointers to classes: the user should begin his/her inves-
tigation from these classes and analyze them and their
collaborating classes manually.

• A visualization, e.g. an interaction diagram, of the
classes deemed important and their immediate collab-
orators. This set of classes can e.g. be found by intro-
ducing aspects with thecflow pointcut designator [8]
on all classes deemed important.

As a side effect of this heuristical detection of important
classes, we expect to find opportunities for aspect refactor-
ings [14, 13].

As validation we propose to verify whether the classes our
technique marks as important are also deemed important

2
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by the developers. Furthermore, we will also compare the
importance of these classes with theCoupling Between
Objects(CBO) metric [3]. CBO can be seen as a typical
static coupling measure which can help in identifying
classes with a coordinating role.

3 Applying webmining techniques for pro-
gram comprehension

In datamining, many successful techniques have been
developed to analyze the structure of the web [2, 5, 9]. Typ-
ically, these methods consider the Internet as a large graph,
in which, based solely on the hyperlink structure, important
web pages can be identified. In this section we show how
to apply these successful web mining techniques to a com-
pacted call graph of a program trace, in order to uncover
important classes.

First we introduce the HITS webmining-algorithm [9] to
identify so-called hubs and authorities on the web. Then,
the HITS algorithm is combined with the compacted call
graph. We argue that the classes that are associated with
good “hubs” in the compacted call graph are good candi-
dates for the introduction of aspects as well.

3.1 Identifying hubs in large webgraphs

In [9], the notions ofhubandauthoritywere introduced.
Intuitively, on the one hand, hubs are pages that rather re-
fer to pages containing information then being informative
themselves. Standard examples include web directories,
lists of personal pages, ... On the other hand, a page is
called an authority if it contains useful information. Hence,
a web-page is a good hub if it points to important informa-
tion pages, e.g., to good authorities. A page can be consid-
ered a good authority if it is referred to by many good hubs.
The HITS algorithm is based on this relation between hubs
and authorities.

Example Consider the webgraph given in Figure 2. In
this graph,2 and3 will be good authorities, and4 and5 will

be good hubs, and1 will be a less good hub. The authority
of 2 will be larger than the authority of3, because the only
in-links that they do not have in common are1 → 2 and
2 → 3, and1 is a better hub than2. 4 and5 are better hubs
than1, as they point to better authorities.

The HITS algorithm works as follows. Every pagei gets
assigned two numbers;ai denotes the authority of the page,
while hi denotes the hubiness. Leti → j denote that there
is a hyperlink from pagei to pagej. The recursive relation
between authority and hubiness is captured by the following
formula’s.

hi =
∑
i→j

aj (1)

aj =
∑
i→j

hi (2)

The HITS algorithm starts with initializing allh’s anda’s
to 1, and repeatedly updates the values for all pages, using
the formula’s (1) and (2). If after each update the values are
normalized, this process converges to stable sets of author-
ity and hub weights [9].

It is also possible to add weights to the edges in the
graph. Adding weights to the graph can be interesting
to capture the fact that some edges are more important
than others. This extension only requires a small modi-
fication to the update rules. Letw[i, j] be the weight of
the edge from pagei to pagej. The update rules become
hi =

∑
i→j w[i, j] · aj andaj =

∑
i→j w[i, j] · hi.

Example For the graph given in 2, the hub and authority
weights converge to the following (normalized) values:

h1 = 64 a1 = 0
h2 = 48 a2 = 100
h3 = 0 a3 = 94
h4 = 100 a4 = 24
h5 = 100 a5 = 0

In the context of webmining, the identification of hubs
and authorities by the HITS algorithm has turned out to
be very useful. Because HITS only uses the links between
webpages, and not the actual content, it can be used on ar-
bitrary graphs to identify important hubs and authorities.

3.2 Identifying aspect candidates

Within our problem domain, hubs can be consideredco-
ordinating classes, while authorities correspond to classes
providing small functionalities that are used by many other
classes. As such, the hub classes play a pivotal role in a
system’s architecture. Therefore, hubs are excellent candi-
dates for the introduction of aspects to monitor the runtime
behavior of these coordinators.

3



Furthermore, by using thecflow pointcut designator,
we are not only able to monitor these coordinating classes,
but also the classes that get their orders from these coordi-
nators. This strategy can furthermore be used for efficient
dynamic slicing.

4 Case study – Apache Ant

Ant is an XML based Java build tool. We chose Apache
Ant 1.6.1 because we consider it to be a medium-size pro-
gram (98 681 LOC, 127 classes) and because of the ex-
tensive design information that is publicly made available
by the developers. As such we have clear evidence about
the classes the developers consider to be important2. This
knowledge will help us in validating our technique.

As execution scenario we have chosen to let Ant build
itself, i.e., we supplied the XML build file that comes with
the Apache Ant 1.6.1 source code edition. This scenario
was chosen because (1) the Ant build file is representative
for typical Ant functionality and (2) it allows for easy veri-
fication of the results presented in this paper.

We applied our technique two times on our case study.
The first time, we set the weights of the compacted call
graph all to 1, for the second experiment we used as weights
the number of methods called upon from another class; see
also Section 2.

In Table 1 we list the result of the first experiment. We
show the highest 15% of classes according to their hubiness.
We compare these classes with the CBO metric and with the
opinion of the Ant development team.

Table 1 shows that:

• The number offalse positives, i.e. classes reported but
not considered important by the developers, is 6 out of
15 (40%). In the case of the CBO metric this amounts
to 7/12 (58%).

• False negativeson the other hand remain limited to just
1 out of 10. For the CBO metric this number equals 5
out of 10.

The number of false negatives can be considered very low
and shows the value of using our technique. The number of
false positives however is – at first sight – alarmingly high.
This can be attributed to several facts:

1. the developers opinion issubjectiveand only mentions
those classes (or constructions) they are most proud of
or they themselves find most interesting.

2. the classes our technique finds should also be consid-
ered important, albeit less important than those men-
tioned in the design documents.

2The design documentation of Ant can be found at:
http://codefeed.com/tutorial/antconfig.html

Class Proposed CBO Ant docs
algorithm

Project x x x
UnknownElement x x
AntTypeDefinition x
Task x x x
ComponentHelper x x
Main x x x
IntrospectionHelper x x x
AbstractFileSet x x
ProjectHelper x x x
RuntimeConfigurable x x
SelectSelector x
DirectoryScanner x
Target x x
TaskAdapter x
ElementHandler x x
FileUtils x
BaseSelectorContainer x
XMLCatalog x
AntClassLoader x
FilterChain x
TaskContainer x

Table 1. Correlation between hubiness, static
coupling, and expert opinion.

Close inspection of the project’s source code reveals that the
results can be explained by a mixture of the above reasons.
All classes that are highly-ranked through their hubiness are
in fact classes that have acoordinating rolein the system
and as such make them interesting for program comprehen-
sion purposes.

Furthermore, Table 1 shows there is a big difference in
precision with regard to the CBO metric.

The results of the second experiment, where we used
the real weights calculated during the transformation from
a call graph to a compacted call graph, are very similar. The
important classes are now however not strictly in the upper
15%, but more in the upper 25%. Furthermore, a number
of helper classes to the classes deemed important, now also
have a high degree of hubiness. This comes from the fact
that many of these helper classes make use of only a limited
number of classes, but do use a lot of different methods.
Hence, these helper classes do not use many other classes,
but the ones they do use, are used very intensively. This in-
tensity results in a large weight, which, on its turn, increases
the relative hubiness.

Keeping this in mind, we advocate the use of thecflow
pointcut on the important classes of the experiment with the
weights set to 1. This way, the helper classes will also be
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touched by the pointcut.

5 Related work

Tourwé and Mens [13] describe an experiment in which
formal concept analysis is used to mine foraspectual views.
An aspectual view is a set of source code entities, such as
class hierarchies, classes and methods, that are structurally
related in some way, and often crosscut a particular applica-
tion. These aspectual views are used for aspect mining, but
also for program comprehension purposes.

Breu and Krinke experimented with finding sets of meth-
ods that are always executed in the same sequence [1]. They
argue that the found sets of classes are candidates for aspect
refactoring.

6 Conclusion and future work

In this paper, we proposed a technique that uses webmin-
ing principles for uncovering important classes in a system’s
architecture. We believe that the automatic classification of
classes w.r.t. their importance is a critical step in the identi-
fication of aspects candidates. A case study showed that the
approach is promising.

In the future, we will pursue the idea of applying
datamining techniques to uncover important trends and re-
lations in dynamic traces. First of all, we will continue the
work on the identification of uncovering important classes.
In the future we want to explore the connections and differ-
ences with other, dynamic or static, coupling metrics.

Besides the application of the HITS algorithm, there
are many other datamining techniques that might help the
analysis of large event traces. Especially because of the
potentially large scale of event traces, the use of scalable
datamining techniques seems very promising. The follow-
ing datamining techniques are good candidates for helping
the analysis of large event traces:

• Besides the hubs and authorities framework, there are
many other graph mining concepts that can be interest-
ing in the context of event traces. For example, Pager-
ank [2] is another method for ranking pages accord-
ing to importance. Also the identification of web com-
munities might prove useful in identifying classes or
methods that are intimately connected.

• The event trace is in fact a large call tree. There ex-
ist tree mining algorithms that search for frequent oc-
curring subtrees. The identification of such subtrees
allows for compacting the presentation of the event
trace [6].

• It can be interesting to find frequently occurring se-
quences in event traces. This problem might be solved
by applying episode mining algorithms.

As can be seen from this list of candidates, the possibil-
ities for applying datamining for automating program un-
derstanding are numerous. For an overview of the datamin-
ing techniques, see [7]. We believe this approach is very
promising, and therefore think that it can become an impor-
tant research direction.
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Abstract

The aim of Aspect Oriented Programming (AOP) is the
production of code that is easier to understand and evolve,
thanks to the separation of the crosscutting concerns from
the principal decomposition. However, AOP languages in-
troduce an implicit coupling between the aspects and the
modules in the principal decomposition, in that the latter
may be unaware of the presence of aspects that intercept
their execution and/or modify their structure. These invis-
ible connections represent the main drawback of AOP. A
measuring method is proposed to investigate the trade-off
between advantages and disadvantages obtained by using
the AOP approach. The method that we are currently study-
ing is based on a metrics suite that extends the metrics tra-
ditionally used with the OO paradigm.

1 Introduction

When existing software is migrated to Aspect Oriented
Programming (AOP), crosscutting concerns are separated
from the principal decomposition and are encapsulated in-
side dedicated modularization units (aspects). Maintenance
of the resulting code is expected to be easier, thanks to the
possibility of modifying locally the crosscutting behavior.
However, a novel kind of (implicit) coupling is introduced
by AOP languages. In fact, the code that belongs to the prin-
cipal decomposition might be unaware of the presence of
aspects that intercept its execution and/or modify its struc-
ture. This creates a twofold dependence: on one hand, the
aspect code works properly only under given assumptions
on the code in the principal decomposition. Such assump-
tions may become invalid during code evolution. On the
other hand, the overall behavior depends both on the code
in the principal decomposition and on the aspect code, so
that a change in the latter might affect the former. If not
controlled, such kind of coupling might reduce or cancel
at all the potential benefits coming from the separation of

crosscutting functionalities from the principal decomposi-
tion.

The position of the authors is that the trade-off between
the advantages obtained from the separation of concerns
and the disadvantages caused by the coupling introduced
by the aspects must be investigated in more detail, in or-
der for AOP to gain a wider acceptance. Empirical studies
should be conducted to evaluate costs and benefits offered
by the AOP solution with respect to the more traditional,
Object-Oriented (OO) one, in terms of code understand-
ability, evolvability, modularity and testability. Moreover,
alternative AOP solutions could be contrasted empirically,
in order to identify good/bad AOP practices, to be possibly
encoded into a catalog of AOP patterns/anti-patterns.

The first step in this direction is the definition of a set of
metrics to quantitatively assess the effects of the software
“aspectization”. Such metrics can be based on those widely
used with OO software. Although some extensions of OO
metrics to AOP are available in the literature [8, 9, 10, 11,
12, 13], none seems to address explicitly all the different
kinds of coupling that aspects and objects can have between
each other.

In the remaining of this paper we discuss OO metrics
(Sec. 2) and consider their extension to AOP (Sec. 3). Then,
our AOP metrics tool is described (Sec. 4), followed by its
usage on an example (Sec. 5). Related works (Sec. 6) and
conclusions (Sec. 7) terminate the paper.

2 OO metrics

The inadequacy of the metrics in use with procedural
code (size, complexity, etc.), when applied to OO sys-
tems, led to the investigation and definition of several met-
rics suites accounting for the specific features of OO soft-
ware. However, among the available proposals, the one that
is most commonly adopted and referenced is that by Chi-
damber and Kemerer [4]. We argue that a shift similar to
the one leading to the Chidamber and Kemerer’s metrics is
necessary when moving from OO to AOP software.



Some notions used in the Chidamber and Kemerer’s suite
can be easily adapted to AOP software, by unifying classes
and aspects, as well as methods and advices. Aspect intro-
ductions and static crosscutting require minor adaptations.
However, novel kinds of coupling are introduced by AOP,
demanding for specific measurements. For example, the
possibility that a method execution is intercepted by an as-
pect pointcut, triggering the execution of an advice, makes
the intercepted method coupled with the advice, in that its
behavior is possibly altered by the advice. In the reverse
direction, the aspect is affecting the module containing the
intercepted operation, thus it depends on its internal prop-
erties (method names, control flow, etc.) in order to suc-
cessfully redirect the operation’s execution and produce the
desired effects.

In the following section, the Chidamber and Kemerer’s
metrics suite is revised. Some of the metrics are adapted
or extended, in order to make them applicable to the AOP
software.

3 AOP metrics

Since the proposed metrics apply both to classes and
aspects, in the following the term module will be used to
indicate either of the two modularization units. Similarly,
the term operation subsumes class methods and aspect ad-
vices/introductions.

WOM (Weighted Operations in Module): Number of
operations in a given module.

Similarly to the related OO metric, WOM captures the
internal complexity of a module in terms of the number of
implemented functions. A more refined version of this met-
ric can be obtained by giving different weights to operations
with different internal complexity.

DIT (Depth of Inheritance Tree): Length of the longest
path from a given module to the class/aspect hierarchy
root.

Similarly to the related OO metric, DIT measures the
scope of the properties. The deeper a class/aspect is in
the hierarchy, the greater the number of operations it might
inherit, thus making it more complex to understand and
change. Since aspects can alter the inheritance relationship
by means of static crosscutting, such effects of aspectization
must be taken into account when computing this metric.

NOC (Number Of Children): Number of immediate sub-
classes or sub-aspects of a given module.

Similarly to DIT, NOC measures the scope of the prop-
erties, but in the reverse direction with respect to DIT. The

number of children of a module indicates the proportion of
modules potentially dependent on properties inherited from
the given one.

CAE (Coupling on Advice Execution): Number of as-
pects containing advices possibly triggered by the exe-
cution of operations in a given module.

If the behavior of an operation can be altered by an as-
pect advice, due to a pointcut intercepting it, there is an (im-
plicit) dependence of the operation from the advice. Thus,
the given module is coupled with the aspect containing the
advice and a change of the latter might impact the former.
Such kind of coupling is absent in OO systems.

CIM (Coupling on Intercepted Modules): Number of
modules or interfaces explicitly named in the pointcuts
belonging to a given aspect.

This metric is the dual of CAE, being focused on the as-
pect that intercepts the operations of another module. How-
ever, CIM takes into account only those modules and inter-
faces an aspect is aware of – those that are explicitly men-
tioned in the pointcuts. Sub-modules, modules implement-
ing named interfaces or modules referenced through wild-
cards are not counted in this metric, while they are in the
metric CDA (see below), the rationale being that CIM (dif-
ferently from CDA) captures the direct knowledge an aspect
has of the rest of the system. High values of CIM indicate
high coupling of the aspect with the given application and
low generality/reusability.

CMC (Coupling on Method Call): Number of mod-
ules or interfaces declaring methods that are possibly
called by a given module.

This metric descends from the OO metric CBO (Cou-
pling Between Objects), which was split into two (CMC and
CFA) to distinguish coupling on operations from coupling
on attributes. Aspect introductions must be taken into ac-
count when the possibly invoked methods are determined.
Usage of a high number of methods from many different
modules indicates that the function of the given module can-
not be easily isolated from the others. High coupling is as-
sociated with a high dependence from the functions in other
modules.

CFA (Coupling on Field Access): Number of modules or
interfaces declaring fields that are accessed by a given
module.

Similarly to CMC, CFA measures the dependences of a
given module on other modules, but in terms of accessed
fields, instead of methods. In OO systems this metric is
usually close to zero, but in AOP, aspects might access class



fields to perform their function, so observing the new value
in aspectized software may be important to assess the cou-
pling of an aspect with other classes/aspects.

RFM (Response For a Module): Methods and advices
potentially executed in response to a message received
by a given module.

Similarly to the related OO metric, RFM measures the
potential communication between the given module and the
other ones. The main adaptation necessary to apply it to
AOP software is associated with the implicit responses that
are triggered whenever a pointcut intercepts an operation of
the given module.

LCO (Lack of Cohesion in Operations): Pairs of op-
erations working on different class fields minus pairs
of operations working on common fields (zero if nega-
tive).

Similarly to the LCOM (Lack of Cohesion in Methods)
OO metric, LCO is associated with the pairwise dissimilar-
ity between different operations belonging to the same mod-
ule. Operations working on separate subsets of the mod-
ule fields are considered dissimilar and contribute to the in-
crease of the metric’s value. LCO will be low if all opera-
tions in a class or an aspect share a common data structure
being manipulated or accessed.

CDA (Crosscutting Degree of an Aspect): Number of
modules affected by the pointcuts and by the introduc-
tions in a given aspect.

This is a brand new metric, specific to AOP software,
that must be introduced as a completion of the CIM met-
ric. While CIM considers only explicitly named modules,
CDA measures all modules possibly affected by an aspect.
This gives an idea of the overall impact an aspect has on
the other modules. Moreover, the difference between CDA
and CIM gives the number of modules that are affected by
an aspect without being referenced explicitly by the aspect,
which might indicate the degree of generality of an aspect,
in terms of its independence from specific classes/aspects.
High values of CDA and low values of CIM are usually de-
sirable.

The proposed metric suite has no completeness claim
and needs to be adapted for specific measurement goals
(e.g., following the GQM approach [1]). While all the pro-
posed metrics can be used to compare alternative AOP im-
plementations, not all of them can be applied when an OOP
program is migrated to AOP. CAE and CIM do not make
sense in OOP, thus an overall TC (Total Coupling) metric
should be used instead, counting the total number of cou-
pling relationships between modules (either of type CAE,
CIM, CMC or CFA). Of course, this is not the sum of the

OO Structure Analysis

Intertype Declarations Resolution

Method-calls & Field-accesses Resolution

Pointcuts Resolution

Metrics computation

Figure 1. Metrics tool.

four metrics. Individual coupling metrics are still of inter-
est to understand where a given TC value originates from.
Similarly to CAE and CIM, CDA does not apply to OOP.
However, its value for the migrated AOP program is inter-
esting when compared to CIM, as explained above.

4 Metrics tool

To assess the proposed metrics suite, we developed an
AOP metrics tool that computes all the proposed measures
for code written in the AspectJ [7] language. The tool ex-
ploits a static analyzer developed in TXL [5]. Figure 1
shows the internal organization of the tool, focusing on the
modules required to compute the AOP metric values.

The first module of the tool takes as input all the source
classes, interfaces and aspects and performs some standard
static OO code analysis, to detect the structure of the mod-
ules, in terms of their fields, operations and inheritance re-
lationships. Such information is stored in a data base.

After the first module, the second one can be run, per-
forming more accurate analysis. Each aspect is processed
for a second time in order to detect the inter-type decla-
rations, in terms of field introductions, method introduc-
tions and changes of class/interface inheritance relation-
ships. The resulting data are stored in the same data base,
being associated to the target class as if the information
came from the analysis of the class itself. The name of
the aspect responsible for such introductions is however
recorded. In this way the first step of the weaving algorithm
is realized.

The next module of the tool detects the method-call re-
lationship. Moreover, it discovers the field-access relation-
ship between operations and fields (both belonging to the
same module or to other modules). For such an analysis a



symbol table, mapping the variables to the respective type,
is maintained and pushed onto the stack whenever a new
scope is opened. The symbol table is required to know the
type of each method invocation target, return value and ac-
cessed field. Such type information is stored in the database
under construction. Polymorphic calls are resolved conser-
vatively with all methods that possibly override the invoked
one.

The fourth step is the most complex one. It completes
weaving by resolving all the pointcuts in the aspect code,
thus producing the corresponding join points in the inter-
cepted code. The algorithm for this phase starts coping with
the primitive pointcuts, which are resolved using the inher-
itance, invocation and access information collected so far.
Then, it composes the join points according to the union, in-
tersection and negation operators used in the pointcut spec-
ifications. When all the pointcuts are resolved, the advices
can be associated to the advised methods, storing this rela-
tionship in the available data base

The final step concerns the computation of the metrics.
The value of a metric for a given module is obtained just
by running a query on the database. The overall value of a
metric for the whole system is computed as the median of
the values computed for all the modules in the system.

5 Example

The proposed metrics have been computed for a small
example, taken from the implementation of some design
patterns [6] provided by Jan Hannemann� both in Java and
in AspectJ.

Our test is the implementation of the Observer design
pattern [6], in which there are two distinct roles, the Subject
and the Observer. The Subject is an entity that can be in
several different states. Some of the state changes are of
interest to the Observer, which may take some actions in
response to the change.

The Observer pattern requires that the Observer registers
itself on those Subjects it intends to observe. The Subject
maintains a list of the Observers registered so far. When
the Subject changes its state, it notifies the Observers of the
change, so that the Observers can take the appropriate ac-
tions.

In the OO implementation by Jan Hannemann, this de-
sign pattern consists of two interfaces, ChangeSubject
and ChangeObserver, with the abstract definitions of
the Subject and Observer roles. Moreover, the implementa-
tion contains the Point and the Screen classes, the first
playing the role of Subject whereas the second plays both
roles in two different instances of the pattern. The Main
class contains the code to set up the two different pattern

�http://www.cs.ubc.ca/˜jan/AODPs

instances and run them. In the first pattern instance Point
acts as the Subject and Screen as the Observer. In the sec-
ond case, an instance of the class Screen is the Subject,
while other instances of the same class are its Observers.

The AOP implementation contains a different version of
the classes Point and Screen, with no code regarding
the Subject/Observer roles. ObserverProtocol is an
abstract aspect defining the general structure of the aspects
that implement the Observer pattern. This abstract aspect is
extended by ScreenObserver, ColorObserver and
CoordinateObserver. These concrete aspects contain
the actual implementation of the protocol. By means of
inter-type declarations, they impose roles onto the involved
classes and by means of appropriate pointcuts they spec-
ify the Subject actions to be observed. Moreover, these as-
pects contain the mapping that connects a Subject to its Ob-
servers. The class Main runs the code for the initialization
of the patterns an for their execution.

version WOM DIT NOC TC RFM LCO CDA
java 3 1 0 2 7 1-12 N.A.

aspectj 1 2 0 3 2 0 3

Table 1. Metrics for the Observer design pattern.

version CAE CIM CMC CFA TC
java 0 0 2 0 2

aspectj 0 2 1 0 3

Table 2. Coupling Metrics for the Observer design
pattern.

We applied our metric suite to the two implementations
of the Observer pattern. The median values produced by
the tool are shown in Table 1. The value of LCO for the
OO code is indicated as 1-12, since these two values are
adjacent to the median point. The TC column contains the
value for total coupling. Detailed values for all different
coupling kinds are shown in Table 2.

We can notice a general improvement of some met-
rics (WOM, LCO, and RFM), no change a metric (NOC)
and a worse value of DIT (due to the super-aspect
ObserverProtocol) and of TC. While in general the
values change only a little bit, for RFM the change is rel-
atively high, passing from 7 to 2. LCO is also affected
positively, going from 1-12 to 0. The cost to be paid for
such improvements is an increase of the coupling metric
TC as expected. Looking at Table 2, we can have a detailed
insight on the reasons for the coupling increase. Even if



there is a decrease of the method coupling (CMC) there is
a much bigger increasing of the coupling regarding the as-
pects which intercept method executions (CIM). However,
the fact that the value of CAE is higher than that of CIM
indicates that the aspects have only a partial knowledge of
the classes they are affecting and contain quite generic, in-
dependent pointcut definitions.

6 Related work

The cohesion measure called Module-Attribute Cohesion
in [13] is based on the same dependences between opera-
tions and fields that we consider in our LCO metric, but,
differently from our metric, it is not an extension of the
LCOM metric proposed in [4]. As regards the proposed
coupling metrics, while CIM, CMC and CAE correspond
to the Pointcut-class, Method-method and Pointcut-method
dependence measures presented in [12], CDA has no coun-
terpart in [12].

Similarly to us, the authors of [9, 10] considered the
Chidamber and Kemerer’s metric suite, properly adapted
to AOP. However, they do not recognize the different na-
ture of the various kinds of coupling introduced by the as-
pects. The authors of [8] added a few metrics to capture the
level of scattering of the application concerns. However, the
definition of such metrics (SoC metrics) is not operational,
thus making it difficult to compute them automatically. The
expected effects of AOP on the Chidamber and Kemerer’s
metrics are analyzed in [11].

The indications in [2, 3] on the definition of cohesion and
coupling metrics for OO systems will be considered in our
future work, in order to possibly refine the proposed AOP
metrics for such attributes.

7 Conclusions

Most research in AOP is focused on new design pro-
cesses, languages and frameworks to support the new
paradigm. However, no strong empirical evaluation was
conducted to assess the effects of AOP adoption. The first
step in this direction consists of defining a metrics suite
for AOP software, designed so as to capture the novel fea-
tures introduced by this programming style. We contributed
to the ongoing discussion on such metrics by distinguish-
ing among the different kinds of coupling relationships that
may exist between modules and by proposing a new metric
for the crosscutting degree of an aspect (CDA). Moreover,
we conducted a small case study to evaluate the informa-
tion carried by the proposed metrics when applied to an OO
system and to the same system migrated to AOP. Results in-
dicate that meaningful properties, such as the proportion of
the system impacted by an aspect and the amount of knowl-
edge an aspect has of the modules it crosscuts, are captured

by the proposed metrics (CDA and CIM repsectively). We
envisage the definition of a common set of AOP metrics,
to be adopted by the AOP community, in order to simplify
the comparison of the results obtained by different research
teams and to have a standard evaluation method.
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