Centrum voor Wiskunde en Informatica

REPORTRAPPORT

IMIAS

Modelling, Analysis and Simulation

Modelling, Analysis and Simulation

MAS Numerical solver for compressible two-fluid flow

J. Naber

RerorT MAS-EO505 FeBruArY 2005

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering [SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-3703

Numerical solver for compressible two-fluid flow

ABSTRACT

This report treats the development of a numerical solver for the simulation of flows of two non-
mixing fluids described by the two-dimensional Euler equations. A level-set equation in
conservative form describes the interface. After each time step the deformed level-set function
is transformed back to a real signed distance function using a PDE-based redistancing
procedure. Interface smoothing is applied to prevent staircasing and possible unphysical
oscillations. A finite-volume approximation is used for the numerical solver. The flow model is
discretized using a three-stage time marching scheme together with the approximate Riemann
solver of Roe. Quadratic sub-cell interpolation is obtained using the limiter by Koren. The
combination of time and space discretization makes the method effectively second-order
accurate although third-order accuracy can theoretically be reached. The redistancing equation
is discretized using a two-stage time-marching scheme and a second-order accurate spatial
interpolation. The spurious pressure oscillations due to the numerical inconsistency of
conservative level-set methods are removed using a simple 'ghost-fluid like' fix. Several
numerical tests are performed to test the solver for its performance. Standard one-dimensional
shock tube problems prove the existence of the pressure oscillations and verify the simple fix. A
convergence test verifies the numerical order of the scheme. Two-dimensional tests are
performed using the shock-bubble interaction problem, the Kelvin-Helmholtz instability and the
supersonic free jet.

2000 Mathematics Subject Classification: 65M60,76N15,76T10

Keywords and Phrases: gas dynamics, interface capturing, compressible two-gas flows, level-set method, interface
pressure-error, simple ghost-fluid method

Note: This research was performed at the University of Michigan in Ann Arbor. The work was carried out under CWI-
project MAS2.1 "Computational Fluid Dynamics and Computational Electromagnetics".

Numerical Solver for Compressible Two-Fluid Flow

Jorick Naber
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

December 2004

ABSTRACT

This report treats the development of a numerical solver for the simulation of flows of two non-mixing fluids
described by the two-dimensional Euler equations. A level-set equation in conservative form describes the
interface. After each time step the deformed level-set function is transformed back to a real signed distance
function using a PDE-based redistancing procedure. Interface smoothing is applied to prevent staircasing and
possible unphysical oscillations. A finite-volume approximation is used for the numerical solver. The flow
model is discretized using a three-stage time marching scheme together with the approximate Riemann solver
of Roe. Quadratic sub-cell interpolation is obtained using the limiter by Koren. The combination of time
and space discretization makes the method effectively second-order accurate although third-order accuracy can
theoretically be reached. The redistancing equation is discretized using a two-stage time-marching scheme and a
second-order accurate spatial interpolation. The spurious pressure oscillations due to the numerical inconsistency
of conservative level-set methods are removed using a simple 'ghost-fluid like' fix. Several numerical tests are
performed to test the solver for its performance. Standard one-dimensional shock tube problems prove the
existence of the pressure oscillations and verify the simple fix. A convergence test verifies the numerical order
of the scheme. Two-dimensional tests are performed using the shock-bubble interaction problem, the Kelvin-
Helmholtz instability and the supersonic free jet.

Acknowledgments

This is the technical report treating the work done during my internship at the W.M. Keck Laboratory for Com-
putational Fluid Dynamics of the University of Michigan in Ann Arbor, United States of America. The focus
here lies on the details regarding the development of a numerical solver for the simulation of two-fluid flows.
Together with the report treating the preparation for this internship [25] this report is an excellent starting point
for students interested in finite-volume methods for the Euler equations and the level-set method.

For the less technical and more personal experiences I would like to refer to my website which I kept up-to-date
during my stay in the USA: ’http://juruk.waarbenjij.nu’ (in Dutch only).

I would like to thank Professor van Leer for the opportunities he gave me and the support he provided during
this internship. It was a great pleasure working with a person with such a profound knowledge in the area
of Computational Fluid Dynamics (CFD) and maybe even more important with someone that has such joy in
sharing it with his students. I sincerely believe that these four months have contributed to a much better under-
standing of not only the technical issues involved with CFD, but also of the issues involved with doing research
in general.

Further I owe much gratitude to Professor Koren for his involvement in this internship and the month of re-
search prior to the internship. Without his help this internship would not have been possible. I am looking
forward to continuing the present research under his supervision at the Center for Mathematics and Computer
Science (CWI) in Amsterdam.

Last but not least I would like to thank all the people I met during these four months in Ann Arbor. From new
friends to new professional contacts, all of them contributed in some way to this great period. Thanks a lot for
all the fun I had in these four months. Hopefully we meet up someday in the future!

Financial support for this internship came from the *STIR fonds’ of the Delft University of Technology (TU
Delft), the *Universiteitsfonds’ of the TU Delft, the "Professor van der Maas Fonds’ of the Faculty of Aerospace
Engineering of the TU Delft, and from the Department of Aerospace Engineering of the University of Michi-
gan. My sincere regards to those who made this funding possible.

Ann Arbor, December 2004,

Jorick Naber

Table of Contents

Introduction
Flow model
2.1 Buler eqUationsttt e e
2.2 Level-setmethod e e
2.2.1 Level-set equationottt t ittt e
222 RediStanCing.
2.2.3 Interface treatmentttt
2.3 Integral formulation
2.4 Characteristics analysis o v vttt e e e
2.4.1 Transformation MatriXo v vttt it e e e et e ettt et e et e
242 BIZeNSYSIEMI o vttt ettt e e e
Flow solver
3.1 finite-volume approXimationttt ittt ittt
3.2 Three-stage scheme
33 Roe’sRiemannsolver
33.1 Theinterface flux
332 Entropy fiX . . oot e e e
3.4 sub-cellinterpolation e
3.5 Grid .o
3.5.1 Quadrilateral cellso e
3.5.2 Boundaryconditions
353 CFLcONditiOnottt et e
3.6 Redistancing of level-set function e
Pressure Oscillations
4.1 Origin of the oscillationst
42 SImple fiX . ..o
4.2.1 Fixalgorithm
422 Errorsdue to fiX e
Numerical results
5.1 1D shock-tube problems
5.1.1 Translating interface
5.1.2 High-pressure Sod
5.1.3 No-reflection problem e e
5.2 2D shock-bubble interactionttt e
5.2.1 Heliumbubble
522 R22bubble. e
5.3 2D Kelvin-Helmholtz instability
S3L AI-AIr ..o e
532 Air-helium e
5.4 Supersonic free Jetottt e

15
15
16
16
17
18
18
19
19
20
21
22

24
24
25
26
26

5.4.1 Underexpanded JEtottt e
5.4.2 Overexpanded Jetttt
6 Conclusions
6.1 CUITENt WOTK . . .t ot et it e e e e e e e e e e e e
6.2 FUtUIE WOIK . . . oo e e e e e
References

I Density smoothing for shock-bubble interaction

40
40

43
43
43

45

47

Chapter 1
Introduction

A typically interesting type of flow problem is that of flows involving multiple fluids. Especially two-fluid
flows, where two non-mixing fluids are separated by a sharp fluid interface, find many applications in both
engineering and physics. A thorough understanding of these flows is therefore of utmost importance. This is
the reason that the simulation of two-fluid flows using numerical methods has been the subject of elaborate
research in recent years. Though, in contrast to the simulation of single-fluid flows, there is reason to believe
that there is still no sufficiently accurate and efficient simulation method available for two-fluid flows. This is
mainly due to difficulties arising when treating the interface between the two fluids.

The different numerical methods employed so far can generally be divided into Lagrangian and Eulerian
methods (for a complete discussion of both types see [4]). The former type, in the case of two-fluid flows also
referred to as interface-fitting, makes use of the flow equations reduced to equations for solely the interface
(explicit formulation of the interface). This approach allows for a clear representation of the interface and its
surroundings, thus preventing smearing of the interface. However, Lagrangian methods are less useful for large
deformations which are characteristic for almost all flow problems.

In Eulerian methods, also known as interface-capturing methods, the full flow equations are solved in the
domain made up by both fluids. Often an extra transport equation for a parameter describing the properties of
the fluid mixture (i.e. the mass fraction or the ratio of specific heats) is added to the system of flow equations.
This approach requires no further treatment of the interface since it implicitly follows from the flow solution.
Although these conservative methods allow for large deformations, and are therefore especially useful for the
treatment of fluid problems, it has been shown in [1] that they suffer from spurious pressure oscillations due
to the inconsistency of the discretized equations near the interface. Several fixes for this problem have been
proposed, see for example [2, 8, 14, 15, 18, 30], but these all use a locally non-conservative formulation of the
flow equations near the interface, which can lead to large errors for problems with strong shocks (see [1] for a
complete overview of the methods mentioned). Another approach is to use a model based on the separate flow
equations for both fluids, as was done in [11] and more recently in [36, 37]. Although these models give good
oscillation-free results, the governing flow equations are rather complicated, thus requiring complex numerical
techniques to be solved.

Another frequently used type of method is known as interface-tracking. These methods use the full con-
servative flow equations, as do the Eulerian methods, but an extra equation is added to describe the evolution
of the interface (directly or indirectly), which is typical for a Lagrangian approach. Earlier versions of these
tracking methods are known as the marker and cell IMAC) and volume of fluid (VOF) methods, see also [13].
A more recent development is known as the level-set method, which was first presented in [22] and extended
to the Euler equations in [24]. Unfortunately these methods suffer from the same spurious pressure oscillations
near the interface as the conservative capturing methods described above. Of all these methods the level-set
method shows most competence. Its implementation in existing solvers is rather simple and straightforward
and makes it therefore a good starting point for the search for a new and efficient method for solving two-fluid
problems.

This report focusses on the application of the level-set approach for solving the two-dimensional Euler equa-
tions for compressible, inviscid, unsteady two-fluid flow. An extra transport equation for the level-set function
is added to the flow equations to keep track of the interface. The set of conservative equations is discretized
using a finite-volume method. Time discretization is done using a three-stage method. Roe’s approximate
Riemann solver is used for the discretization of the interface fluxes.

Several test cases are treated to investigate the behavior of the solver. Due to the inconsistency in the conser-
vative formulation of the level-set model the known pressure oscillations occur. As a fix for these oscillations
the simple algorithm proposed in [1] is applied. Tests with this simple method prove its capabilities.

In chapter 2 the flow model is discussed. The Euler equations are derived, the level-set method is discussed
and the characteristics analysis is performed. Chapter 3 focusses on the discretization of flow equations and
the implementation of this finite-volume discretization into a numerical solver. Chapter 4 treats the spurious
pressure oscillations and discusses a simple fix for them. Finally chapter 5 discusses several test results of the
numerical solver with and without fix.

Chapter 2
Flow model

In this chapter the two-dimensional Euler equations describing compressible, inviscid, unsteady flow are dis-
cussed. The simulation of two-fluid flows is done using a level-set method. The interface evolution is described
by an additional level-set equation, which is added to the system of flow equations. For a correct implemen-
tation of this level-set method several properties of this method have to be treated. Using the complete flow
model a characteristics analysis is performed, resulting in the eigenvalues and eigenvectors necessary for im-
plementation in the approximate Riemann solver of Roe (see next chapter).

2.1. EULER EQUATIONS

The Euler equations for compressible, inviscid, unsteady flow can be derived from the Navier-Stokes equations
when neglecting friction and heat conduction (this shall not be shown here). Because we desire to simulate
flow problems with discontinuities such as shock waves, the Euler equations in strictly conservative form are
used. When further gravity is neglected, the equations in differential form can be written as:

oq , 0f(a) , d9(a)

ot | ox | oy =0 @D

Here q is the conservative state vector and f and g the flux vectors in the x and y directions, respectively.
For the two-dimensional version of the Euler equations (for a discussion of a numerical solver for the one-
dimensional equations see [25]) these vectors each have four components, representing the equations for con-
servation of mass, momentum in z and y directions and energy, respectively:

p pu pv
_ | pu _| ptopou _ puv
= , ., f= puw and g= bt pv? (2.2)
pE puH pvH

Their components include the four primary state variables being, p the density, u the velocity in x direction, v
the velocity in y direction and p the pressure. Further they contain the total energy E and the total enthalpy H.
In this discussion only ideal gasses are considered, which allows for an explicit expression relating the primary
thermodynamic variables:

p=pe(y—1). 23)

where e is the internal energy of the flow and + the ratio of specific heats, being equal to 1.4 for air. The total
energy can be written as:

E=ecty(@?42?), (2.4)

where e follows from (2.3). The total enthalpy H is defined as:

H=E+2 2.5)
p

A major advantage of the level-set method is that no further model is required to describe the different fluids.
The standard Euler equations can be used in every point of the domain that is treated. The ratio of specific heats

2.2. Level-set method 9

is the only variable that explicitly depends on the fluid one is treating. Solving for the primary thermodynamic
variables thus means using the correct value of v instead of solving a complete flow model for both gasses.

From the above it is obvious that all components of the conservative state vector and the flux vectors can
be written as functions of the primary variables. For convenience’s sake therefore the so-called primary state
vector w = (p, u, v, p)T is introduced.

2.2. LEVEL-SET METHOD

The level-set method is an implicit method for describing the evolution of the interface. It makes use of a
distance function ¢, referred to as the level-set function, which labels every point in a domain with a value rep-
resenting the shortest distance to an interface !. This function is chosen equal to zero at the interface itself and
non-zero in the fluids. To distinguish between the two fluids, one often uses a signed function, being negative
in one fluid and positive in the other (see figure 2.1). For a more detailed discussion of the level-set function
see [31] and [9].

$<0

fluid IT

Z

Figure 2.1: Two fluids separated by an interface. The level-set function ¢ is a signed distance function, being
zero at the interface, positive in one fluid and negative in the other.

2.2.1 Level-set equation
The level-set function ¢ is a scalar parameter that is advected by the flow with the local flow velocity without
influencing the flow itself; a passive scalar. The well-known advection or transport equation can therefore be
used to describe its motion, and thus the evolution of the interface, in time. For the two-dimensional case this
can be written as:

o¢ 9 94 09

=+ V - Vo= —+ug+vy; =0. 2.6

ot ¢ ot Ox Oy 2.6)
To ease the numerical treatment of this equation it is often written as a conservation equation. In this way
it can be added to the system of conservation laws (the Euler equations) and can thus be solved with the
same numerical techniques 2. Multiplying equation (2.6) with the density p and adding it to the equation for

! Besides a linear representation for ¢ there are other possibilities. The advantage of ¢ being a linear function of z is that it is independent
of second order derivatives that occur in most numerical discretizations (numerical diffusion).

2 Although this is the most common approach it is not the only option. Another frequently used method is to use a separate discretization
method for the level-set advection equation. This requires approximately the same amount of computational power as using a conservative
equation and solving it with the Euler equations. Recent results have shown that the ’conservative’ approach used here leads to numerical

10 Chapter 2. Flow model

conservation of mass (2.1) multiplied with the level-set function ¢ gives after some rewriting:

Op¢ Opp Opugp Opvd
— +V - pVop=—+ =0, 2.7
o TVVOS o e Ty @7
which can be interpreted as an equation for the conservation of the distance function times the mass. Adding
this conservative form of the level-set equation to the system of conservation laws given by equation (2.1) and

the vectors (2.2) leads to the following new versions of the state and flux vectors:

P pu pv
pu p+ pu? puv

q= pu , f= puv and g=| p+p? |. 2.8)
pE puH pvH
pe pup pud

2.2.2 Redistancing

The advection equation for the level-set function solely transports the values of ¢ with the local velocity. In the
general case of a non-homogeneous velocity field this results in the advection of the different level-set values
such that the signed distance function is not preserved. As an example consider a simple one-dimensional
case with a signed distance function distribution (linear) and a velocity distribution such that the velocity has
its maximum at the interface (¢ = 0). Due to this non-homogeneous velocity field the value ¢ = 0 moves
faster than the other values for ¢. This means that the distance between the interface and the point with ¢ = 1
for example, is initially equal to 1, but will be different from 1 after one time step already. It is obvious that
the distribution of the level-set function is distorted in time, i.e., it is no longer a distance function. Only the
interface, having ¢ = 0, remains correct because it is not measured relative to another point.

Because we are only interested in this zero-level, i.e., the interface, this seems to lead to no further difficulties.
Unfortunately, in a numerical approximation using a finite grid, the level-set function will, besides maybe at
time zero, never be exactly equal to zero in a cell. To be able to give an accurate representation of the interface
it is therefore necessary that near the interface the level-set function is the real distance function and not the
distorted version. This requires for a redistancing procedure of the level-set function.

A commonly used method for the redistancing of the level-set function, i.e. giving ¢ its correct value at each
point of the treated domain, is the so-called PDE approach presented in [33]. The idea is to solve the following
differential equation * until its steady state is reached:

99
5, = 5 (9r=0) (1~ |V4)), (2.9)
-
where 7 is an artificial time scale only used within the redistancing procedure and S (¢-—¢) the sign function
99 _

of ¢g. A steady state, i.e. 5. =0, is reached when the gradient of ¢ is equal to one. When this is the case, the
level-set function has been transformed to a real (signed) distance function again. The numerical treatment of
this equation shall be discussed in the following chapter. *

2.2.3 Interface treatment
It has been mentioned that the signed distance function works as a switch to distinguish between the different
fluids; a positive ¢ means one fluid and a negative value the other. Because we treat here only ideal gasses,

errors near contact discontinuities. Using a separate 'non-conservative” approach prevents this. A more elaborate discussion will follow in
the Master’s thesis of the author.

3This equation is also referred to as the eikonal equation for propagating wave fronts. This is a clear way of looking at the redistancing
equation since we want to propagate our interface outwards from itself in the direction of its own normal vector. Every point in the domain
is in this way turned into a real distance function where each point has a value representing the distance to the closest interface point.

4 A present subject of investigation is whether this rather elaborate PDE-approach is necessary. The basic idea of this research is to look
for a new level-set equation with an additional source term which takes care of the redistancing. If such an equation can be found is not
clear yet. There is reason to believe though that such an approach can be less computationally intensive since it does not need a separate
update procedure.

2.3. Integral formulation 11

which follow the same thermodynamical laws, the only difference between the two fluids is the value of their
ratio of specific heats «. The value of ¢ can therefore be easily used to determine the local value of v to be
used in the flow equations:

7 if ¢>0,
y=4 7 if ¢=0, (2.10)
Y2 if ¢<0

Unfortunately this rather simplistic approach leads to some difficulties. It is unknown what to take for ~y at the
interface. The second problem has to do with the fact that the interface will run through cells instead of neatly
coinciding with their boundaries in the case of a discrete approximation of the domain using grid cells. Using
the model defined above yields the "staircasing’ of the interface such that it coincides with the cell boundaries.
This can lead to spurious waves in the solution (see appendix 1 for a discussion of these oscillations due to
staircasing).

H, H,

A

—€ €

T

Figure 2.2: The Heaviside function H (¢) is smoothed to the transformed H,(¢) to avoid spurious oscillations
due to staircasing of the interface.

To avoid this, the interface can be smeared out to some extent (in the discrete approximation over some cells).
Thus instead of using a ’standard’ Heaviside function H(¢) for the determination of the local value of ~, a
smooth function is used (see figure 2.2). This smooth step function H, € [0, 1] is defined as:

0 if ¢ < —e,
H.(§) = %1+%+%sm<%¢)} if —e<op<e 2.11)
1 if ¢>e

where € is a small distance often taken equal to one and a half cell size S(e = ?’AT””). This allows for the
following equation for the determination of ~y:

y=Heyi + (1 - He)ve. (2.12)

Because the interface is no longer sharp but smeared out to some extent, the sign function S (¢o) used in the
redistancing equation (2.9) is no longer correct. Therefore a new sign function S, based on H. is defined:

S (¢) =2H, (¢) — 1. (2.13)

2.3. INTEGRAL FORMULATION
When performing the characteristics analysis for the Euler equations in two dimensions it is useful to start
from the integral formulation of the set of flow equations. Another well-known reason for writing the Euler

SThis specific value of € is used since it is the smallest distance possible such that smoothing is always symmetrically applied. Choosing
a lower value can lead to an asymmetrical distribution because of the discrete nature of the state-variable distribution. A higher value leads
to more smearing of the interface and is not desired.

12 Chapter 2. Flow model

equations in integral form is that the differential form does not allow for discontinuities in the solution. Using
the integral, or weak, formulation the Rankine-Hugoniot equations can be derived which describe the jump
over such a discontinuity. It is actually the differential formulation that follows from the integral formulation
of the Euler equations by neglecting these discontinuous solutions. To get back to the integral formulation
we consider a fluid element 2 in two dimensions as indicated in figure 2.3. Integration of the differential
equations (2.1) over the volume of this fluid element results in:

6‘1 6f
—_— —_ = . -14
td[/ +/ <E + ;)d[/ 0 (2.14)

Combining both f and g into one vector F' = (f, g)T allows for the following expression:
dq
—dV—f— V FdV =0. (2.15)

Using Gauss’ divergence theorem the second integral can be written as an integral over the surface I' of the
fluid element instead of an integral over its volume €2:

/ —dV—f—j{F-ndA: 0, (2.16)
r

where n is the unit vector normal to the surface of the fluid element. Writing this normal vector in components
in z and y directions respectively, n = (ng, ny)T, allows for the second integral to finally be written as:

/ —dV+% (fns +gny)dA = / —dV—i-?{ WdA =0, 2.17)
r

where we used ¥ = fn, + gn, for the normal flux through the surface of 2. Using the definition of the
normal velocity v, = V - n = ung + vn, this vector can be written as:

PUn
PURU + PNy
v = PURY +pny | . (2.18)
pun H
PURO

Note that the formulation of the Euler equations derived at (2.17) expresses the time derivatives of the state
variables as a function of the fluxes through the surface of the fluid element instead of the directional deriva-
tives of the state variables themselves. The expression found above is the starting point for the finite-volume
approximation to be derived in the following chapter.

2.4. CHARACTERISTICS ANALYSIS

The application of Roe’s approximate Riemann solver requires knowledge about the eigensystem, the eigen-
values and eigenvectors, of the flow equations. Therefore a characteristics analysis is performed for the flow
model described by (2.1) and (2.8). The approach followed is the one described in [29].

2.4.1 Transformation matrix
The eigenproblem to be solved requires the transformation matrix or Jacobian of the conservative flow equa-
tions (2.1) and (2.8). This transformation matrix is defined as:

oy, 0w,
0, D
0w ob, ot

:Biq: .37 .aqz . (2.19)

2.4. Characteristics analysis 13

ZT

Figure 2.3: A fluid element 2 with surface I'. The outward unit normal is indicated by 7.

Before this matrix can be calculated the flux vector ¥ has to be written in terms of the conservative variables
q = (p, pu, pv, pE, pd))T instead of the primary variables w = (p,u, v, p, d))T as was done in (2.18):

, q2Mg + q3ny .
Ln, +LBp, +n, (y—1) <q4 - —q2+q3)

a1 q1 2q1
2 2+ 2
T = Ldp, + Lp, 4+, (y-1) (q4 - %) . (2.20)

2+ 2 2+ 2
L, (7‘14 -(v-1) —q";qfs) + &n, (7‘14 -(v-1) _422q1<13)
9295 LELE
12115 N + 3‘115 Ty
Where the ratio of specific heats is a function of the level-set function: v = 'y(%). Using this expression the
calculation of the transformation matrix J is rather straightforward and shall therefore not be elaborated here
(see [24] for a more detailed discussion). One finally ends up with the following result:

0 Ty Ny 0 0
(y—1er —¢X]ng —uvy, vp—(y—2)uny, uny—(y—1wvn, (y—1)ns ngX
J=| l(r-V)ex—6XIny —von vne—(y-Dumy va—(y-2om, (y—Dny mX |,
(v—=1)ex—H—-¢X]v, Hng—(y—1)uv, Hny—(y—1)vv, YU, v, X
— v, ong on, 0 Up,
2.21)
where e, = 1 (u? + v?) is the kinetic energy of the flow and X = k.

2.4.2 Eigensystem

The eigenvalues of the transformation matrix represent the wave speeds of the different types of information
containing waves in the flow. The corresponding eigenvectors give the directions in which these different waves
travel. The eigenvalues can be obtained from J by determining the roots A\; (¢ =1, ..., 5) of the characteristic
equation:

det (J — M) =0, (2.22)

14 Chapter 2. Flow model

where I is the identity matrix. Evaluating the characteristic equation leads to the following eigenvalues:

A = v, —a,
X234 = Up, (2.23)
)‘5 = Un + a,

where a is the speed of sound. From this it follows that waves travel either with the speed of sound relative to
the flow velocity, or with the flow velocity itself. This is a well-known property of the Euler equations. Given
these eigenvalues J; it is possible to determine the eigenvectors r; of J using the following expression:

Note that this equation holds for the right eigenvectors, while a similar equation for the left eigenvectors could
also be used. Using straightforward matrix manipulations, which shall not be shown here, one ends up with the
following matrix of right eigenvectors:

1 1 0 0 1
U — ANy U Ny 0 U+ ang
R=[7r1 7m r3 14 75| =| v—an v —Ng 0 v+any |, (2.25)
H—av, 1w+ o —% H + av,
¢ (0 0 1 0

where v; is the velocity in the direction of the vector tangential to the surface of 2 given by vy = V -t =
ut, + vty. Because t is perpendicular to 7 we can also write the velocity in terms of the normal vector
components: v; = —un, + vng. The eigenvectors given in (2.25) are not distinct. Any other vector in the
subspace formed by the eigenvectors 75 3 4, belonging to the same eigenvalue v, could also be used.

Chapter 3
Flow solver

The flow model derived in the previous chapter will be implemented in a numerical flow solver. A finite-volume
approximation is derived from the integral formulation of the flow equations. A three-stage time-marching
method is used for the discretization. Roe’s approximate Riemann solver is used for the calculation of the
interface fluxes. Quadratic sub-cell interpolation is used for obtaining the cell-face values of the state variables.
Further the discretization of the PDE used for the redistancing of the level-set function is treated.

3.1. FINITE-VOLUME APPROXIMATION

The derivation of the finite-volume approximation starts with the flow equations in integral form given by (2.17)
and (2.18). The flow domain © € R? is discretized with a finite number of quadrilateral grid cells €2; ;, where
the indices ¢, 7 = 1,..., N; ; indicate the cell centers. The boundaries between the grid cells are indicated by
Ty with I = 1,...,4. At the mid-point of each cell face an outward unit normal vector n; = (n,, ny)lT is
defined. Such a finite volume is drawn in figure 3.1.

Figure 3.1: A quadrilateral finite volume £2; ; with cell interfaces I'y, Iz, I's and I'y. At each interface mid-
point the outward unit normal vector n; is defined, where [/ indicates the interface number (1 to 4).

Taking €; ; as the integration domain and 2?21 T'; as the boundary of this domain and applying the integral
form of the flow equations (2.17) gives:

0q oq
—dV+?{ fng, +gn dA:/ —dV—i—f ¥;dA = 0. 3.1
/Qw‘ ot =1 T (h Qi ot i :

Due to the discrete nature of the cell faces it is allowed to write the integral over the boundary of €; ; as a sum
over the different cell faces, such that (3.1) becomes:

dq B 4
/Q 5,V =- [Z (TAs),

=1

) (3.2)

17]‘

15

16 Chapter 3. Flow solver

where As; is the length of cell face I. Because the finite volume does not change its size in time it is allowed
to interchange the time differentiation and the integration in the right-hand side of (3.2), such that:

4

0
2 / gdv = — |3 (wAs),| (33)

Qi,j =1 i,j

The finite-volume approximation now follows when the discrete value of the state vector at the cell center g; ;
is taken equal to the spatial average of the exact state vector q over the finite volume €; ;:

1
= av 3.4
i = 4, /Q qdV, (34

@]

where A; ; is the area of the finite volume (in three dimension this would be the volume itself). We thus finally
end up with the following finite-volume approximation:

ot A

(2]

> (\IJAS)I] . (3.5)
=1

Note that this approximation is still exact when (3.4) is correct, which is the case when the area A; ; vanishes.
Equation (3.5) states that the time-rate of change of the state variables g; ; in a cell follows from the in- and
out-flowing fluxes over the cell faces.

Implementing this finite-volume approximation in a numerical solver requires the discretization of the time
derivative and the interface fluxes, which shall be the subject of the following discussion.

3.2. THREE-STAGE SCHEME

The finite-volume approximation (3.5) is discretized using a three-stage scheme '. Using three intermediate
stages the solution for the state variables q;; "marches’ from a certain discrete time level n to the next, n + 1.
This procedure is repeated as many times as necessary to reach the final time level n = N. The complete
scheme looks as follows:

ql(-,oj) = 4q;

qz(',lj) = ql('?j) - 31%; [Z?:l (W(O)AS)ILJ ’

@ = o) - AL [Th (vas)] 3.6
qg?;) = qz(',oj) - AA:J. [2?21 <‘I’(2)As>l:|i,;

@t = ay

For the calculations of the intermediate solutions (1), (2) and (3) the sum of the fluxes through the cell faces
are required at each intermediate stage. These numerical fluxes are calculated using the Riemann solver of Roe
as shall be shown in the next section. The accuracy of this scheme is treated after the discussion of the sub-cell
interpolation.

3.3. ROE’S RIEMANN SOLVER

Application of the numerical scheme for time marching (3.6) requires knowledge of the in- and out-flowing
fluxes at the cell faces of each grid-cell. Unfortunately the state variables required for the calculation are only
known in the cell centers and not at the interfaces between the cells. Godunov proposed in [10] a method that
solved a Riemann problem at each interface to obtain the state variables and thus the fluxes at these interfaces.
Solving a Riemann problem means, given a left and right initial state separated by a contact-discontinuity,

! Another frequently used numerical scheme is that of Hancock. Having second-order accuracy in time makes this a very suitable
method. See [25] for a one-dimensional version of this scheme.

3.3. Roe’s Riemann solver 17

finding the resulting state-variable distribution in time. For a complete discussion of the Riemann problem
see [25].

The numerical flux at the interface can thus be written as a function of the left and right initial values at the
interface:

o™ =@ (qu),q%)) for 1=1,2,...,4, 3.7

where (m) indicates the different stages in the time marching scheme. The advantage of solving a Riemann
problem at each interface is that all physical information about the flow is used.

Since Godunov proposed his exact Riemann solver many variations on this method have been proposed.
Widely used are the approximate Riemann solvers. These methods use also a left and right initial state to
calculate the flux at the interface, but instead of solving the complete Riemann problem they approximate the
solution. Some of the best-known approximate solvers are the ones of Roe, Osher and of Harten, Lax and Van
Leer (HLL). Here the solver of Roe is used because of its accuracy and ease of implementation.

3.3.1 The interface flux

Roe’s method [28] is a flux differencing method for the calculation of the interface fluxes based on averaged
flow characteristics described by the eigensystem (the eigenvalues and eigenvectors) and the jump relations. It
calculates the interface fluxes ¥; using the following approximation:

5
1 N .
¥ = (P +PiR) 5 E ‘/\k‘ Avg Ty, (3.8)
k=1

N | =

where ¥; ;, and ¥; g are the fluxes calculated using the left and right initial conditions respectively. Note that
the superscript (m) is suppressed for convenience’s sake. The eigenvalues \; and eigenvectors r, are used here
in their modified form. These modified forms follow from the expressions for the eigenvalues and eigenvectors
by replacing the regular state quantities with the so-called Roe averaged state quantities. In the single-fluid
case, so no equation for the level-set function ¢ and only one value for vy (thus 4 = 7) , these quantities can be
written as:

ﬁ = wprL, (3.9)
. ur, + wugr
= —, 3.10
U o (3.10)
5 = UL '*“*”’R’ (3.1D)
1+w
H = M, (3.12)
1+w

where the ratio w is used, which is defined as:

w= /2R (3.13)
PL

Using (3.10) and (3.11) the Roe averaged normal and tangential velocities are defined as: 9, = 1in, + 9n, and
9y = —uny + 9n,. The Roe averaged speed of sound is given by:

&:\/(&—1) (ﬁ-%(a%&?)). (3.14)

In the case of two different fluids and thus two different values for v this becomes more difficult, since Roe
averaged values for ¢, v and X are now required. Mulder, Osher and Sethian have shown in [24] that a

18 Chapter 3. Flow solver

satisfactory accurate choice for the Roe matrix (approximate Jacobian), and thus the Roe averaged eigenvalues
and eigenvectors can be found by introducing:

¢L +wor

§ = fLtudn (3.15)
~ . + _ ~
5 = (9= 1) vm+ (9n - 9) " (3.16)
dr — OL
% = (Pr=p)=(G-Dlpr/r=1)=ps/ (= 1)] (3.17)
p(¢r — L)

where p = pa/4. Note that when yg = vz, = 7, (3.16) and (3.17) reduce to: 4 = ~ and X =0, such that we
indeed obtain the single-fluid situation.

The jump relations Avy, in (3.8) are obtained from the discrete version of the differential relation dv = R_ldq
where R is the matrix containing the Roe averaged right eigenvectors of the Euler equations (2.25) where the
state variables are replaced by the Roe averaged variables. From standard matrix algebra it follows that the
inverse of the matrix R is equal to the matrix L containing the /eft eigenvectors, such that the jump conditions
can finally be written as: Av = LAg, where A[---] = [---]p — [---],.. See [24] for expressions for the left
eigenvalues.

With the above all necessary information for calculating the interface fluxes is known. The procedure is as
follows; given the left and right initial interface conditions it is possible to calculate the fluxes left and right
of the interface \Ill("g) and \PI(TI’;). The initial conditions can further be used to calculate Roe’s averaged state

quantities. This allows for the calculation of the modified eigenvectors 7 and the modified absolute eigenval-
ues ‘/A\k ‘ Also the jump relations Awv can be obtained from these averaged quantities together with the jumps

in density, normal velocity, tangential velocity, pressure and level-set function, which allows for the calculation
of the interface fluxes using (3.8)

3.3.2 Entropy fix
A well-known problem that occurs when using a Riemann solver is the possibility of having unphysical ex-
pansion shocks in the solution. Instead of the required fan, a discontinuous shock is chosen by the solver to

represent the expansion. To avoid this situation the absolute eigenvalues j\k‘ are modified using an entropy

fix, which removes this unphysical situation from the possible solutions. Therefore the following parameter is
introduced:

Re = for k=234,
58, _ s) (3.18)
%5k = min[a,max (0,2 (Axr — Axr))] for k=1,5.

Such that the modified absolute eigenvalues ‘5\;6‘ can be expressed as:
j\k = S\k for j\k > 5)\7;97
R * ()‘Ak)Q 5 R 5 (3.19)
Ak = An + Tk for |Ap| < Tk

3.4. SUB-CELL INTERPOLATION

Solving for the interface flux using a Riemann solver requires a left and right initial state as was depicted
in (3.7). A first choice for these interface values would be to take them equal to the values of g in the cell
centers. Though in the case of large gradients in the state variables this results in a very poor approximation. A

3.5. Grid 19

better choice would be to use an interpolation method. To make full use of the accuracy of the chosen scheme
it is preferred to use a quadratic interpolation method. Such an interpolation method also allows for the use of
a limiter to reduce spurious 'wiggles’ in the solution.

The sub-cell interpolation is performed using the limiter derived by Koren [16], which embeds the so-called

k-scheme with Kk = % in it. Cast in the Sweby-type form, the sub-cell interpolation can be written as follows:

Wiy = Wit ;)(w —wi1), (3.20)
()
Wiy = w 5 —wi_4), (3.21)
with:
r = “’iﬂ_:"i, (3.22)
w; —w;
27“2-24—7“@'
P(ry) = m, (3.23)
1 r? 4+ 2r;
(=) = LiTen 24
”/’(i> 22— 42 (3.24)

Note that here w* is used, which is defined as the vector containing the state variables per unit mass: w* =
(p, pu, pv, p, p¢)T. This is done to increase the accuracy of the interpolation. Further note that instead of the
subscript [here the indices 7 + % are used to indicate the left and right (or bottom and top) cell face. This
implies that for solving the four interface fluxes the sub-cell interpolation in ¢ and j directions (for Cartesian
grids z and y) should be separated.

It can be shown that the full time-space method, the numerical scheme (3.6) combined with the quadratic sub-
cell interpolation and the Riemann solver, is theoretically third-order accurate for systems of linear equations.
Unfortunately the Euler equations are non-linear which means that obtaining true third-order accuracy is com-
putationally expensive. This is due to the fact that for real third-order accuracy the flux at the interface should
be averaged by solving two Riemann problems in the Gaussian integration points on the cell face. The method
that we will use assumes the value of the flux to follow from the average of the state quantities over the cell
face, which is not the case because the flux depends non-linearly on the state variables. The required average
of the flux is not equal to the flux of the average. This assumption decreases the accuracy of the scheme to
second-order with increased resolution.

3.5. GRID

Although the problems solved in this report allow for the use of uniform Cartesian grids only, the numerical
solver developed here is able to treat non-Cartesian grids because the finite-volume approximation is formulated
in the coordinate system aligned with the cell faces (normal and tangential to the interface).

3.5.1 Quadrilateral cells
A general grid consists of IV; x IN; quadrilateral cells. Each quadrilateral cell or finite volume £2; ;, and thus
the entire grid, is defined using the locations of its four node points (corners) x; Jb ord Knowledge of the

coordinates of these node points allows for the calculation of all required data for the numerical solver.

Cell center The location of the cell center is only required for data processing since the finite-volume ap-
proach assumes the state-variables to be continuous over the whole cell (no distinct location in the cell is
required in the numerical calculations). The cell center is defined as the point where the two lines connect-
ing the mid points of the cell faces intersect (see figure 3.2 2). Analytically the coordinates of the cell center

2 Although the figure shows the intersecting lines to be perpendicular this is in general not the case.

20 Chapter 3. Flow solver

x;; = (z,y) ;,; follow from taking the average of the locations of the corner points xb . xf

d
b i iy and @

g

a b c d
Tijtxi; +x;+%;
i .

Tij = (325)
cell faces The cell faces | = 1,...,4 (respectively bottom, right, top and left) are defined as the lines
connecting the node points. Each cell face has length As; which can be calculated using the length in z- and
y-direction:

As; =/ (Az)? + (Ay)>. (3.26)

Here the lengths Az; and Ay; simply follow from the coordinates of the corner points connected by the specific
cell face. Using this information it is possible to calculate the cell-face normal and tangential vectors. It is not
difficult to see that these vectors can be written as follows:

Ay Az\"

_ _ 2

n; < As; Ds) (3.27)
[Ar Ay T

Cell area The area A; ; of cell ; ; follows from the two cross-vectors connecting the node points @ — ¢ and
d — b. Taking half of the outer-product of the vectors r4, and 7. gives:

1 1
A= 3 [Pap X Tae| = 5 |(xb — ;cd) (y¢ —y*) — (= — z) (yb — yd)‘ . (3.29)
A A A
Yy Yy Yy
3 ¢
ny
4 2
Ay
b Az c.
T T b T
a,b,c,d

Figure 3.2: A quadrilateral finite volume (2; ; defined by its four node points @;”"~". (a) The cell center x; ;
follows from the two lines connecting the mid points of the cell faces. (b) At each cell face [= 1,...,4 the
outward unit normal vector n; and the tangential unit vector £; follow from the length and the orientation of
the cell face. (c) The area A; ; of the cell follows from the vectors 745, 74, connecting the node points.

3.5.2 Boundary conditions

The boundary conditions are applied by making use of extra rows of grid cells, also called virtual cells, at the
boundary of the flow region. The state-variable distribution in the cell centers are either copies or mirrors,
depending on the type of boundary condition, of the cells they are bordering. The different types used in this
report are treated here in more detail.

3.5. Grid 21

Soft boundary The soft boundary condition is applied when waves are allowed to run out of the flow region
without creating reflections. A typical situation for using the soft boundary is in the case of boundaries extend-
ing to infinity. In the case of soft boundaries the virtual cells are exact copies of their real neighbor cells; the
state-variables are exactly the same. Because these virtual cells have only one neighbor, sub-cell interpolation
can not be applied here. Therefore another approach has to be followed to obtain the cell-face values of the
state-variables at the interface separating the virtual cell and its real neighbor. Because the interface fluxes
between the virtual cells and their neighboring real cells have to be zero to prevent reflections to occur, the
cell-face values in the virtual cells can be directly copied from the cell-face values in their real copy. Obviously
sub-cell interpolation is not required now.

Although the level-set function is also referred to as a state variable, its treatment near boundaries requires
some special attention. Because the level-set function is actually a distance function it may not always be
physical to just copy the level-set value of a real cell into a virtual cell. Fortunately the soft boundary condition
implies that no flux should exist over the final cell face such that taking the neighboring value for the level-set
function will result in no problems.

The redistancing procedure also requires boundary conditions. Using virtual cells suffices. Only now it is
not allowed to simply copy the level-set function into the virtual cell since this means that the gradient over
these cells is zero, while the redistancing procedure wants it to be one everywhere. Therefore a better, but in
two dimensions still not very accurate choice is to take the value of the level-set function and add or subtract the
local cell-length in « or y-direction. Since the level-set function has to be a distance function (linear) approach
suffices. Although it would be better to use the local gradient to determine in which direction the gradient is
pointing instead of solely taking the cell-length in one direction.

Hard boundary This type of boundary condition is used when waves should be reflected and continued as
their mirror images. This is the case when a solid wall is present in the flow region or when symmetry is
applied. The hard boundary condition requires every virtual cell to be the exact copy of the neighboring cell,
except for the normal velocity, which should be mirrored instead of copied. The same holds for the cell-face
values; all are copied from their real neighbors, instead of the normal velocity which is mirrored.

The level-set function now needs no further attention since a hard boundary implies mirroring (symmetry).
The virtual cells are therefore required to contain exactly the same values of the level-set function as their
neighboring cells.

Periodic boundary The period boundary condition is used when the flow domain treated is periodically
repeated at this boundary. Periodic boundary conditions always require two opposite boundaries of equal shape.
This boundary condition is applied by copying the first row of real cells into the virtual cells neighboring the
last row of real cells, and by copying the last row of virtual cells in the row of virtual cells next to the row of
first real cells. The same holds for the level-set function and the redistancing procedure.

Constant inflow boundary One of the test cases (supersonic free jet) requires a constant inflow condition.
This means that these virtual cells have the same state-variable distribution during the whole calculation. The
same holds for the redistancing procedure.

3.5.3 CFL condition

The stability of a numerical scheme plays an important role. A scheme is numerically stable if numerical
errors in the solution remain bounded, i.e. do not grow. Whether a scheme is stable depends on the size of the
temporal step and spatial cell sizes, At and A; ;. One of these can be chosen freely but the other has to fulfill
the so-called CFL condition, which secures stability by relating the two grid size parameters using the CFL
number. For a two-dimensional scheme using quadrilateral cells the CFL number is defined as follows:

4
> (jvnl + a), Asy (3.30)

=1

At
Vi = ——
»J 2AZ,J

%,J

22 Chapter 3. Flow solver

For the three-stage scheme combined with the k = % scheme (in the limiter form), the CFL number has to
fulfill the condition: » < 1.35. This approach implies that before choosing a temporal step size, the maximum
wave speeds at all interfaces must be known. Furthermore it requires for each cell a different CFL number, to
be updated after every time step. Because this procedure is computationally expensive and does not pay-off
in most cases a different approach shall be followed. Based on the initial conditions, and the maximum initial
wave speed, a comfortable choice will be made for the CFL number, which will be kept constant during all

computations.

3.6. REDISTANCING OF LEVEL-SET FUNCTION

The redistancing procedure that changes the distorted level-set function back into a true signed distance function
is governed by the PDE equation (3.31) as explained in the previous chapter. Solving for this equation means
looking for that distribution of ¢ such that its absolute gradient |[V¢| = 1 everywhere. To avoid confusion
between the real time ¢ and the pseudo-time 7 the procedure is written as follows:

d(mvTZO) = ¢($,t)
84 = §(¢o)(1—|Vd]), (3.31)
¢($7t) = d(a:aT OO)

where S (¢) = 2H, (¢) — 1. For an accurate representation of ¢ (and thus the interface) it does not suffice to
use a simple first-order scheme for the numerical approximation of (3.31). Therefore a scheme is chosen that
is second-order in both space and time. The update in time is chosen to be a two-stage scheme similar to (3.6).
The value of d at a certain discrete pseudo-time level n, is updated to the new time level n, 4+ 1 using two
intermediate stages:

a9 = g

2,7 2,7

dy = diy+ 5 [S (00 (1= [V, .
@ _ 40 _ o) (3.32)
di j d; ; + A7 [S (¢o) (1 - [VaV)],

it = d).

In the case of a uniform Cartesian grid, the spatial discretization of the gradient |Vd(mf)| withm, = 1,2
can be written as:

Ad\? A,d\?
Vd|; ; = \/(Az >i,j + < Ay)M, (3.33)

where (m.) is suppressed. A second-order approximation for the term A,d is given by the following scheme:

1, .
(Agd)z,] = di,j — di—l,j + = \mm\ (di+1,j — Qdi,j + di—l,jadi,j — 2di—1,j + di—2,j) . (334)
(AFd), . = diyr;—dig |mln| (i1, = 2dij +di1j,divzj = 2dip1 5+ dij), (3.35)
wlk =S (¢i;) (Afd) (3.36)
wl = S (i) (Afd) (3.37)
(zd)” wl >0 and wl+wk >0,
(Apd); ; = (Aﬁd)” wl <0 and wl+wk <o, (3.38)
0 if wl<0 and wf>o0.

A similar scheme can be derived for A, d, which shall not be done here. It is obvious that the requirement of a
uniform Cartesian grid indeed holds for this specific scheme. In the case of a non-uniform grid the differences
Azd and Ayd can not directly be obtained from the differences in ¢ and j directions as was done in (3.34)

3.6. Redistancing of level-set function 23

and (3.35). This because the directions 7, j are not the same as x, y. It can well be that 7, 7 for certain cells are
not orthogonal. Another approach should be followed in this case. Because only uniform Cartesian grids are
treated this shall not be elaborated here.

The second-order scheme used here requires information of five cells to determine the required differences.
Near the boundaries this is a problem since there is only one virtual cell and two are needed. Therefore in
these cells the first-order approximation is used, which follows from (3.34) and (3.35) by removing the most
right terms (|min| (.. .)). What remains is a stability condition relating A7, Az and Ay. A safe choice will be:
At = imin (Az, Ay).

An advantage of the method used here is that the level-set function is redistanced in an outward direction
from the interface. Because only the cells near the interface require an exactly correct distance function, it is
possible to take only a small amount of time steps in the redistancing procedure. It has been shown that 6 will
do.

Chapter 4
Pressure Oscillations

One of the major problems of conservative methods for compressible ! two-fluid flows is the occurrence of
spurious pressure oscillations due to solely numerical errors. Due to the inconsistency of conservative schemes
near the interface large errors occur that do not disappear with decreasing mesh-size. These oscillations have
been the subject of extensive research for the past ten years leading to several adequate fixes, of which the
ghost-fluid method by Fedkiw and others [8] and the fixes by Karni [14, 15] are best known. In this chapter
a locally non-conservative method, first developed by Abgrall and Karni in [1], is discussed. The method is
comparable to the ghost-fluid method but is more simple to implement and requires less computational power.
In the next chapter its capabilities are shown using several tests.

4.1. ORIGIN OF THE OSCILLATIONS

All numerical methods suffer from numerical errors. Depending on the stability of the scheme used these
errors can result in oscillations or wiggles in the distributions of the state variables. Fortunately most errors are
related to the size of the grid cells used; the smaller the grid cells the smaller the errors. Using a higher-order
method makes that these grid-related errors often disappear. Unfortunately this is not the case for the pressure
oscillations treated here. These oscillations, which do not occur in the case of single-fluid flows, i.e. a constant
value of 7, do not disappear when choosing a higher-order scheme.

So where do these pressure oscillations come from? As the name already suggests they originate from nu-
merical errors in the pressure distribution. It has been shown by Abgrall and Karni [1] that using a conservative
scheme for two-fluid simulation always results in an inconsistency in the pressure update (the energy equation)
near the interface, where the distribution of « is not constant (in [18] it has been shown that for barotropic
two-fluid flows it is indeed possible to obtain oscillation-free solutions with a conservative approach). This is
mainly due to the fact that the values of v used for the calculation of the interface fluxes are different resulting
in a loss of continuity in the pressure distribution.

To show this we treat the one-dimensional version of the Euler equations discretized using a simple upwind
scheme. Assume the interface to be located between the left cell face of cell ¢ and its cell center (see figure 4.1).
This implies that, when using a non-smooth step-function for -, the left interface has «, and the right cell face
~vr which are different in the case of two different fluids. Applying the upwind scheme, for a flow to the right,
to the equations for conservation of mass, momentum and energy results in:

At

pitt =t = 5 [ewy = (pw)i] @1
(i = ()i = =% |(pu? +2)] = (pu? +p)_,] (42
n n A n n
(BN = (E); =~ [(putD)] = (pulD)]). @3

Assuming that both the velocity u and the pressure p are continuous over the interface (at ¢ = n), such that
ui = u; ; = uwand p] = pj*; = p (since an interface is a contact discontinuity this is indeed the case).
From (4.1) and (4.2) it follows that u?“ = u;’ = u, i.e. the velocity remains uniform. Unfortunately this is

not the case for the pressure. To see this we rewrite the energy equation (4.3) as follows:

() (5)) (=)

'Incompressible flows do not suffer from these spurious pressure oscillations since the energy equation can be omitted in case of
constant density.

24

4.2. Simple fix 25

where we already took into account that the velocity and the pressure are continuous over the interface. It is

obvious that the required situation pI' ™! = p; = p is only the case when the following holds: 1. v, = g,
n+1

1
which corresponds to not having an interface, and 2. """ = g = 7;*, which means that the interface has not
moved. Since in the chosen approach both situation are in general not the case, pressure oscillations are the

undesired result.

YL YR
B s e
|
|
. . L. .
I
i—1 7

Figure 4.1: Grid cells containing an interface separating two fluids with vz, # vg.

From expression (4.4) it follows that the presence of the factor %1 which jumps over an interface, is the origin
of the pressure oscillations. Every time there is a difference between these factors numerical errors appear in the
distribution of the pressure which, due to the coupling of the flow equations, immediately result in oscillations
in the other state variable distributions too. Going to a higher order does not change this because there will
always be a certain change in 7. Though there is a way of reducing the magnitude of these errors; interface
smoothing will reduce the local jumps in the -y distribution and thus the severity of the errors. Note however

that interface smoothing does not remove the oscillations completely!

4.2. SIMPLE FIX

To remove the pressure oscillations from the solution, without using a completely different method (for example
a non-conservative method), a fix has to be applied. Because it has been shown that the errors occur due to
the jump in the ratio of specific heats over the interface, it is a logical choice to look for a fix that removes
this jump. Unfortunately, due to the discrete nature of a numerical method, this jump will always be present.
Having no jump would mean having only one fluid. Fortunately this is not completely true, which allows for a
way out. The oscillations only occur because, when updating the state variables in the cell centers, the fluxes
are calculated using different values of the ratio of specific heats ~ (in the case of a smoothed interface the
value of ~ at the cell center is also different). Using the same ratio of specific heats for these flux calculations
and the update of the cell centered state vector removes this inconsistency. Thus instead of interpolating the
ratio of specific heats to the cell faces and calculating the interface fluxes using these values of -y, the value for
~ in the cell center is used for all fluxes.

L R
‘I’H% a ‘I’H%

\

L _ |-
A
\

1—2 i—1 1 1+1

Figure 4.2: The simple fix applied to grid cell ¢ containing an interface (dotted line) separating two fluids with
YL 7 VR

To clarify the chosen approach the situation from figure 4.1 is considered. The fluxes to be used at the interfaces
are shown in figure 4.2. When updating the state variables in cell ¢ two fluxes are required; the flux at ¢ — %

and the flux at ¢ + % (in the two-dimensional case four fluxes are required, a left, right, top and bottom flux,
indicated with [= 1, ...,4). When no interface and thus no jump in + is present the flux at ¢ — % updating cell

26 Chapter 4. Pressure Oscillations

1, here indicated with \Ilﬁ 1 because it updates the cell to the right of the cell face, is equal to the flux updating
2
cell 7 — 1, left of the cell face, gl

;,_1 (only the normal vector is pointed in opposite direction so the contribution
2

of these fluxes to the total flux will differ in sign for both cells). In the fix presented here each cell is updated

with fluxes using the cell centered values of the ratio of specific heats. So the flux updating cell ¢ will use v

and the flux updating cell ¢ — 1 will use «,, which can be expressed as follows:
T, = ¥(yr). 4.5)
Ty = T(y). 4.6)

Because the fluids in cells 7 and i + 1 are the same, the right and left pointing > fluxes at interface ¢ + % are
exactly the same, so the fix does not work in this case and only one flux is calculated. Because the interface
will be smeared-out over some grid cells due to the smoothing procedure, the fix will in reality be applied to
several interfaces instead of to only one as figure 4.2 maybe suggests.

It has been shown that besides a jump in -y the oscillations are also caused by a possible difference between
fy?“ and v;’. When the total energy (,()E)?Jrl is known it is used to calculate the pressure at the new time
level. This new pressure will only be error free when the old version of v, i.e. 77, is used. This procedure is

called freezing of the ratio of specific heats.

There are several advantages to this method. The first is the most trivial one; it removes the pressure oscillations
because each cell only sees one . The second advantage is its ease of implementation. Because the interface
flux calculation now only uses one value of 7, a simple and standard single-fluid Riemann solver can be used
(this means that equation (3.17) can be used in its original form with a -y instead of a). No extra interpolation
of v is necessary. This brings us directly to the third advantage, namely the fact that this method works only
when necessary. When there is no jump in the distribution of v between two cells, the flux at the interface
separating both cells is the same for both update procedures. This means that only at those interfaces that
separate cells with different values of v two fluxes should be calculated, while all other cells still require only
one flux solving procedure.

Although this approach seems similar to the ghost fluid method there are major differences. Instead of
introducing ghost cells using extrapolation of state variables, only the choice of « changes, which is a simple
efficient procedure without extra computational effort.

4.2.1 Fix algorithm

The method described above will be implemented in the numerical solver in the following way: at first the
location of the material interface is determined using the distribution of the level-set function ¢ (interface has
¢ = 0). Using the smoothing procedure the smooth step-function H, is determined. Using this step-function
the value of 7 in each cell is calculated. Given the primary state variables w and ~ the conservative state
variables g can be calculated. Note that v is only used in the transformation from the pressure to the total
energy. Using the distribution of conservative state variables it is possible to calculate the interface fluxes. If
two neighboring cells have different values of -y then at their common cell face two fluxes are calculated using
different values of ~. If two neighboring cells contain the same fluid then only one flux is calculated using the
Riemann solver. Given all interface fluxes the solution of g is updated to the following time level. A three-
stage scheme is used for getting to the new time level. Using the old or freezed values for 7 the primary state
variables are calculated from the new conservative state variables. Finally the level-set function is redistanced
to a real distance function. And the whole procedure is repeated.

4.2.2 Errors due to fix
The first type of error introduced by the fix presented above is that it locally abandons conservation of en-
ergy. The effect of locally not being conservative has been derived in [1] for a first-order scheme. The total

2Note that with pointing is meant which cell (left or right) the flux updates not in which direction it is physically pointing (the direction
of the local flow velocity).

4.2. Simple fix 27

accumulated error for the one-dimensional case after n time steps is equal to:

0
€cons. = NAE 0 , 4.7)

1
where A indicates the jump between cells 7 and i — 1. Note that there is a dependency on the temporal accuracy.

The second source of errors is due to the freezing of the thermodynamic properties. Using the old distribution of
~ for obtaining the pressure from the total energy can introduce errors when during the time step the interface
moves to another cell. In this case the pressure is obtained using a wrong value of «. Though the way this
method is constructed requires this specific approach. The total energy change due to this freezing can be
written as:

1
Az <E|7:7L - E|7:7R> — _AzA <ﬁ> p. 4.8)

It has been shown by Abgrall and Karni that the contributions of (4.7) and (4.8) have opposite effects on the
solution.

Chapter 5
Numerical results

In the previous chapters the model describing the flow of two compressible, inviscid fluids was derived and the
governing flow equations were discretized. In this chapter the derived flow solver is tested. First several one-
dimensional tests are performed with both the solver with and without fix. The results verify the capabilities of
the proposed fix. With the fixed numerical solver also several two-dimensional test cases are considered. For
reference purposes both the one and two-dimensional test cases performed in [36] are used. The solver seems
to produce excellent results.

5.1. 1D SHOCK-TUBE PROBLEMS

Three one-dimensional shock-tube problems are used to test the numerical solver and to prove the capabilities
of the simple fix proposed in the previous chapter. A shock-tube problem is actually a Riemann problem since
its goal is to find the solution in time of two initially separated states. At time ¢ = 0 the membrane separating
the two fluids is removed and several waves (either shocks, expansion fans or contact discontinuities) appear
which will run into the flow domain and change the state variable distributions. Because the exact solutions of
these shock-tube problems are known the accuracy of the numerical solver can be determined.

5.1.1 Translating interface
The first shock-tube problem treats a translating interface separating two fluids. Initially the velocity and
pressure are continuous, while the density and the ratio of specific heats differ (see table 5.1). The ratio of
specific heats will be smoothed using the smoothed step function with € = MT’”. Due to this initial distribution
the interface will be advected to the right with the flow velocity. In the exact situation the velocity and pressure
remain constant at all time.

From figure 5.1 it can be seen that this is not the case for the solver without fix. Oscillations appear in
the pressure distribution which due to the coupling of the flow variables also make the density and velocity
distributions to show oscillations (due to the chosen scale these oscillations are not visible in the density distri-
bution but zooming in proves their presence). These oscillations are solely the result of the spurious pressure
oscillations mentioned earlier.

The results obtained using the solver with the fix show none of this. Both the pressure and velocity distribu-
tions remain oscillation-free and continuous at the interface, as they should be. Although the density is smeared
out to some extent near the interface, which is the case for all numerical methods, the location of the contact
discontinuity is perfectly captured.

However, the solutions look better than they are. When looking at the plot of the ratio of specific heats,
figure 5.2, it is obvious that the numerical position of the interface, where « jumps, is completely wrong
compared to the exact location of the interface (the contact discontinuity). The plot of the numerical and the
exact (not redistanced) level-set distribution shows the cause of this off-set; at those points where the density
has been discontinuous over a cell face (the density becomes smooth due to numerical diffusion) the level-set
function has been advected with the wrong velocity resulting in a wrong location of its zero-value and thus
a wrong distribution of the ratio of specific heats. Thus, although it is not visible in the distributions of the
density, pressure and velocity, near the interface the wrong values of -y have been used.

Further research on this solely numerical error will be performed in the near future and will be one of the
research subjects of the author for his Master’s thesis. For now it should be mentioned that the errors are
intrinsic of the conservative approach of the level-set equation. Using a non-conservative approach will not
produce them. Further the error is of order one (Ax) and it depends on the severity of the jump in the density.

28

5.1. 1D shock-tube problems 29

Especially this dependence on the density makes the other test cases discussed in this report still valid. In
particular the two-dimensional test cases treat small density differences and are therefore not subjected to this
erTor.

left right
p | 1000.0 | 1.0
U 1.0 1.0
P 1.0 1.0
0% 1.4 1.6

Table 5.1: Initial data for 1D translating interface problem.

5.1.2 High-pressure Sod
The second one-dimensional test case treats the well-known Sod problem. A two-fluid version with a stronger
discontinuity is used. See table 5.2 for the initial data. The exact solution contains a left-running expansion
fan, a right-running shock and a right-running contact discontinuity separating the two fluids (the interface).
Figure 5.3 shows the numerical results. Again the spurious pressure oscillations occur in the solution ob-
tained when no fix is used. The solutions obtained with fix show again no oscillations. The results comply
extremely well with the expected exact results. The expansion, the shock and the interface are positioned in
the correct locations. Some smearing is present near the leading and trailing edges of the expansion fan, the
interface and the shock, though this is expected.

left | right
p | 10.0 | 0.125
u | 0.0 0.0
p | 10.0 | 0.1
v | 14 1.6

Table 5.2: Initial data for 1D high-pressure Sod problem.

5.1.3 No-reflection problem

The final test treats a strong shock hitting the two-fluid interface from the left at time ¢ = 0, resulting in a shock
moving to the right without creating a reflection. The initial conditions for this Riemann problem are given in
table 5.3 and the numerical results together with the exact solution are presented in figure 5.4.

When comparing the solutions obtained from the solver without and with fix, it appears that there are two
different sources of errors present in the numerical solution. The first is due to the pressure oscillations men-
tioned several times already. Near the interface, the first jump in the density distribution, the numerical unfixed
solution shows large spurious oscillations. These oscillations are not present when the fix is applied.

Though there is a second source of errors which is visible as a small hump in the state variable distributions.
Straightforward calculations show that this small wiggle moves with the local left-running wave speed, i.e.
the speed of sound subtracted from the local velocity (although this wave is referred to as left-running it is
actually moving to the right because the local velocity is supersonic). This indicates that although the initial
conditions are chosen in such a fashion that no reflection wave should occur, small errors appear due to the
initial discontinuity and are transported with the local wave speeds.

The no-reflection problem is used to obtain the order of convergence of the numerical scheme used in the
solver. Running the calculations for several grids with different cell sizes and calculating the L;-error results
in table 5.4. It has been mentioned earlier that the scheme used is approximately second order. Unfortunately
for problems with strong shocks this order will never be obtained. The obtained results are therefore what

30 Chapter 5. Numerical results
1 T T T T T T T T T 11 T T T T T T T T T 11 T T T T T T T T
1 w08 1 w08 1
200 B 1.06 4 1.06 1
w0 1
104 1 104 1
- 1
102 1 102 1
™ 1
. . o
500 1
0ss 1 0ss 1
400 4
0.96 1 0.96 4
300 1 -
e
o | 0t 1 0t _ 1
0 1 0s 1 0s 1
T I o I S o2 e o1 om0 ok o1 on o2
. " "
1 108 1 108 1
900 B 1.06 4 1.06 1
w00 1
1o 1 104 1
700 1
102 1 102 1
w00 1
a s 1 a 1
w00 1
0 1 0 1
w00 1
0s6 1 0s6 1
w00 1
o | 05 1 05 1
0 | 052 1 052 1
B o o o om0 o or o om o o W o o o om0 o o om oz o W o o o om0 o o1 w2

Figure 5.1: 1D translating interface problem. (p, u,p) at ¢ = 0.1. Grid has 200 cells and At/Az = 0.5. Solid
lines are exact solutions, dotted lines are numerical solutions. Top: solver without fix. Bottom: solver with fix.

Level-set function

Ratio of specific heats

1351

13 L L L L
025 -02 -015 01 -005

o
x

005

o1

015

02

025

ozl

-025F

025 -02 -015 01 -005

o
x

005

o1

015

02

025

Figure 5.2: 1D translating interface problem with off-set of level-set interface due to numerical errors. Solid
lines are exact solutions, dotted lines are numerical solutions. Note that level-set function has not been redis-
tanced for this plot, resulting in a non-straight line.

Table 5.3: Initial data for 1D no-reflection problem.

left right
p | 31748 | 1.0
u | 9.4350 | 0.0
p | 100.0 1.0
v | 1.667 1.2

5.1. 1D shock-tube problems 31

1 T T T T T T T T T 2 T T T T T T T T T 5 11 T T T T T T T T T
18 4
o
16 4
8
14 4
7
12 4
6
s 1 4 a
5
08 4
4
08 4
3
04 4 2
02 4 1
-025 02 015 01 -005 o 005 01 015 02 025 -025 02 -015 01 -005 o 005 01 015 02 025
x x
11
18
16 ¢
8
14
7
12
6
s o
5
08
4
06
3
04
2
02 s
025 02 015 01 005 o 005 01 015 02 025 025 02 015 01 005 o 005 01 015 02 025

Figure 5.3: 1D high-pressure Sod problem. (p,u,p) att = 0.08. Grid has 200 cells and At/Az = 0.2. Solid
lines are exact solutions, dotted lines are numerical solutions. Top: solver without fix. Bottom: solver with fix.
Density

Velocity Pressure

wof /.
1o - 1
B of e Y G
of .
of
s a0l]
My
NS
o
s sol- q
N >l a
sk
ab i aof- 1
il 3r
of 2 20 q
s s
825 0z 015 o1 005 0 005 o1 05 0z 02 825 0z 015 o1 005 0 005 o1 05 o0z 02 825 02 015 o1 005 0 005 o1 015 02 025
x x x
1o
10]
of W
of
ok
sf a0l]
Ms
My
o
s eol-]
- = ol a
sk
ab i aof- 1
3f ar
2| 2 20 1
s s
825 0z 015 o1 005 0 005 o1 015 o0z 025 825 0z 015 o1 005 0 005 o1 015 0z 02 025 02 015 01 005 0 005 o1 015 02 025
x x x

Figure 5.4: 1D no-reflection problem. (p,u,p) at ¢ = 0.016. Grid has 400 cells and A¢t/Az = 0.04. Solid
lines are exact solutions, dotted lines are numerical solutions. Top: solver without fix. Bottom: solver with fix.

32 Chapter 5. Numerical results

one expects for these types of problems. Note that using a fractional error norm will result in a higher order
because the influence of the errors due to the strong discontinuity are given less influence on the total error.
See [25] for a discussion of these special norms.

J € €y €
100 | 0.216326 | 0.136530 | 1.429744
200 | 0.121349 | 0.059584 | 0.739179
400 | 0.068219 | 0.032254 | 0.371704
800 | 0.039209 | 0.018549 | 0.197539
1600 | 0.024585 | 0.012426 | 0.121374

[p_ [0.790460 | 0.859912 | 0.902024 |

Table 5.4: Results for convergence test for 1D no-reflection problem.

5.2. 2D SHOCK-BUBBLE INTERACTION

The performance of the numerical solver for two-dimensional problems is tested on a problem treating the
interaction of a shock moving in air and a bubble containing a different gas. This problem is taken from the
experiments of Haas and Sturtevant [12]. Numerical treatment of this problem has among others been done by
Quirk and Karni [27] and more recently by Wackers and Koren [36]. The experimental (and numerical) setup
is as follows: a gas bubble at rest is located in the center of a wind tunnel containing air at rest. The gas in the
bubble is separated from the air by a micro-film (not necessary in the numerical case). At the right of the bubble
a shock moves towards the bubble. When the bubble is hit by the shock the micro-film tears apart and the shock
and the bubble start to interact, resulting in a specific wave pattern depending on the type of gas in the bubble.
Due to this interaction the bubble will start to deform and finally break-up into two separate halves. Because
the interaction between the bubble and the shock is extremely fast (shock passes bubble in approximately 10~*
seconds in the case of an air speed of sound of 343 m/s) it is allowed to assume that the two fluids do not mix,
such that the two-fluid approach followed in this report can be used.

In these tests the circular bubble in air contains either helium (lighter than air) or the refrigerant gas R22
(heavier than air). In the helium case the speed of sound in the bubble is higher than the speed of sound in the
air resulting in the refracted wave, the shock continuing in the bubble, to travel faster than the shock outside of
the bubble. In the R22 case the speed of sound in the bubble is lower than in the air, which makes the refracted
wave to lag behind the shock in the air. After a while the wave interaction becomes more complex producing
characteristic patterns for both cases.

For the numerical computations the speed of sound in the air is taken equal to one (in reality this was 343
m/s so every speed should be scaled with this number), such that the shock moves with a Mach number equal
to 1.22. The initial conditions for both the helium and the air case are given in table 5.5. Note that the ratio
of specific heats and the density for helium differ from text-book values. This is to take into account the
contamination of the helium with air which was the case in the experiment.

The numerical flow domain is halved by making use of symmetry properties (only one half of the bubble is
treated) to reduce the amount of computations. Due to computational limitations the grid is limited to 300 cells
in z direction and 150 cells in y direction (note that Wackers used a 400 x 200 grid in [36]). To fulfill the CFL
condition a time step of At = 1.25 x 1075 is used for the helium test and At = 2.5 x 107> for the R22 case.
To allow the shock to develop before it hits the bubble, its initial position is taken 5 cells right of the bubble-air
interface. The time the shock takes to reach the bubble is 2.24 x 10~2 seconds. From now on only the time
from the start of the calculations is used.

In order to prevent unphysical oscillations to occur the density distribution near the bubble interface is
smoothed in exactly the same way as is done for the ratio of specific heats. Using the smoothed-step function
H. the bubble interface is smeared-out over a few cells. This prevents the density distribution from staircasing.
See appendix I for a complete discussion of this procedure.

5.2. 2D shock-bubble interaction 33

v p u v p
Ailgragnant | 1.4 | 140000 | 0.00000 | 0.00000 | 1.00000
AT moving 1.4 | 1.92691 | 0.33361 | 0.00000 | 1.56980
helium 1.648 | 0.25463 | 0.00000 | 0.00000 | 1.00000
R22 1.249 | 4.41540 | 0.00000 | 0.00000 | 1.00000

Table 5.5: Initial conditions for the ’shock hitting bubble’ test case.

5.2.1 Helium bubble

The first test uses a bubble filled with helium. The helium used in this test (contaminated with air) has a sound
speed that is much higher than the sound speed of the air (anelium = 2.44 and a,;; = 1.0). This makes that the
refracted shock, which is the original shock continuing in the bubble, moves faster than the shock in air. The
point where this refracted shock hits the interface therefore lies ahead of the point where the original shock hits
the interface. At this point the refracted shock continues outside the bubble as the transmitted shock and moves
towards the original shock. After intersecting this incoming shock it continues to the right until it is finally bent
by the expansion that moves away downstream from the point where the original shock hits the interface. When
the refracted shock passes through the bubble interface at the left it continues outside the bubble as the earlier
mentioned transmitted shock. This shock now has the shape of a bow-shock. For a more extensive description
and an analytical solution of this interaction see [36].

The wave pattern described above is clearly visible in the plots of the density (figure 5.5) and the pressure
(figure 5.6). The results obtained fully comply with similar tests. Although there is some smearing near the
right bubble interface, the density and pressure distributions remain surprisingly sharp and the location of the
waves is correct, indicating that there is no apparent loss of accuracy due to the method locally not being
conservative.

The deformation of the bubble during the interaction is visible in figure 5.7 showing plots of the contours of
the ratio of specific heats. Due to the level-set approach the interface remains very sharp (no more than five
grid cells width), this in contrast to the five-equation model used by Wackers and Koren which shows some
smearing of the interface. The location of the bubble is perfectly captured and remains accurate throughout the
whole simulation. Besides the time periods used by Wackers and Koren figure 5.8 also shows the bubble at a
later stage. Clearly visible is the process of cutting-in of the bubble along the symmetry axis, finally leading to
the bubble breaking-up in two vortices. Because the initial density distribution is smeared over the interface no
disastrous instabilities occur (see appendix 1 for a comparison between smeared and non-smeared solutions).

5.2.2 R22 bubble

In the second test case the bubble is filled with refrigerant gas R22, an HCFC. This gas is among others used
in air conditioners and other similar applications. R22 is much heavier than air (density is three times larger)
and the ratio of specific heats is somewhat lower. This makes that the sound speed in R22 is lower than the
sound speed in air (agrz; = 0.532 and a,;; = 1.0). This lower speed of sound results in the refracted wave (in
the bubble) to move slower than the original wave (in the air). This causes the top of the refracted wave to bend
forward when time passes. Due to the initial interaction of the shock and the bubble a reflected wave appears
that travels backwards and is finally reflected by the solid wall on the top. For a complete description of the
wave pattern see [36].

Figures 5.9 and 5.10 show the density and pressure distributions. Again the results comply very well with
known data. Clearly visible are the refracted and reflected shocks. Both the density and the pressure distribu-
tions show some smearing near the shocks which is as expected.

In figure 5.11 the distribution of the ratio of specific heats is plotted. Because the gas in the bubble is heavier
it is less sensitive to compression as was the case for helium. The bubble therefore only deforms slightly. The
interface between the bubble remains extremely sharp (intrinsic property of the level-set method).

34 Chapter 5. Numerical results

Figure 5.5: Shock hitting helium bubble. Density att = 5 x 1073, ¢ = 13 x 1073, ¢ = 19.8 x 1072 and
t = 25 x 1073, Grid has 300 x 150 cells and At = 1.25 x 1075,

1
0.04

Figure 5.6: Shock hitting helium bubble. Pressure at ¢ = 5 % 1073, ¢t =13 x 1073, ¢t = 19.8 x 102 and
t = 25 x 1072, Grid has 300 x 150 cells and At = 1.25 x 1072,

5.2. 2D shock-bubble interaction

1 1
0.03 0.04

1 !
0.03 0.04

L
0.02

1
0.03

1
0.04

1
0.02

1
0.03

1
0.04

35

Figure 5.7: Shock hitting helium bubble. Ratio of specific heatsatt = 5x 1073, = 13x1073,¢ = 19.8x 1073
and t = 25 x 1073, Grid has 300 x 150 cells and At = 1.25 x 1075,

Figure 5.8: Shock hitting helium bubble. Ratio of specific heats at t = 50 x 1073, ¢
100 x 1073 and ¢ = 150 x 10~3. Grid has 300 x 150 cells and At = 1.25 x 1075,

-0.07 0.06 -0.05 0.04 0.03 -0.02 0.01)
-0.03 -0.02 -0.01 0

_ -3 4 _

=75 x107°,t =

36 Chapter 5. Numerical results

Figure 5.9: Shock hitting R22 bubble. Density at £ = 10 x 1073, ¢t = 20 x 1073, ¢t = 35 x 10~3 and
t = 50 x 10~3. Grid has 300 x 150 cells and At = 2.5 x 1075.

! !
0.01 0.02 0.03 0.04

Figure 5.10: Shock hitting R22 bubble. Pressure at t = 10 x 1073, ¢ =20 x 1073, ¢t = 35 x 1073 and
t = 50 x 10~3. Grid has 300 x 150 cells and At = 2.5 x 1072,

5.3. 2D Kelvin-Helmholtz instability 37

1 1 1
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.03 0.02 -0.01 0 0.01 0.02 0.03 0.04
X

! ! !
0.02 0.03 0.04

o}
o
sk

! !
0.03 0.04 0.03 0.02 -0.01

Figure 5.11: Shock hitting R22 bubble. Ratio of specific heats att = 10 x 1072, ¢ = 20 x 1072, ¢ = 35 x 1073
and ¢ = 50 x 1073, Grid has 300 x 150 cells and At = 2.5 x 10~°.

5.3. 2D KELVIN-HELMHOLTZ INSTABILITY

To investigate the possibilities of the level-set method further the Kelvin-Helmholtz instability is treated. This
unstable flow situation occurs when two layers of fluid move with different velocities relative to each other.
A small disturbance in the interface will roll up in a characteristic vortex pattern. Because this vortex pattern
will result in large distortions of the interface and possibly in topology changes of the interface the level-set
approach is specifically useful since it allows for both.

The test case performed here is taken from [24]. Two layers of fluids (top and bottom) are separated by an
initially perturbed interface. This perturbation is take equal to a sine-function. Although we speak here about
an interface separating two fluids, the first test shall be done using air both above and below the interface. The
second test will treat a real two-fluid interface separating air and helium.

5.3.1 Air-air

The first case treats two layers of air moving in opposite directions. The air above the interface moves with
velocity u = 0.25 to the left and the air below the interface with the same velocity to the right. The density is
taken equal to p = 1.4, the pressure to p = 1 and the ratio of specific heats to v = 1.4 (this makes the speed
of sound equal to a = 1). The computational domain has dimensions 1 X 2 in respectively = and y directions.
The grid has 100 x 200 cells. The initial interface perturbation has amplitude 1.

The numerical results are depicted in figure 5.12. Clearly visible is the interface disturbance that grows in
time. The final figure shows the topological change in the level-set contours. Some contours start to merge
together while others split. Clearly the level-set method has no difficulties capturing these phenomena. Espe-
cially interesting is the behavior of the other level-set contours. Although the level-set function distorts due to
the non-homogeneous flow field, the level-set contours that are shown remain real distances from the interface.
This is solely the result of the redistancing procedure.

38 Chapter 5. Numerical results

Figure 5.12: Kelvin-Helmholtz instability for air-air interface. Level-set function at different time levels. The
three dense level-set contours are respectively ¢ = — ?’ATy, 0, MTy. Grid has 100 x 200 cells and At = 1x 1073,

5.3. 2D Kelvin-Helmholtz instability 39

5.3.2 Air-helium

In this test case the fluid above the interface is helium and the fluid below is air (heavier than helium)!. The
properties of both air and helium are taken equal to the values used in the shock-bubble interaction problem
(table 5.5). The helium used is thus contaminated with air. The velocities above and below the interface are
pointed in respectively left and right directions but have now a magnitude equal to u = 0.5. The grid used is
the same as for the air-air case.

Figure 5.13 shows the numerical results. Depicted are the contours of the level-set function. The behavior
of the interface clearly behaves different from the air-air situation. The initial instability now grows to a very
sharp wave that breaks instead of rolls. The lighter helium on top of the air makes that the instability is no
longer symmetric. After only a few time steps the interface deforms to such an extent that it is difficult to
indicate which fluid is which. This specific breaking-up of the wave is comparable to waves in the ocean, with
the difference that the fluid on top is air and the heavier fluid below is water.

Lol

(@)
DAL

Figure 5.13: Kelvin-Helmholtz instability for air-helium interface. Level-set function at different time levels.

The three dense level-set contours are respectively ¢ = —32y 0, MT'”. Grid has 100 x 200 cells and At =

2 b
1x 1073,

! Although we refer here to the difference in weight between air and helium, the Euler equations used contain no gravity terms. The
differences between the air-air and air-helium cases are thus not due to the differences in weights but due to the differences in density and
ratio of specific heats.

40 Chapter 5. Numerical results

5.4. SUPERSONIC FREE JET

As a final two-dimensional test case the well-known supersonic free jet is treated. A free jet occurs when
a high velocity flow exits a nozzle into a gas, often air, producing a jet with characteristics depending on the
properties of the jet and the ambient gas. Two specifically interesting situations occur when the jet exits in a gas
with either a lower or a higher pressure. In the former case the jet is called underexpanded referring to the jet
not being expanded to a low enough pressure (the ambient gas). The latter jet is called overexpanded because
the jet has a pressure lower than the gas it exits in. In both cases the jet will deform due to the appearance of
shocks and expansion fans trying to adapt the jet pressure to the ambient pressure. For an analytical discussion
of the supersonic free jet one can refer to any textbook on supersonic gasdynamics such as [7].

The initial conditions for the stagnant ambient air are taken as follows: (p,u,v,p,vy) = (1.4,0,0,1,1.4).
The conditions of the gas in the jet depend on the test case considered; for the underexpanded case the pressure
is twice the ambient pressure and for the overexpanded case the pressure is half the ambient pressure. The
density and the ratio of specific heats are the same for both the jet and the stagnant air. This makes that the
Mach number in the underexpanded jet when exiting the nozzle is equal to M = /2 and the Mach number in
the overexpanded jet M = 2/2.

The computational domain is chosen such that several periods of the jet are visible. Taking the domain equal
to 3 x 1 in respectively « and y-directions and the width of the underexpanded jet to d;j.; = 0.25 and that of the
overexpanded jet to dje; = 0.42 means that roughly two and a half period of both the underexpanded jet and
the overexpanded jet will be captured. The grid is made-up of 120 x 40 cells in respectively = and y-directions
(doing the same calculations on a finer grid is one of the future research interests).

5.4.1 Underexpanded jet
The results of the underexpanded supersonic jet are depicted in figure 5.14. The figure shows plots of the
velocity, density, pressure and level-set function at 20 time units after the start of the calculations. Neglecting
minor changes due to numerical errors, the jet can reasonably be assumed to be steady at this time level.
Clearly visible is the characteristic jet pattern occurring when an underexpanded jet enters in a stagnant
gas. Because the pressure in the jet is higher than the ambient pressure two expansion fans originate from the
nozzle exit (at respectively y = :i:%) lowering the jet pressure. Meanwhile the interface is pushed outwards
to some extent. Because the streamlines cross the expansion fans twice the pressure is expanded too much
(overexpanded) resulting in a region of low pressure. The same expansion fans are reflected from the jet
boundaries, curving the boundaries inwards, creating two reflected compression fans. The pressure in the jet
is increased again to a value higher than the ambient pressure, resulting in a region comparable to the inflow
region (nozzle exit). Because the compression fans (if the fans of one compression fan meet they form a shock)
hit the jet boundary in this region, the boundaries curve outwards again, starting the process all over again.
The boundary remains very sharp during the simulation. Although not clearly visible in the plots, the jet
boundary will lose its sine-shape further downstream of the nozzle.

5.4.2 Overexpanded jet

In figure 5.15 the results of the overexpanded jet are shown. Because the ambient pressure is now 2 times
larger than the jet pressure two shocks originate from the nozzle exit to compress the jet to the outside pressure.
When these shocks meet they deflect each other (sometimes forming compression fans). The jet boundary is
initially sucked inside but starts to deflect towards the outside when the shocks hit it. The shocks reflect as
expansion fans and lower the pressure of the jet again. This process continues itself. Due to its specific pattern
this jet is sometimes referred to as the diamond jet. Note however that in time the distinct diamond shape
disappears since the sharp shocks make place for less sharp compression fans (only half of the first period is
really diamond-shaped).

Clearly visible is the evolution of the jet further away from the nozzle. The first jet period still shows a sharp
inward and outward curvature while later periods show a more damped behavior. The regions of lower and
higher pressure and density become smaller and less severe until they finally damp out completely leaving a
straight jet.

5.4. Supersonic free jet 41

P
19
18
17
16
15
14
13

Figure 5.14: Supersonic underexpanded jet. From top to bottom: velocity, density, pressure and level-set
function. Pressure in jet is 2 times larger than the ambient pressure. Grid has 120 x 40 cells and At = 5 x 10~

42 Chapter 5. Numerical results

Figure 5.15: Supersonic overexpanded jet. From top to bottom: velocity, density, pressure and level-set func-
tion. Pressure in jet is 2 times smaller than the ambient pressure. Grid has 120 x 40 cells and At = 5 x 10~%.

Chapter 6
Conclusions

6.1. CURRENT WORK

This report treats the development of a numerical solver for the simulation of flows consisting of two non-
mixing fluids described by the two-dimensional Euler equations. A level-set equation in conservative form is
added to describe the evolution of the interface. To prevent the level-set function from distorting a redistancing
procedure is applied. This redistancing is done using a PDE-method which transforms the distorted level-set
function back to a real signed distance function. For a consistent and error-free interface treatment the two-fluid
interface is smeared-out over several cells using a smoothed-step function. A characteristics analysis resulted
in the eigenvalues and eigenvectors of the flow model.

The flow equations are implemented in a numerical flow solver using a finite-volume approximation. A three-
stage time marching scheme is used together with the approximate Riemann solver of Roe. Quadratic subcell
interpolation is obtained using a limiter proposed by Koren. The combination of time and space discretization
is theoretically third-order accurate but due to several simplifications this order will never be reached in reality,
making the method effectively second-order accurate. The redistancing equation is discretized using a two-
stage time-marching scheme and second-order accurate spatial interpolation.

The pressure oscillations present in all conservative level-set methods are discussed. Their origin is deter-
mined and a simple fix is treated that removes these spurious oscillations from the solutions. Although this
fix makes the numerical method locally non-conservative the resulting errors are negligible compared to the
previous pressure oscillations.

Several numerical tests are performed to test the solver for its performance. Standard one-dimensional shock-
tube problems prove the existence of the pressure oscillations and confirm the proper working of the simple
fix. Although not visible in the density, pressure and velocity distributions, a numerical error is present due
to the conservative approach used for the level-set equation. A convergence test verifies the numerical order
of the scheme. Two-dimensional tests are performed using the shock-bubble interaction problem, the Kelvin-
Helmbholtz instability and the supersonic free jet. All results indicate the excellent performance of the level-set
method.

6.2. FUTURE WORK
The work done acts as a starting point for further research in the area of level-set methods and two-fluid
simulation. Interesting future research can focus on the following subjects:

Analysis of error due to conservative level-set approach. — The one-dimensional test results with the conserva-
tive level-set approach show a numerical error due to the dependence of the level-set function on the distribution
of the density. Further investigation of this error will be done to improve the available methods. A method that
has been proven to solve the problem is to treat the level-set equation separate from the Euler equations.

Integrated redistancing. The redistancing of the level-set function is done by numerically solving a separate
equation for the level-set function and its gradient. This approach seems to work fine but there is reason to
believe that there is a more efficient approach. Including a redistancing term into the level-set equation is a
possible option.

New interface approach. The fix for the spurious pressure oscillations makes the level-set method locally

non-conservative. Although this seems to have no large influence for the problems treated, it will when very
strong shocks occur. It is therefore necessary to continue the search for a less severe fix. A different interface

43

44 Chapter 6. Conclusions

approach is necessary which prevents the spurious pressure oscillations but does not affect the conservation
properties.

Adaptive mesh refinement. To reduce the effect of the level-set method locally being non-conservative an
adaptive mesh refinement method could be used. Increasing the number of cells near the interface will re-
solve this problem partially. Because the level-set method provides the exact location of the interface, mesh
refinement can be easily implemented.

Level-set for discontinuous Galerkin Especially interesting is the application of level-set methods to discon-
tinuous Galerkin (finite-element) methods. Since DG methods use, besides information about the average value
of the state variables in a cell, also information about the gradient of the state variables, they are specifically
useful for level-set methods. Using the conservation equation for the gradient of the level-set function will
automatically include the redistancing procedure in the method, without requiring a separate approach.

Level-set grid generation for complex geometries. The level-set method seems especially interesting for
generating grids for complex geometries. Following the work of Sethian in [32] this approach can be used in
future work.

Extension of numerical treatment of supersonic jet The supersonic free jet is an excellent problem where the
analytical theories come short for a complete understanding of the gas dynamical processes taking place (the
complex non-simple regions have no known exact solution). Numerical solutions provide therefore a more than
useful tool for understanding these processes. Especially the jets involving multiple fluids are an interesting
starting point for further research.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20

References

R. Abgrall and S. Karni. Computations of compressible multifluids. J. Comp. Phys. 169, pages 594-623,
2001.

R. Abgrall. How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative
approach. J. Comp. Phys. 125, pages 150-160, 1996.

P.G. Bakker. Lecture Notes on Gasdynamics, AE4-140. Faculty of Aerospace Engineering, Delft Univer-
sity of Technology, 2001.

D.J. Benson. Computational methods for Lagrangian and Eulerian Hydroflow. CMAME 99, pages 235-394,
1992.

E.H. van Brummelen and B. Koren. A pressure-invariant conservative Godunov-type method for barotropic
two-fluid flows. J. Comp. Phys. 185, pages 289-308, 2003.

R.L. Burden and J.D. Faires. Numerical Analysis, 7th edition. Brooks/Cole, 2001.
R. Courant and K.O. Friedrichs. Supersonic Flow and Shock Waves. Springer Verlag, New York, 1976.

R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher. A non-oscillatory Eulerian approach to interfaces in
multimaterial flows. J. Comp. Phys. 152, pages 457-492, 1999.

S. Osher and F.P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sci-
ences 152, Springer-Verlag, 2002.

S.K. Godunov. A finite difference method for the computation of discontinuous solutions of the equations
of fluid dynamics. Mat. Sb. 47, pages 357-393, 1959.

H. Guillard and A. Murrone. A five-equation reduced model for compressible two phase flow problems.
INRIA Rapport de recherche N° 4778, Institut National de Recherche en Informatique et en Automatique,
Sophia Antipolis, 2003.

J.F. Haas and B. Sturtevant. Interaction of weak shock waves with cylindrical and spherical gas inhomo-
geneities. J. Fluid Mech. 81, pages 41-76, 1987.

C.W. Hirt and B.D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp.
Phys. 39, pages 201-225, 1981.

S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. J. Comp. Phys. 112, pages
31-43, 1994.

S. Karni. Hybrid multifluid algorithms. STAM J. Sci. Comp. 17, pages 1019-1039, 1996.

B. Koren. Multigrid and Defect Correction for the Steady Navier-Stokes Equations, Application to Aero-
dynamics, CWI Tracts 74, CWI, Amsterdam, 1991.

B. Koren, M.R. Lewis, E.H. van Brummelen and B. van Leer. Riemann-problem and level-set ap-
proaches for two-fluid flow computations, I: Linearized Godunov scheme. Report MAS-R0112, CWI,
http://ftp.cwi.nl/CWIreports/MAS/MAS-RO112.pdf, 2001.

B. Koren, M.R. Lewis, E.H. van Brummelen and B. van Leer. Riemann-problem and level-set approaches
for two-fluid flow computations, II: Fixes for solution errors near interfaces. Report MAS-R0113, CWI,
http://ftp.cwi.nl/CWIreports/MAS/MAS-R0113.pdf, Amsterdam, 2001.

B. Koren and A.C.J. Venis. A fed back level-set method for moving material-void interfaces. J. Comp.
Appl. Math. 101, pages 131-152, 1999.

. B. van Leer. Computer Problem 2, version 1: Hypersonic flow over a cavity with fuel injection, A 2D Euler

45

46

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

References

code from 1D building blocks. Department of Aerospace Engineering, University of Michigan, 2003.

B. van Leer. Computer Problem 2, version 4: Incompressible free-surface flow over a bump. Department
of Aerospace Engineering, University of Michigan, 2004.

G.H. Markstein. Chapter B: Theory of Flame propagation, in: Non-Steady Flame Propagation (G.H. Mark-
stein, ed.), pages 5-14, Pergamon Press, New York, 1964.

M. Metcalf and J. Reid. FORTRAN 90/95 explained, 274 edition. Oxford University Press, 1999.

W. Mulder, S. Osher and J.A. Sethian. Computing interface motion in compressible gas dynamics. J. Comp.
Phys. 100, pages 209-228, 1992.

J. Naber. Building your own shock tube. Report MAS-E0502, CWI,
http://ftp.cwi.nl/CWIreports/MAS/MAS-E0502.pdf, Amsterdam, 2005.

S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations. J. Comp. Phys. 79(1), pages 12-49, 1988.

J.J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction. ICASE Report 94-75, Institute
for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA,
1994.

PL. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43,
pages 357-372, 1981.

A. Rohde. Eigenvalues and eigenvectors of the Euler equations in general geometries. AIAA Paper 2001-
2609, American Institute of Aeronautics and Astronautics, 2003.

R. Saurel and R. Abgrall. A multiphase Godunov method for compressible multifluid and multiphase flows.
J. Comp. Phys. 150, pages 425-467, 1999.

J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Ge-
ometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.

J.A. Sethian. Curvature flow and entropy conditions applied to grid generation. J. Comp. Phys. 115, pages
440-454, 1994.

M. Sussman, P. Smereka and S. Osher. A level-set approach for computing solutions to incompressible
two-phase flow. J. Comp. Phys. 114, pages 146-159, 1994.

M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing algorithm and its ap-
plication to interfacial incompressible fluid flow. SIAM J. Scient. Comp. 20(4), pages 1165-1191, 1999.

E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, gnd
edition. Springer-Verlag, Berlin, 1999.

J. Wackers and B. Koren. Five-equation model for compressible two-fluid flow. Report MAS-E0414, CWI,
http://ftp.cwi.nl/CWIreports/MAS/MAS-E0414.pdf, Amsterdam, 2004.

J. Wackers and B. Koren. A fully conservative model for compressible two-fluid flow. Int. J. Numer. Meth.
Fluids (to appear).

P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks.
Review article, J. Comp. Phys. 54, pages 115-173, 1984.

Appendix |
Density smoothing for shock-bubble interaction

The argument for the smoothing of the two-fluid interface was to prevent staircasing of the interface. When the
interface moves with the local flow velocity it will move away from the cell faces into the cells. This results in
cells containing portions of both fluids. Because the numerical solver only uses the flow variables of one fluid,
the one that is present in the cell center, the interface is in fact pushed to the cell faces, resulting in the interface
to follow the sharp corners of the grid cells (see figure I.1).

This staircasing means that the location of the interface, and thus the local values of the ratio of specific
heats, are used incorrectly when solving the Riemann problems on the cell faces. This can lead to numerical
errors, which in turn can result in spurious oscillations of the interface.

The problem sketched above is not only restricted to the level-set function but also to the distribution of the
other flow variables. Because the interface often separates two different fluids with different densities, the same
problem can occur for the distribution of the density. In time the numerical errors can produce oscillations in
the density distribution near the interface.

Unfortunately it is not possible to smooth the density distribution after each time update because the density
in the flow almost never, besides maybe in some special situations, has two distinct values (there are no pr,
and pgr). Except in the initial flow distribution! The bubble in the shock-bubble interaction problem has one
density and the air has another. Smoothing of the density interface can thus be applied here. Using the smooth-
step function H, given by (2.11) the density jump over the bubble can be smeared-out over several cells, thus
preventing staircasing.

/K
/

e

7

Figure I.1: Grid cells containing an interface separating two fluids (solid line). The interface is pushed to the
cell faces (dotted line) leading to staircasing of the interface. This staircasing leads to numerical errors which
can induce spurious oscillations in the state variable distributions.

Figure 1.2 shows the results of computations with a non-smoothed helium bubble and a smoothed version.
Although the density distribution is smeared-out over more grid cells than was the case without smoothing,
resulting in a somewhat broader density interface, the spurious oscillations are not visible when smoothing is
applied. This proves the use of this simple method.

Not only in the case of the shock-bubble interaction but every time an initial jump in a flow variable distri-
bution is present this technique can be applied.

47

48 Appendix |. Density smoothing for shock-bubble interaction

004 [0.04 [
003 [003 |-
> >
002 [0.02 [
001 |- 001 [
L L L L L L
-0.03 0.03 0.04 -0.07 -0.06 0
004 |- 004 |-
003 [0.03 [
> >
002 [002 [
001 | 0ot |-
1 L Il Il Il 1 Il L 1 Il
0.03 0.02 0.01 0 0.01 0.02 0.03 0.04 0.07 -0.06 0

Figure 1.2: Shock hitting helium bubble. Density at # = 0 and t = 75 x 10~2. Grid has 300 x 150 cells and
At = 1.25 x 107°. Top: Non-smoothed case. Bottom: Smoothed case.

