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A tandem queue with server slow-down and blocking

ABSTRACT
We consider two variants of a two-station tandem network with blocking. In both variants the
first server ceases to work when the queue length at the second station hits a blocking
threshold . In addition, in variant 2 the first server decreases its service rate when the second
queue exceeds a slow-down threshold, which is smaller than the blocking level. In both variants
the arrival process is Poisson and the service times at both stations are exponentially
distributed. Note, however, that in case of slow-downs, server 1 works at a high rate, a slow
rate, or not at all, depending on whether the second queue is below or above the slow-down
threshold or at the blocking threshold, respectively. For variant 1, i.e., only blocking, we
concentrate on the geometric decay rate of the number of jobs in the first buffer and prove that
for increasing blocking thresholds the sequence of decay rates decreases monotonically and at
least geometrically fast to max{rho_ 1, rho_2}, where rho_i is the load at server i. The methods
used in the proof also allow us to clarify the asymptotic queue length distribution at the second
station. Then we generalize the analysis to variant 2, i.e., slow-down and blocking, and
establish analogous results.
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Abstract

We consider two variants of a two-station tandem network with blocking. In both variants the first server ceases
to work when the queue length at the second station hits a ‘blocking threshold’. In addition, in variant2 the
first server decreases its service rate when the second queueexceeds a ‘slow-down threshold’, which is smaller
than the blocking level. In both variants the arrival process is Poisson and the service times at both stations are
exponentially distributed. Note, however, that in case of slow-downs, server1 works at a high rate, a slow rate, or
not at all, depending on whether the second queue is below or above the slow-down threshold or at the blocking
threshold, respectively. For variant1, i.e., only blocking, we concentrate on the geometric decayrate of the
number of jobs in the first buffer and prove that for increasing blocking thresholds the sequence of decay rates
decreases monotonically and at least geometrically fast tomax{ρ1, ρ2}, whereρi is the load at serveri. The
methods used in the proof also allow us to clarify the asymptotic queue length distribution at the second station.
Then we generalize the analysis to variant2, i.e., slow-down and blocking, and establish analogous results.

1 Introduction
In classical queueing networks service stations do not exchange information about their queue lengths. How-

ever, in general such communication might be useful. Suppose for instance that when the queue at some ‘down-
stream’ station builds up, this station can protect itself by signalling ‘upstream’ stations to decrease their service
rate. In this way there iscongestion-dependent feedback of information(not jobs) from downstream stations to
upstream stations.

The tandem queue we study here resembles a two-station Jackson tandem queue in which jobs arrive accord-
ing to a Poisson process with rateλ at the first station and require at the first and second stationexponentially
distributed service times with mean1/µ1 and1/µ2, respectively. Thus, the load on the first and second server
is ρ1 := λ/µ1 andρ2 := λ/µ2, respectively. However, we allow the second station to inform the first station
about the number of jobs in queue. Immediately after the second station containsn jobs, it signals the first server
to stop processing any job in service. We assume that the feedback signal from the second station to the first
is not delayed. When the queue length in the second station becomes less thann, the first server may resume
service again. Clearly, this blocking mechanism will protect the second station from overflow, at the cost of a
stochastically longer queue at the first station.

First, we are interested in the effect on the first station as afunction of theblocking thresholdn. However,
due to the presence of the feedback, the stationary joint distribution πij that the number of jobs in the first and
second station isi andj, respectively, does not have a product-form, so that findinga closed-form expression for
πij is difficult. We therefore concentrate on its (asymptotically) dominant structure and consider thegeometric
decay rateof the number of jobs in the first buffer. This quantity, also known as the caudal characteristic, cf.
[12], gives insight into the probability of the first queue reaching a high level due to blocking. It turns out that the
decay rate of the number of jobs in the first station lies somewhere in the interval(ρ, 1) whereρ ≡ max{ρ1, ρ2},
a result also obtained in [1]. However, in this paper we also show rigorously that the decay rate as a function of
the blocking threshold decreases monotonically and at least geometrically fast toρ.

As a second topic of interest we estimate the ratioπi,j+1/πij wheni � 1, i.e., the ratio of the probability
that the number of jobs in the second queue isj+1 to the probability that this number isj, while the first queue is
large. Thus, our approach also reveals the asymptotic probabilistic structure of the number of jobs in the second
station, which is not as simple to see as the decay rate of the first queue.
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Third, we study a more complicated type of feedback. Now, when the number of jobs at station 2 is in
excess of some thresholdm (which should be smaller than the blocking thresholdn to be effective), server 1
slows down, i.e., it reduces its service rate tõµ1, where0 < µ̃1 < µ1. Thus, depending on the queue length in
station 2, server 1 works at a high rateµ1, a low rateµ̃1, or not at all. In the sequel we distinguish both types
of feedback queue by calling the first thenetwork with blockingand the second thenetwork with slow-down and
blocking. The analysis of such queueing networks with service slow-downs has interesting applications in the
domain of manufacturing, but also in the design of Ethernet networks, where in point–to–point connections the
sending side may react to congestion signals from the receiving side, see e.g. [13]. For the network with slow-
down and blocking we can establish analogous results as obtained for the network with blocking. The asymptotic
distribution of the number in the second queue turns out to beof particular interest in this case.

Our focus on the asymptotic behavior ofπij has two reasons. First, the resulting expressions are in closed
form, contrary to the numerical methods available in the literature. Second, given the rapid convergence of
the sequence of networks with blocking when the blocking threshold increases, the asympotic system provides
considerable insight in the form ofπij even whenn is small or the first queue contains few jobs.

Tandem queues with blocking (butwithout slow-down) received considerable attention over the years. The
authors of [2, 3] takez-transforms of the balance equations satisfied byπij and study the properties of the result-
ing generating function to establish a stability conditionand devise an algorithm to computeπij . The derivation
of the stability condition for this and related models is simplified in [6] by using the methods of Quasi-Birth-
Death (QBD) processes. In [1] the authors derive, also by using QBDs, a more efficient numerical procedure
to computeπij . They restrict a number of eigenvalues to a set of (non-overlapping) intervals. After locating
the eigenvalues in the bounding intervals, they derive a recursion to obtain the associated eigenvectors. Finally,
a suitable linear combination of the eigenvectors should solve the boundary conditions forπ0j . Interestingly,
by using the bounding intervals derived in [1] for the eigenvalues, our approach extends straightforwardly to a
method to computeπij with the same algorithmic complexity as in [1]. These authors also mention the idea of
slow-down but do not analyze the consequences in detail. Kroese et al. [4] also consider a two-station tandem
queue with blocking. However, now the rate of the arrival process is set to zero when the first station contains
n jobs. The second buffer is assumed infinitely large. For thissystem the authors compute the decay rate of
the number of jobs in the second buffer. They also consider the limiting regime in whichn → ∞. Leskelä [8]
studies a two-station tandem network with feedback, but nowstation 2, rather than station 1, provides feedback
to the arrival process to change rate as a function of the length of the second queue. He establishes a stability
criterion for the system with unlimited firstandsecond buffer.

The paper has the following structure. In Section 2 we specify the network with blocking and write it as a
QBD process. Next, in Section 3 we present our main results for this network and discuss them from an intuitive
point of view. More specifically, we state that the decay ratexn of the number of jobs in thefirst buffer lies in
the interval(ρ, 1) and we establish bounds of the rate at which the sequence{xn}n converges downward toρ
whenn → ∞. In addition we present the asymptotic structure of the distribution of the number of jobs in the
second buffer when the first queue is very long. Section 4 contains the proofs of these results, which are based
on the theory of QBD processes as dealt with in [7] or [11], andthe Perron-Frobenius theorem, cf. [5] or [9]. In
Section 5 we consider similar topics for the tandem queue with slow-down and blocking.

2 Model and Preliminaries
We now present the model for the two-node tandem network withblocking, write it as a QBD process, and

consider its stability conditions.
Jobs arrive according to a Poisson process with rateλ. Service requirements at the first (second) station

are i.i.d. exponentially distributed random variables with meanµ−1
1 (µ−1

2 ), while the two service processes are
mutually independent and independent of the arrival process. We assume throughout this paper thatµ1 6= µ2

(see also the comment on this assumption in Section 3). Afterservice completion at the first station, jobs move
on to the second. Once service is completed there also, jobs leave the network. LetX(n)

i (t) denote the number
of jobs at stationi, i = 1, 2, at timet (including the job in service) for the system with blocking threshold atn.
WhenX

(n)
2 (t) is equal to this thresholdn, the first server blocks, i.e., its service rate becomes zero. Right after

the departure of the job in service at the second station, thefirst server resumes service (if a job is present there,
of course). It is clear that the joint process{X(n)

1 (t),X
(n)
2 (t)} ≡ {X

(n)
1 (t),X

(n)
2 (t), t ≥ 0} is a (continuous-

time) Markov chain. The state space of this process isX
(n) = {(i, j) | i = 0, 1, 2, . . . ; j = 0, 1, . . . , n}. We

present the state transition diagram of{X
(n)
1 (t), X

(n)
2 (t)} in Figure 1. Finally, let

ρ1 := λ/µ1, ρ2 := λ/µ2, andρ := max{ρ1, ρ2}, (1)

i.e.,ρ is the load at the slowest server. Note that when the first (resp. second) server is the bottleneck server, i.e.
µ1 < µ2 (resp.µ1 > µ2) we can (and henceforth will) also state this by writingρ = ρ1 (resp.ρ = ρ2), since
we exclude the possibilityµ1 = µ2.
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Figure 1: State space and transition rates of the truncated tandem queue.

The Markov process{X(n)
1 (t),X

(n)
2 (t)} can be interpreted as a continuous-time QBD process. We identify

some common subsets ofX
(n) associated specifically to the QBD structure.Leveli contains all states(i, j) ∈

X
(n) with i constant.Phasej contains the states(i, j) with j constant. Thus, the levels contain the ‘vertical’

sets of states in Figure 1, whereas the phases contain the ‘horizontal’ sets of states.
To facilitate the presentation we prefer to uniformize the process{X(n)

1 (t),X
(n)
2 (t)} at rate

a := λ + µ1 + µ2,

and concentrate on the resulting aperiodic discrete-time Markov chain{X(n)
1,k , X

(n)
2,k }. This procedure allows us

to refer directly to a number of results in the literature which we otherwise have to reformulate for the continuous-
time model. Evidently, by PASTA, the results we derive for{X

(n)
1,k , X

(n)
2,k } apply also to{X(n)

1 (t), X
(n)
2 (t)}.

The matrix of transition probabilities of the QBD{X(n)
1,k , X

(n)
2,k } is of the form

P (n) =









B(n) A
(n)
0

A
(n)
2 A

(n)
1 A

(n)
0

. . .
. . .

. . .









. (2a)

The(n + 1) × (n + 1) matrices inP (n) are given by

B(n) =











q + r
r q

. . .
. . .
r q











, A
(n)
0 = p I(n), (2b)

A
(n)
1 =















r
r 0

. . .
. . .
r 0

r q















, A
(n)
2 =











0 q
. . .

. . .
0 q

0











, (2c)

wherep = λ/a, q = µ1/a, r = µ2/a, andI(n) is the(n + 1) × (n + 1) identity matrix.
Provided a certain stability criterion to be addressed in Theorem 1 below is satisfied, an irreducible QBD

chain is positive recurrent. Consequently, its stationaryprobability vector exists. Let us henceforth consider the
system in steady state, and write for brevityX

(n)
i , i = 1, 2, for X

(n)
i,k at an arbitrary point in time. Furthermore,

let π
(n)
ij = P{X

(n)
1 = i, X

(n)
2 = j}, i.e., the steady-state probability that the number of jobsin the first and

second station isi andj respectively.
It can be shown that the stationary probability vectorπ

(n) can be appropriately partitioned as

π
(n) =

(

π
(n)
0 , π

(n)
0 R(n), π

(n)
0

(

R(n)
)2

, . . . ,

)

, (3)

whereπ
(n)
0

(

R(n)
)i

=
(

π
(n)
i0 , π

(n)
i1 , . . . , π

(n)
in

)

andR(n) is the minimal nonnegative solution of the equation

A
(n)
0 + R(n)A

(n)
1 +

(

R(n)
)2

A
(n)
2 = R(n). (4)
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For our caseR(n) has to be computed numerically, for instance with the algorithms derived by [7].
Rather than computingR(n) directly, [12] associates two interesting (probabilistic) quantities toR(n). He

starts by observing that whenR(n) is irreducible, it satisfies

(

R(n)
)i

= (xn)i
(

u
(n)
)′

· v(n) + o
(

(xn)i
)

, asi → ∞, (5)

wherev(n) = (v
(n)
0 , . . . , v

(n)
n ) andu

(n) are strictly positive left and right eigenvectors ofR(n) associated to its
largest eigenvaluexn ∈ (0, 1). (The prime denotes the transpose of a vector.) The first quantity of interest is

lim
i→∞

π
(n)
0

(

R(n)
)i+1

e

π
(n)
0 (R(n))

i
e

= xn, (6)

wheree is the (column) vector consisting of ones. This says that theratio of the expected time spent at a high
level i + 1 to that spent at leveli is approximately equal toxn. In other words, the largest eigenvaluexn of
R(n) is thegeometric decay rate, which is also known as the caudal characteristic, cf. [12],of the QBD process.
Second,

lim
i→∞

(π
(n)
0

(

R(n)
)i

)j

π
(n)
0 (R(n))

i
e

= v
(n)
j , (7)

which is to say that (in stationary state) the probability that the chain is in phasej conditional on being in level
i, is approximately equal tov(n)

j for largei.

It remains to discuss the stability condition of the chain{X
(n)
1,k , X

(n)
2,k }, which we henceforth assume satisfied.

The proof of the next theorem involves the matrixA(n)(x), which is also used in Section 4 and is defined as

A(n)(x) = A
(n)
0 + xA

(n)
1 + x2A

(n)
2 =











p + rx qx2

rx p qx2

. . .
. . .

. . .
rx p + qx











, x ∈ [0, 1]. (8)

Theorem 1. The chain{X(n)
1,k , X

(n)
2,k } is positive recurrent if and only if

λ

µ1µ2

µ1
n+1 − µ2

n+1

µ1
n − µ2

n
< 1. (9)

This condition is equivalent to:

n > N(ρ1, ρ2) =
log(1 − ρ1) − log(1 − ρ2)

log ρ2 − log ρ1
. (10)

Proof. It is simple to see that the QBD{X(n)
1,k , X

(n)
2,k } is irreducible and that the number of phases is finite.

Moreover, the stochastic matrixA(n)(1) is irreducible. These properties allow us to apply [7, Theorem 7.2.3].
This theorem states that the QBD is positive recurrent iffαA

(n)
0 e < αA

(n)
2 e, whereα is the stationary prob-

ability vector ofA(n)(1). Clearly,A(n)(1) is the stochastic matrix of a simple birth-death process. Hence, the
desired solution vectorα = (α0, . . . , αn) is given byαi = α0β

i, 0 ≤ i ≤ n, whereβ = µ1/µ2 and

α0 =

(

n
∑

i=0

βi

)−1

=
1 − β

1 − βn+1
.

The conditionαA
(n)
0 e < αA

(n)
2 e becomesλ < µ1

∑n−1
i=0 αi, which leads to (9). To arrive at (10), we rewrite

this as

ρ1
βn+1 − 1

βn − 1
< 1.

Assumingβ > 1 (i.e.,µ2 < µ1), we can rewrite this toρ2β
n − ρ1 < βn − 1, which is equivalent to

βn >
1 − ρ1

1 − ρ2
.

By taking logarithms at both sides (and usingβ = ρ2/ρ1) we arrive at the result. The caseβ < 1 follows
analogously.
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3 Asymptotic Results for the Tandem Queue with Blocking
In this section we present our main results for the tandem queue with blocking. We choose to present the

proofs in the next section, since they are rather lengthy, involving several partial results and lemmas. Here we
focus on the results themselves and try to understand them atan intuitive level. Partly this is possible by a
comparison with similar notions derived for the standard Jackson tandem network (i.e. without blocking). It may
seem that the network with blocking resembles the two-station tandem Jackson network more and more when
the blocking thresholdn increases. However, this is not true in all respects, as becomes apparent presently.

Before turning to our results, we like to recall our assumption µ1 6= µ2 throughout this paper. The stability
issue is easily settled whenµ1 = µ2 = µ (condition (9) is then replaced byλ/µ < n/(n + 1)), but we did
not aim at providing an analogue to Theorem 2 below, althoughwe do believe that such an analogue must hold.
Furthermore, it is unclear how a possible analogue of Theorem 3 below would read.

As a first point of interest let us see how the blocking leveln influences the stability condition (9). Writing
gn for the left hand side of (9), the stability conditionlimn→∞ gn < 1 is equivalent to the conditionsρ1 < 1
whenµ1 < µ2 (or ρ = ρ1), andρ2 < 1 whenµ1 > µ2 (or ρ = ρ2). Thus we arrive at the conditionρ < 1,
which is also the stability criterion of the two-station tandem Jackson network.

A second characteristic is the geometric decay ratexn, i.e. the decay rate of the first station’s queue length
distribution, defined in (6). Interestingly, for certain parameter regimes, the limit ofxn asn → ∞ is different
from ρ1, which is the geometric decay rate for the Jackson network. Specifically, we have the following.

Theorem 2.

(i) If the system with threshold atn is stable, i.e.n > N(ρ1, ρ2) holds, then the decay ratexn lies in the
interval (ρ, 1), whereρ ≡ max(ρ1, ρ2).

(ii) The sequence{xn}n>N(ρ1,ρ2) decreases monotonically toρ and its elements satisfy the bounds

0 < xn − ρ <

{

β1γ1 αn
1 , if ρ = ρ1,

β2γ2 αn
2 , if ρ = ρ2,

(11)

where fori = 1, 2, the constantsαi are in (0, 1), andβi andγi are positive constants, the precise form of
which is presented in Section 4.2

In other words, the asymptotic queue length in the first station is mostly influenced by the bottleneck server.
Moreover, the convergence ofxn ↓ ρ is at least geometrically fast.

At an intuitive level, the first statement is not too difficultto understand. To this end we view the two queues
in tandem as one black box at which jobs arrive at rateλ. Since each job receives service at both stations, the
slower server in the black box clearly dominates the total number of jobs in the box, wherever these jobs may
reside. Thus, the decay rate of the total number of jobs must be bounded below byρ = max{ρ1, ρ2}. By
‘opening the black box’ we see that, as the second buffer is finite, necessarily the first queue is large when the
system contains many jobs. Hence the decay rate of the numberof jobs in the first station must be greater than
or equal toρ. The other claims however appear less evident, in particular the geometric bounds on the difference
betweenxn andρ.

As a third topic of interest we explore the probabilistic structure in the direction of the phases for some given
level i � 1. A convenient notion to consider in the present setting is the ratio of the probability that the chain is
in phasej + 1 to the probability that the chain is in phasej, while the chain is in some high leveli.

Theorem 3. For a stable system the following statements hold.

(i)

lim
i→∞

π
(n)
i,j+1

π
(n)
i,j

=
v
(n)
j+1

v
(n)
j

. (12a)

(ii) Whenρ = ρ1, we have
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
λ

µ2

∣

∣

∣

∣

∣

<
β1

µ2 ρ1
αn−j

1 +
(µ1 − γ−1

1 ) β1 γ1

µ2 ρ1
αn

1 , (12b)

and whenρ = ρ2,
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
µ1

µ2

∣

∣

∣

∣

∣

<
β2

λ
αj

2 +
1 − ρ2

1 − ρ1

β2 γ2

ρ2
αn

2 . (12c)

Here the constantsαi, βi, γi, i = 1, 2, are the same as in Theorem 2.
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The first statement explains whyv(n)
j+1/v

(n)
j is the quantity of interest here, and is an immediate consequence

of (7). Clearly, the main relevance of the second statement is that whenρ = ρ1 (ρ = ρ2), the quantityv(n)
j+1/v

(n)
j

converges to a value not far fromλ/µ2 (µ1/µ2), asn → ∞, provided thatj is not too close ton (0). In particular,
the upper bound on the distance betweenv

(n)
j+1/v

(n)
j andλ/µ2 (µ1/µ2) whenρ = ρ1 (ρ = ρ2) depends onj,

also whenn grows large.
Again we like to contrast these results to those of the tandemJackson network at an intuitive level. The sta-

tionary distribution of this latter network has product-from, hence, denoting the quantities related to the Jackson
tandem queue with a superscript∞,

π
(∞)
i,j+1

π
(∞)
i,j

= ρ2, for all (i, j) ∈ X
(∞). (13)

Note that this ratio doesnot depend on which of the two servers is the bottleneck, nor doesit depend onj, the
queue length in the second station, and finally it holds for all i, and not just fori → ∞ as in Theorem 3.

Now, when the first server is the bottleneck andi � 1 we conclude from our theorem that the tandem
network with blocking behaves similarly as the Jackson tandem network, as is also the case for the decay rate
in Theorem 2. Namely, ifn � 1, the geometric decay rate is approximatelyρ1 andπ

(n)
i,j+1/π

(n)
i,j ≈ ρ2, if also

i � 1.
However, when the second server is the bottleneck, the situation is strikingly different. For the tandem

network with blocking we see that the geometric decay rate islarger thanρ2, not ρ1. Moreover, wheni � 1,
the ratioπ

(n)
i,j+1/π

(n)
i,j ≈ µ1/µ2, whereas this ratio isλ/µ2 for the Jackson network. It need not surprise us that

the outcomes are different, since the behavior of the systemwith blocking andρ = ρ2 will be such that when
i � 1 the number of jobs in the second queue will mostly be high, typically in the neighorhood ofn. We can
therefore expect other boundary effects than in the caseρ = ρ1 and the Jackson network. This also explains why
in this case the ratio should be larger than 1 (and indeedµ1/µ2 > 1 in this case). However, at the moment it is
unclear to us how the actual valueµ1/µ2 can be understood. One may be inclined to reason that, wheni � 1,
the arrival rate at the second queue isµ1. Indeed this is the case, but simply dividing this byµ2 is not the correct
way to find the “local decay rate in the direction of the phasesfor some large leveli”. Namely, our quantity of
interest is a ratio of stationary probabilities, the determination of which also involves the boundary behavior at
i = 0. Another way to see that this reasoning is not correct, is that it would then also hold for the caseρ = ρ1

and for the Jackson network, which is apparently not true.
Since we do not fully understand the precise value ofµ1/µ2, we leave any further intuitive, probabilistic,

explanations for Theorems 2 and 3 to future work, and presentour (analytic) proofs in Section 4. The analytic
approach also finds motivation in that it enables us in Section 5 to explorenetworks with slow-down and blocking,
which seem even more complicated to handle probabilistically. As a side result, we also obtain an algorithm to
computexn by means of bi-section in Section 4.1, see Corollary 12 and Remark 13.

4 Proofs of Theorems 2 and 3
We now successively prove Theorems 2(i), 2(ii) and 3. Although Theorem 2(i) is the least difficult to un-

derstand, and indeed known as we mentioned before, cf. [1], the preparations for the proof of this result take
up most of the space. However, the machinery used is not difficult and provides us with the tools to give short
proofs of Theorems 2(ii) and 3.

4.1 Proof of Theorem 2(i)

4.1.1 Method of proof

Here, and in the remainder of Section 4.1 we fix the blocking thresholdn and prove that the decay ratexn

lies in the open interval(ρ, 1). To achieve this, we use the following result stated in [7, Section 9.1]:

Theorem 4. The decay ratexn is the unique solution in(0, 1) of the equation

x = ξ(n)(x), (14)

whereξ(n)(x) is the spectral radius ofA(n)(x).

We apply this as follows. SinceA(n)(x) is irreducible and nonnegative forx > 0, it follows from the
Perron-Frobenius theorem that the spectral radiusξ(n)(x) is also the largest (and simple) eigenvalue ofA(n)(x).
Suppose now that we can find an(n + 1)-dimensional row vectorv(n) > 0, i.e., each componentv(n)

j of v(n)

is strictly positive, andx > 0 such that
v

(n)A(n)(x) = v
(n)x. (15)
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Then by the Perron-Frobenius theorem,x necessarily solves the equationx = ξ(n)(x), andv
(n) is the left

Perron-Frobenius vector ofA(n)(x). In fact it is the same vectorv(n) as introduced in Section 2, since this
vector satisfiesv(n)R(n) = xnv

(n) and hence, by (4), alsov(n)A(n)(xn) = xnv
(n), so that it must be equal to

the left Perron-Frobenius vector ofA(n)(xn), which is unique up to scaling.
Below we use formula (15) to efficiently combineξ(n)(x) and the components of the Perron-Frobenius

eigenvector into a sequence of functions. This will then lead to an even simpler characterization of the decay rate
xn, see Theorem 5, after which we can work out the details and prove Theorem 2(i). Since in this section the
blocking thresholdn is fixed, we will mostly suppress the dependence onn here. However, we always writexn

for the decay rate.
To introduce the sequence just mentioned, let us interpret (15) as a constraint onx andv and work out its

implications. Thus, assuming that (15) is true and expanding with (8) we find thatx > 0 andv > 0 should
satisfy

x = p + rx +
rxv1

v0
, (16a)

x =
qx2vj−1

vj

+ p +
rxvj+1

vj

, 1 ≤ j < n, (16b)

x =
qx2vn−1

vn

+ p + qx. (16c)

From the first relation we see that for givenx andv0, the value ofv1 follows. But then, the second relation
providesv2, . . . , vn. Since we are free to choose the norm ofv, we can set, arbitrarily,v0 ≡ 1. As a consequence,
the first and second relation completely fixv oncex is given. The third relation forms a necessary condition on
x such thatx andv indeed form an eigenvalue and eigenvector pair ofA(n)(x). In other words, whereas the
simultaneous validity of the first and second relation aboveleavesx free, the third relation fixes it.

To further clarify the structure of (16) and the dependence on x, we now define the following sequence of
functions ofx:

χ0(x) := µ1x
2, (17a)

χj(x) := arx
vj

vj−1
= µ2x

vj

vj−1
, 1 ≤ j ≤ n, (17b)

χn+1(x) := ax − λ −
µ1µ2x

3

χn(x)
. (17c)

We defineχ0(x) andχn+1(x) for notational convenience, although they do not relate immediately tov by (17b).
Now, multiply the left and right hand sides of (16) bya = λ + µ1 + µ2 and rearrange, to obtain, respectively,

χ1(x) = ax − λ −
µ1µ2x

3

χ0(x)
= (λ + µ1)x − λ, (18a)

χj(x) = ax − λ −
µ1µ2x

3

χj−1(x)
, 2 ≤ j ≤ n + 1, (18b)

χn+1(x) = µ1x. (18c)

From the above we conclude the following.

Theorem 5. Let x ∈ (0, 1) be such that the sequence{χj(x)}0≤j≤n+1 satisfies (18) and each element
χj(x) > 0. Thenx is the unique solution ofξ(n)(x) = x, i.e., x equals the geometric decay ratexn of the
tandem queue with blocking at thresholdn.

Proof. Whenx satisfies the hypothesis, the validity of (15) follows by constructingv according to (17b).
Regarding the positivity ofv, which we do not require in the definition (17) ofχj(x), the conditionsx > 0
andχj > 0 imply thatvj andvj−1 have the same sign. Hence, as allχj > 0, it is straightforward to construct
v > 0.

Remark 6. It is apparent from (18) that the desiredx can be expressed as a root of a polynomial. However,
this insight might not provide the easiest method to characterize the decay rate. With the approach below we
can achieve our goals with elementary methods. Hence, we do not try to bound the decay rate by locating or
bounding the roots of polynomials.

Our search for the decay ratexn thus motivates a study of the structure of the sequence{χj(x)}0≤j≤n+1.
First we explore the properties of this sequence, fixingx, in Section 4.1.2. Finally, in Section 4.1.3, we vary
x such that, by combining and exploiting these properties, wearrive at the proof of Theorem 2(i), based on
Theorem 5.
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4.1.2 The sequence{χj(x)} with x fixed

For fixedx, (18) clearly shows that the elements of{χj(x)}0≤j≤n+1 satisfy a recurrence relation. Let, again
for fixedx, the mappingT be given by

T : η 7→ ax − λ −
µ1µ2x

3

η
. (19)

Then we can write
χj+1(x) = T (χj(x)) , for 0 ≤ j ≤ n. (20)

It turns out thatT is the key to understanding the structure of{χj}, and thereby to obtaining the decay rate.
The mappingη → T (η) is a hyperbolic linear fractional transformation, see, e.g., [10]. It is infinitely

differentiable everywhere except in the origin, and it has an inverse, given by

T (−1) : η 7→
µ1µ2x

3

ax − λ − η
.

The equationη = T (η) reveals thatT has two fixed points:η+ andη−. These points are the solutions of the
quadratic (inη) equationη2 − (ax − λ)η + µ1µ2x

3 = 0 so that

η± =
ax − λ

2
±

1

2

√

(ax − λ)2 − 4µ1µ2x3. (21)

In Section 4.1.3 we show that only real-valuedη± are of importance for our purposes. Hence, it suffices to take
x such that the discriminant

D(x) = (ax − λ)2 − 4µ1µ2x
3 > 0. (22)

The behavior of the sequence of iterates. . . , T (−1)(η), T (0)(η) := η, T (1)(η), . . . for η ∈ (η−, η+) is also
of interest. The next lemma formalizes what might be anticipated from Figure 2.

η

T (η)

η− η+η T (η) T 2(η)

Figure 2: Some properties of the mappingη → T (η). The variableη is set out along the horizontal axis. The solid
line refers to the identity.

Lemma 7. If x such thatD(x) > 0 (which implies thatη− andη+ are real) andη ∈ (η−, η+), then

η− = lim
i→∞

T (−i)(η) < T (−1)(η) < η < T (η) < lim
j→∞

T (j)(η) = η+,

η+ − T (j)(η) <

(

η−

η

)j

(η+ − η), j > 0,

T (−i)(η) − η− <

(

η

η+

)i

(η − η−), i > 0.

Proof. First, from (21) we have

η+ + η− = ax − λ, and η−η+ = µ1µ2x
3.
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Now, asη ∈ (η−, η+), it follows that

η+ − T (η) = η+ − (ax − λ) +
µ1µ2x

3

η
= −η− +

η−η+

η
=

η−

η
(η+ − η),

Clearly,η−/η andη+ − η are positive, which impliesη+ > T (η). Moreover,η−/η < 1 so thatη+ − T (η) <
η+ − η. Therefore, for allη ∈ (η−, η+) we haveη− < η < T (η) < η+. Concerning the convergence rate to
η+, note that

η+ − T (2)(η) =
η−

T (η)
(η+ − T (η))

=
η2
−

T (η)η
(η+ − η) <

(

η−

η

)2

(η+ − η).

By induction,T (j)(η) → η+ at least geometrically fast.
By similar computations we obtain

T (−1)(η) − η− =
T (−1)(η)

η+
(η − η−) > 0.

So,η− < T (−1)(η) < η < η+ wheneverη ∈ (η−, η+), andT (−i)(η) − η− = (η − η−)
∏i

k=1 T (−k)(η)/ηi
+,

which is strictly smaller than(η/η+)i(η − η−).

4.1.3 Varyingx — the result

From now on we will viewχj(x) again as a function ofx. We start with pointing out an interesting, and
perhaps unexpected, relation between the stability of the QBD chain{X(n)

1,k , X
(n)
2,k } and the derivative ofχn+1

with respect tox.

Lemma 8. The stability condition(9) for the Markov chain{X(n)
1,k , X

(n)
2,k } is satisfied if and only if

µ1 > χ′
n+1(1).

Proof. First of all, the differentiability ofT implies (by the chain rule) thatχn+1(x) has a derivative. Next,
from (18) it is immediate thatχj(1) = µ1 for all j = 0, . . . , n + 1. Hence, from (18) and writingβ = µ1/µ2

as in the proof of Theorem 1, we find by induction

χ′
j(1) = (λ + µ1)

1 − β−j

1 − β−1
− 2µ2

1 − β−j+1

1 − β−1
, 0 ≤ j ≤ n + 1.

The conditionχ′
n+1(1) < µ1 is therefore equivalent to

λ
1 − β−(n+1)

1 − β−1
+ µ1β

−1 1 − β−n

1 − β−1
− 2µ2

1 − β−n

1 − β−1
< 0.

After a bit of algebra we see that this condition is precisely(9).

Let us now concentrate on the fixed pointsη+ andη− of T . From their definition (21) it can be seen that
they are also functions ofx. To provide further intuition about these functions, we plot in Figure 3 their graphs
together withχ2(x) andχ3(x).

Lemma 9. First, the functionsx → η±(x) are real valued and positive on[ρ, 1]. Second,

η−(x) < χ0(x) = µ1x
2 < η+(x), if x ∈ (ρ, 1). (23)

Third,

χ0(ρ1) = λρ1 = η−(ρ1), (24a)

χ0(ρ2) ∈ (η−(ρ2), η+(ρ2)) = (λρ2, µ1ρ2), if ρ = ρ2, (24b)

χ0(1) = µ1 =

{

η−(1), if ρ = ρ1,

η+(1), if ρ = ρ2.
(24c)
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Figure 3: Plots of the functionsχ2(x), χ3(x), andη±(x). In the left panelλ = 1, µ1 = 4, µ2 = 5, while in the
right λ = 1, µ1 = 4, µ2 = 3.

Proof. For the first claim we focus on the discriminantD(x) = (ax − λ)2 − 4µ1µ2x
3 in the definition

of η±(x). Clearly, D(x), being a cubic polynomial, can have at most three real roots:ξ1, ξ2, andξ3, say.
By simple computations we see thatD(0) > 0, D(λ/a) < 0, D(ρ2) > 0, D(ρ1) > 0, D(1) ≥ 0, and
limx→∞ D(x) = −∞. It follows that0 < ξ1 < λ/a < ξ2 < min{ρ1, ρ2} ≤ max{ρ1, ρ2} < 1 ≤ ξ3. So, on
[ρ, 1] the discriminantD(x) is positive, andη±(x) are real valued. It is now simple to check thatη±(x) > 0 for
x ∈ [ρ, 1].

To prove the second claim, rewrite the inequalityη−(x) < µ1x
2 < η+(x) to

(2µ1x
2 − (ax − λ))2 ≤ (ax − λ)2 − 4µ1µ2x

3.

After some algebra and using the positivity ofx we find the above to be equivalent toλ(1 − x) < µ1 x(1 − x).
This is clearly true for allx ∈ (ρ1, 1) and, hence, for allx ∈ (ρ, 1).

Verifying the third claim is simple.

With the above observations it is straightforward to apply Lemma 7 to the functionsχj(x), 0 ≤ j ≤ n + 1.
For later purposes we formulate this intermediate result insomewhat greater generality than is necessary for the
moment. The generalization consists of extending{χj(x)}0≤j≤n+1 to a doubly infinite sequence{χj(x)}j∈Z

by continuing in (20) the iterative operation ofT andT (−1) beyondχn+1 andχ0, respectively. Thus, define for
j ≥ 1,

χj(x) := T (j) (χ0(x)) = T
(

T (j−1) (χ0(x))
)

= T (χj−1(x)) ,

χ−j(x) := T (−j) (χ0(x)) = T (−1)
(

T (−j+1) (χ0(x))
)

= T (−1) (χ−j+1(x)) .

This extension allows us to state the following.

Lemma 10. Wheneverx ∈ (ρ, 1),

η−(x) < . . . < χ−i(x) < . . . < χ0(x) < χ1(x) < . . .

< χn+1(x) < . . . < χj(x) < . . . < η+(x),
(25)

for i > 0 andj > n + 1. Moreover,χ−i(x) → η−(x) andχj(x) → η+(x) geometrically fast fori, j → ∞.

Proof. As, by Lemma 9,x ∈ (ρ, 1) implies thatχ0(x) ∈ (η−(x), η+(x)), we can useχ0(x) as the ‘starting
point’ for (the iterates of)T andT (−1) and apply Lemma 7.

As a last intermediate result we consider the concavity of the sequence of functionsχj(x), 2 ≤ j ≤ n + 1,
andη+(x). Proving thatη+(x) is concave is not immediate as the discriminant (22) neednot be concave on
(ρ, 1).
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Lemma 11. The functionsχj(x), 2 ≤ j ≤ n + 1, andη+(x) are strictly concave on(ρ, 1). The function
η−(x) is strictly convex on(ρ, 1).

Proof. We assert by induction thatχ′′
j (x) < 0 for all x ∈ (ρ, 1) andj ≥ 2. First,χ1(x) = (λ + µ1)x − λ

is concave. Now, forj ≥ 2, we have by (18),

χ′′
j (x)

µ1µ2
=

x

χj−1(x)

(

−6 + 6
x χ′

j−1(x)

χj−1(x)
− 2

(

x χ′
j−1(x)

χj−1(x)

)2

+
x2χ′′

j−1(x)

χj−1(x)

)

.

Lety(x) = xχ′
j−1(x)/χj−1(x) and write the first three terms within the brackets as the parabola−6+6y−2y2.

It is simple to see that, as both roots are not real, this parabola is negative for ally. The fourth term in the
expression above cannot be positive asχj−1(x) > 0 for x ∈ (ρ, 1) and χ′′

j−1(x) ≤ 0, by the induction
hypothesis. Hence,χ′′

j (x) < 0.
Now, for anyx, y ∈ [ρ, 1], andα ∈ (0, 1) take the limitj → ∞ of both sides of

χj(αx + (1 − α)y) > αχj(x) + (1 − α)χj(y),

and conclude thatη+(x) is also strictly concave. Finally, sinceη−(x) = ax− λ− η+(x), it follows thatη−(x)
is strictly convex.

By now we have identified all required intermediate results so that we can boundxn from below.

Proof of Theorem 2(i). We prove that the conditions of Theorem 5 are satisfied. Regarding the positivity
of the numbersχj(x) for x ∈ (ρ, 1) we have by Lemmas 9 and 10 thatχj(x) > η−(x) > 0 for j = 0, . . . , n+1.
It remains to prove that the functionχn+1(x) intersects the lineµ1x somewhere in the interval(ρ, 1). First,
from (24a)χn+1(ρ1) = η−(ρ1) = λρ1 < µ1ρ1. Also, whenρ = ρ2, χ0(ρ2) ∈ (η−(ρ2), η+(ρ2)), which im-
plies by (25) thatχn+1(ρ2) < η+(ρ2) = µ1ρ2. Hence,χn+1(ρ) < µ1ρ. On the other hand,χn+1(1) = µ1 and
χ′

n+1(1) < µ1, by Lemma 8. Consequently, the concavity ofχn+1(·) implies there exists a uniquex ∈ (ρ, 1)
such thatχn+1(x) = µ1x.

As a direct by-product of the above proof and the uniqueness of the solution ofµ1x = χn+1(x) in (0, 1) we
obtain

Corollary 12. χn+1(x) < µ1x for all x ∈ (ρ, xn) andχn+1(x) > µ1x for all x ∈ (xn, 1).

Remark 13. This corollary shows that we can findxn numerically by the method of bisection. Take the first
estimatexn,1 of xn as(ρ + 1)/2. Computeχj(xn,1) for j = 0, . . . , n + 1. If χn+1(xn,1) > µ1xn,1 thenxn,1

must be too large by the corollary, whereas ifχn+1(xn,1) < µ1xn,1, the estimatexn,1 must be too small. Based
on this result we take for the next estimate,xn,2, either(ρ + xn,1)/2 or (xn,1 + 1)/2, and so on. Clearly, the
sequence{xn,m}m≥1 converges toxn.

At this point the computation ofx1, that is, the geometric decay rate when the second station has no waiting
room, is very simple indeed. The equationχ2(x) = µ1x reduces to

(x − 1)
(

µ2 µ1 x2 − λa x + λ2
)

χ1(x)
= 0.

Sincex1 ∈ (ρ, 1) we conclude that

x1 =
λa

2µ1 µ2

(

1 +

√

1 −
4µ1 µ2

a2

)

. (26)

4.2 Proof of Theorem 2(ii)
As opposed to the previous section, where the blocking thresholdn was fixed, in this section the dependence

on n plays a central role, since we study the limiting behavior ofthe sequence of decay rates{xn} whenn
increases to∞. We first quote the result from Section 3, complemented with the expressions for the constants
αi, βi andγi, i = 1, 2. The subsequent proof rests heavily upon the functionsη±(x) andχj(x) from Section 4.1,
and their properties.

11



Theorem 2.

(ii) The sequence{xn}n>N(ρ1,ρ2) decreases monotonically toρ and its elements satisfy the bounds

0 < xn − ρ <

{

β1 γ1 αn
1 , if ρ = ρ1,

β2 γ2 αn
2 , if ρ = ρ2,

where the constants

α1 := max
x∈[ρ1,1]

{

µ1 x

η+(x)

}

, α2 := max
x∈[ρ2,1]

{

η−(x)

χ1(x)

}

,

β1 := max
x∈[ρ1,1]

{µ1 x − η−(x)} , β2 := max
x∈[ρ2,1]

{η+(x) − χ1(x)} ,

γ1 :=

(

λ + µ1 −
η−(x1) − η−(ρ1)

x1 − ρ1

)−1

, γ2 :=

(

η+(x1) − η+(ρ2)

x1 − ρ2
− µ1

)−1

,

are positive,αi < 1, i = 1, 2, andx1 is given by (26).

The maxima involved do not occur at the boundaries of the intervals but in the interiors, as is clear from
Figure 3 for a concrete case. The form of the solutions obtained by taking the derivative with respect tox are
cumbersome; we choose not to display these here.

Proof. We first show that{xn} is decreasing, that is,xn 6∈ [xm, 1) whenevern > m. By (25) we see that
χj+1(x) > χj(x) for all j ≥ 0 andx ∈ (ρ, 1). Combining this with Corollary 12 forx ∈ (xm, 1) and noting
thatχm+1(xm) = µ1xm we conclude that forx ∈ [xm, 1)

χn+1(x) > χm+1(x) ≥ µ1x.

As nox ∈ [xm, 1] can solve the equationχn+1(x) = µ1x, it must be thatxn < xm.
With regard to the convergence of{xn} to ρ, we consider first the caseρ = ρ2. Let δn := xn − ρ2, which

is positive for alln > N . From Lemma 7,
(

η−(xn)

χ1(xn)

)n

(η+(xn) − χ1(xn)) > η+(xn) − χn+1(xn). (27)

As η+(·) is strictly concave on(ρ2, 1) andxn < x1 < 1 (for n > 1) we can boundη+(xn) by

η+(xn) > η+(ρ2) +
η+(x1) − η+(ρ2)

x1 − ρ2
δn. (28)

Therefore, usingη+(ρ2) = µ1ρ2 andχn+1(xn) = µ1 xn = µ1(ρ2 + δn), the right hand side of (27) satisfies,

η+(xn) − χn+1(xn) >

(

η+(x1) − η+(ρ2)

x1 − ρ2
− µ1

)

δn.

Hence, with (27),

δn <

(

η+(x1) − η+(ρ2)

x1 − ρ2
− µ1

)−1 (
η−(xn)

χ1(xn)

)n

(η+(xn) − χ1(xn)) ,

from which the case forρ = ρ2 of (11) follows.
Forρ = ρ1, let δn = xn − ρ1 > 0. Clearly, asη−(·) is convex,

η−(xn) < η−(ρ1) +
η−(x1) − η−(ρ1)

x1 − ρ1
δn (29)

Therefore, by Lemma 7 and using thatχ1(xn) = (λ + µ1)(ρ1 + δn) − λ andη−(ρ1) = λρ1, we obtain
(

χn+1(xn)

η+(xn)

)n

(χn+1(xn) − η−(xn)) > χ1(xn) − η−(xn)

>

(

λ + µ1 −
η−(x1) − η−(ρ1)

x1 − ρ1

)

δn.

Moreover,
χn+1(xn)

η+(xn)
=

µ1 xn

η+(xn)
≤ max

x∈[ρ1,1]

{

µ1 x

η+(x)

}

=: α1, (30)
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and, likewise,
χn+1(xn) − η−(xn) ≤ max

x∈[ρ1,1]
{µ1 x − η−(x)} =: β1. (31)

The positivity of the constants, exceptγ1 andγ2, as well as the fact thatαi < 1, follows from Lemma 10.
Forγ2, observe that

η+(x1) − η+(ρ2)

x1 − ρ2
− µ1 =

η+(x1) − η+(ρ2)

x1 − ρ2
−

η+(1) − η+(ρ2)

1 − ρ2
> 0,

sinceη+ is strictly concave andρ2 < x1 < 1. Similar reasoning applies toγ1.

4.3 Proof of Theorem 3
Below we restate Theorem 3 for convenience. The last equality in part (i) was not in the original statement

in Section 3, since there the functionsχj(x) were not introduced yet. It explains why we are interested togain
insight into the effect of an increasing blocking thresholdn on the values of{χj(xn)}1≤j≤n. In Figure 4 we plot
the graphs of the sequences{χj(x5)}1≤j≤5, {χj(x10)}1≤j≤10 , and{χj(x20)}1≤j≤20 for ρ = ρ1 andρ = ρ2,
respectively. To obtainx5, x10 andx20 we follow the procedure specified in Remark 13. These graphs suggest
that most of the elements of{χj(xn)}1≤j≤n are close toη−(xn) or η+(xn) whenρ = ρ1 or ρ = ρ2.

Theorem 3. For a stable system, the following statements hold.

(i)

lim
i→∞

π
(n)
i,j+1

π
(n)
i,j

=
v
(n)
j+1

v
(n)
j

=
χj+1(xn)

µ2 xn

.

(ii) Whenρ = ρ1, we have
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
λ

µ2

∣

∣

∣

∣

∣

<
β1

µ2 ρ1
αn−j

1 +
(µ1 − γ−1

1 ) β1 γ1

µ2 ρ1
αn

1 ,

and whenρ = ρ2,
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
µ1

µ2

∣

∣

∣

∣

∣

<
β2

λ
αj

2 +
1 − ρ2

1 − ρ1

β2 γ2

ρ2
αn

2 ,

where the constantsαi, βi, γi are as defined earlier in Section 4.2.

Proof. Statement (i) is immediate from (7) and (17b).
For (ii) we first prove the result forρ = ρ2. Observe that by the triangle inequality and the inequality

µ2 xn > λ,
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
µ1

µ2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

χj+1(xn)

µ2 xn

−
η+(ρ2)

µ2 ρ2

∣

∣

∣

∣

=
|ρ2 χj+1(xn) − xn η+(ρ2)|

µ2 xn ρ2

<
|χj+1(xn) − η+(xn)|

λ
+

|ρ2 η+(xn) − xn η+(ρ2)|

λ ρ2
.

(32)

Clearly, by applying the second statement of Lemma 7 toη = χ1(xn), we have

0 < η+(xn) − χj+1(xn) <

(

η−(xn)

χ1(xn)

)j

(η+(xn) − χ1(xn)) .

For the second term, we observe thatη+(xn) > xn µ1, sinceη+ is strictly concave andη+(x) = µ1x for
x = ρ2, 1. Hence,ρ2 η+(xn) > ρ2 xn µ1 = xn η+(ρ2), so that,

η+(xn) < η+(ρ2) + δn η′
+(ρ2) = η+(ρ2) + δn

µ1 + µ2 − 2λ

1 − ρ1
, (33)

where we recall thatδn = xn − ρ2. Hence, after some calculations,

0 < ρ2 η+(xn) − xn η+(ρ2) <
(

ρ2 η′
+(ρ2) − η+(ρ2)

)

δn = λ
1 − ρ2

1 − ρ1
δn.

The rest follows immediately from Theorem 2(ii).
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Whenρ = ρ1, so thatxn > ρ1, consider
∣

∣

∣

∣

∣

v
(n)
j+1

v
(n)
j

−
λ

µ2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

χj+1(xn)

µ2 xn

−
η−(ρ1)

µ2ρ1

∣

∣

∣

∣

<
|χj+1(xn) − η−(xn)|

µ2 ρ1
+

|ρ1 η−(xn) − xn η−(ρ1)|

µ2 ρ2
1

.

For the first term we apply the third statement of Lemma 7 withη = χn+1(xn) andi = n − j, to find

χj+1(xn) − η−(xn) <

(

χn+1(xn)

η+(xn)

)n−j

(χn+1(xn) − η−(xn)) ,

after which we only need to apply (30) and (31). For the secondterm we usexn = ρ1 + δn andη−(ρ1) = λρ1

to arrive at
|η−(xn) − η−(ρ1) − λδn|

µ2ρ1
.

Sinceη−(x) is convex, andη′
−(ρ1) > λ, the absolute signs are not needed, so that we can arrive at our result

using (29) and the fact thatδn < β1γ1 αn
1 .
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Figure 4: Graphs of the sequence{χj(xn)}1≤j≤n for n = 5, 10, and20. At the leftρ = ρ1 (λ = 1, µ1 = 3 and
µ2 = 4), whereas at the rightρ = ρ2 (λ = 1, µ1 = 5 andµ2 = 4). The phasej increases along thex-axis; the
value ofχj(xn) is set out along they-axis. For clarity we connect subsequent termsχj(xn) by lines.

5 The Tandem Queue with Slow-down and Blocking
Consider now a network in which the second server signals thefirst to slow down, i.e., to work at ratẽµ1 < µ1

instead of at rateµ1, when the second station containsm or more jobs, where, of course,m < n. Figure 5 shows
the state transition diagram of the resulting queueing process.
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Figure 5: State space and transition rates of the two-station tandem queue with slow-down and blocking. Note
that above phasem server 1 works at ratẽµ1 rather than atµ1.

In this section we assume the following ordering of parameters:

λ < µ2 < µ̃1 < µ1, or, equivalently,ρ1 < ρ̃1 < ρ2 < 1, (34)

whereρ̃1 := λ/µ̃1. Observe that as a consequence,ρ = ρ2 in this section. Henceforth we do no longer use
ρ, but alwaysρ2. With this ordering we generalize Theorem 2(i) to the present case and restate Theorems 2(ii)
and 3 in somewhat weaker form. The methods of proof are similar to those of Section 4. Due to these similarities
we only show the main steps to arrive at the results stated here. The details may sometimes be slightly more
involved algebraically, but are seldom more complicated conceptually.

Remark 14. It would, of course, be interesting to consider other orderings of the system parameters such
as, for instance,0 < µ̃1 < λ < µ2 < µ1. However, Lemma 16 below does not immediately carry over to these
cases as its proof depends crucially on the ordering (34). Weconjecture, based on numerical experiments, that
similar results can be obtained for all cases. Thus, ‘case checking’, i.e., proving each step of the line of reasoning
below for every possible ordering of parameters (provided the chain is stable), seems a possible method to obtain
stronger results. However, this approach is, admittedly, not elegant, neither might it reveal much of the structure
of the problem. It remains for further research to find the general underlying principle; here we concentrate on
the ordering specified in (34).

Sinceµ̃1 < µ1 we can again uniformize the related continuous-time Markovchain{X(n,m)
1 (t), X

(n,m)
2 (t)}

at ratea = λ + µ1 + µ2 to obtain an aperiodic discrete-time QBD chain{X(n,m)
1,k , X

(n,m)
2,k }. The matrix of

transition probabilitiesP (n,m) has the same form asP (n) in (2), but whereasB(n,m) = B(n) andA
(n,m)
0 =

A
(n)
0 , A

(n,m)
1 becomes, with̃q = µ̃1/a,

A
(n,m)
1 =































r
r 0

. . .
. . .
r 0

r q − q̃
. . .

. . .
r q − q̃

r q































, (35)

where at them-th row the changes occur, andA(n,m)
2 has the same form asA(n)

2 , howeverq̃ replacesq in rows
m, . . . , n − 1. Finally, letA(n,m)(x) := A

(n,m)
0 + xA

(n,m)
1 + x2A

(n,m)
2 .

Concerning the stability of the chain we follow the approachof Theorem 1 to derive a necessary and sufficient
stability condition. In accordance with our expectations for a system with the ordering (34), this condition
reduces toλ < µ2 whenn → ∞.
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Theorem 15. Let β = µ1/µ2 and β̃ = µ̃1/µ2. The two-station tandem network with slow-down threshold
m and blocking atn ≥ m is positive recurrent if and only if

λ <
µ1 (1 − βm)(1 − β̃) + µ̃1 βm (1 − β)(1 − β̃n−m)

(1 − βm)(1 − β̃) + βm (1 − β)(1 − β̃n−m+1)
. (36)

Proof. Following the proof of Theorem 1, the normalized solution ofαA(n,m)(1) = α has the form,

αi =

{

α0β
i, if i ≤ m − 1,

α0β
mβ̃i−m, if m ≤ i ≤ n,

and

α−1
0 =

1 − βm

1 − β
+ βm 1 − β̃n+1−m

1 − β̃
.

The inequalityαA
(n,m)
0 e < αA

(n,m)
2 e becomes

λ < α0

(

µ1

m−1
∑

i=0

βi + µ̃1β
m

n−1
∑

i=m

β̃i−m

)

= α0

(

µ1
1 − βm

1 − β
+ µ̃1β

m 1 − β̃n−m

1 − β̃

)

.

The next step is to rewrite the equation

v
(n,m)A(n,m)(x) = v

(n,m)x, (37)

and derive a sequence{χj(x}1≤j≤n in terms of mappings similar toT defined in (19). With this aim, let
χj(x) = µ2 x vj/vj−1 as in (17b). However, contrary to (18) we now needthree, rather than one, mappings to
cast (37) into a sequence{χj(x)}1≤j≤n, namelyT as in (19), and

S : η 7→ ãx − λ −
µ1µ2x

3

η
, T̃ : η 7→ ãx − λ −

µ̃1µ2x
3

η
, (38)

whereã = λ + µ̃1 + µ2. Again settingv0 = 1 and introducingχ0(x) andχn+1(x) for convenience, we have

χj(x) :=



















µ1x
2, if j = 0,

T (χj−1(x)) , if 1 ≤ j ≤ m,

S (χm(x)) , if j = m + 1,

T̃ (χj−1(x)) , if m + 2 ≤ j ≤ n + 1.

Loosely speaking,S movesχm(x) across the slow-down threshold atm to the iterateχm+1(x) on whichT̃ can
start operating. The condition onx of the last coordinate of the vector equationv

(n,m)A(n,m)(x) = v
(n,m)x is,

χn+1(x) = µ̃1x, (39)

rather thanχn+1(x) = µ1x as in (18c).
Theorem 5 carries over immediately. Thus, if we can findx ∈ (0, 1) such that each element of the sequence

{χj(x)}0≤j≤n+1 is positive andχn+1(x) = µ̃1x, thenx is the decay rate we are searching for.
To establish that the elements of{χj(x)}0≤j≤n+1 are positive we would like to apply Lemma 10. Sup-

posing thatχ0(x) ∈ (η−(x), η+(x)), it follows that the elements of{χj(x)}0≤j≤m all lie in the interval
(η−(x), η+(x)), hence are positive. However, it is not immediately obviousthat S (χm(x)) lies somewhere
in between the fixed points̃η−(x) and η̃+(x) (regarded as functions ofx) of T̃ . Now realize thatχ0(x) <
χm(x) < η+(x), and therefore by (38), thatS (χ0(x)) < S (χm(x)) < S (η+(x)). Below we prove that
η̃−(x) < S (χ0(x)) andS (η+(x)) ≤ η̃+(x) so thatS maps any element in(χ0(x), η+(x)), andin particu-
lar χm(x), into the interval(η̃−(x), η̃+(x)). Therefore, Lemma 10, which applies to equally well toT̃ due to
the ordering (34), ensures that also the elements of{χj(x)}m+2≤j≤n+1 lie within the interval(η̃−(x), η̃+(x)).
Finally, due to the ordering (34) Lemma 9 implies thatη̃−(x) > 0 for x ∈ [ρ2, 1], thereby guaranteeing the
positivity of all elements of the sequence{χj(x)}0≤j≤n+1 for x ∈ [ρ2, 1].

Lemma 16. For all x ∈ (ρ2, 1):

η̃−(x) < S (χ0(x)) and S (η+(x)) ≤ η̃+(x). (40)
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Proof. Let us start with proving the first inequality. Asλ < µ2 < µ̃1 it follows from Lemma 9 that̃η−(x) <
µ̃1 x2. Hence,µ1 η̃−(x)/µ̃1 < µ1x

2 = χ0(x). Applying S to both sides and noting thatS (µ1 η̃−(x)/µ̃1) =
T̃ (η̃−(x)) = η̃−(x) gives the result.

Concerning the second inequality in (40) observe that this is equivalent to

η+(x) + (µ̃1 − µ1)x = S(η+(x)) ≤ η̃+(x). (41)

Clearly, in casẽµ1 = µ1, the left hand side and the right hand side are equal. Next, ifthe derivative with respect
to µ̃1 of the left hand side of (41) is larger than the derivative of the right hand side then, as̃µ1 < µ1, the
inequality must hold.

Thus, we like to show that whenx ∈ (ρ2, 1),

x >
∂η̃+(x)

∂µ̃1
=

x

2
+

1

2

(ãx − λ)x − 2µ2x
3

√

(ãx − λ)2 − 4µ̃1µ2x3
.

Rewrite this to
√

(ãx − λ)2 − 4µ̃1µ2x3 > ãx − λ − 2µ2x
2.

This inequality is implied by

(ãx − λ)2 − 4µ̃1µ2x
3 > (ãx − λ)2 − 4µ2x

2(ãx − λ) + 4µ2
2 x4,

which in turn reduces to
λ(x − 1) > µ2x(x − 1).

This is true sincex ∈ (ρ2, 1).

As counterpart of Theorem 2 we obtain the following.

Theorem 17. If ρ1 < ρ̃1 < ρ2 < 1 and the blocking thresholdn and slow-down thresholdm ≤ n are such
that the chain{X(n,m)

1,k , X
(n,m)
2,k } is stable, the sequence{xn,m}n decreases monotonically toρ2 for m fixed.

Proof. The positivity of the elements of{χj(xn,m}1≤j≤n+1 is settled by the discussion leading to Lemma 16.
To prove that there exists a uniquex ∈ (ρ2, 1) such thatχn+1(x) = µ̃1x, we reason an in the proof of

Theorem 2(i) in Section 4.1.3. Observe that: (i)χ0(ρ2) < η+(ρ2) ⇒ χj(ρ2) < η̃+(ρ2) = µ̃1ρ2 for all j > m;
(ii) χn+1(1) = µ̃1; (iii) Condition (36) is equivalent toχ′

n+1(1) < µ̃1; (iv) χ′′
n+1(x) < 0, i.e., χn+1(x) is

strictly concave, forx ∈ (ρ2, 1).
By similar reasoning as in the first part of the proof of Theorem 2(ii) it can be seen that{xn,m} decreases

monotonically. Finally, pertaining to the convergence toρ2, the sequence{xn,m}, being bounded and decreasing,
has a unique limit pointζ in R. Suppose thatζ > ρ2. Then, since,̃η+(ζ) > µ̃1ζ andlimj→∞ χj(x) = η̃+(x)
for all x ∈ (ρ2, 1), there existsM > 0 such that for allj > M , χj(ζ) > µ̃1ζ. On the other hand, we derived
above thatχj(ρ2) < µ̃1ρ2 for j > m. The continuity ofχj(x) implies that there existsxj−1 ∈ (ρ2, ζ) such
thatχj(xj−1) = µ̃1 xj−1. This contradictsζ > ρ2.

It proves difficult to bound the rate of convergence of the sequence of decay rates{xn,m}, which thereby
prevents us from generalizing (11) to the present case. As a result, we also cannot carry over Theorem 3.
However, we can achieve the following slightly weaker result in which we appropriately scale the slow-down
thresholdm as a function of the blocking thresholdn.

Theorem 18. Let the slow-down thresholdm scale asm(n) = αn for a fixedα ∈ (0, 1) and write
π(n,m)(i, j) for π

(n,m)
i,j . Then,

lim
n→∞

lim
i→∞

π(n,m)(i, bync)

π(n,m)(i, bync − 1)
=











η+(ρ2)

µ2ρ2
= µ1

µ2
, if y ∈ (0, α],

η̃+(ρ2)

µ2ρ2
= µ̃1

µ2
, if y ∈ (α, 1),

(42)

wherebxc denotes the largest integer smaller than or equal tox.

In Theorem 3 we could bound this ratio for anyfixed phasej, j ≤ n, for n → ∞. Here we scale the
phasej(n) as a function ofn. In fact, the proof below makes clear that we establish the point-wise limit of the
functionsχj(n)(xn,m)/µ2 xn,m for n → ∞ rather than forj fixed.

17



Proof. Recall that

lim
i→∞

π(n,m)(i, bync)

π(n,m)(i, bync − 1)
=

v(n,m)(bync)

v(n,m)(bync − 1)
=

χbync(xn,m)

µ2 xn,m

,

and concentrate on the right hand side.
First, lety ∈ (0, α]. Clearly, it follows from Theorem 17 thatxn,m → ρ2 for n → ∞, and therefore, by

applying Lemma 10,χbync(xn,m) → η+(ρ2). In particular,χbαnc(xn,m) → η+(ρ2) = µ1 ρ2 so that, by (38),

lim
n→∞

S
(

χbαnc(xn,m)
)

= ãρ2 − λ −
µ1µ2ρ

3
2

η+(ρ2)
= µ̃1 ρ2 = η̃+(ρ2).

Now let y ∈ (α, 1). As S
(

χbαnc(xn,m)
)

< χbync(xn,m) < η̃+(xn,m), and the left and right hand side
converge tõη+(ρ2) for n → ∞, the functionsχbync(xn,m) have the same limit.

In terms of the Perron-Frobenius vectorv
(n,m) of R(n,m) this results means the following,

v
(n,m)
j

v
(n,m)
j−1

≈

{

µ1/µ2 if j < m(n)

µ̃1/µ2 if j ≥ m(n).

Thus, a ‘kink’ appears in the graph of ratio of the consecutive components ofv(n,m).

Remark 19. The approach to prove the results in this section generalizes to any number of slow-down
thresholds when the adapted ratesµ̃1, ˜̃µ1, . . ., form a decreasing sequence bounded below byµ2.
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