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A tandem queue with server slow-down and blocking

ABSTRACT

We consider two variants of a two-station tandem network with blocking. In both variants the
first server ceases to work when the queue length at the second station hits a blocking
threshold . In addition, in variant 2 the first server decreases its service rate when the second
queue exceeds a slow-down threshold, which is smaller than the blocking level. In both variants
the arrival process is Poisson and the service times at both stations are exponentially
distributed. Note, however, that in case of slow-downs, server 1 works at a high rate, a slow
rate, or not at all, depending on whether the second queue is below or above the slow-down
threshold or at the blocking threshold, respectively. For variant 1, i.e., only blocking, we
concentrate on the geometric decay rate of the number of jobs in the first buffer and prove that
for increasing blocking thresholds the sequence of decay rates decreases monotonically and at
least geometrically fast to max{rho_ 1, rho_2}, where rho_i is the load at server i. The methods
used in the proof also allow us to clarify the asymptotic queue length distribution at the second
station. Then we generalize the analysis to variant 2, i.e., slow-down and blocking, and
establish analogous results.
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Abstract

We consider two variants of a two-station tandem network Wibcking. In both variants the first server ceases
to work when the queue length at the second station hits &kbig threshold’. In addition, in variarit the

first server decreases its service rate when the second gueeeds a ‘slow-down threshold’, which is smaller
than the blocking level. In both variants the arrival pracesPoisson and the service times at both stations are
exponentially distributed. Note, however, that in casd@fsdowns, servet works at a high rate, a slow rate, or
not at all, depending on whether the second queue is belolwoweahe slow-down threshold or at the blocking
threshold, respectively. For variaif i.e., only blocking, we concentrate on the geometric deedy of the
number of jobs in the first buffer and prove that for incregditocking thresholds the sequence of decay rates
decreases monotonically and at least geometrically fastato{p1, p2}, wherep; is the load at server. The
methods used in the proof also allow us to clarify the asytiptpieue length distribution at the second station.
Then we generalize the analysis to variante., slow-down and blocking, and establish analogousltes

1 Introduction

In classical queueing networks service stations do notangd information about their queue lengths. How-
ever, in general such communication might be useful. Supfmsnstance that when the queue at some ‘down-
stream’ station builds up, this station can protect itsgl§ignalling ‘upstream’ stations to decrease their service
rate. In this way there isongestion-dependent feedback of informatioot jobs) from downstream stations to
upstream stations.

The tandem queue we study here resembles a two-statiorodatekglem queue in which jobs arrive accord-
ing to a Poisson process with rateat the first station and require at the first and second statipnnentially
distributed service times with medrip; and1/u2, respectively. Thus, the load on the first and second server
is p1 := A/p1 andpa := A\/pue2, respectively. However, we allow the second station torinfthe first station
about the number of jobs in queue. Immediately after thermkstation contains jobs, it signals the first server
to stop processing any job in service. We assume that thddekdignal from the second station to the first
is not delayed. When the queue length in the second staticonies less than, the first server may resume
service again. Clearly, this blocking mechanism will pobtihe second station from overflow, at the cost of a
stochastically longer queue at the first station.

First, we are interested in the effect on the first station fametion of theblocking threshold:. However,
due to the presence of the feedback, the stationary joitrildision 7;; that the number of jobs in the first and
second station isandj, respectively, does not have a product-form, so that findiolpsed-form expression for
m;; is difficult. We therefore concentrate on its (asymptotigalominant structure and consider theometric
decay rateof the number of jobs in the first buffer. This quantity, alswWn as the caudal characteristic, cf.
[12], gives insight into the probability of the first queuacking a high level due to blocking. It turns out that the
decay rate of the number of jobs in the first station lies soheewvin the intervalp, 1) wherep = max{p1, p2},

a result also obtained in [1]. However, in this paper we alsmsrigorously that the decay rate as a function of
the blocking threshold decreases monotonically and at tgsmnetrically fast te.

As a second topic of interest we estimate the ratig;1/7;; wheni > 1, i.e., the ratio of the probability
that the number of jobs in the second queugid to the probability that this number jswhile the first queue is
large. Thus, our approach also reveals the asymptotic pilidigc structure of the number of jobs in the second
station, which is not as simple to see as the decay rate ofrgtejfieue.



Third, we study a more complicated type of feedback. Now, mtie number of jobs at station 2 is in
excess of some threshotd (which should be smaller than the blocking thresholtb be effective), server 1
slows downi.e., it reduces its service rate fiQ, where0 < ;1 < w1. Thus, depending on the queue length in
station 2, server 1 works at a high rate, a low rateji;, or not at all. In the sequel we distinguish both types
of feedback queue by calling the first thetwork with blockingand the second theetwork with slow-down and
blocking The analysis of such queueing networks with service slowrs has interesting applications in the
domain of manufacturing, but also in the design of Ethere#varks, where in point—to—point connections the
sending side may react to congestion signals from the receside, see e.g. [13]. For the network with slow-
down and blocking we can establish analogous results amettéor the network with blocking. The asymptotic
distribution of the number in the second queue turns out tof particular interest in this case.

Our focus on the asymptotic behaviorof; has two reasons. First, the resulting expressions are sedlo
form, contrary to the numerical methods available in therditure. Second, given the rapid convergence of
the sequence of networks with blocking when the blockingghold increases, the asympotic system provides
considerable insight in the form af; even whem is small or the first queue contains few jobs.

Tandem queues with blocking (bwithout slow-dowhreceived considerable attention over the years. The
authors of [2, 3] take-transforms of the balance equations satisfiedfyyand study the properties of the result-
ing generating function to establish a stability conditéord devise an algorithm to computg. The derivation
of the stability condition for this and related models is giifired in [6] by using the methods of Quasi-Birth-
Death (QBD) processes. In [1] the authors derive, also byguQBDs, a more efficient numerical procedure
to computer;;. They restrict a number of eigenvalues to a set of (non-apeihg) intervals. After locating
the eigenvalues in the bounding intervals, they derive arstan to obtain the associated eigenvectors. Finally,
a suitable linear combination of the eigenvectors shouldesthe boundary conditions fory;. Interestingly,
by using the bounding intervals derived in [1] for the eiggdoes, our approach extends straightforwardly to a
method to compute;; with the same algorithmic complexity as in [1]. These auhalso mention the idea of
slow-down but do not analyze the consequences in detailes&et al. [4] also consider a two-station tandem
queue with blocking. However, now the rate of the arrivalogss is set to zero when the first station contains
n jobs. The second buffer is assumed infinitely large. For shiiem the authors compute the decay rate of
the number of jobs in the second buffer. They also considefithiting regime in whichn — oo. Leskela [8]
studies a two-station tandem network with feedback, but siation 2, rather than station 1, provides feedback
to the arrival process to change rate as a function of theheoigthe second queue. He establishes a stability
criterion for the system with unlimited firsind second buffer.

The paper has the following structure. In Section 2 we speh#é network with blocking and write it as a
QBD process. Next, in Section 3 we present our main resulthi®network and discuss them from an intuitive
point of view. More specifically, we state that the decay raieof the number of jobs in thérst buffer lies in
the interval(p, 1) and we establish bounds of the rate at which the sequengk, converges downward to
whenn — oco. In addition we present the asymptotic structure of therihistion of the number of jobs in the
second buffer when the first queue is very long. Section 4atosthe proofs of these results, which are based
on the theory of QBD processes as dealt with in [7] or [11], tredPerron-Frobenius theorem, cf. [5] or [9]. In
Section 5 we consider similar topics for the tandem queuke skiiw-down and blocking.

2 Model and Preliminaries

We now present the model for the two-node tandem network llibking, write it as a QBD process, and
consider its stability conditions.

Jobs arrive according to a Poisson process with kat&ervice requirements at the first (second) station
are i.i.d. exponentially distributed random variablesrwiteanu* (15 '), while the two service processes are
mutually independent and independent of the arrival pmac®ge assume throughout this paper that# o
(see also the comment on this assumption in Section 3). Aftetice completion at the first station, jobs move
on to the second. Once service is completed there also,gabe the network. Ler")(t) denote the number
of jobs at statiori, i = 1, 2, at timet (including the job in service) for the system with blockitgeshold at..
WhenXé")(t) is equal to this threshold, the first server blocks, i.e., its service rate becomes. Right after
the departure of the job in service at the second statiorfirgteserver resumes service (if a job is present there,
of course). It is clear that the joint procegx (™ (¢), X{™ (t)} = {X{™ (¢), X{™(t),t > 0} is a (continuous-
time) Markov chain. The state space of this proces€i¢" = {(,5)|i = 0,1,2,...;5 = 0,1,...,n}. We
present the state transition diagram{(Xl(")(t), Xé")(t)} in Figure 1. Finally, let

p1:= A1, p2:= A p2, andp := max{p1, p2}, 1)

i.e., pis the load at the slowest server. Note that when the firgp(igecond) server is the bottleneck server, i.e.
p1 < po (resp.u1 > pe2) we can (and henceforth will) also state this by writing= p1 (resp.p = p2), since
we exclude the possibility; = po.
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Figure 1: State space and transition rates of the truncatettm queue.

The Markov proces$ X (™ (t), X{™ (¢)} can be interpreted as a continuous-time QBD process. Weiflen
some common subsets & (") associated specifically to the QBD structukeveli contains all state§i, j) €
2 ™ with i constant.Phasej contains the stateg, j) with j constant. Thus, the levels contain the ‘vertical’
sets of states in Figure 1, whereas the phases contain thedhtal’ sets of states.

To facilitate the presentation we prefer to uniformize thecess{ X ™ (t), X{™ (¢)} at rate
a:= X+ p1 + 2,

and concentrate on the resulting aperiodic discrete-tiraekil/ chain{Xf?k) , Xé”k) }. This procedure allows us
to refer directly to a number of results in the literature ethive otherwise have to reformulate for the continuous-
time model. Evidently, by PASTA, the results we derive {df{?k) , XQ(?Q} apply also to{ X" (1), X{™ (1)}.

The matrix of transition probabilities of the QBDYYQ , Xéj}c)} is of the form

BM™ A
P = [ A7 A AgY . (22)

The(n +1) x (n 4 1) matrices inP(™) are given by

q+r
gm_| "1 , A = pI™, (2b)
r o q
0 0 ¢
A = 7 AV = 0 , (2¢)
q
r 2 . 0

wherep = \/a, ¢ = pu1/a, r = pa/a, andI™ is the(n + 1) x (n + 1) identity matrix.
Provided a certain stability criterion to be addressed iecfam 1 below is satisfied, an irreducible QBD
chain is positive recurrent. Consequently, its statioqaojpability vector exists. Let us henceforth consider the

system in steady state, and write for brevify™, i = 1,2, for Xff,? at an arbitrary point in time. Furthermore,

let wg;” =P{x"™ =i x{™ = j}, i.e. the steady-state probability that the number of jobthe first and

second station isandj respectively.
It can be shown that the stationary probability veetdt) can be appropriately partitioned as

2
Tr(n) = (ﬂén)77rén) R(n)7 Trg)n) (R(n)> LA ’) ) (3)
wherer " (R("))Z = (71'%1),71'5?), . ,w§2)> andR™ is the minimal nonnegative solution of the equation
2
AP+ R AN 4 (R) AL = RO, (4)

3



For our casek™ has to be computed numerically, for instance with the allgors derived by [7].
Rather than computin®™ directly, [12] associates two interesting (probabilistiantities toR™. He
starts by observing that whe®(™ is irreducible, it satisfies

(R("))i = (zn)" (u(")>/ v 4o ((xn)z> , asi— oo, (5)

wherev(™ = (v{™ ... vi™) andu™ are strictly positive left and right eigenvectors®f™ associated to its
largest eigenvalue,, € (0,1). (The prime denotes the transpose of a vector.) The firsttifyaf interest is

m()n) (R(”)>i+1 e
TN Gy ®)
B moye

wheree is the (column) vector consisting of ones. This says thatdltie of the expected time spent at a high
level i + 1 to that spent at level is approximately equal te,,. In other words, the largest eigenvalug of
R™ is thegeometric decay ratavhich is also known as the caudal characteristic, cf. [42jhe QBD process.

Second, '
G (R(")) )i
e g (RM) e
which is to say that (in stationary state) the probabilitytttihe chain is in phasgconditional on being in level
i, is approximately equal to§.") for larges.
It remains to discuss the stability condition of the ch{amﬁc) , X2<7}2 }, which we henceforth assume satisfied.
The proof of the next theorem involves the matA% (), which is also used in Section 4 and is defined as

=", @)

J

p+rx q:v2
2
rT P qr
A (@) = AV + 1A + 27 ATY = S .|, zeol ®)
rer p+qr
Theorem 1. The chain{Xl(f‘,j,XQ(fQ} is positive recurrent if and only if

)\ u1n+1 _ u2n+1
mipe  p1™ — p™

<1 9)
This condition is equivalent to:

log(1 — p1) —log(1 — p2) (10)
log p2 — log p1 '

n > N(p1,p2) =

Proof. It is simple to see that the QBDX{?Q,XQ(TQ} is irreducible and that the number of phases is finite.
Moreover, the stochastic matrjfx(")(l) is irreducible. These properties allow us to apply [7, Teeoi7.2.3].

This theorem states that the QBD is positive recurrerﬂxizﬁé")e < aAé")e, whereq is the stationary prob-
ability vector of A (1). Clearly, A" (1) is the stochastic matrix of a simple birth-death processiceethe

desired solution vectat = (ao, . . ., ax) is given bya; = ao3%, 0 < i < n, whereg = u1/u2 and
-1
n
) 1-0
o = (z ﬂ’) Rt
=0
The conditionaAé")e < aAé")e becomes\ < i Z?:_ol a;, Which leads to (9). To arrive at (10), we rewrite
this as o
g —1
— < 1.
P1 Bn—1 <
Assumings > 1 (i.e.,u2 < p1), we can rewrite this tp2 8" — p1 < 8" — 1, which is equivalent to
n 1-
gr> —— P
1-— P2

By taking logarithms at both sides (and usifig= p2/p1) we arrive at the result. The cage< 1 follows
analogously. |



3 Asymptotic Results for the Tandem Queue with Blocking

In this section we present our main results for the tandenugugth blocking. We choose to present the
proofs in the next section, since they are rather lengtiwalng several partial results and lemmas. Here we
focus on the results themselves and try to understand thean attuitive level. Partly this is possible by a
comparison with similar notions derived for the standackdan tandem network (i.e. without blocking). It may
seem that the network with blocking resembles the twoestatindem Jackson network more and more when
the blocking thresholad increases. However, this is not true in all respects, asrhes@pparent presently.

Before turning to our results, we like to recall our assuompfi: # w2 throughout this paper. The stability
issue is easily settled when = u2 = p (condition (9) is then replaced by/u < n/(n + 1)), but we did
not aim at providing an analogue to Theorem 2 below, althouglilo believe that such an analogue must hold.
Furthermore, it is unclear how a possible analogue of The@&®elow would read.

As a first point of interest let us see how the blocking levéhfluences the stability condition (9). Writing
gn, for the left hand side of (9), the stability conditidiin, .~ g, < 1 is equivalent to the conditions; < 1
whenus < p2 (0r p = p1), andpz < 1 whenpi > p2 (Or p = p2). Thus we arrive at the condition < 1,
which is also the stability criterion of the two-station d&m Jackson network.

A second characteristic is the geometric decay zatel.e. the decay rate of the first station’s queue length
distribution, defined in (6). Interestingly, for certainrpmeter regimes, the limit of,, asn — oo is different
from p1, which is the geometric decay rate for the Jackson netwarkcifically, we have the following.

Theorem 2.

(i) If the system with threshold at is stable, i.e.n > N(p1, p2) holds, then the decay rate, lies in the
interval (p, 1), wherep = max(p1, p2).

(i) The sequencézy,},>n(p,,0,) deCreases monotonically poand its elements satisfy the bounds

Biyiat, ifp=p1, (11)

O0<zn—p< .
{ﬁﬂz az, ifp=ps,

where fori = 1, 2, the constantsy; are in (0, 1), and3; and~; are positive constants, the precise form of
which is presented in Section 4.2

In other words, the asymptotic queue length in the firstata mostly influenced by the bottleneck server.
Moreover, the convergence of, | p is at least geometrically fast.

At an intuitive level, the first statement is not too diffictdtunderstand. To this end we view the two queues
in tandem as one black box at which jobs arrive at pat&Since each job receives service at both stations, the
slower server in the black box clearly dominates the totahloer of jobs in the box, wherever these jobs may
reside. Thus, the decay rate of the total number of jobs meisidunded below by = max{p1, p2}. By
‘opening the black box’ we see that, as the second bufferiigfinecessarily the first queue is large when the
system contains many jobs. Hence the decay rate of the nushigss in the first station must be greater than
or equal top. The other claims however appear less evident, in partitdageometric bounds on the difference
betweent,, andp.

As a third topic of interest we explore the probabilistiasture in the direction of the phases for some given
leveli > 1. A convenient notion to consider in the present settingésr#tio of the probability that the chain is
in phasej + 1 to the probability that the chain is in phagewhile the chain is in some high level

Theorem 3. For a stable system the following statements hold.

O (n) (n)
n n
lim Zitt _ Uil (12a)
i—oo (M) (n) *
i Yj
(i) Whenp = p1, we have
(n) -1
V. . —
o) _ui uﬁlp a4 le)ﬁl *al, ()
vy 2 2 P1 2 P1
J
and wherp = p2,
(n)
v ) 1—
< Rt T 2R 020
v
J

Here the constants;, 8;,~v:,i = 1,2, are the same as in Theorem 2.



The first statement explains Whrﬁ)l/v;.") is the quantity of interest here, and is an immediate coresamp

of (7). Clearly, the main relevance of the second statensethiit wherp = p1 (p = p2), the quantityu](.i)l/v;")
converges to a value not far froRy u2 (111 /p12), asn — oo, provided thaj is not too close ta (0). In particular,
the upper bound on the distance betweé{ﬁl/v;") and /2 (p1/u2) whenp = py (p = p2) depends orn,
also whem grows large.

Again we like to contrast these results to those of the tandfsrkson network at an intuitive level. The sta-
tionary distribution of this latter network has produadfr, hence, denoting the quantities related to the Jackson
tandem queue with a superscrigt,

7o)

% =po, forall (i,) e 2. (13)
K3V

Note that this ratio doesot depend on which of the two servers is the bottleneck, nor dakpend ory, the

queue length in the second station, and finally it holds fiof, &nd not just foi — oo as in Theorem 3.

Now, when the first server is the bottleneck and> 1 we conclude from our theorem that the tandem
network with blocking behaves similarly as the Jackson ¢éamahetwork, as is also the case for the decay rate
in Theorem 2. Namely, if: >> 1, the geometric decay rate is approximatelyand =", , /7" ~ p», if also
1> 1.

However, when the second server is the bottleneck, thetisitug strikingly different. For the tandem
network with blocking we see that the geometric decay ratarger thanp2, not p1. Moreover, when > 1,
the ratioﬂ,"jlrl/w%) ~ p1/u2, whereas this ratio ia/ o for the Jackson network. It need not surprise us that
the outcomes are different, since the behavior of the systegmblocking andp = p2 will be such that when
1 > 1 the number of jobs in the second queue will mostly be highicglly in the neighorhood of.. We can
therefore expect other boundary effects than in the pasep; and the Jackson network. This also explains why
in this case the ratio should be larger than 1 (and indagd. > 1 in this case). However, at the moment it is
unclear to us how the actual value/u2 can be understood. One may be inclined to reason that, wien,
the arrival rate at the second queugis Indeed this is the case, but simply dividing this/byis not the correct
way to find the “local decay rate in the direction of the phdsesome large level”. Namely, our quantity of
interest is a ratio of stationary probabilities, the deteation of which also involves the boundary behavior at
1 = 0. Another way to see that this reasoning is not correct, isitlveould then also hold for the cage= p1
and for the Jackson network, which is apparently not true.

Since we do not fully understand the precise value:ofu2, we leave any further intuitive, probabilistic,
explanations for Theorems 2 and 3 to future work, and pres@n(analytic) proofs in Section 4. The analytic
approach also finds motivation in that it enables us in Se&im explorenetworks with slow-down and blocking
which seem even more complicated to handle probabilisticAk a side result, we also obtain an algorithm to
computez,, by means of bi-section in Section 4.1, see Corollary 12 anddrle 13.

4 Proofs of Theorems 2 and 3

We now successively prove Theorems 2(i), 2(ii) and 3. Aldto@Theorem 2(i) is the least difficult to un-
derstand, and indeed known as we mentioned before, cf. {&]pteparations for the proof of this result take
up most of the space. However, the machinery used is notuifiad provides us with the tools to give short
proofs of Theorems 2(ii) and 3.

4.1 Proof of Theorem 2(i)
4.1.1 Method of proof
Here, and in the remainder of Section 4.1 we fix the blockimggholdn and prove that the decay ratg
lies in the open intervalp, 1). To achieve this, we use the following result stated in [7¢t®a 9.1]:
Theorem 4. The decay rate:,, is the unigue solution if0, 1) of the equation

z =" (a), (14)

where¢ ™ (z) is the spectral radius oft (™) ().

We apply this as follows. Since ™ (z) is irreducible and nonnegative far > 0, it follows from the
Perron-Frobenius theorem that the spectral ragfit’y ) is also the largest (and simple) eigenvaluedst’ (z).
Suppose now that we can find ém -+ 1)-dimensional row vector™ > 0, i.e., each component™ of v(*)
is strictly positive, and: > 0 such that

v AM (2) = vM g, (15)



Then by the Perron-Frobenius theoremnecessarily solves the equation= ¢ (z), andv™ is the left
Perron-Frobenius vector of ™ (z). In fact it is the same vectov™ as introduced in Section 2, since this
vector satisfies ™ R™ = z,,v(™ and hence, by (4), also™ A™ (z,,) = z,,v(™, so that it must be equal to
the left Perron-Frobenius vector af™ (zx), which is unique up to scaling.

Below we use formula (15) to efficiently combirgé™ (x) and the components of the Perron-Frobenius
eigenvector into a sequence of functions. This will thewl lsean even simpler characterization of the decay rate
xn, See Theorem 5, after which we can work out the details angepfbeorem 2(i). Since in this section the
blocking threshold: is fixed, we will mostly suppress the dependenceidrere. However, we always write,
for the decay rate.

To introduce the sequence just mentioned, let us interfifdtqs a constraint om andv and work out its
implications. Thus, assuming that (15) is true and expandiith (8) we find thatr > 0 andv > 0 should
satisfy

r=p+rz+ I , (16a)
Vo
2 . .
=L, TR <<, (16b)
Uj Uj
qrvn_1
r=-"———+4+p+qz. (16¢)
Un

From the first relation we see that for giverandwvo, the value ofv; follows. But then, the second relation
providesus, . . ., v,. Since we are free to choose the nornvofve can set, arbitrarilyy = 1. As a consequence,
the first and second relation completely fixoncez is given. The third relation forms a necessary condition on
z such thatz andv indeed form an eigenvalue and eigenvector pairt6f (z). In other words, whereas the
simultaneous validity of the first and second relation aleegesr free, the third relation fixes it.

To further clarify the structure of (16) and the dependente:,owe now define the following sequence of
functions ofx:

xo(z) = ma’, (17a)
x;(z) == armv?jl = ,umtvl_)jl ) 1<j<n, (17b)
j— j—
3
Xn+1(z) i=ax — A — B1pa% (17c)

Xn ()

We definexo (x) andy.+1 (z) for notational convenience, although they do not relate édiiately tov by (17b).
Now, multiply the left and right hand sides of (16) by= X + 1 + p2 and rearrange, to obtain, respectively,

3
x1(z) = az — X — “;(’)‘(1“; = A+ )z — A (18a)
3
Xi(@)=az — A - B2 o< <ng, (18b)
Xj-1(z)
Xnt1(2) = . (18c)

From the above we conclude the following.

Theorem 5. Letz € (0,1) be such that the sequendg;(z)}o<;j<n+1 Satisfies (18) and each element
x;(z) > 0. Thenz is the unique solution of ™ (z) = , i.e., = equals the geometric decay ratg of the
tandem queue with blocking at thresheld

Proof. Whenz satisfies the hypothesis, the validity of (15) follows by swactingv according to (17b).
Regarding the positivity of7, which we do not require in the definition (17) gf (x), the conditionst > 0
andy; > 0 imply thatv; andv;—; have the same sign. Hence, asyall> 0, it is straightforward to construct
v > 0. |

Remark 6. It is apparent from (18) that the desiredtan be expressed as a root of a polynomial. However,
this insight might not provide the easiest method to charéar the decay rate. With the approach below we
can achieve our goals with elementary methods. Hence, wetdynto bound the decay rate by locating or
bounding the roots of polynomials.

Our search for the decay rate thus motivates a study of the structure of the sequénGéz) }o<;<n+1.
First we explore the properties of this sequence, fixingn Section 4.1.2. Finally, in Section 4.1.3, we vary
x such that, by combining and exploiting these properties amize at the proof of Theorem 2(i), based on
Theorem 5.



4.1.2 The sequencéy;(z)} with z fixed

For fixedz, (18) clearly shows that the elements{af; (z) }o<;j<n+1 Satisfy a recurrence relation. Let, again
for fixed z, the mappindl” be given by

3
T:nHafofM. (29)
n
Then we can write
Xj+1(z) =T (x;(7)), for0 <j <n. (20)

It turns out thatl" is the key to understanding the structure{gf; }, and thereby to obtaining the decay rate.
The mappings — T'(n) is a hyperbolic linear fractional transformation, see,.,g$0]. It is infinitely
differentiable everywhere except in the origin, and it hasneerse, given by

T g papoa®
ar—A—n

The equatiom; = T'(n) reveals thafl" has two fixed pointsn; andn_. These points are the solutions of the
quadratic (in;) equation;® — (az — A\)n + papez® = 0 so that

axr

-1
Nty = + 5\/(am —A)2 — 4pq poxd. (21)

2
In Section 4.1.3 we show that only real-valugd are of importance for our purposes. Hence, it suffices to take
2 such that the discriminant
D(z) = (az — \)* — 4p1poz® > 0. (22)
The behavior of the sequence of iterates, T (n), 79 (n) := n, TM (1), ... forn € (n_,ny) is also
of interest. The next lemma formalizes what might be angiwg from Figure 2.

T T T o

Figure 2: Some properties of the mapping- T'(n). The variable; is set out along the horizontal axis. The solid
line refers to the identity.

Lemma 7. If z such thatD(z) > 0 (which implies that)— and are real) andn € (n—, 74 ), then

n- = lim TCY(n) < TV () <n < T(n) < lim T (n) = ny,

i— 00 j—o00

. _ J i
ny — T (n) < (%) (n+ =), Jj>0,

T () —n- < (i> (n—n-), i>0.
N+
Proof. First, from (21) we have

ne+n-=ax—X  and  nny = pipea’



Now, asn € (n—,n+), it follows that

3

P po® n-n+ _ N-

ne = T() = ns = (az =N + B =y T, ),
n n n

Clearly,n— /n andn; — n are positive, which implieg; > T'(n). Moreover,n— /n < 1so thatny — T'(n) <

n+ — n. Therefore, for all) € (n—,n+) we haven— < n < T'(n) < n4+. Concerning the convergence rate to

1+, note that

ny — TP () = %(m —T(n))

n? n-\"
= W(m -n) < (7) (ny —m).

By induction, 7" () — 7 at least geometrically fast.
By similar computations we obtain

S
3

AR ()

T () —n- = (n—mn-)>0.
T+

So.n- < TV (n) < n < ny whenevem € (1, ny), andT " (n) —n- = (n— ) ITj_, T () /n},
which is strictly smaller thain /n+)* (n — n-).

4.1.3 Varyingz — the result

From now on we will viewy;(x) again as a function aof. We start with pointing out an interesting, and
perhaps unexpected, relation between the stability of 8B @ain{X{f‘k), Xéf‘k)} and the derivative of.+1
with respect tac.

Lemma 8. The stability condition(9) for the Markov chain{ X{"}), X{")} is satisfied if and only if

p1 > X;+1(1)~

Proof. First of all, the differentiability of7” implies (by the chain rule) that,,+1(x) has a derivative. Next,
from (18) it is immediate that; (1) = u1 forall j = 0,...,n + 1. Hence, from (18) and writing = u1 /2
as in the proof of Theorem 1, we find by induction

, 1-p7 1 .
() = Ot m) =g — e 0<j<n+l

The conditiony,,;; (1) < p1 is therefore equivalent to

1-p- Y al-p" -5
S -2
A T— 51 +pmp =51 “21—ﬁ—1<0
After a bit of algebra we see that this condition is precig8)y |

Let us now concentrate on the fixed points and»n_ of T'. From their definition (21) it can be seen that
they are also functions af. To provide further intuition about these functions, wetpioFigure 3 their graphs
together withy2(z) andxs(z).

Lemma 9. First, the functions: — 7+ (z) are real valued and positive dp, 1]. Second,

n-(x) < xo(z) = maz® <ni(x), ifze(p1) (23)
Third,
Xo(p1) = Ap1 = n-(p1), (24a)
Xo(p2) € (n-(p2),n+(p2)) = (Ap2, pap2), if p=p2, (24b)
_ ) n=Q), ifp=p,
xo(1) =1 = {m(l), o= po. (24c)
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Figure 3: Plots of the functiong,(z), x3(x), andny(z). In the left panel\ = 1, 4y = 4, us = 5, while in the
rlght)\ = 1,”1 = 4,”2 = 3.

Proof. For the first claim we focus on the discriminabB{z) = (ax — A\)? — 4u1 puea® in the definition
of n+(z). Clearly, D(z), being a cubic polynomial, can have at most three real rootsg2, and&s, say.
By simple computations we see th&{(0) > 0, D(\/a) < 0, D(p2) > 0, D(p1) > 0, D(1) > 0, and
limg oo D(z) = —o0. Itfollows that0 < &1 < A/a < & < min{p1, p2} < max{p1,p2} <1 < &3. So, 0n
[p, 1] the discriminantD(z) is positive, and)+ (z) are real valued. It is now simple to check that(z) > 0 for
x € [p,1].

To prove the second claim, rewrite the inequality(z) < piz? < ny(z) to

(2uz® — (az — N))? < (az — N)? — 4p1 poz®.

After some algebra and using the positivityzofve find the above to be equivalentXdl — z) < 1 z(1 — ).
This is clearly true for all: € (p1,1) and, hence, for alt € (p,1).
Verifying the third claim is simple. [ |

With the above observations it is straightforward to appdyrima 7 to the functiong;(z), 0 < j < n + 1.
For later purposes we formulate this intermediate residbimewhat greater generality than is necessary for the
moment. The generalization consists of extendifg(x) }o<;<n+1 to a doubly infinite sequencey; (z)} ez
by continuing in (20) the iterative operationdfandT(~") beyondy..;1 andxo, respectively. Thus, define for
i>1,

(@) =T (o(@) = T (T97 (xo(@)) = T (x;-1 ().
x=i(@) =T (xol@) = TV (T (xo(@)) = TV (xoga (@)

This extension allows us to state the following.
Lemma 10. Whenever: € (p,1),

n-(z) < ...<x—ilz) <...<xolz)<xi(z) <... (25)
< Xn+1(m) <. . < X‘j(l’) <. . < 77+(.T),

for: > 0andj > n + 1. Moreover,x_;(z) — n—(z) and x;(x) — n4+(xz) geometrically fast fo, j — oo.

Proof. As, by Lemma 9z € (p, 1) implies thatxo(z) € (n—(x),n+(z)), we can usego(z) as the ‘starting
point’ for (the iterates of{” and7~) and apply Lemma 7. ]

As a last intermediate result we consider the concavity @stéquence of functiong; (z),2 < j < n + 1,
andn4(z). Proving thaty4(z) is concave is not immediate as the discriminant (22) mestbe concave on

(p,1).

10



Lemma 11. The functionsy;(z), 2 < j < n + 1, andn4(z) are strictly concave offp, 1). The function
n—(z) is strictly convex orfp, 1).

Proof. We assert by induction that/ (z) < 0 for all z € (p,1) andj > 2. First,x1(z) = (A + p1)z — A
is concave. Now, foj > 2, we have by (18),

@ _ o« <6+6 TG @) (wx}-l(w)>2 N w?x.;-'_l(w)) _

papz  Xj-1(®) Xj—1(%) Xj—1(%) Xj—1(%)

Lety(z) = zx)_1(z)/x;-1(z) and write the first three terms within the brackets as thelymdaa-6+ 6y — 2y°.
It is simple to see that, as both roots are not real, this jpéaials negative for ally. The fourth term in the
expression above cannot be positivexgs.1(z) > 0 for z € (p,1) andx}_,(z) < 0, by the induction
hypothesis. Hence// (z) < 0.

Now, for anyz,y € [p, 1], anda € (0, 1) take the limitj — oo of both sides of

xj(az + (1= a)y) > ax;(z) + (1 - a)x;(y),

and conclude thaj (z) is also strictly concave. Finally, sinee (z) = az — X\ — n4(z), it follows thaty_ (z)
is strictly convex.

By now we have identified all required intermediate reswtthsit we can bound,, from below.

Proof of Theorem 2(i). We prove that the conditions of Theorem 5 are satisfied. Rigggthe positivity
of the numbers; (z) for z € (p, 1) we have by Lemmas 9 and 10 thgt(xz) > n_(z) > 0forj =0,...,n+1.
It remains to prove that the functiop,+1(z) intersects the ling.12 somewhere in the intervdp, 1). First,
from (24a)xn+1(p1) = n-(p1) = Ap1 < pap1. Also, whenp = pa, xo(p2) € (1-(p2), n+(p2)), which im-
plies by (25) thatn+1(p2) < n+(p2) = p1p2. Hencexn+1(p) < p1p. Onthe other handy,+1(1) = p1 and
Xni1(1) < w1, by Lemma 8. Consequently, the concavityxofy1(-) implies there exists a unique € (p, 1)
such that)(n+1($) = Q1.

As a direct by-product of the above proof and the uniquentfgeaolution ofu1z = xn+1(z) in (0,1) we
obtain

Corollary 12. xny1(x) < pazforall z € (p, zn) andxnyi(xz) > pizforall z € (zn, 1).

Remark 13. This corollary shows that we can find, numerically by the method of bisection. Take the first
estimater,,,; of z, as(p + 1)/2. Computey; (zn,1) forj =0,...,n+ 1. If Xnt1(Zn,1) > p1zn,1 thenz,
must be too large by the corollary, whereagiifi1 (z»,1) < p1xn,1, the estimate,, 1 must be too small. Based
on this result we take for the next estimatg,, either(p + xn,1)/2 or (z»,1 + 1)/2, and so on. Clearly, the
sequencexy,,m }m>1 CONVerges ta:, .

At this point the computation af;, that is, the geometric decay rate when the second stat®ndwaiting
room, is very simple indeed. The equatigs(x) = p1x reduces to

(x—=1) (p2 12> — Xaz+ \°)

x1(x) =0

Sincez; € (p, 1) we conclude that

g <1+ 1_4#2). 5)
2 p1 po a

4.2 Proof of Theorem 2(ii)

As opposed to the previous section, where the blocking tlotds: was fixed, in this section the dependence
on n plays a central role, since we study the limiting behaviothef sequence of decay ratgs,} whenn
increases t@o. We first quote the result from Section 3, complemented withexpressions for the constants
ai, Bi andy;, i = 1, 2. The subsequent proof rests heavily upon the functigr(s:) andy; (z) from Section 4.1,
and their properties.

11



Theorem 2.
(i) The sequencéry,},>n(p,,0,) decreases monotonically joand its elements satisfy the bounds

T, ifp=
0<an—p< 51710427 ito=p,
Bay2az, ifp=po,
where the constants
Q1 = max { p }, Q2 1= Imax {Lm}y
z€lp1,1] | N+ () z€lp2,1] | x1(2)
Bri= max {wx—1n-(2)}, B = max {ni(z) — xi(2)},
z€[p1,1] z€[p2,1]
1 —1
(T — nN— X —
Vo= <A+p17w) , o (w,m> ,
r1 — p1 Tr1 — p2

are positiveq; < 1,7 = 1,2, andz; is given by (26).

The maxima involved do not occur at the boundaries of thavats but in the interiors, as is clear from
Figure 3 for a concrete case. The form of the solutions obthbyy taking the derivative with respect toare
cumbersome; we choose not to display these here.

Proof. We first show thafx,,} is decreasing, that is;, ¢ [zm,1) whenevem > m. By (25) we see that
Xj+1(z) > x;(z) forall j > 0andz € (p,1). Combining this with Corollary 12 fox € (z, 1) and noting
thatxm+1(m) = g1z, We conclude that for € [z, 1)

Xn+1(2) > Xmt1(2) > paz.

Asnoz € [zm, 1] can solve the equatiog,+1(z) = pix, it must be thate,, < xy,.
With regard to the convergence ot} to p, we consider first the cage= p2. Letd, := z, — p2, which
is positive for alln > N. From Lemma 7,

(zzéi:)))n (77+(~Tn) — X1 (.Tn)) > M4 (.Tn) - Xn+1(37n)~ (27)

As 4 (+) is strictly concave offp2, 1) andz, < z1 < 1 (for n > 1) we can bound) (z,) by

N+ (1) — 14 (p2) 5. (28)

Tp) > +
N+(n) > n4(p2) p——

Therefore, using)+ (p2) = p1p2 andxn+1(xn) = p1 xn = p1(p2 + dr), the right hand side of (27) satisfies,

N+ (21) — 14 (p2) 7/“) 5.

Tn) — Xn Tn >
1) = () > (2D

Hence, with (27),
1+ (21) — 14 (p2) >1 (n—(%))"
671 < - — - N\ n - n )
(B telee) ) (=) (g ) - ()
from which the case fop = p» of (11) follows.
Forp = p1, letd, = z, — p1 > 0. Clearly, as)_(-) is convex,

777(5”1) 777*(p1)6n (29)

_(xn) <M= +
n-(zn) <n-(p1) p—

Therefore, by Lemma 7 and using that(z») = (A + u1)(p1 + 6») — A andn—(p1) = A p1, we obtain

X1 (@n) | o .
( Nt (Tn) ) (Xn+1(@n) = n-(2n)) > x1(2n) — n-(2n)
n-(z1) = n-(p1)
O = L
Moreover, o
Xl ) - o %n max T =
N+ (@n)  ne(Tn) = gce[pl,l]{m(x)} ; (30)

12



and, likewise,

Xnt1(Tn) — 17— (Tn) < e {mz—n-(z)} = p1. (31)

The positivity of the constants, except and~2, as well as the fact that; < 1, follows from Lemma 10.
For 2, observe that

Nt (1) —ns(p2) = e (@1) = mi(p2) _ me(D) =na(p2) _
T1 — p2 1 — p2 1—p2 ’
sincern is strictly concave angs < z1 < 1. Similar reasoning applies tp . |

4.3 Proof of Theorem 3

Below we restate Theorem 3 for convenience. The last egualjart (i) was not in the original statement
in Section 3, since there the functiogs(z) were not introduced yet. It explains why we are interestegkio
insight into the effect of an increasing blocking threshelon the values of x; (z»)}1<;<n. In Figure 4 we plot
the graphs of the sequencesg; (z5) }1<;<s, {xs(#10)}1<j<10, ANd{x; (220) }1<j<20 fOr p = p1 andp = po,
respectively. To obtains, z10 andzso we follow the procedure specified in Remark 13. These graphgest
that most of the elements ¢k, (z) }1<;j<n are close ta)— (z,) or ny(x,) whenp = p1 or p = po.

Theorem 3. For a stable system, the following statements hold.

0 ) ()
n n
fig it _ Yl Xi+1(2n)
i— 00 ﬂ-z(z) U;") U2 Tn

(i) Whenp = p1, we have

(n) .
v} A , _
g(+)1 A B a4 (1 —71 ) Bim o,
O K2 p1 H2 p1
and wherp = p2,
(n)
v, . 1—
it p B2 ol 4+ p2 B2 72 ol
UE") p2 A 1—p1 p2

where the constants;, 3;,~; are as defined earlier in Section 4.2.

Proof. Statement (i) is immediate from (7) and (17b).
For (ii) we first prove the result fop = p2. Observe that by the triangle inequality and the inequality
H2 Tn > A,

(n)
vl ’Xﬁrl(xn) ~ n+(p2)
U](,") 2 12 Ty W2 P2
_ lp2 X1 (@n) = zn 0y (p2)] (32)
W2 Ty, P2
< bar(@n) Zni (@)l | Jp2n4(@n) = 2n 11 (p2)|
A A p2 '

Clearly, by applying the second statement of Lemmas7 o x1(z»), we have
0 < stem) ~xra(on) < (EEDY g0 ).
X1(zn)

For the second term, we observe that(z,) > = p1, Sincens is strictly concave andy( (z) = uiz for
x = p2,1. Hencepz Ny (xn) > p2 Tn 1 = xn n+(p2), SO that,

M1+ p2 — 2X
4 (2n) < 04 (p2) + 0n 0 (p2) = 14-(p2) + On o (33)
where we recall thaf,, = z,, — p2. Hence, after some calculations,

1*p2
1—p1

0 < p2n(zn) — Tani(p2) < (p2nls(p2) — 14+ (p2)) 60 = A S

The rest follows immediately from Theorem 2(ii).
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Whenp = p1, so thate,, > p1, consider

(n)
vt A

(n)
v; M2

_ | xira(en) _ m-(p1)
H2 Tn H2pP1

< IXj+1(2n) = n—(2n)] n lp1 0= (xn) — 20 n—(p1)|
p2 p1 p2 pi

For the first term we apply the third statement of Lemma 7 with x»+1(z») andi = n — j, to find

o) = -G < () () < (@),

after which we only need to apply (30) and (31). For the sed¢erd we user, = p1 + §» andn_(p1) = Ap1

to arrive at
[1—(zn) —1—(p1) — Adn|
H2p1
Sincen_(z) is convex, andy’_(p1) > A, the absolute signs are not needed, so that we can arrive sult
using (29) and the fact that, < 3171 af. [ |
p=p1,n=>5 p=p2,n=>5
14 g E ZEE—— E TEEE—— E ZE—— 1.4 T T T
12} - TN S Ho Rk
1k A 1F > b
08 F P 08 F X N
06 | > 4 06 |- 4
04 & < 4 04 F 4
0.2 | - 0.2 F B
O 1 1 1 O 1 1 1
2 3 4 5 2 3 4 5
N XG R Ny A N XG R My A
p=p1,n=10 p=p2,n=10
R S T R R S T 14 T T T T T T T
12 g i 3
1+ . 1k e i
0.8 |- 4 0.8 |- /X B
06 P 06 | .
04 - E 04t i
0.2 | - 0.2 F B
O 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
N XG R Ny A N XG R My A
p=p1,n=20 p=p2,n=20
R = T T M T T 14 T T T T T T T T
12 + E L2 FH* E
1+ % 1+ / e
08 A 08 f -
0.6 | s 0.6 I -
04 o v vy v v vy e Nt 04+ E
0.2 | - 0.2 F B
O 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
N XG R My A N XG R My A

Figure 4: Graphs of the sequenfg; (z,)}1<;<n» for n = 5, 10, and20. Atthe leftp = p1 (A =1, 11 = 3 and
e = 4), whereas at the right = p2 (A = 1, 41 = 5 andus = 4). The phasg increases along the-axis; the
value ofy,(z,) is set out along thg-axis. For clarity we connect subsequent tesmée,, ) by lines.

5 The Tandem Queue with Slow-down and Blocking

Consider now a network in which the second server signafrgi¢o slow down, i.e., towork atraje, < p1
instead of at rat@+, when the second station containsor more jobs, where, of course, < n. Figure 5 shows
the state transition diagram of the resulting queueinggs®c
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(0, n) —A—> (1771) —A\—= (2, n) G VG

LN

NN
N N
YOONY N
(0,m) —x—= (1,m) —x—= (2, m) —x—
AR

Figure 5: State space and transition rates of the two-stétiodem queue with slow-down and blocking.
that above phase: server 1 works at ratg, rather than a, .

In this section we assume the following ordering of paransete

A< p2 < fin < p, or, equivalentlypr < p1 < p2 < 1, (34)
wherep: := \/ji1. Observe that as a consequenges p- in this section. Henceforth we do no longer use
p, but alwaysp,. With this ordering we generalize Theorem 2(i) to the présase and restate Theorems 2(ii)
and 3 in somewhat weaker form. The methods of proof are gitoikthose of Section 4. Due to these similarities
we only show the main steps to arrive at the results statesl hEne details may sometimes be slightly more
involved algebraically, but are seldom more complicatetnceptually.

Remark 14. It would, of course, be interesting to consider other orggiof the system parameters such
as, for instance) < i1 < A < p2 < p1. However, Lemma 16 below does not immediately carry ovenésé
cases as its proof depends crucially on the ordering (34)caligcture, based on numerical experiments, that
similar results can be obtained for all cases. Thus, ‘casekihg’, i.e., proving each step of the line of reasoning
below for every possible ordering of parameters (providedchain is stable), seems a possible method to obtain
stronger results. However, this approach is, admittediyefegant, neither might it reveal much of the structure
of the problem. It remains for further research to find theegahunderlying principle; here we concentrate on
the ordering specified in (34).

Sinceji, < u1 we can again uniformize the related continuous-time Madtwin{ X ™™ (¢), X{™™ (¢)}
atratea = X + p1 + peo to obtain an aperiodic discrete-time QBD chéin(f;’m),Xéf;’m)}. The matrix of
transition probabilities?™™ has the same form a8 in (2), but whereaB(™™ = B and A{"™ =
Aé"), Agn’m) becomes, witl§ = fi1/a,

r

r 0

A = (35)

q

where at then-th row the changes occur, ami"’m) has the same form a$§">, howeverg replaces; in rows
m,...,n — 1. Finally, IetA("’m)(m) = Aé"’m) + mAg"’m) + mQAén’m).

Concerning the stability of the chain we follow the approatfiheorem 1 to derive a hecessary and sufficient
stability condition. In accordance with our expectations & system with the ordering (34), this condition
reduces to\ < uz whenn — oo.

15
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Theorem 15. Let 8 = p1/p2 andj3 = 11/ 2. The two-station tandem network with slow-down threshold
m and blocking atn > m is positive recurrent if and only if

p (1= B™)(1 = §) + i B (1= B)(1 = ")

A< = — (36)
(I=pm™)(1=pB)+pm(1—=pB)(1—pr )
Proof. Following the proof of Theorem 1, the normalized solutiomoi(”’m)(l) = « has the form,
o3, ifi<m—1,
o = ~ .
BT, ifm <i<n,
and _—
—1 1_ﬁm ml_ﬁn -
ay =——+pf ——.
e P A e
The inequalitye A ™e < aAT"™ e becomes
m—1 ] n—1 . 1 —ﬁm 1 —Bn_m
A<ao| Z ﬁl-f-ﬂlﬂmz:ﬁz_m = o (u1—+ﬂlﬂm7~) .
i=0 i=m 1-p 1-p
|
The next step is to rewrite the equation
v Am) () = (g (37)

and derive a sequende;(z}i<;<n in terms of mappings similar t@ defined in (19). With this aim, let
x;(z) = p2zvj/v;—1 asin (17b). However, contrary to (18) we now nékxbe rather than one, mappings to
cast (37) into a sequende; () }1<;<n, NamelyT as in (19), and

3 ~ 3
_ Haprt Time az — A — 22T (38)

n n

S:n—ar— A

wherea = X\ + i1 + p2. Again settinguo = 1 and introducingyo(z) andx,+1(x) for convenience, we have

M1$2, If] 207

T (xj-1(x)), if1<j<m,
X; () = L

S (xm(x)) , if j =m+1,

T (xj-1(z)), fm+2<j<n+1l

Loosely speakingS movesy (x) across the slow-down thresholdratto the iteratey,,+1(z) on whichT can
start operating. The condition anof the last coordinate of the vector equatiofft™ A ™) (z) = v(™) g s,

Xn+1(2) = fnz, (39)

rather thany,+1(z) = p1x as in (18c).

Theorem 5 carries over immediately. Thus, if we can find (0, 1) such that each element of the sequence
{x;(x)}o<j<n+1 is positive andy,+1(z) = iz, thenz is the decay rate we are searching for.

To establish that the elements ff; (z) }o<;j<n+1 are positive we would like to apply Lemma 10. Sup-
posing thatxo(z) € (n—(z),n+(z)), it follows that the elements ofy;(x)}o<j<m all lie in the interval
(n—(x),n+(z)), hence are positive. However, it is not immediately obvithet S (x(z)) lies somewhere
in between the fixed pointd_ () and 7, (z) (regarded as functions af) of 7. Now realize thatyo(z) <
xm(z) < n4(z), and therefore by (38), thaf (xo(z)) < S (xm(z)) < S (n+(x)). Below we prove that
f—(z) < S(xo(z)) andS (n+(x)) < 74+ (z) so thatS maps any element ifio(z),n+(x)), andin particu-
lar X, (z), into the interval(7_ (z), 7+ (z)). Therefore, Lemma 10, which applies to equally wellltalue to
the ordering (34), ensures that also the elemen{s@fz) } n.+2<j<n+1 lie within the interval(7j— (z), 7+ (z)).
Finally, due to the ordering (34) Lemma 9 implies thjat(z) > 0 for z € [p2, 1], thereby guaranteeing the
positivity of all elements of the sequen€g; () }o<j<n+1 for « € [p2, 1].

Lemma 16. For all z € (p2,1):

7-(x) < S(xo(x)) and S (n+(z)) <4 (). (40)
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Proof. Let us start with proving the first inequality. As< p2 < fi1 it follows from Lemma 9 thafj— (x) <
fi1 2. Hence,u ii— (z)/fi1 < pix® = xo(z). Applying S to both sides and noting that(u: 7 (z)/fi1) =
T (7—(x)) = 71— (x) gives the result.

Concerning the second inequality in (40) observe that thegjuivalent to

Nt (@) + (B — p1)z = S(n+(2)) < 71 (2). (41)

Clearly, in casei; = u1, the left hand side and the right hand side are equal. Nekigiflerivative with respect
to i1 of the left hand side of (41) is larger than the derivativetef tight hand side then, @8 < u1, the
inequality must hold.

Thus, we like to show that when e (p2, 1),

. 8ﬁ+~(m) _z (Gx — Nz — 2uz2®
o 2

1
2 \/(ax — N)? — dji poa®

Rewrite this to

\/(sz —A)? — 4z > ax — N — 2,u2x2.
This inequality is implied by

(ax — N)? — 4 pox® > (ax — N)? — dpoa®(ax — N) + 4ps 2”,

which in turn reduces to
Az —1) > pox(z —1).
This is true sincer € (p2, 1). |

As counterpart of Theorem 2 we obtain the following.

Theorem 17. If p1 < p1 < p2 < 1 and the blocking threshold and slow-down thresholoh < n are such
that the chain{XfT}c””) , XQ(ZC””)} is stable, the sequende:,, . } » decreases monotonically g for m fixed.

Proof. The positivity of the elements dfy; (zn,m }1<;j<n+1 iS Settled by the discussion leading to Lemma 16.

To prove that there exists a uniquec (p2, 1) such thaty,+1(z) = 1z, we reason an in the proof of
Theorem 2(i) in Section 4.1.3. Observe that:x(i)p2) < n+(p2) = x;(p2) < 7+ (p2) = f1p2 forall j > m;

(i) xn+1(1) = f1; (iii) Condition (36) is equivalent to¢,, (1) < f1; (V) xni1(z) < 0, i.e., xny1(z) is
strictly concave, for € (p2,1).

By similar reasoning as in the first part of the proof of Theor2(ii) it can be seen thgtx, . } decreases
monotonically. Finally, pertaining to the convergencg4pthe sequencér..,» }, being bounded and decreasing,
has a unique limit poin{ in R. Suppose tha > p2. Then, sincefj+(¢) > f1¢ andlim;— o x;(x) = 7+ ()
forall z € (p2,1), there existd\f > 0 such that for allj > M, x;(¢) > f1¢. On the other hand, we derived
above thaty;(p2) < fi1p2 for 7 > m. The continuity ofy;(x) implies that there exists;_1 € (p2,¢) such
thatx; (z;-1) = fi1 ;—1. This contradictg > po.

It proves difficult to bound the rate of convergence of theusege of decay rateSe,, }, which thereby
prevents us from generalizing (11) to the present case. Aesualty we also cannot carry over Theorem 3.
However, we can achieve the following slightly weaker regulwhich we appropriately scale the slow-down
thresholdm as a function of the blocking threshotd

Theorem 18. Let the slow-down thresholth scale asm(n) = an for a fixeda € (0,1) and write
7™ (4, 5) for ("™ Then,

ny(pP2) _ p1
) ) ,]_f_('rr,,rn,)(z-7 LynJ) Laps p2? if ES (0, Oé]7
lim lim CEOTE = (42)
n—ooi—so (™M) (4, [yn] — 1) 102) _ B fy € (a,1)
n2p2 op2? ) »+ )

where| z | denotes the largest integer smaller than or equatto

In Theorem 3 we could bound this ratio for afiyed phasej, 7 < n, forn — oco. Here we scale the
phasej(n) as a function of.. In fact, the proof below makes clear that we establish thietpaise limit of the
functionsy () (%n,m)/t2 Tn,m for n — oo rather than foy fixed.
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Proof. Recall that

b T Lyn]) o™ (ynl) Xy (@)
im - = - ’
imoo M (i [yn| = 1) v (lyn] = 1) g2 Tnm

and concentrate on the right hand side.
First, lety € (0,a]. Clearly, it follows from Theorem 17 that, ., — p2 for n — oo, and therefore, by
applying Lemma 10x | yn| (Tn,m) — 1+ (p2). In particular,x | an) (Tn,m) — 7+ (p2) = p1 p2 so that, by (38),
_ papeps

lim S (X|an|(Tn,m)) = ap2 — A = [i1 p2 = N+ (p2).
S (X an) (2n,m)) = ap ey~ Pa P2 =1k (p2)

Now lety € (a,1). ASS (X|an|(@n.m)) < X|yn)(@n,m) < 74 (Tn,m), and the left and right hand side
converge taj (pz2) for n — oo, the functionsy || (=) have the same limit. [ |

In terms of the Perron-Frobenius vectdf*™ of R(™™ this results means the following,

(n,m)

v {/11/#2 it j <m(n)

o i e i G > min).

Thus, a *kink’ appears in the graph of ratio of the conseeutismponents of (™),

Remark 19. The approach to prove the results in this section genesat@eany number of slow-down
thresholds when the adapted raggsf,, . . ., form a decreasing sequence bounded below:by
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