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Stability of spatially periodic pulse patterns in a class
of singularly perturbed reaction-diffusion equations

Abstract

In this paper we develop a stability theory for spatially periodic patterns on R. Our
approach is valid for a class of singularly perturbed reaction-diffusion equations that can
be represented by the generalized Gierer-Meinhardt equations as ‘normal form’. These
equations exhibit a large variety of spatially periodic patterns. We construct an Evans
function D(A,~) that is defined for the y-eigenvalue A in a certain subset of C. The
spectrum associated to the stability of the periodic pattern is given by the solutions A(vy) of
D(A(7),7) = 0, where v € S'. Although our method can be applied to all types of singular
pulse patterns, we focus on the stability analysis of the families of most simple periodic
solutions. By decomposing D(), ) into a product of a ‘slow’ and a ‘fast’ Evans function, we
are able to determine explicit expressions for the y-eigenvalues that are (1) with respect
to the small parameter €. Although the branch of ‘small’ y-eigenvalues that is connected
to the translational 1-eigenvalue A(1) = 0 cannot be studied by this decomposition, our
methods also enable us determine the location of these y-eigenvalues. Thus, our approach
provides a full analytical control of the (spectral) stability of the singular spatially periodic
patterns. We establish that the destabilization of a periodic pulse pattern on R is always
initiated by the O(1) y-eigenvalues, and consider various kinds of bifurcations. Finally, we
apply our insights to the stability problem associated to the restriction of a periodic pulse
pattern to a bounded domain with homogeneous Neumann boundary conditions.
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Abstract

In this paper we develop a stability theory for spatially periodic patterns on R. Our
approach is valid for a class of singularly perturbed reaction-diffusion equations that can
be represented by the generalized Gierer-Meinhardt equations as ‘normal form’. These
equations exhibit a large variety of spatially periodic patterns. We construct an Evans
function D(A,v) that is defined for the 7y-eigenvalue X in a certain subset of C. The
spectrum associated to the stability of the periodic pattern is given by the solutions A(v) of
D(A(7),7) = 0, where v € S*. Although our method can be applied to all types of singular
pulse patterns, we focus on the stability analysis of the families of most simple periodic
solutions. By decomposing D(J, ) into a product of a ‘slow’ and a ‘fast’ Evans function, we
are able to determine explicit expressions for the y-eigenvalues that are @(1) with respect
to the small parameter €. Although the branch of ‘small’ y-eigenvalues that is connected
to the translational l-eigenvalue A(1) = 0 cannot be studied by this decomposition, our
methods also enable us determine the location of these y-eigenvalues. Thus, our approach
provides a full analytical control of the (spectral) stability of the singular spatially periodic
patterns. We establish that the destabilization of a periodic pulse pattern on R is always
initiated by the O(1) v-eigenvalues, and consider various kinds of bifurcations. Finally, we
apply our insights to the stability problem associated to the restriction of a periodic pulse
pattern to a bounded domain with homogeneous Neumann boundary conditions.

1 Introduction

In recent years, the theory of the stability of localized solutions of homoclinic or heteroclinic
type, such as traveling waves, has developed significantly. Moreover, a unifying approach that
can be applied to various classes of nonlinear partial differential equations, such as (nearly-
)integrable systems, reaction-diffusion equations and conservation laws, has become available
in the form of the Evans function D()), where A € C corresponds to a possible eigenvalue of the
linearized stability problem associated to the localized ‘pattern’ (see [1, 12, 26, 16, 19, 3, 2, 21]
and the references therein). The solitary homoclinic/heteroclinic patterns can be seen as ‘build-
ing blocks’ of more complex patterns. Arguably the most simple of such patterns are the
spatially periodic patterns. Based on the insights obtained for the homoclinic/heteroclinic so-
lutions, a theory has been developed by which the spectral stability of these patterns with
respect to bounded, in general non-localized, perturbations can be studied. Again, a unifying



role is played by an Evans function, that is an extension of the ‘homoclinic Evans function’
D()), to a ‘spatially periodic Evans function’ D(},7), in which v € 8! C C refers to the con-
cept of the vy-eigenvalue [10, 11]. As for the homoclinic/heteroclinic case, this approach can
again be applied to various classes of equations (see [10, 11, 8, 27, 25] and the references therein).

In this paper, a spatially periodic Evans function D(), ) is defined and analyzed in the context
of the (spectral) stability problem for several types of spatially periodic pulse solutions in a
class of singularly perturbed reaction-diffusion equations. In its most general setting, this class
of reaction-diffusion equations is a two-component system of the form

{ Ut = dUUzm + a1U+a2V +F(U, V) (1 1)
with z € R and 0 < dy < dy, so that a small parameter ¢ can be defined by 2 = dy /dy < 1.
System (1.1) is assumed to have a stable trivial state (U(z,t),V(z,t)) = (0,0). Provided that
a number of (generic) conditions on the parameters a;2,b1,2 € R and the (smooth) functions
F,G :R? — R are satisfied (see [3]), these equations exhibit countably many families of various
kinds of singular homoclinic and spatially periodic pulse patterns [3, 6]. Here, ‘singular’ refers
to the fact that the amplitudes of the (localized) pulses are in general not O(1) with respect to
the asymptotic parameter ¢ (Remark 1.6). Therefore, it is natural to perform a scaling analysis
in (1.1), so that the amplitudes of the pulses become O(1). This is a relatively straightforward
procedure that leads, at leading order in ¢, to the following ‘normal form’ [3],

2U; = Uy €U + UnVA (1.2)
Vi = Vi —V + Ue2VP, :
in which p, 1,2, 81,2 € R are parameters such that
w>0,D = (a1 — 1)(52 — 1) —agf > 0,0 < O,Bl,z > 1. (13)

Note that the nonlinear terms in (1.2) are determined by the leading order behavior of the
F(U,V) and G(U,V) in (1.1) — see [3]. In order to minimize the technical details as much as
possible, we do not consider the general system (1.1) in this paper, but study the stability of
spatially periodic pulse solutions in the normal form reduction (1.2). This is not a restriction.
The theory developed here can be applied to the general setting of (1.1), of course under con-
ditions on the parameters aj 2,b; 2 and the nonlinearities F(U,V),G(U,V) as formulated in
[3]. In fact, the conditions on (1.1) in [3] are even stronger than necessary, see Remark 1.3.
Moreover, the leading order corrections to (1.2) that appear from the scaling analysis in (1.1)
do not have a leading order influence on the analysis (as has been explicitly shown in [3] for
the stability theory of homoclinic patterns).

Apart from the present interpretation as normal form reduction, equation (1.2) also appears
in the literature as the ‘generalized Gierer-Meinhardt equation’, i. e. a generalization of the
‘classical’” Gierer-Meinhardt equation originally proposed by Gierer and Meinhardt as a model
for biological pattern formation or ‘morphogenesis’ (see [14, 24, 17, 28, 29] and the references
therein). At several places in the paper, we will consider the special ‘classical’ case as an explicit
example, i.e. we will set

a1:O,51:2,a2:fl,52:2, and D=1 (14)

(1.3). The generalized Gierer-Meinhardt has a remarkable multitude of (families of) spatially
periodic patterns, ranging from simple patterns that consist of identical pulses, to periodic
extensions of ‘random’ (but finite) arrays of several types of pulses [6]. Again, we do not con-
sider the most general setting here, i.e. we do not consider the stability problem for a ‘general’
spatially periodic pattern. Instead, we only consider the most simple types of patterns. The
fundamental spatially periodic patterns (U,(z;L),V,(z; L)) consist, as graphs of x € R, of
identical pulses at a distance 2L apart, see Figure 1(a). We distinguish two types of funda-
mental pulse patterns, the patterns of A-type, (Up a(z;La),Vp a(x;La)), and those of B-type



@ )

Figure 1: Two examples of spatially periodic pulse solutions of the classical Gierer-Meinhardt
equations ((1.2) with (1.4)), restricted to a bounded interval; (a) a fundamental periodic solu-
tion (Up,a(z), Vp,a(z)) of A-type, and (b) an AB-pattern (Up ap(z),Vp,a(x)). Note that the
V-components of the solutions are pulse-like, and strongly localized, while the U-components
vary slowly.

(Up.B(z;Lp),V, B(x; L)), Lg < L4, that merge in a saddle-node bifurcation of periodic so-
lutions (Theorem 1.7). As a first example of a more complex pattern, we also consider the
AB-patterns (U, ap(x;L),V, ap(x; L)), that consist of alternating pulses of A- and B-type
(Theorem 1.8) — see Section 1.1 and Figure 1(b). Again, our methods can be extended (in a
straightforward fashion) to include more complex patterns, as the periodically extended ‘ran-
dom’ arrays of A- and B-pulses (see also Remark 1.5). Such an extension is mostly a technical
exercise, and we will therefore refrain from presenting the details.

Due to the singularly perturbed nature of (1.2), the character of the spatially periodic pat-
terns depends strongly on the properties of the fast reduced limit problem

U = UO
{0 2 Tovropom, (15)

which is obtained from (1.2) by introducing the fast spatial variable £ = /¢ and taking the
limit ¢ — 0 (under the assumption that U(&,t) is bounded on R). This is a scalar equation
for the limit function V(&,t); Uy € R is the leading order value of the U-component of the
periodic pattern in the (narrow) ¢-region around the V-pulse (Figure 1), Uy = Uy(L) depends
on the period (= 2L) of the periodic pattern ([6], Section 1.1). The V-component of the pe-
riodic pulse solutions is approximated by the homoclinic solution V;(¢; L) of the stationary
problem associated to (1.5) — recall that 8 > 1 (1.3). Both Up(L) and V}(&; L) have well-
defined limits as L — oo, these are the leading order approximations of the homoclinic pulse
(Un(&), Vi(€)) = (Up(&; 00), Vp(€; 00)) that is the natural boundary of the family of 2L-periodic
solutions (Up, 4 (&; L), Vp,a(§; L)) (Theorem 1.7). The patterns we study in this paper, have an
asymptotically long period: e2L = O(1) (or larger) in the £-coordinate (Theorems 1.7 and 1.8).
Nevertheless, this length scale corresponds to the natural length scale of the U-components in
the regions between two pulses (O(1/¢) in the slow x-scaling, see (1.14)). Hence, for L such
that e2L = O(1), subsequent pulses of a periodic pattern are so ‘close’ to each other that the
U-components remain O(1) in between the pulses. Thus, the U-component of a periodic pat-
tern does not (necessarily) become exponentially small in between the pulses. Also, Uy(L) and
Vi (&; L) are not necessarily close to Up(co) and Vj(£;00), i.e. the pattern (U,(&; L), V,(&; L))
is not necessarily close to its homoclinic limit (U,(§;00), V,(§;00)) (restricted to one period
0,2L)).

Unlike in [11] and [27], we can therefore not assume that the period 2L of (Up,(&; L), Vp(&; L))
is ‘large enough’. As a consequence, the theory presented here extends that of [11, 27], which
is developed for near-homoclinic patterns in which all components of the periodic pattern are
exponentially small between subsequent pulses. On the other hand, the results of [11, 27] are, of



course, valid in a much larger class of (not necessarily singularly perturbed) reaction-diffusion
equations than (1.1) and (1.2) considered here. Moreover, our results can (and will) be checked
against [11, 27] by considering the limit 2L — oo.

Independent of the type of the 2L-periodic pattern (U,(&; L), V,(€; L)), the linearized stabil-
ity on R of the pattern with respect to bounded and uniformly continuous perturbations is
determined by a linear equation of the form

d
dé

in which \ € C is the eigenvalue that determines the linear growth of a perturbation, ¢ : R — C*
its potential eigenfunction, and A,(€) a 4 x 4 matrix that is 2L-periodic (see Section 2 for the
details). Floquet theory implies that A € C is an eigenvalue of (1.6) if and only if there is a
v €8St ={y€C:|yl =1} and a nontrivial #(£) such that ¢(& + 2L) = y¢(€) for all £ € R.
These A = A\(7)’s are the 7y-eigenvalues, and the full spectrum of (1.6) consists of a number of
curves of these y-eigenvalues, parameterized by v € S! ([10], Definition 2.1, Proposition 2.2).

¢ = A;D(é.;AaLaE)(pa (16)

In essence, the Evans function D(\,v; L) for the stability problem (1.6) is a determinant that
determines whether a monodromy matrix associated to a fundamental (matrix) solution ¥(&; )
of (1.6) has eigenvalues v € S' (Section 2.1). As a consequence, \(7) is a y-eigenvalue if and
only if D(A(y),v; L) = 0, counting multiplicities ([10], Section 2.1). Following the approach
of [3, 4], an especially suitable set of independent solutions to (1.6), i.e. a matrix ¥(&; ), can
be determined that facilitates the construction of D(\,~; L) (Section 3). As is usual for an
Evans function, this construction breaks down (or has to be adapted [13, 20]) if X is close to the
spectrum associated to the trivial background state, i.e. the solution (U(z,t),V(z,t)) = (0,0)
of (1.2). Given that u > 0, this spectral set is part of the stable half plane and hence it has no
influence on the stability of (U, (&; L), Vp(€; L)), so that cutting out a small neighborhood of this
set from the complex plane does not influence the stability analysis. Therefore, we introduce a
second (artificial) small parameter ¢ so that 0 < ¢ < § < 1 (Remark 1.6) and define

C. =C\ {) € C|Re[\] < max(—1,—p)+ ¢ and [Im[A]| < 6}, (1.7)

(Remark 1.4). The eigenvalues A7 of the eigenvalue problem associated to the stability of the
homoclinic solution V;,(&; L) of (1.5) play a crucial role in the stability analysis of the periodic
patterns. These \’’s do not depend on L, A} = A7(B2) with A\j = i(,@z +1)2-1>0,\] =0,
and A} < 0 for j = 2,3,...,J — 1 with J = J(82) > 2, see [3] and Lemma 3.3. In fact, in the
construction of D(\,v; L) it is necessary to distinguish between the cases in which X is close,
and in which A is not close to a A}. Hence, we define C, by

C.=C\ |J B9, (1.8)

with d as in the definition of C., and B(\},d) a small ball around M7, i.e.
B(A\L,0)={ e C : |A= | <4} (1.9)

The following theorem summarizes the theory developed in Sections 3, 4 and 5.

Theorem 1.1 Assume that (1.3) holds, let 0 < ¢ < § < 1 and let D(\,v,L) be the Evans
function associated to the stability problem (1.6) of a fundamental spatially periodic pattern
(Up(&; L), V(& L)) with period 2L (Theorem 1.7).

(I) NeC,

For \ € C, and v € S, D(\,y;L) can be decomposed into a product of a fast compo-
nent, DY (\,v; L), and a slow component, D*(\,v;L); Df(\,v;L) # 0 for all X\ € C,, so



that all y-eigenvalues X = A(vy,e) € C,. of (1.6) must be zeroes of D*(\,~;L). Moreover,
A= A(v,e) = A(7,0) + O(e) solves D*(\,v; L) =0 if and only if \(v,0) satisfies

(), 1) % L Zf - (Z; fu%ﬁ tanh(e2 VD) [ — asBR(V) € [=2,2],  (1.10)

where ,
A=A\L)=e=VHA cC with |Al €(0,1), (1.11)

(arg[\/u+ Al € (=5, %) (1.7)); R(A) is an explicitly known expression (4.12) that also appears
in the stability analysis of homoclinic patterns [3]. The value of v € St (and that of 7 € St,
Proposition 2.2) is determined by T*°(\, L) = 2Re[y].

(I) X € B(\},4)

Assume that also |az| > V0§, |ai| = O(1), and e?L = O(1) or 2L > 1 with respect to
J.

o If j = 2k is even, then eigenvalue problem (1.6) has no y-eigenvalues in the ball B(\y,, ).
o Ifj = 2k+1is odd and if T*(A\y;, ., L) ¢ [—2,2], i.e. if there is no O(1) vy-eigenvalue described
by (1.10) near X\ = Ay, ,, then eigenvalue problem (1.6) has one (and only one) y-eigenvalue
Ay) € B(Xy;,,0) for every v € S' (counting multiplicities); if TS(Ny, ,,,L) € [~2,2] then
(1.6) has one y-eigenvalue N(v) € B(A%,, 1, 0) for any v € S* with [Re[y]— §T*(A\5, 1, L)| > 6.

(IIT) X € B(0,6)

All small y-eigenvalues in B(A] = 0,8) are O(e*).

o IfT5(0,L) ¢ [—2,2], i.e. if there is no O(1) y-eigenvalue near A = 0, then A\(y) € [A(—1), A(1)]
for all v € S, with A\(—1) < 0 = \(1); the multiplicity of \(1) = 0, i.e. the eigenvalue associ-
ated translations of (Uy(&; L), Vp(&; L)), is 1.

e IfT%(0,L) € (—2,2), then A(y) € R\ (A(—1), A(1)) for ally € S! with |Re[y]—3T*(0,L)| > §;
A(1) = 0 is simple.

This theorem is a combination of Proposition 3.8 and the calculations of Section 4.2 (part (I)),
Proposition 4.3 (II), and Lemmas 5.2 and 5.3 (III). The additional conditions in (II) are not
relevant to the stability question, since (U, (&; L), Vp(€; L)) is unstable if any of these conditions
are violated (Remarks 4.4 and 4.5). Based on Propositions 7.2, 7.3 and Section 7.2, a simi-
lar theorem could be formulated for the stability problem associated to the periodic patterns
(Up,aB(& L), Vy ap(€; L)) of AB-type. The main difference between these two cases is that
explicit expression (1.10) becomes more complicated in the AB-case (see (7.6) in Proposition
7.2), and that the number of y-eigenvalues near the reduced eigenvalues Ay, ; is 2 instead of
1 (per allowed v € S!, Proposition 7.3). The analysis is very similar (Section 7). In fact, it
is clear from the analysis of the AB-patterns, that the same approach can be applied to each
of the more complex periodic patterns constructed in [6] (see also Remark 1.5). Again, the
main difference will be the complexity of the equivalents of (1.10) and (7.6), and the number
of v-eigenvalues near a A3, ;. As an explicit example, we have considered the stability of a
AABB-pattern in Remark 7.4.

The methods by which the results presented in Theorem 1.1 have been obtained are based
on the approach developed in [3, 4]. It is found that many of the building blocks of the theory
that led to the decomposition of the homoclinic Evans function D()\;e) have a natural coun-
terpart in that of the theory for the periodic Evans function D()\,v; L, €) developed here. Of
course there are some differences. For instance, the homoclinic limit does not have small O(s?)
eigenvalues (this interval described in Theorem 1.1 (III) shrinks to the point A = 0 in the limit
L — o).

A more remarkable difference is that the pole-zero cancellation of the homoclinic limit, also



called ‘the NLEP paradox’ in [3, 4], has become a much more subtle phenomenon. In the homo-
clinic case, D(\) decomposes into the product D (A\)D*()) for all A € C.. The fast component
DF()) is analytic and has zeroes at A}, where A7 is asymptotically close to the eigenvalues A}
associated to the stability of the homoclinic solution V;,(&;00) of the fast reduced limit prob-
lem (1.5). The slow component D*()) has simple poles at the zeroes X} of D/(X) for j even.
Thus, the unstable zero \j > 0 of Df()) is removed by this cancellation mechanism and the
homoclinic pulse can be stable (while its fast reduced limit has an O(1) unstable eigenvalue).
In the periodic case, the decomposition of D(),v) into the product Df (), 7)D*(\,v) breaks
down near the fast reduced eigenvalues \7. Outside B(A7,), the fast component DI (N, 7)
is asymptotically close to the periodic Evans function of nearly-homoclinic periodic solutions
of (1.5), that has y-eigenvalues near each A} (Lemma 3.4). However, it is a priori not even
clear whether D7 (), ) can be extended inside B()},4) as a smooth (analytic) function. As a
consequence there is no definite information on the (possible) zeroes of D/ (), y) near A7. Thus
it does not necessarily follow that D*(),v) has poles — although it is certainly also not clear
whether D*(,~) is analytic (see Section 4.3). Nevertheless, we can apply an adapted version
of the winding number arguments of [3, 4] over 0B(A7,§) to obtain a result that is very similar
to the pole-zero cancellation result of the homoclinic limit (Theorem 1.1 (II) or Proposition 4.3).

Theorem 1.1 contains all information that is necessary to establish the linear stability of
(Up(& L), Vp(&; L)) (see Remark 1.2). Section 6 is devoted to the stability analysis of the funda-
mental periodic patterns. It is found that all patterns of B-type are unstable (with O(1) unstable
y-eigenvalues (Corollary 6.6)). An A-pattern (U, 4(&; L), (Vp,a(& L)) with e?L = 2Ly > 1
is stable, if it is near a homoclinic limit that is stable (Corollary 6.2). As L decreases,
(Up,a(& L), (Vy a(€; L)) may destabilize by a Hopf bifurcation, or by the saddle-node bifur-
cation, as it merges with a B-pattern (Theorems 6.8 and 6.9). In Section 7.3, a similar analysis
is performed for the patterns of AB-type. There, it is established that the AB-patterns are
unstable with respect to O(1) eigenvalues (Corollary 7.6).

Furthermore, our explicit methods are considered in the limit L > 1 in somewhat more de-
tail. If A\, € C\ R is an eigenvalue of the stability problem associated to the homoclinic limit
(Un(&), Vi(€)) = (Up(&;00), Vp(&;00)) (Theorem 1.7), then it follows from [11] that there is a
curve of y-eigenvalues {\ = A(7y),~ € S'} that approaches \;, as L — oco. Here, it is shown that
this curve is at leading order a straight line between the ‘endpoints’ A\(—1) and A(+1), that
shrinks, and rotates around its center A(+i) as L increases (Lemma 6.1). Although the B-pulse
shrinks to 0, and the A-pulse converges to the homoclinic pulse in the limit I — oo, the results
of [11, 27] cannot be applied to the AB-patterns. In fact, we show that the AB-patterns have
spectrum near the eigenvalues of the homoclinic limit for L > 1, which agrees with [11], but
that there also is a small curve of y-eigenvalues near every even eigenvalue A}, associated to
the reduced problem (1.5) — Lemma 7.7.

Finally, in Section 8 we consider the restriction of the stability problem posed on R to a
bounded interval [0, X] with homogeneous Neumann boundary conditions, and compare our
results to [17, 28, 29]. It follows from [6] that a fundamental pattern (U,(&; L), (Vy(&;L))
restricted to [0, X] can be of three types, depending on the number of (half-)pulses on the
boundaries — see also Figure 10. The stability characteristics of a pulse pattern restricted to
[0, X] strongly depends on this type. For instance, we show that the saddle-node bifurcation
at which an A-pulses transforms into a B-pulse generates (1) unstable eigenvalues (Corollary
6.6). This seems to be in contradiction with the results of [17, 28], where it is shown that
this destabilization is driven by the small O(¢?) eigenvalues. However, if the patterns have no
(half-)pulses on the boundaries, i.e. if the pattern is of the type considered by [17, 28], then the
most unstable O(1) v = —1-eigenfunction cannot satisfy the boundary conditions (Corollary
8.3), and it indeed also follows from our methods that this bounded pattern is destabilized by
the (less unstable) O(e*)-eigenvalues (Corollary 8.4). The —1-eigenfunction is a solution of the
finite interval problem if the pattern has half-pulses at both boundaries (as in Figure 1). In
this case, it is destabilized by the O(1) eigenvalue (Corollary 8.4). We have confirmed these



somewhat subtle distinctions by numerical simulations (see Figure 10).

Remark 1.2 It follows from Theorem 1.1 that a periodic pattern (U,(&; L), V,,(§; L)) is linearly
stable if all O(1) eigenvalues are in the complex left half plane, since the O(c?) eigenvalues are
negative, and the translational eigenvalue at A = 0 is simple. Nevertheless, one can of course
not conclude that (U,(¢; L), V,(&; L)) is stable in a nonlinear sense, since the curve of O(s?)
eigenvalues is connected to A = 0. In this paper we do not consider the nonlinear stability of
periodic solutions of (1.2) on R. In fact, this issue has not even been settled for the homoclinic
limit patterns (see Remark 1.3 in [3]), although it should be remarked that the homoclinic
limit problem involves additional problems that do not appear in the periodic setting (Up(&; L)
remains bounded away from 0 for L < oo, while Uy(§) = Up(§;00) — 0 as & — +oo; this
causes problems in (1.2) since ap < 0 (1.3)). The spectrum of the linear problem associated
to a periodic pulse pattern restricted to a bounded interval [0, X] with homogeneous Neumann
boundary conditions consists of discrete eigenvalues, and is a subset of the spectrum associated
to that periodic pattern as solution of (1.2) on R (Section 8). The translational eigenvalue
A(1) = 0 is not an element of this subset, since its 1l-eigenfunction, i.e. the &-derivative of
(Up(& L), V(& L)), is odd with respect to the boundaries £ = 0 and £ = X. Thus, if all O(1)
eigenvalues are in the stable half plane, the standard results as for instance given in [15] can
be applied, and it can be concluded that the bounded domain pattern is nonlinearly stable.

Remark 1.3 The Gray-Scott system (see [4] and the references therein) cannot be scaled
exactly into the Gierer-Meinhardt normal form (1.2). Nevertheless, it can be scaled into a form
that is slightly more general than (1.2) — see [5]. The stability theory for spatially periodic
patterns presented in this paper can also be developed for the classes of reaction-diffusion
equations considered in [5]. The approach is completely analogous. As a consequence, the
methods developed here can also be applied to the Gray-Scott model, the Schnakenberg model,
etc. [5].

Remark 1.4 In this paper, the search for eigenvalues is restricted to C.. The set C\ C,
contains the essential spectrum of the stability problem associated to the homoclinic solution
(Un(&), Vi(€)) = (Up(&;00), Vp(€;00)) (Theorem 1.7, [3]). In the homoclinic limit, the essential,
or continuous, spectrum contains eigenfunctions that oscillate in the regions beyond the pulse,
i.e. that do not decay to zero as £ — doo. As already noted, the restriction to A € C. has
no influence on the stability question for (U,(&; L), Vp(§; L)). Nevertheless, the excluded region
C\ C. may contain ~y-eigenvalues of (1.6), for which the 7-eigenfunctions have oscillatory parts
in the regions in between the pulses. See for instance [23], from which it follows for the special
case of the Hill’s equation, that the essential spectrum associated to a homoclinic limit indeed
breaks up in intervals of 7-eigenvalues for the nearly-homoclinic periodic solutions. See also
Remark 8.6.

Remark 1.5 The A- and B-pulses have V-components with precisely one maximum in each
pulse region. It is shown in [6] that there also exist many families of periodic solutions to
(1.2) that have multiple pulses in a pulse region. Such solutions have ‘clusters’ of one or more
asymptotically close pulses at distances of O(g|loge|) from each other (in the x-scale). It
has been shown in [3] that the associated homoclinic multi-pulse patterns cannot be stable.
Therefore, we do not pay attention to the stability of these patterns in this paper. It should
be remarked, however, that our methods also apply to these (unstable) patterns.

Remark 1.6 In this paper, we use the standard notation/terminology of the analysis of (sin-
gular) perturbations, such as ‘<, ‘O(e)’ etc., see for instance [7]. Hence, the fact that a
statement S. is valid under the assumption ‘Let 0 < ¢ < § < 1’ as in Theorem 1.1 and many
other Propositions and Lemmas in this paper, is equivalent to the formulation ‘There is an
do > 0, such that for all § < §g there is an g9 = £¢(d) < § such that for all € < gy, S; holds’. All
statements made in this paper are under the assumptions that 0 < ¢ < 1 and that (1.3) holds.



1.1 Existence of periodic pulse solutions

A stationary solution to (1.2) is a solution of the ordinary differential equation

v o= p

I — Q1P 2
bz q“ v ethu (1.12)
e = v—ut2f

where ’ denotes the spatial derivative with respect to the slow spatial variable z. For 0 < ¢ < 1,
this system exhibits an invariant slow manifold M defined by

M={v=q=0,u>0} (1.13)

The spatially periodic pulse solutions (Up(z), Vp(z)) of (1.2) we consider in this paper are peri-
odic solutions (u,(x), pp(x), vp(x), gp(x)) of (1.12) that consist of long slow segments close to M
interspersed by short ‘jumps’ away from M. We refer to [6] for the details of the construction,
that is based on geometric singular perturbation theory (see [18]).

During a slow segment, a solution to (1.12) follows the flow on the slow manifold, which is
given by

u” = &% pu. (1.14)
Note that % = O(e), hence the flow on the slow manifold is actually ‘super slow’ with a typical
length scale of O(1/¢). The ODE (1.14) has a saddle point S in the origin, with one-dimensional
stable and unstable manifolds ¢** = {p = 4e,/pu}. The solutions to (1.14) are given by the
solution curves

T, = {p? = ?(uu® — v)} for v €R. (1.15)

For v — 0, the curve T',, approaches the union of ¢* and ¢*, while for v < 0 the curves ', cross
the p-axis and the u coordinate becomes negative. Therefore we focus on I',, with v > 0 for the
construction of periodic solutions (with positive u). The solutions on I, can be written as

u(z; v;20) = Upin (V) cosh(e/p(z — 20)), (1.16)

Upin(v) = \/Z > 0. (1.17)

During the ‘jumps’ away from M, system (1.12) is written in its fast form

with minimum

U = €p

p = —euvfr + 3

5 — o pe (1.18)
qg = v-— w2 P2

where " denotes the derivative with respect to £. By considering ¢ — 0, we obtain the fast
reduced limit,
b=v—u*®, u=U,, p=P, (1.19)

where Uy > 0, Py € R are constants. Note that (1.19) is the stationary problem associated to
(1.5). This system has a homoclinic orbit v}, (§; Up)(= Vi(£)) given by

036 00) = U5 (), wnles o) = (P57 (sean (S8 0e) )T

Systems (1.12) and (1.18) exhibit the same reversibility symmetry as equation (1.2),

Sz — —&,—x,p— —p,q¢— —q.
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Figure 2: The take off and touch down curves superimposed on the linear flow (1.14) on M.

The reversibility symmetry plays an important role in the construction and the stability anal-
ysis of the periodic solutions.

The slow manifold M is normally hyperbolic and has (3-dimensional, smooth) stable and
unstable manifolds W%(M) and W*(M) [9, 18]. The intersection W¥(M) N W*(M) con-
sists of countably many 2-dimensional manifolds [3, 6]. Here, we only consider the manifold
spanned by solutions to (1.18) homoclinic to M that only make one circuit through the fast
space (close to a reduced homoclinic orbit v} (&;Up) (1.20)). With a slight abuse of nota-
tion we identify W*(M) N W*(M) with this branch — the other manifolds correspond to
(unstable) multi-pulse orbits (Remark 1.5). The one-parameter family of homoclinic orbits
(urm (&) D (&) v (€), gm(§)) can be parameterized by the base points of the Fenichel fibers
[9] on M of W*(M) NW?3(M) as subset of W*(M), i.e. the take off curve Tog C M, and of
W (M) NW?3(M) as subset of W*(M), i.e. the touch down curve Tgown C M [3, 6]. These
curves have been determined explicitly in [3, 6],

Tosr : {p =py(u) = %5“1+%W(51, B2) + 0(52)} (1.21)
Taown : {p=-pyg(uw)},
where -
W(En ) = [ (uneif)) e (1.22)

(1.20) — see Figure 2. Since D/(f#2 — 1) > 0 (1.3), both Tog down are tangent to the u-axis,
they intersect the stable and unstable manifolds £** of the saddle S € M, i.e. Ty (1.15), in two
symmetric points (# S) that have the u-coordinate,

Bo—1

2,/1 > b

Unom = Unom (@1, 2,81, B2, p5€) = | =—7—5—~ + O(e). 1.23

N N © (1.23)

By construction, these two points represent the (one-pulse) homoclinic solution (Uy (), Vi(€))
to (1.2), i.e. Up(€), Vi(§) — 0 as &€ — +o00; Up(€), Vi(€) are the u-,v-components of the solution
(&) = (up(&),pr(&), vr (&), gn(§)) of (1.18) that is homoclinic to S. As function of an increasing
&, Yn(&) is first exponentially close to £* C M, then ‘takes off’ from M near ¢* N T,g, makes



a circuit through the fast (v, ¢)-space O(g) close to (Unom; 0, v} (&; Unom ) V5 (€; Unom)) (1-20),
‘touches down’ on M near £° N Tyoyn and remains exponentially close to £° (Theorem 2.1 in [3]
with N =1). For 0 < v < vgn, where

D -1 2D

v=rgn(e) = G-1+D" Udn + O(e) with Ugy = <526—21+D> Unom + O(e) (1.24)
((1.21), (1.15), [6]), the intersections TogNT', and Tyown N, (1.15) consist of two points (see Fig-
ure 2. Each symmetric pair of points in Tog down NI, corresponds — again by construction [3, 6]
— to a solution of (1.18) that is homoclinic to M, i.e. v € (0,vsx) labels two families of homo-
clinic solutions, Y4 (€ %) = (tat,4(& ), DA AE V), 0an (6 1), Gaa,4 (6 ) and an, 5 (€ v) =
(um,B(& 1), pm,B(E V), vm,B(E5 1), am,B(E5v)). T (Uo,a, £Po,.4) and (Uo,p, +Po,B) are the
(u, p)-coordinates of Tom down N Iy C M, then the distinction between the orbits of A- or
B-type is made by

0 < Up,s(v) < Up ns(rsn) =Usn = Uy a(vsn) < Ug,a(v) < Up,a(0) = Unom

for v € (0,vgn). The orbits ya,4,8(&v) travel twice along the parts of T', in between
(Uo,a,B,—Po,4,8) and (Up,a,5,+Fo. 4,8). The 2L-periodic patterns (U, a,5(§; L), Vp, 4,8(&; L))
are — by construction — exponentially close to (Uaq,4,8(§;v), Vi, a,8(&;v)), 1.e. the u, v-components
of Ya,4,8(&;v), for all § such that up,a,5(&v) < Up,a,B-

Theorem 1.7 Let ¢ < 1 and assume that (1.3) holds. Equation (1.18) possesses two one-
parameter families of 2L-periodic orbits, vp, a(§;v) = (up, a(&;V),Dp,a(&; V), vp, a(&5 ), gp,a (&5 1))
and vp B (&) = (up, (&), pp.B(E; V), vp. B(E; V), ¢p.B(E; V) with positive u,v-coordinates, pa-
rameterized by v € (0,vsn) (1.24). For each v, vy a4, 5(&;v) consist of a slow piece exponentially
close to the part of I',, C M with u < Uy a,B, where

B2—1

Uo,a,5(v) = (tanh(e*\/zLa,5())) © Unom (1.25)
(1.23), or equivalently,
1 Up,a,5(v)
L = h{ 20 1.2
A,B(V) 62\/ﬁarccos ( ) > (1.26)

(1.17), and a fast jump away from M O(e) close to (Up a,g,0,v}(&;Uo a,B), 05 (& U0, 4.B))
(1.20). The orbits vp a,5(&; V) intersect the {p = q = 0}-plane twice, so that they have two
internal reflection points at £ =&y and at £ =&+ La, p.

If v 10, [|vp,8(&v)|| = 0 uniformly in &, while v, a(&;v) = Yr(€), the homoclinic solution to
(0,0,0,0). If v 1 ven (1.24), Vp,a(&v) and vy B(&;v) merge in a saddle-node bifurcation of
periodic orbits. For 0 < v < vsn, Up,p(v) < Usn < Up,a(v) and Lo p(v) < Lsn < Lo,a(v),
where

—1+D
Ush = Umin(vsn) BQT+ +0(e), and
1 —-1+D
e?Lsn = 7 erccosh 'BQT+ +0(e) (1.27)

(1.24), (1.16).

The orbits vp,4(&; V), Vp.B(&; V) correspond to the 2L-periodic patterns (Up, a(§;L), Vpa(§; L)),
(Up (& L),V 5(& L)) of (1.2) with L = Ly g(v). The internal reflection points &, = &o +
nLap, n € Z, are at the minima/mazima of U, a,5(&; L(v)), Vp a,8(§; L(v)). As L — oo,
the fundamental periodic pattern of type A approaches the homoclinic pattern (Up(§), Vn(£))
uniformly in &, i.e.

suP¢eeo—L,eo+L] [(Un(€); Vi(€)) — (Up,a(§5 L), Vp,a(§5 L))l = 0 as L — oo;
(Un(€), Va(£)) can also be denoted by (Up, a(&; 00), Vp, a(&;00)).
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This Theorem is a combination of Theorem 3.1 and Corollary 3.2 (with N = 1) in [6]. The
relations (1.25), (1.26) and (1.27) cannot be found explicitly in [6], but follow from a straight-
forward analysis using (1.15) and (1.16).

If we set {§ = 0 at the maximum of the fast pulse, then the orbits yrs,5(£) and 7, 5(&;v)
are exponentially close in ¢ for £ € [-2Lg(v) + v/¢,2Lg(v) — 2] [6], i.e. almost for two full
periods of v, 5(§; Lp). Note that the +4/¢ are not optimal and could be improved to O(g) quan-
tities. However, as £ approaches 2L g, i.e. as ya,5(§) and 7, 5(&; v) approach Tog down N T,
then v, 5(§; v) jumps (again) away from M, while v, 5(§) remains exponentially close to M
for all |{| > 2L — v/e. One can construct a solution 7, a5 (&;v) of (1.18) that is exponentially
close to both yaq,5(€) and 7, p(£;v) on this same ¢-interval, and that remains exponentially
close to ya,5(€) for € € [—-Lp(v) — La(v) + V&, Lp(v) + La(v) — /2], i.e. beyond the take
off/touch down points of 7, g(£§; ). This new solution 7, ag(§;v) takes off/touches down at
the A-intersections of Tof down N ', i.€. exponentially close to a 7, 4(§;v). The v, ap(&;v) is
periodic with period 2L 5 = 2L + 2Lp.

Theorem 1.8 Let ¢ < 1 and assume that (1.3) holds. Equation (1.18) possesses a family of
2L-periodic orbits, vp,aB(&§;v) = (up,ap(&;v),pp,aB(&; V), vp,aB(§;V), @p,aB(&; V) with positive
u, v-coordinates, parameterized by v € (0,vsn); L = Lap(v) = La + L with Ly g(v) as in
Theorem 1.7. The orbits v, ap(&;v) intersect the {p = ¢ = 0}-plane twice and have two in-
ternal reflection points at & = {4 and at § = Ep = {a + La + Lp. The orbit vy a(&;v) is
exponentially close to an orbit v, 4(&;v) on the intervals [Ea —L+nL++/e,64+ L+nL — /¢,
n € Z, where v, 4(&;v) is translated such that € = €4 is a reflection point of v, 4(&;v) at the
center of an A-pulse, and exponentially close to an orbit v, g(&;v) on intervals [g — 2Lp +
nL++/e,€g+2Lg+nL—+\/e|, n € Z, where { = g defines the center of the B-pulse of v, 5(&;v).

As v 1 vgn, Vp,aB(&;v) merges with vy a(&;v) (or vp B(&;v)), but with twice its period, since
LAB(Z/) = LA(Z/) + LB(Z/) > 2LgN

for allv € (0,vsN), i.e. the saddle-node bifurcation of Theorem 1.7 can also be seen as a period-
doubling bifurcation.

The orbits v, ap(§; V) correspond to the 2L-periodic patterns (Up ag(&; L), Vp ap(&; L)) in (1.2)
with L = Lag(v). The internal reflection points &, = €4 +nL, n € Z, are at the centers (mazx-
ima) of the alternating pulses of A-type (n even), or of B-type (n odd).

Again, a more general result has already been proven in [6] (Theorem 3.3). The fact that
Lap(v) > 2Lgn has not been explicitly noticed in [6], but follows from straightforward calcu-
lations.

2 Stability of periodic patterns

Let (U,(€), V,(€)) be a periodic pulse solution to (1.2) as described in the previous section with
minimal spatial period 2L. The ideas we will develop in this section are valid for arbitrary
periodic solutions, both for the fundamental periodic solutions and for the periodic solutions of
AB-type. After developing the general theory, we first study the stability of the fundamental
solutions (Theorem 1.7) in the Sections 3—6 and then the stability of the solutions of AB-type
in Section 7.

We investigate the linear stability of the periodic solution against perturbations in BC(R, R?),
i.e. the space of bounded and uniformly continuous functions, and set

U(Et) = Up(€) +ul€)e™ V(E,1) = Vp(€) + v(€)e™.
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After substitution into (1.2) and linearization we obtain

{ uge = =2 [aq U "W+ B1US VI~ o] + e (4 M u

2.1
vee + [BUS2VI 1 — (14 X)) v = —aaU?~ V2 (2.1)

Note that we switched to the fast scale ¢ = z/e. Equivalently, we can write the eigenvalue
equation as a 4-dimensional system,

$(€) = Ap(& A, £)9(€), (2.2)

where ¢ = (u,p = ug,v,q = v¢)'. The matrix A, is given by

0 1 0 0
_ 2 011—1 51 4 _ 2 a1 Bl—l
Aeae = | TENGT RS AT 0 G "1 @3
—agU;‘Z’lV;m 0 —,BQU}?‘ZV;,B?*l—i—(l—&—)\) 0

The theory for linear ordinary differential equations with periodic coefficients like (2.1) is well
developed. This Floquet Theory leads to the concept of y-eigenvalues [10].

Definition 2.1 X\ € C is a y-eigenvalue of eigenvalue problem (2.2) if (2.2) has a solution
(& \) that satisfies

H(E+2L; N) = v ¢(&; M), (2.4)

for some v € S*. The corresponding eigenfunction ¢(£;\) is called a y-eigenfunction; v € S!
for which (2.4) is satisfied is called the Floquet multiplier of ¢(&; ).

Note that if ¢(¢) satisfies condition (2.4) in one point, it automatically satisfies it in every
point.

It was shown in [10] that any bounded solution to (2.2) can be written as a combination
of ~-eigenfunctions and hence that the spectrum of the linearization around a period pattern
consists entirely of y-eigenvalues. In general, the spectrum of a linearized problem with periodic
coefficients like (2.2) consists of a number of ‘loops’, where each loop is an image of S'. However,
because of the reflection symmetry present in the particular system (2.2), this image will have
a special structure.

The matrix A, (&; A) (2.3) inherits the reflection symmetry of the periodic solution (U, (), V,(€)),
i.e. for every reflection point & of the pulse solution we have A,(§o+n;\) = Ap(§o —n; A) for all
A and all n = £ —&y. This immediately implies that if ¢(&) is a solution to (2.2), the reflection of
¢(&) in any reflection point is also a solution. We denote the reflection of ¢(&) in the reflection
point & by R¢ (o — 1), where n = € — &) and R is defined by

u(€) u(€)
o[- 8
q(&) —4(£)

By applying this reflection symmetry to a vy-eigenfunction, it follows that if A is a y-eigenvalue
then A is also a ¥-eigenvalue. Let ¢(£) be a y-eigenfunction associated to the v-eigenvalue
A, ie. ¢(€) is a solution to (2.2) that satisfies ¢(¢ + 2L) = y@(£). Then, setting &, = 0,
the reflected solution G(€) = Rp(—¢€) is also a solution of (2.2). Clearly this solution satisfies
b€ +2L) = Rp(—¢ —2L) = %Rqﬁ(—g) = 5¢(€). Hence, ¢(€) is a y-eigenfunction and X is a
~-eigenvalue.

The general results in [10], combined with the reflection symmetry in (2.2), lead to the following
characterization of the spectrum of the linearization around periodic pulse solutions of the type
analyzed in this paper.
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Proposition 2.2 The spectrum of the linearization around the periodic pulse solution (U,(§), V,(£))
consists of a number of (degenerate) curves of y-eigenvalues. Each curve can be parameterized

by A = A(v) = A7), where v € St is the Floquet multiplier of the associated ~y-eigenfunction,

i.e. the image of S' covers each curve of vy-eigenvalues twice. The periodic pulse pattern is
linearly stable, if apart from a translational 1-eigenvalue at the origin, every spectral curve is
completely in the stable half plane {Re[\] < 0}.

Remark 2.3 Tt is important to distinguish between two notions of (geometric) multiplicity
of an eigenvalue A. First, the y-multiplicity of an eigenvalue ) is defined as the number of
independent (generalized) y-eigenfunctions to (2.2) for one particular value of y. On the other
hand the (total) multiplicity of A as an element of the spectrum is given by the number of
independent (generalized) eigenfunctions of (2.1), i.e. the number of independent bounded
solutions to (2.1). It follows from the fact that any bounded solution to (2.1) can be written
as a combination of y-eigenfunctions, that the total multiplicity of A is given by the sum of
~v-multiplicities over all v for which A is a y-eigenvalue.

Remark 2.4 The spectral curves indicated in Proposition 2.2 are not necessary disjoint; two
or more curves may intersect, may be connected at the endpoints of the curves, or may coincide
partially or completely. However, in all cases it is still possible to parameterize the curves by
the Floquet multiplier of the associated ~-eigenfunction.

Remark 2.5 In general, the reflection R¢({o—n) of a solution in a reflection point & is different
from the solution ¢(& + n). However, in two special cases R¢(&y — 1) is not independent
of (& + n), i.e. Rp(&y — 1) = O¢o(§ + 1) for some number . First, a solution such that
Rp(&o —1n) = ¢(&o + 1) (0 = 1) is called symmetric in the reflection point &. The evaluation
of the symmetry condition for n = 0 yields that ¢(&) is symmetric in &, if and only if its p-
and g-components vanish in o, i.e. if and only if u(¢) and v(£) are even with respect to &o.
Second, a solution such that Rp(&o —n) = —¢(§o +n) (6 = —1) is called anti-symmetric in the
reflection point &y; ¢(€) is anti-symmetric in & if and only if its u- and v-components vanish
in &, i.e. if and only if u(§) and v(¢) are odd with respect to &y. Note that it is not possible to
have § # +1. Symmetrical and anti-symmetrical solutions to (2.2) play an important role in the
stability analysis of pulse patterns on a finite interval with homogeneous Neumann boundary
conditions, see Section 8.

2.1 The monodromy matrix and the Evans function

Using the concept of v-eigenvalues and y-eigenfunctions, the stability problem of the periodic
pattern (Up(&),Vp(§)) can be reduced to the problem of solving the linearized equations (2.2)
over just one spatial period of the pattern, chosen to be the interval [—L, L], with the boundary
condition ¢(L) = y¢(—L). This problem is studied using the monodromy matrix M (A, e)
associated to (2.2), that is defined by

(L €) = U(—L; A, e) Mz (\, €), (2.6)

where U(; A, ¢) is a fundamental matrix solution to (2.2). The eigenvectors of My (A, ) are
related to the y-eigenfunctions of (2.2). If v is an eigenvector of M, (), ¢) with corresponding
eigenvalue p, then ¢(§) = ¥(£)v is a solution to (2.2) which satisfies ¢(L) = pp(—L). This
argument can be reversed, if there exists a solution ¢(&) to (2.2), such that ¢(L) = po(—L),
then p is an eigenvalue of My, (\). Therefore, X is a y-eigenvalue if and only if M, (A, ) has an
eigenvalue v € St.

The eigenvalues p of the monodromy matrix depend on A. Since the elements of M, ()\) are
analytic functions of A, the p()\) are at least continuous in A\. The eigenvalues of My, ()) are
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implicitly defined as the roots of the characteristic polynomial
P(X, p; L) = det [M1(X;¢) — p].

Following [10, 11], we define the Evans function D()\,v; L, ) associated to the linear eigenvalue
problem (2.2) as the restriction of P(\, p) to p =~ € S',

D()‘a ) La E) = det [ML(Aﬂ E) - ’YI] .

Since D(A,v; L) = 0 if and only if «y is an eigenvalue of M ()), the zeroes of the Evans function
correspond to vy-eigenvalues of (2.2). The elements of M, (\) are analytic functions of A, hence
D(\,~; L) is an analytic function of both A and 7. The order of a zero A\g of D(\,~; L) with
fixed gives the algebraic y-multiplicity of the y-eigenvalue A\g. Note that this is not necessarily
the same as the algebraic multiplicity of 7 as an eigenvalue of M, (), since the latter is defined
as the order of the zero for fixed A\. See [10] for an example where the two multiplicities are
different. On the other hand, the geometric multiplicity of 4 as an eigenvalue of M (N\g) is
always equal to the geometric y-multiplicity of Ag.

Although the matrix My (), e) depends on the choice of the fundamental matrix solution in
(2.6), the eigenvalues of My, (), ¢) are independent of that choice. In fact, if ¥(¢) and ¥(¢€)
denote two fundamental matrix solutions, there exists an invertible constant matrix C' such
that U(¢) = ¥(£)C and we can thus write My = U(—L)""W(L) = C~'M.C. Hence, the
eigenvalues of M, are independent of the choice of the fundamental matrix solution in (2.6),
so that D(\,v; L) does not depend on this choice. Similarly, the monodromy matrix can be
expressed on a different basis, without changing its eigenvalues. In particular, we will express
My, with respect to the basis V = V()) spanned by the 4 columns of ¥(—L), ¥(-L) = I
with respect to V, so that M, = U(L) (with respect to V). With a suitable choice of the
fundamental matrix solution in (2.6), the monodromy matrix takes a form that simplifies the
evaluation of the Evans function considerably.

The monodromy matrix My, has 4 eigenvalues p;, counting their algebraic multiplicity. There-
fore, the algebraic multiplicity of any A € C is at most 4. Alternatively, the Evans function can

be expressed as
4

D(A,% L7 8) = H(pz()" 6) o 7)7
i=1

where p;()\;¢) denote the eigenvalues of M. Though this form stresses the relation between
v-eigenvalues and the eigenvalues of My, ()\), its use is restricted to situations where one has
expressions for the eigenvalues of M (\). It follows from Abels theorem and the fact that
Tr[A,(§)] = 0 (2.3) that the 4 eigenvalues p; of My (A, ¢) satisfy p1p2psps = 1. We can
deduce a stronger result using the reversibility symmetry in (2.2). If (2.2) has a solution
with ¢(L) = po(—L), then there also exists a solution satisfying ¢(L) = %d)(fL). These two
solutions correspond to the eigenvalues p and 1/p of M, (\). Hence, the eigenvalues of My, ()
come in pairs p and 1/p. This implies that the algebraic multiplicity of £1 is always 2 or
4. The geometric multiplicity of an eigenvalue 1 can be odd. Also note, that if A is not a
y-eigenvalue, My (\) has two eigenvalues inside S' and two eigenvalues outside S'. For real
A, all elements of My ()\) are real. Therefore, the eigenvalues of My ()) are real or come as a
pair of complex conjugated eigenvalues p and p, and thus, if p is an eigenvalue of My, (\) with
A € R, so are 1/p, p and 1/p. Therefore, if My, () has one non-real eigenvalue p with |p| # 1,
the other 3 eigenvalues are automatically given.

Remark 2.6 The ~-eigenfunctions, monodromy matrix and the Evans function are defined
with respect to the minimal period 2L. However, in some cases, like the analysis of an AB-
pattern close to the saddle-node bifurcation (Section 7), or in the restriction to bounded domains
(Section 8) it is useful to consider the periodic solution and the associated linear eigenvalue
problem as 2m/L-periodic, for some integer m > 2. Since the 2m L-periodic eigenvalue problem
describes the same stability problem as the 2L-periodic eigenvalue problem, they share the
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same spectrum. On the other hand, the description of the spectrum in terms of y-eigenvalues is
different for the 2mL-periodic eigenvalue problem. A y-eigenfunction ¢(&) for the 2L-periodic
eigenvalue problem, satisfies ¢(& +2mL) = y™¢(£), hence it is a y"-eigenfunction of the 2mL-
periodic eigenvalue problem. For each curve A = A(y) of y-eigenvalues in the spectrum of the
2L-periodic eigenvalue problem, the spectrum of the 2mL-periodic eigenvalue problem contains
m connected curves of y-eigenvalues. Also, the monodromy matrices and the Evans functions
are different. Since M, (\) = (M1 (\))™, the monodromy matrices M, (A\) and M ()\) have
the same eigenvectors and their eigenvalues are related by p, . = p7'. Hence the zeroes of
the Evans function D(A, v;mL) occur for the same values of A as those of D(\,~v; mL), but for
different values of ~.

3 Stability analysis for fundamental patterns

The ideas in the previous section can be applied to any of the periodic pulse solutions discussed
in the Introduction. In this section, we study the linearized stability problem for fundamental
periodic pulse solutions (Theorem 1.7), whereas the stability of the periodic solutions of AB-
type will be treated in Section 7.

Using the translational invariance, we shift the solution so that one of the pulses is at the origin.
The stability problem is studied on the symmetric interval [—L, 4+ L] around the pulse, i.e. the
two boundaries are halfway to the next pulse. Note that with this choice both the endpoints,
4L, and the origin are points of symmetry of the periodic pulse solution. Around the pulse in
the origin we define the pulse region Py, that divides the interval into three parts. The width
of Py is chosen such that V,(£; L) is exponentially small everywhere outside Py but U,(&; L)
is to leading order constant over the pulse interval. This (for instance) leads to the following

choices
1 1 1 1

—=b Po = 7_7_71 :_7La
measured in the fast (¢-) scale. In the outer regions Z; and Z_, we can approximate the matrix
Ap(&; A, €) (2.3) up to exponentially small error by the limit matrix

I_=[L, -

\ 0 1 0 0
A(he)=| © (AOJF “ g 8 (1) (3.1)
0 0 I+X O
The eigenvalues and eigenvectors of this matrix are given by
A1 a(N) = £FAF(N) = V1 + ), Aasz(Ne) = £A°(\e) = 2/ + X (3.2)

E14(\) = EL(A) =(0,0,1,£A7)t, Eas()\e) = EL(\e) = (1, £/ + X, 0,0)!

Many of the results in this section require that A, is hyperbolic, i.e. that its eigenvalues have
non-zero real part. This is, by definition, the case for A € C, (1.7). Moreover, the eigenvalues
of Ay satisfy [A®| < |Af|in C., i.e. equation (2.1) exhibits a natural splitting in slow and fast
solutions.

Remark 3.1 The fundamental periodic solution (Up a(&; L),V a(€; L)) restricted to [—L, L]
converges to the homoclinic pulse solution (Up(§), Vi(§)) on R as L — oo (Theorem 1.7). The
linearization around (U, (), Vi(€)) is given by

¢(§) = An(&; A, 2)0(8)- (3-3)

An eigenfunction of the linearization around (U (&), V4 (€)) is a solution to (3.3) that decays to
zero as || — co. The matrix A (£;\) can be obtained by taking the limit L — co in A4,(&; \).
By Theorem 1.7, ||A,(§) — An(€)|| — 0 uniformly in § € [—L, L] for L — oo; [|Ap (&) — An(€)]]
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is exponentially small (in L) outside the pulse region. Thus, the results of [11, 27] on the
stability of nearly homoclinic periodic waves can be applied to our problem (see Section 6.1).
The analysis of the periodic eigenvalue problem (2.1) has many elements in common with the
analysis of the homoclinic eigenvalue problem (3.3) in [3]. Therefore, we will refer to [3] and
[4] at various places in the following analysis for further details.

3.1 Fast solutions and the fast reduced limit problem

Following Section 2.1, we choose a suitable fundamental matrix solution to express the mon-
odromy matrix. Since A,(&) is exponentially close to the limit matrix A, on the outer regions,
solutions to (2.2) behave like combinations of E:fteiAfg and E5e** "¢ on Z_ and Z,. Therefore,
it is natural to choose a fundamental matrix solution for the calculation of Mp,(\) that consists
(to leading order) of the 4 solutions, defined by the boundary conditions ¢;(—L) = E;e "L,
1=1,...,4.

Lemma 3.2 Let A € C, (1.7) and let ¢1 (&; X, €) be the solution to (2.2) that satisfies ¢1 (—L) =
e_AfLEj:. Then, there exist an analytic (transmission) function tf (X, €) and a positive number
C, such that

e MGl (100 €) = t/ (A, &) EL + O(e=C1),

where the O(e~CL) rest term is spanned by {EL, E35,E%}.

Proof. This is a natural result since a solution to (2.2) grows as M€ on Z, in general. A
full proof of this statement involves the Elephant Trunk procedure [12]. For this construction,
there is no essential difference between the case £ € R and & € [—L, L]; we refer to [12, 3, 4] for
the details. O

We define ¢£(§;)\,5) = Rqﬁ{(—E;)\,a) (2.5) as the second independent solution of ¥(&; A, ¢).
Note that if t/(X,e) # 0, ¢J(—L) = tfeMLpS (to leading order), i.e. a multiple of E7.

In the limit L — oo, the solution ¢/ (¢) corresponds to the solution ¢ (¢) of the homoclinic
linear stability problem (3.3) as defined in Lemma 3.5 of [3]. This solution ¢;(£) was defined
as the unique solution of the linear eigenvalue problem, that decays to 0 as e Mgl as & — —oo0.
In this limit, the transmission function ¢f()\,¢) corresponds to the fast transmission function
t1(A, €) as defined in Lemma 3.6 in [3].

Obviously, the solution (15{ is not a ~y-eigenfunction. Instead, the fact that ¢{ (L) is expo-
nentially large and ¢{ (—L) is exponentially small suggests that there exists a solution to (2.2)
such that ¢*(L) = p¢*(—L), with p = O(e?AL). Tt is necessary for the forthcoming analysis to
obtain a more detailed knowledge of the transmission function ¢/ (), which can be obtained by
studying the fast reduced limit problem (1.5).

We approach this problem in two ways. First, since taking the limit ¢ — 0 means that
L = O(1/€?) — oo, we consider this problem as that of a single homoclinic pulse on R. This
means that we determine the homoclinic pulse solution V}(¢) of (1.5) and study its linear
stability. This approach has the advantage that we can obtain explicit results on the location
of the spectrum. Alternatively, we consider the wavelength L as an independent large parameter
and look for periodic pulse solutions to (1.5) of period L. The stability analysis of this reduced
periodic solution gives insight in the stability issue of the periodic solutions of the full problem.
As we will see below, the two ways of looking at the problem are closely connected.

The reduced equation is rescaled by setting V (¢) = U, az/(B 271)W(£), so that the differential
equation for W reads
Wi =Wee — W + Wh2,
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This equation has a stationary homoclinic pulse solution wy,(; 32), given by (1.20). The linear
stability of this pulse solution is determined by the linearized equation

(L7 = Nw = wee + [B2(wn (€))7 — (1 +N)] w =0, (3.4)

which has the form of a Schrédinger equation with a sech-squared potential. The position of
part of the spectrum can be predicted, because the derivative wy(€) of the homoclinic pulse
solution is an eigenfunction corresponding to A = 0. Since wp(€) is an odd function and it
has one zero, there must exist an eigenfunction that is even and without zeroes. This even
eigenfunction corresponds to a positive eigenvalue.

Although the exact location of the eigenvalues of (3.4) can be obtained using methods from
classical mathematical physics (see for example [22]), we follow a somewhat different approach
here. Therefore, we write (3.4) as the system

= AT(€)y with ¥(€) = (w(&), w(€))", (3:5)
where the matrix A”(£) is given by

r 0 1
A7) = ( Ba(wn(€) T+ (1+2) 0 )

Alternatively, the matrix A" can be obtained by taking the limit of the lower diagonal 2 x 2
block of A,(€) (2.3) and scaling out Up. For |{| > 1, the matrix A" () is exponentially close to

the limit matrix
. 0 1
Ao = < 14X 0 > !

that has eigenvalues A7, = £A/ and eigenvectors E7, = (1, £A%)?, with Af as in (3.2).

Consider the unique solution %;(§) to (3.5) that satisfies limg_, ¢1(£)6_Af5 = E7.

In general, this solution grows as eME for ¢ > 1 and, similar to the behavior of qﬁ{ for
&€ > 1, defined in Lemma 3.2, there exists an analytic transmission function ¢"(\) such that
limg_, 00 1/)1(‘5)@’/\]‘g = t"(M\)E", [3]. Hence 91(¢) is bounded as £ — oo if and only if t"(A) =0
and thus the position of the eigenvalues of the stability problem associated to the homoclinic
pulses corresponds to the zeroes of ¢"()\). The transmission function ¢"(A) can be calculated
explicitly using a transformation of (3.4) to a hypergeometric equation, see [3] and Section 4.

Lemma 3.3 All zeroes of the transmission function t"(\) associated to the fast reduced limit
problem (3.4) are given by A = X} with

1 , .
A;=Z[62+1—](52—1)]2—1, forj=0,1,...,J — 1, (3.6)
with J such that (ﬂ 1)
+
J-1<-2210 <7 3.7
1) = (37)

Note that A7 = 0 and that Aj > 0 as was predicted above.

Alternatively, we study the stability of spatially periodic solutions to (1.5) with period
L >> 1. Since the period of these pattern is long, the spatially periodic solutions w, (&) are close
to the homoclinic pulse solution wy,(§) on [—L, L]. The linearization around w, () is given by
(3.4), or by the system (3.5), with wy, (§) replaced by w, (). To this system we associate a 2 x 2
monodromy matrix M7 ()), defined by

(L5 A) = U (=L; )M (N),
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where ¥"(£; ) is a fundamental matrix solution to the reduced eigenvalue problem, and the
Evans function

D" (A, v; L) = det[M7.(\) — vI2].

As the columns of the fundamental matrix solution ¥"(€), we choose the two solutions 97 (€)
and 95 (€), that satisfy

Y (~L) = e M LE} and ¥5(€) = Ry} (=€),

where R is the 2-dimensional equivalent of the reflection operator R introduced in Section 2.
Note that since 1y decays to 0 as M€ as & — —oo, it is exponentially close (in L) to 97
if ¢ = —L. For general )\, the solution ¢! grows as M€ for & > 1 and therefore, we can
define an analytic transmission function ¢;(A) and a positive number C = C()) > 0 such that
ibf(L)e_AfL =t(N)E} + O(e”“F)ET, as in Lemma 3.2. It is clear that the two transmission
functions #,(\) and ¢"(\) are closely related. Therefore, note that the periodic solution V" (§)
is uniformly exponentially close to the homoclinic solution V;J({) on [~L, L] and that ¢;(—L)
is exponentially close to 17 (—L). Hence, the two transmission functions are exponentially close
to each other. The monodromy matrix can be expressed on the basis V" = {47 (—L),¢¥5(—L)}.
Therefore, we write

V(L) = miul(-L) + mbg(-L) .

PR(L) = migYi(—L)+mhy3(—L), '
with Y7 (—L) = e"A"E", (Lemma 3.2) and ¢4(~L) = RYJ(L) = t7eM LET + O(eM -1 B
Since ¢f (L) = t;eAfLEZI”_ + O(e(Af_C)L)EZ and 97 does not contain an E”-term, we have
my; = O(e~9L). Furthermore, by looking at the E7 terms in the first line of (3.8), we find
mi; = t;ezATL + h.o.t. Following a similar reasoning for ¢5(L), we find to leading order

T T(\)e2AT L e—CL
Mp(X\) = (m“ 12) = < t’é(?e)u) ?(e*%;L ) . (3.9)

r r
Mgy Mg THeY)

The exact expressions of the elements are M7 (\) are not needed to get leading order expressions
of its eigenvalues. Due to the reversibility symmetry in the problem, we know that det[M]] = 1.

Since Tr[M7] = O(eZAfL ), the eigenvalues of the monodromy matrix are given by

1
Pi(A)

(up to exponentially small errors in L). Hence, there are no y-eigenvalues to the reduced
eigenvalue problem if ¢;(A) = O(1). However, the above leading order analysis breaks down
if t;()\) becomes exponentially small, which implies that y-eigenvalues of the reduced periodic
eigenvalue problem may occur if t;,()\) is exponentially small.

Pi(N) = (XA and ph()) =

Lemma 3.4 Let A} be given by (3.6). For each 0 < j < J — 1 there exists a curve of v-

eigenvalues N7(vy) with |X; — Xj(v)| < e CL for some constant C > 0. There are no other
v-eigenvalues in (3.4).

This Lemma can be proved with the methods developed here, however, this result also follows
directly from the literature [11]. The Lemma implies that every periodic pulse solution to (1.5)
with large enough spatial period is unstable (this is a special case of a well-known result, see
23, 11]).

The two reduced transmission functions ¢"()) and #y,(\) are, by construction, leading order

approximations of ¢/()) if A is not close to the reduced eigenvalues X}, 0 < j < J —1 (3.6),
ie.if X € C, (L8).
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Lemma 3.5 Let A € C,, then t¥()\) = t"(\) + O(e) uniformly in A, so that t¥()\) # 0 and O(1)
with respect to € for A € C,..

Proof. As for Lemma 3.2, the proof of the statement t/(\) = ty(A) + O(e) is completely
analogous to the proof of the corresponding result for the stability of localized homoclinic
pulses on R, therefore we again refer to [12, 3, 4] for the technical details. Since by construction
|t7(A)—t"(A)] < e=F for some C' > 0 and L = O(1/e?), the Lemma follows from Lemma 3.3. O

The relation between the fast ingredients of the Evans function D(\,~;¢) and those of the
fast reduced limit problem are much more subtle for A close to A7, and will be discussed in
detail in Sections 4.3 and 5.

3.2 The slow solutions

In the previous section, we constructed two fast solutions (;5{72 to (2.2), which followed to leading
order the behavior of the reduced equation. In this section, we determine a special set of two
solutions ¢1 , that are independent of the two fast solutions. In general, a solution grows as the

most unstable eigenmode (eAf|E ) in the outer regions ( for A € C.). However, it was derived in
[3] for the stability analysis of the homoclinic pulse that there exist solutions to the linearized
homoclinic equations, that do not grow as eMIEl as ¢ — +oo. Furthermore, it was shown in
[3] that the behavior of these solutions determines the location of the eigenvalues associated to
the stability of the pulse solutions. Therefore, we will also impose the condition on the slow
solutions that they do not grow as the most unstable eigenmode.

Moreover, we impose a second condition on the slow solutions ¢7 ,; the subspace of solutions
D3(&;A) = span{ s (&5 N), #5(€; \)} must be invariant (as a subspace) under translation over one
spatial period 2L, i.e. we require that ¢7 , satisfy

span{@; (£ +2L), ¢5(¢ + 2L)} = span{g;(€), ¢5(€)} (3.10)

for all £ € R. Since A,(&;A) (2.3) is 2L-periodic in &, ¢(€+2L) is a solution of (2.2) if ¢(§) is. It
follows (by straightforward linear algebra) that it is always possible to choose two independent
solutions of (2.2), such that they satisfy condition (3.10). However, together with the condition
that ¢7 and ¢35 do not grow as eAf‘E‘,
Lemma 3.6 below.

¢;7 and ¢35 are determined uniquely, as we will see in

By (3.10), ¢ 5(L) € ®°(L;\) can be written as a linear combination of ¢ ,(—L), i.e. there
exist coefficients m;; such that

QS‘{(L, >‘7 8) = m11(>\,6)¢'{(*L; >‘7 8) +m21()‘76)¢3(7‘[/;>‘76)

¢3(L; N, e) = miz(Xe)i(—L; A e) + maz(X €)¢3(—Ls Ae) (3.11)

Due to the 2L-periodicity and the linearity of (2.2), (3.10) is automatically satisfied for all £ if
it is satisfied in one point, i.e. if (for instance) (3.11) holds.

Lemma 3.6 Let A € C, (1.8). Then, there exists a 2-dimensional subspace of solutions
D3 (& N) = span{df (& N), d5(§; )} of (2.2) that is invariant under translations by 2L, where
the solutions ¢i 5(&; A) satisfy the following properties.

(i) There exists a positive O(1) number C' = C(\) such that

$i(ENe) = Ei(\e)et + 0

B3(&Ne) = ES(N\ee ME 4+ O(e O, (3.12)

foreeZ_.

19



(ii) There ezists an O(1) number Cp = Cp()), such that ||¢5,(€)|| < Cp and uf 4(§) =
1+ O(e) for& e Po.

(itt) There exist transmission functions t;; = t;;(\,€) and a positive O(1) number C' = C(X),

such that
$i(ENe) = tuBi(Ne)e +tn B (N e)e™™ ' +0(e”%) (3.13)
#5(& N e) = t12Ei()\a5)eASE 2 B2 (N, e)e A +O(e”F) )
for&eT,.

The subspace ®°(&; ) is uniquely determined by (3.10) and properties (i),(i1) and (iii). Fur-
thermore, the subspace ®°(€) is closed under reflection in € = 0, i.e. if p5(§) € ®5(&; N), then
R¢* (=€) € *(&A)-

Note that the coefficients m;; in (3.11) and the ¢;; in (3.13) are at leading order related by

s _ mll(A’E) le()‘75) _ tll(>"‘€)/A2 tl?(A’E)/AQ
M (€)= ( mar (M) mgs(Ae) ) - ( A2tn(Ne) A’tn(he) ) (3-14)

with A = A(A?) as in (1.11).

Proof. The proof consists of three parts. First, we prove that there exist two independent
solutions to (2.2) that do not grow as the most unstable eigenmode (Eie/‘f‘f‘) on both outer
regions Z_ and Z,. Then, we prove that these solutions satisfy the properties in the Lemma.
Finally, we show that these solutions can be perturbed to span a subspace that satisfies (3.10).

Define ¥ _(&;\) as the linear 3-dimensional space of solutions of (2.2), spanned by the so-
lutions that satisfy the three boundary conditions ¢(—L) = Esi,Ei and Y (&)\) as the
3-dimensional family of solutions, spanned by the solutions that satisfy the three bound-
ary conditions ¢(+L) = ESi,Ef . It follows from a dimension count that the intersection
Y (A NXL(& ) exists and is at least 2-dimensional. Furthermore, ¢{ (€) is contained in
¥ (&) by construction, but it is not part of X, (&;\), since ¢/(\) # 0 on C, (Lemma 3.5).
Therefore ¥ (&;2) N X4 (& A) is exactly 2-dimensional.

The solutions in ¥_ N ¥, are spanned by two solutions q~5172(£), that satisfy the properties
(i) — (iii) in the Lemma. In particular, we have

$i(ENe) = Bi(\e)eMt  40(eCll)

bo(E:Ne) = ES(M\e)e A€ 4+0(e=Cl, (3.15)

for € € Z_ and for some (well defined) positive O(1) number C and there exist transmission
functions t1; and t91, such that

¢1(£) = ani()\, 6)€A5§ + EglEs_()\, E)G_Asé + 0(6_05)
Jo AE |\ 1rs e _c (3.16)
$2(6) = t12ES (N e)erC +12E% (N e)e AE + O(e %)
for £ € Z,. The proof of the existence of a solution ¢;(£) of (2.2) with these properties is
essentially the same as the combined proofs of Lemmas 4.4-4.7 in [4]. Though the proofs given
in [4], apply to the study of an eigenvalue problem for the linearization around a homoclinic
solution, the proofs carry over to the periodic eigenvalue problem in this paper. The proofs in
[4] are by contradiction, showing that a solution that does not satisfy (3.15) in Z_ must grow
as E_]r_eAf5 in Z, and is obviously not in X — see [4] for a full proof. To prove the existence of
¢2, we consider ¢*(£) = Ry (€), which by (3.16) is given by

¢*(§) = 521E4S-(/\a E)eAS5 + 11 E° (), 5)@7/&55 + O(@iclgl)
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for ¢ € Z_. Thus, @5 can be constructed as a linear combination of ¢; and ¢*.

The solutions 5)172 do not satisfy (3.11) exactly, but since ¢~>172 € ¥_N3, there exists coeflicients
M4, 1,J = 1,2 such that

$1(L) = Thn‘l:&l(*L) + m21<§2(*L)

+ O )
$2(L) = 1adi(=L) + Mmpda(=L) + O

efCL
(e—CL)’

where the O(e~CL) terms are spanned by Ei and E’. Thus, the solutions ¢y 2(¢) (3.15) are
exponentially close to the desired solutions @7 , that satisfy (3.11), and thus (3.10), exactly.

We adapt ¢~5172(§) by

B = 01©) + O (ay](€) +andd(€)
B5(6) = 62(6) + e NI (a07(6) + 0@l (€)),

where a;j, 7,7 = 1,2 are free O(1) constants. Note that the correction terms are at most
O(e~“L), Lemma 3.2. Using the structure of ¢{72(:EL), the solutions ¢7 ,(£) can now be made
to satisfy (3.11) exactly, by making O(e~“%) corrections to the m,;’s — thereby defining the

m;;’s — and choosing the a;;’s such that there are no rest terms spanned by E_{_ and EY. This
straightforward linear algebra exercise determines the a;;’s, and thus the ¢7 , (€)’s, uniquely.

The observation that ®°(¢) is closed under reflection in & = 0 follows immediately from
the uniqueness of ®°(¢). Suppose, that there exists a solution ¢*(¢) € ®5(&), such that
Rp*(—¢) ¢ ®°(¢) and let ¢* be an independent element of ®*. Then, the subspace ®*(¢) =
span{R¢*(—¢), Rp*(—£)} is a second subspace of solutions that satisfies the properties in the
Lemma and that is invariant under translations by 2L. This contradicts the fact that ®° is
determined uniquely by the properties in the Lemma and (3.10). O

Remark 3.7 In the homoclinic limit L — oo, the slow solution ¢5() converges on [—L, L] by
construction to the unique solution of the stability problem (3.3) associated to (Up(§), Vi (§)) =
(Up(&; 00), Vp(&; 00)), that satisfies

lim @i(¢)e "¢ = Y and lim #3(&)e A€ = (0,0,0,0)!
—00

E——o0

(Theorem 1.7, Remark 3.1, [3]). Furthermore, since A,(&;\) converges to Ap(&; A) uniformly
n [—L, L] (Remark 3.1), the transmission functions #;;(\) converge to a homoclinic limit ¢} ())
as L — oo. In this limit, the slow solution ¢$ (&) satisfies (by construction),

lim ¢(&)e™'¢ =t} (V) ES,

£— o0

so that ¢5(¢) is an eigenfunction of (3.3) if and only if t%; (\) = 0. Note, that the notation used
here is different from the notation used in [3], ¢5(¢) and % (\) are denoted by ¢2(€) and t5())
in [3]. It has been shown in [3] that all (non-trivial) eigenvalues A, (# 0) of (3.3) correspond
to zeroes of to()), i.e. of th()).

3.3 The decomposition of the Evans function

We consider the vectors

Vi) = 6l (-Li)) e Mip] f
Vi) = ei(=L;\) = (et EEL yo(eh o) (3.17)
vi(A) = @5(-L;)\) = e‘ASLEJSr +0(e=L)
Vi) = @3(-L;A) = etV EES +0(e “h)
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and express the monodromy matrix M (A,7) with respect to V = {V{,Vg,vf,vg}. Since ¢35
and ¢3(¢) satisfy (3.10) and (3.11), the monodromy matrix has the form

_( M) 0
where each entry denotes a 2 x 2 matrix. The matrix M is defined in (3.14), M/ is — by
construction — at leading order equal to M} (3.9) with ¢ (A) replaced by ¢/(A) — Lemma 3.5.

The eigenvalues of My, ()) (3.18) are independent of the coefficients in the block B(\), so that
the Evans function can be decomposed

D(A,y; L) = det[M*(X) — vI3] det[M7 (X) — vI5] = D*(A,y; L)DI (A, y; L).

Proposition 3.8 For all A € C, (1.8) and v € S', the Evans function D()\,v) associated to
(2.2) can be decomposed into a product of a fast and a slow component, Df (\,7) and D*()\, ),
that are given by

DI yL) = (NN EL+0(e)
D\ L) = 7 - (Algtn(/\,O) + A%,,(\,0) + o(g)> v+ 1 (3.19)

with A = A(X\, L) as in (1.11). The fast Evans function Df()\,~) is non-zero in C, so that all
v-eigenvalues A = A(v,¢) of (2.2) in C, must be zeroes of the slow Evans function D*(\,7);
A= A(v,8) = A(7,0) + O(e) is a y-eigenvalue if A(v,0) solves

Te(M*())) = étu()\, 0) + A255(2,0) € [~2,7] (3.20)

with v,y € S' determined by Tr(M*()\)) = 2Re[v].

The O(g) corrections in (3.19) are clearly uniform in v € S' and L = O(1/¢?), but we cannot
yet conclude that they are uniform in A (for A € C,.), since we need more insight in the structure
of t11(A, g) and t22(A, €) — see Section 4.2.

Proof. Due to the structure of M7()), v € S' does only appear linearly in the leading order
expression of Df(),v) for v € C,. Since tf()) is bounded away from zero in C, (Lemma 3.5),
it follows that Df()\,v) # 0 in C,. The determinant of M*()\) — vI, can be computed using
(3.14). Since ®°(&; \) is symmetric under reflection in ¢ = 0 (Lemma 3.6), it follows that the
eigenvalues of M*(\, &) come in pairs, p*(g) and 1/p°(g). Hence, det[M*(\,e)] = 1, so that
(3.19) follows. The magnitude of the leading corrections in (3.19) follow in a straightforward
fashion. Furthermore,

Tr(M3(),0)) = étn()\, 0) + A%t22(A, 0) = p°(0) + 2(0)°

The observation that p® + 1/p® € [—2,2] if and only if p* = v € S1, implies (3.20). O

Remark 3.9 Since the eigenvalues of My, ()\) come in pairs, p1 2 and 1/p1 2, and since one of
these pairs is formed by the eigenvalues of M*(\), p® and 1/p?, it follows that the eigenvalues of
M7 () also form a pair, p/ and 1/pf. The approach of Section 3.1 yields that pf = tf()\)eQAfL
at leading order (for A € C,).

4 The O(1) y-eigenvalues

In this section we determine the coefficients of the slow monodromy matrix M*(X) (3.14) for
A € C,., which yields by Proposition 3.8 explicit expressions for the y-eigenvalues of equation

(2.2). Furthermore, the possible existence of y-eigenvalues near the reduced eigenvalues A%,
ie. A ¢ C,, is considered.
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4.1 The jump J(\¢)

As in [3, 4], we determine t1; and o9 by relating the expressions for the slow solutions ¢1 o in
the outer regions Z_ and 7, to over-all properties of ¢{ 5 over the pulse region Py. We denote

the value of ¢f , on the boundaries of Py by ¢; _ = ¢f(—ﬁ) and ¢7 , = qf)f(ﬁ) Thus by

(3.2), the v and ¢ components of ¢7 , are exponentially small (i.e. O(e=¢/v#)) and the leading
order parts of the u and p components of ¢; , are given by

uj _ =1, uf =t + ta1;

uy =1, u3 4 = ta1 + ta2; (4.1)
pi_ =A% pi = A(ti —tar); '
Py =—A° p3 = A(tia — t2a);

Note that the expected difference Aspj = p; | — p; _ between the right and left boundary of
Py is proportional to A* = O(£?).

The two outer regions are connected to each other by the pulse region Py where the fast
components are O(1). We know from Lemma 3.6(ii) that the u-component of ¢1 , is to leading
order constant over the pulse region. On the other hand, since both u{ and v{ are O(1) over the
pulse region, the first equation of (2.1) tells us that uge = O(£?) on the pulse region. Therefore,
there is a change in p over the pulse region given by A,pf = f””o uj e d€ = O(&?), which is of the
same order as the expected difference Ay p;. This yields the leading order matching conditions

ujy =uj_ , tin +tar =1,
Aspi = A’Ppi 3 A® (tll - t21) =A"+ APp‘i; (4 2)
uy  =uy_ o, tatlap=1 '

Asps = Apps , A°(tiz —ta2) = A° + Apps;

where the expressions in the second column follow from those in the first by substitution of the
leading order parts of u; . and p; | (4.1). Thus,the transmission functions ¢;; can be expressed
in terms of the jumps in the derivative Appj 5.

In general, i.e for general solutions ¢° € ®° (Lemma 3.6), the jump in p® over the fast field Py
is given by

App® = T (N e)ui + h.o.t., (4.3)
where u is the (to leading order constant) value of u® in Py. The function J(\,¢) denotes a
unit jump in the derivative, i.e. the jump in the derivative if u§ = 1. The change in p is found
by integrating u; ., over the pulse region,

App* :/ ufedé = _52/ a UMV ud + LU V2 Mv*dé + huolt. (4.4)
P, P,

0 0

where we have replaced u®(&) by its leading order value u§. We also substitute uj in the second
equation of (2.1), which implies that v} satisfies at leading order

vee + [BaUg (Vp(€)™ ' = (14 X)| v = —aaUp= " (p(€))* uj. (45)

We see that the solution v® is proportional to ug, so that we can scale out this constant by
writing v® = u?0°,

A S
T(e)= =22 4 hot. = —52/7)a1U§‘1’1VfZ + LU V2 1%dE + hot.

El
Ug

We now return to the evaluation of the transmission functions and thus set u§ = 1 and 9° = v;.

Equation (4.5) is defined only for £ € Py and we a priori need two boundary conditions
to determine the exact solution v;. It is a non-trivial procedure to obtain the exact boundary
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conditions. Since ¢{ and ¢35 span a family of solutions that is invariant under translations by 2L,
there are two conditions that relate ¢7 »(§) to ¢ 5(§ +2L). However these conditions concern
both the u and v-components of ¢7 ,. In particular this means that the boundary conditions
(on the boundaries of Py) on v; can only be formulated if the values of uj ,(L) are known.
Fortunately, the exact boundary conditions are not necessary to determine a leading order
expression for vf. To show this we approximate (4.5) by a problem that is defined for & € R.
It was noted in the existence analysis in Section 1.1 that the periodic solution (U,(§), V(&)
is exponentially close for £ € [—L, L] to the solution (Unq(€), Var(€)) that is homoclinic to M
(1.13) [6]. Hence the restriction to Py of a solution defined on R to

vee + [ B2U37 (Vad(€)™ ™ = (14 N)] v = —aaU5i ™ (Vi (), (4.6)

satisfies (4.5) up to exponentially small errors. Note that this expression is obtained from
(4.5) by replacing U, and V,, by Upq and Vg and setting ug§ = 1, or alternatively by direct
linearization around (Uaq, Vaq). The solution vf(€) is known and exponentially small at the
boundaries of the pulse region ((3.12),(3.13)). We may therefore conclude that the solution
v$ to (4.5) must be exponentially close to a bounded solution v;,, of (4.6), independent of the
precise boundary conditions.

Since (4.6) is a Sturm-Liouville problem, there exists a unique bounded solution v;,,(§) to
(4.6) if A € C,.. Therefore, the change ‘unit jump’ in p is in terms of v;,, (§), Unq, and Vo given
by

oo

T\ e) = —&’ / U™ (Vad(€)™ + BIURE (Var(€)” ™ vin(€)] d + ot

— 00

Note that we have replaced the integration over the pulse region by an integration over R, since
the contributions of the integrals outside Py are higher order terms (V decays exponentially
fast). To simplify this expression we approximate Ujpq and Vi by

Unm(€) = Up(0) and V(&) = (Up(0)) /=~ D (€)
and scale the fast component by setting
vin(€) = —0a(Up(0) 71~/ Ve ).

so that equation (4.6) scales into
(€7 = Nw = wee + B2 (wn (€)™ = (14 1) w = (wn(€)™, (4.7)

where L” is the operator of the reduced linear eigenvalue problem (3.4). Note that this is
exactly the same inhomogeneous problem that was derived in the study of the eigenvalues of
the linearization around the homoclinic pulse solution in [3]. In terms of the bounded solution
w;p to (4.7), the leading order part of J(\,¢) is given by

T\ e) = W (81, B)UL PV [0y — aaBiR(N)] (4.8)
where W (31, 82) has been defined in (1.22) and R()) is given by
— # = . B1—1
RO = 53 gy [ Win€6 ) wn(O)"de. (19)

Note that R(A) corresponds to the R(\) defined in [3], the only difference is the 1/W (S, 52)
factor.

Lemma 4.1 For \ € C,, the unit jump J(\,e) = T (A, L,¢) is given by
T\, Lye) = —2&% /ptanh(e?\/uL) [a; — aaBiR(N)] (1 + O(e)), (4.10)

where the O(g) correction is uniform in X\ € C, and in L = O(1/&?).
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Proof. The proof follows immediately from the above calculations (and (1.25)), while keeping
track of the magnitude of the leading order correction terms. The observation that the approx-
imation is uniform in A € C, is based on the fact that the function R()) is uniformly bounded
in C,., see [3]. O

The solution wy, of (4.7) has been determined in terms of hypergeometric functions in [3].
We will not give all details of this calculation, instead the interested reader is referred to [3].
The transformation into hypergeometric function starts with the observation that w;, decays
as e VIl g & — 4o00. Therefore we search for solutions of the form

win(€) = CF(€) (wn(€))”

where P = /1 + A, F(£) is the new unknown function and C' is a constant that is for convenience

set to be
[2(ﬂ2 + 1)](ﬂ2*P)/(/32*1)

(B2 = 1)°

After the introduction of a new independent variable z € (0,1) by

_ 1 (1 _ wh(€)>
2 wy(€) )
the inhomogeneous equation (4.7) is transformed into the inhomogeneous hypergeometric dif-
ferential equation (' = 9/0z2)

C =

2(1=2)F" +]c— (a+b+1)z] F' — abF = [2(1 — 2)] =P/ (B2=1) (4.11)
with a, b and ¢ given by

2P 426y, 2P —fp 1 2P + B, — 1
:7’ :7’ cC= ———————.
B2 —1 B2 —1 B2 —1

The solution space of the homogeneous part of (4.11) is spanned by the hypergeometric functions

Hy(2) = F{(a,blc|z) and Hy(z) = Hi(1 — 2) = F(a,b|c[1 — 2).

Note that the symmetry around z = % corresponds to the reversibility symmetry £ <> —¢ in

(4.7). The bounded solution to the inhomogeneous problem can then be found using a classical
variation of constants approach, see appendix B in [3] for the details. Using the solution F'(2)

thus found, the expression for R(\) can be written as

_ R(N) B 1 1 e e
RN = 531,62 ~ BB Bo) /0 F(2) [2(1 - 2)] dz, (4.12)
with
_ 2 1
B(Bl’ﬁQ) = g?;z_i_li)‘/o [Z(]_ _ Z)](ﬁ1762+1)/([3271) dz_

Apart from a constant, the function B(S3,82) corresponds to W (31, 32) in the definition of

A

R(N) (4.9); R(N) corresponds to R(A) as defined in [3].

Obviously, the function R(\) is essential for the evaluation of (4.8) — [3] for more details.
Therefore we give a few important characteristics of R()) that can be obtained without the
transformation to hypergeometric functions. The inhomogeneous equation (4.7) does not nec-
essarily have a bounded solution if A is equal to one of the eigenvalues A7 (3.6) of the operator
L". A bounded solution to (4.7) exists if and only if the corresponding eigenfunction w}(¢)
satisfies the solvability condition

+o00
/ (wn (€)= (€) dE = 0. (4.13)

— 00
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Since the eigenfunction w} corresponding to the eigenvalue A7 is even for j even and since wy, is
even, the solvability condition is not satisfied for j even. Hence for A = A7, j even, there exists
no bounded solution to (4.7). The function R(A) is meromorphic and has a simple pole at each
of the even eigenvalues A3, (and nowhere else). On the other hand, the eigenfunctions w3,
are odd for the odd eigenvalues M3, ,;, so that the integrand in (4.13) is odd and the integral
vanishes. Thus, for the odd eigenvalues there exists a bounded solution to (4.7), though it is
not unique. Nevertheless, R()) is well-defined in A5,  ; and smooth in a neighborhood of A3, _ ;.
In particular it is easy to verify that if A = A} = 0, (4.7) is solved by

win(€) = 5 un(6) + Cune),

where C' may be any real number. Thus, (4.9) can be evaluated at A = 0,

B 1 1 > Br 1 1
R(0) = W(B1,B2) (B2 — 1) /;oo w46 = B2 —1’ (4.14)

since wy, is odd. We conclude by (4.10),(1.3) that, at leading order,

J(0,0) = —252\/;7(% + 1) tanh(e?\/L). (4.15)

Remark 4.2 For general 8, R(\), R(\) (4.12) is expressed in terms of (integrals over) hyper-
geometric function F(z). However, F(z) reduces to a product of polynomials of at most order
kif B2 = % = 3,2, %, ... (k=2,3,...). For example, the classical Gierer-Meinhardt problem
has B3 = 2, so that R(\) is based on cubic, quadratic and linear polynomials [3].

4.2 Explicit expressions for the O(1) slow y-eigenvalues

The leading order expressions for the transmission functions ¢;; can be determined by solving
the equations (4.2). By (4.3), this results in

m(he) = 14 2{%)) LOE), tsne) = 2{%)) L 0),
) Tk (4.16)
tgl(A,E) = 72[\5()\ E) +0(8), t22(>\,6) = 1 721\‘9()\ 6) +O(€),

with A*()\, &) = %/ + X (3.2). The leading order approximations ¢;;(),0) of ¢;;(\, ) can all
be expressed in terms of

J(Xe€) VH 2
= — tanh L — A 4.1
2A5(\,€) NTED) anh(e”\/uL) [ar — a2 B1R(A)] + O(e), (4.17)
Lemma 4.1. Note that e2L = O(1) — Theorem 1.7 — so that ¢;;(\,0) indeed does not depend
on e. Moreover, we have found that ¢;;(}, ) is uniformly bounded as function of A for A € C,,
so that we now also may conclude that the O(g) corrections in (3.19) — Proposition 3.8 — are
uniform in A (A € C,.).

With these expressions and with (3.14), we have for A € C, obtained a leading order
expression for the ‘slow’ monodromy matrix,

1 J 1 J
I ]_ + R
s A2 < 2AS> 2 9As
M ()\,0) = 7 7
—A? A? (1 - >
2As 2As
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(1.11); M*(0,0) can be evaluated explicitly,

! 1
MS(O,O) _ p (1 (,82 1 + 1) tal’lh( \/l_‘l’L)> AQ (/32 1 + 1) tanh ))

A3(525 +1)tanh(e2/RL) A ( + (525 + 1) tanh(&?
(4.18
(4.15), where Ag = A(0,L) (1.11). Substitution of the expressions (4.16) and (4.17) in (3.20
10

gives the desired leading order expression for the position of the slow ~- elgenvalues (1.
Theorem 1.1 with, of course, 7%(\, L) = Tr(M*(}, 0)).

)

The ~-eigenfunctions ¢ corresponding to the O(1)-eigenvalues, are of the form

Qﬁ(f) = ¢197(§) + 285 (8),

where (cy,c2)t is the eigenvector of M* that corresponds to the eigenvalue vy of M?. Therefore,
¢ has the same properties as ¢] and ¢35. Of course, we have so far only paid attention to the
stability problem restricted to one spatial period (centered around & = 0). By construction,
the u-component u7 of ¢7 is to leading order constant over any pulse region P, i.e. the pulse
region centered around § = 2nL, and is give by uj = u3(0)y™ with in principle u3(0) = ¢; + ¢,
however, u3(0) can be set to be 1 (by Choosmg 1,2 approprlately) Since the leading order
part of the v-component v} of ¢3 is a combination of the leading order parts of v{ and v3, the
leading order part of v in a pulse region is a multiple of v;,, the bounded solution to (4.6).
Hence, the leading order part of v} on R is given by the uniform approximation

=3 Y"vin(§ - 2nL) (4.19)

nez

Note that vy satisfies (4.5) — with u§ = v™ — on each pulse region P,,, up to exponentially small
€rTors.

4.3 Near the reduced eigenvalues )}

For A\ € C, (1.8), the position of the y-eigenvalues of (2.2) is determined by Proposition 3.8. To
complete the picture, it is necessary to determine the (possible existence of) zeroes of D(\, ) for
A near A} (3.6), i.e. inside the balls B(A7,d) (1.9). Since A\j > 0, the presence of a y-eigenvalue
in B(A},6) would imply the instability of the periodic pulse solution. Furthermore, A7 = 0, so
that the vy-eigenvalues in B(A7, ) can in principle also lie in the unstable half plane. Thus, the
analysis of the eigenvalue problem near the eigenvalues of the reduced eigenvalue problem is
crucial for the stability of the periodic pulse solutions.

After the introduction of the concept of a y-eigenvalue and the monodromy matrix My, the
analysis of the Evans function for periodic patterns has been remarkably similar to that of the
Evans function for localized homoclinic patterns, as developed in [3, 4] — especially concerning
the technical details of the construction of the fast and slow functions ¢{; (&; A\, ¢). This is no
longer the case for D()\,7) near the reduced eigenvalues A7, although the difference is rather
subtle.

In the context of localized patterns, the Evans function can be decomposed into a product of
two transmission functions, ¢;()\) and ¢5(\) (x a constant), where ¢;()\) corresponds to ¢f(\) in
the limit L — oo, and t2(A) to t11(A) (Remark 3.7). Using the analyticity of ¢;()), it is shown
n [3] that #;(\) must have a zero A} near each of the reduced eigenvalues A7 (compare to
Lemma 3.5)). However, this zero is not automatically a zero of the associated Evans function,
since it is also shown in [3] that ¢5()\) has a (simple) pole at A} for j even. This zero-pole
cancellation phenomenon for even reduced eigenvalues is the resolution to the so-called ‘NLEP
paradox’, which states that pulse solutions may be stable, although the fast component of the
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Evans function, t;(\), has an O(1) unstable zero at A\j [3, 4]. The pole of t3(A) corresponds
directly to an obstruction to the construction of the slow solution ¢(€), that corresponds to
#3(€) here (Remark 3.7).

In the periodic setting, the homoclinic decomposition of the Evans function into a product
of t;(\) and t2(\) corresponds to the decomposition D(),v) = DF (), v)D*(),v) — Proposition
3.8. Tt follows from the proof of Lemma 3.6 that the construction of ¢ () also breaks down
for those A for which t/()\) = 0, since in that case ¢! (¢) € £_ (&) N T4 (&N), so that the
space £_(&A) N T4 (&) cannot be spanned by two functions ¢%(¢) and ¢5(€) that are both
independent of ¢7 (¢) (which is necessary for the construction of the monodromy matrices M/ ()
and M?®(\) — Section 3.3). This is completely analogous to the homoclinic case. However, the
fact that ¢/ (\) = 0 does not necessarily imply that there exists a zero of D¥ (), ), t/()) is just
one of the ingredients of the matrix M/ (\). Hence, there is no natural counterpart of Aj in the
periodic case, so that there is no obvious ‘NLEP paradox’ in the periodic case (such a ‘periodic
NLEP paradox’ would be based on the existence of zeroes of Df(),7)). Likewise, there are no
obvious poles for D%(A, ).

Moreover, it is a priori not clear that either one of Df()\,7) or D*(\,~) is analytic near a
reduced eigenvalue 7. The transmission function t/()) is analytic by Lemma 3.2 (a result that
is completely analogous to that for ¢1(\) in the homoclinic case). However, the matrices M*(\)
and M7 ()\) are determined by the decomposition of the vectors q,’){:;(L; A) with respect to the
span {V{;} = {gb{:;(—L; A)} — Section 3.3. Since {v{é} is not orthogonal, all coefficients will
in principle depend on all vectors V{; Due to the obstructions in the construction of ¢i2(§ i A)
for t/(\) = 0, it can a priori not be concluded that vi o depend analytically on A near a A7. As
a consequence, it is a priori unclear whether the D7*(\,v)’s are analytic near Aj.

Of course the fast and slow Evans functions D¥*(),~) are, by construction, analytic for
A € C,. Thus, both functions must have analytic continuations into the balls B(A},d) (1.9).
However, the interpretation of D/*(\,7) in terms of well-determined monodromy matrices
M7#(X) (Section 3.3) becomes unclear near A7. For instance, it follows from a more detailed
analysis (not given here) that the leading order approximations given in Lemma 3.6 obtain
leading order corrections as A approaches Aj. Therefore, we are forced to conclude that the
decomposition of D(),7) into a product of Df (X, ) and D*()\,~) does not give insight into the
existence of vy-eigenvalues near A%. Nevertheless, we can use the decomposition for A € C,. and
O(4) near )%, and apply a winding number argument.

Proposition 4.3 Let 0 < ¢ < § < 1 and pu > §, |as| > V3, and |ay| = O(1) with respect to
§. Assume that the period 2L of the fundamental periodic pattern (U,(&; L), V,(§; L)) (Theorem
1.7) satisfies e2L = O(1) or e2L > O(1) with respect to 6.

(i) If j = 2k is even, then eigenvalue problem (2.2) has no y-eigenvalues in the ball B(A\%,, ).
(ii) If j = 2k+1 is odd and if Tr(M*(X\5;, 1,0)) & [-2,2], then for every v € S!, eigenvalue prob-
lem (2.2) has one (and only one) y-eigenvalue A\(y) € B(\5y, . ,0) (counting multiplicities), and
A(y) € Ry if Tr(M*(A5;,1,0)) € [=2,2] then (2.2) has one y-eigenvalue \(y) € B(\g;,,4,0)NR
for any v € S' with |Re[y] — ;Tr(M*(\y;,,1,0))| > 6.

Only the local 7y-eigenvalues near \] = 0 are relevant for the stability analysis. These small
eigenvalues are studied in the forthcoming section, in this analysis both subcases of (ii) will be
encountered (Lemmas 5.2 and 5.3). It will be explained in Remark 5.4 why the second subcase
of (ii) does not contradict the general theory developed in [11]. In this paper we do not pay
further attention to the y-eigenvalues near A5, , < 0, k > 1 (that only exist for 1 < B < 2

(3.7)).

Proof. In the proof we consider the balls B()\g,g) around A} with radius § > § with § as
defined in (1.8), so that 0B(\7, §) C C,. With a slight abuse of notation we do not distinguish
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between this § and §, i.e. we assume that 0B()\},6) C C, for the § that appears in the Lemma.

(i) The (leading order) condition (1.10) on the existence of vy-eigenvalues can be written as

N/ ‘ _ 1-2A%Re[y] +A*
\/m[al — a2f1R(A; Br, B2)] = (=A%) tanh(2 L)’ (4.20)

If X is O(6) close to an even eigenvalue A}, , the absolute value of the left hand side of this identity
clearly is > 1 with respect to d, since R()) has a simple pole at AL, i.e. [R(A)| = O(1/§) and
>0, |lar| = O(1), aa > V5; e2L = O(1), 0 < |A| < 1 and |1 — A| = O(1) by the assumption
on L, so that the right hand side is O(1) with respect to § for v € S'. This implies by
Proposition 3.8 that D(),~) cannot have zeroes on dB()},8). Hence, for any (fixed) v € S,
we can define the winding number W(D, 0 B()}, §)) of D(), ) over the contour dB(\},d). Since
D(A,7) is analytic as function of A in B(A7,4)), W(D,9B()\},d)) = the number of zeroes of
D(A,v) = the number of y-eigenvalues of (2.2) for this given v inside B(\},0)).

On OB(A},6), DY (A,~) and D*(X,) are defined (and analytic), D(), y) can be decomposed
into the product D7 (X, y)D*(),v), and the approximations given in (3.19) are uniform in \,~, L

— Proposition 3.8 (in combination with the uniform approximations of ¢;;(\) in Section 4.2).
Thus,

D(A\7) d\

W(D,0B) = 27m§8B (/\v)

— d>\ 77) d)\ % S 77) d)\

21r1 f@B 'Df()\'y + 27 §8 D*
. L (—yt"(N)e?t 4 ( (t (X,0)/A%+A%t,,(),0))y+1) 140
- faB & ,,Ytr()\)ezAfL d>\ + faB X'y —(t 111(1A 0)/A2+A2t222(2)\ 0))711 dX 27rz(E)

= W(t"(N\),0B) + W(y? — yTr(M*()\,0)) + 1,0B) + O(¢)

(3.19), (3.20),(1.10). The transmission function ¢"(A) is analytic in B(A},,d)) and has a unique
zero at AL, ([3], Section 3.1), so that W(t"(\),0B) = 1. The trace Tr(M*(\,0)) depends on
A through R(A) (1.10) and is thus meromorphic on B(A},,d)) with a simple pole at A%, ([3],
Section 4.1). By the conditions on the parameters y and a2, it follows that |Tr(M*®(X,0))| > 1
with respect to § on B(\%,,4)), so that for v € ST,

W(y* = yTr(M*(),0)) + 1,0B) = W(Tr(M*(A,0)),0B) = W(R()),0B) = —1.  (4.21)
Hence, for any v € S?,
W(D,0B) = W(t"(X),0B) + W(R(N),0B) +O(e) =1 -1+ 0(e) =
since W(D,0B) € Z (and 0 < € < 1). This proves that there are no y-eigenvalues in B(\},, §).

(7i) Both the slow Evans function D*()\,v) and Tr(M*(X,0)) are smooth as function of A on
0B(X\5;11,6) (1.10), so that
D*(\y) =7 = /T (M*(X,0)) + 1+ O(e) = 9" — YTx(M*(A3441,0)) + 1+ O(6),

for A\ € 0B(\;,,,0) (Proposition 3.8). The condition Tr(M?®(A3,,,,0)) ¢ [—-2,2] implies
that 42 — yTr(M*(\,0)) + 1 # 0 for all v € S'. If the condition holds, this is true for all
A € B(X\5;,,1,0) since Tr(M*(A,0)) is well-defined and smooth on B(A5,_ ;,4), unlike D*(A, 7).
The approach of the proof of (i) can now be applied without any modification, up to the
arguments leading to (4.21), since now clearly W(y? —yTr(M*(),0)) +1,0B) = 0. This yields,

W(D,dB) = W(t"(\), dB) + W(12 — yTe(M*(X,0)) + 1,0B) + O(c) =1+ O(c) = 1, (4.22)

so that there indeed is a unique y-eigenvalue € B(\}, ,,8) for any v € S'if Tr(M*(X5, . 1,0)) ¢
[—2,2]. Since complex eigenvalues of (2.2) come in pairs, it follows that A\(y) € R.

If Tr(M*(X5,,1,0)) = Tr" € [-2,2], then ¥*> — yTr(M*(X,0)) + 1 = 0 has two solu-
tions 7f, € S' with Re[yf,] = 3Tr*. Hence, for any v € S' with |y — 7{,| = O(9),
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7% = ATr(M*(X,0)) + 1 = O(6) as function of A € B(\j,,,0). As a consequence, we do
not know the number of zeroes of % — yTr(M*(A,0)) + 1 in B(A}, ,4,6) for these 4’s. Never-
theless, if |y — 7 5| > & then clearly v* —yTr(M*(X,0)) +1 # 0 for A € B(A}, | ,,6) and (4.22)
can be applied. a

Remark 4.4 If €2 becomes small, the right hand side of (4.20) is large (if 7y is not too close
to 1), so that (1.10) will have solutions for R(\) large, i.e that there are y-eigenvalues (y # 1)
near the poles of R()\). Hence, the periodic patterns of type B must be unstable for 2L small
enough, since these patterns have y-eigenvalues (y # 1) close to Aj > 0. Here, we will not work
out the details of this statement. In Corollary 6.6 it will be shown that all patterns of type B
are unstable.

Remark 4.5 The conditions in Proposition 4.3 on the parameters y and o> can slightly be
weakened. Nevertheless, as in [3] they correspond directly to the instability results. It is shown
in Theorems 5.1 and 5.2 of [3] that the homoclinic pulse is unstable if p, |as| is too small, or
|a1| too large. Equivalently, there will be spectrum near the even eigenvalues A% under these
circumstances, i.e. the long wave periodic pattern will be unstable if x4 < p., |o1| > . or
laa| < g, for some fic, o1 c, 2, > 0.

5 The small eigenvalues

Proposition 4.3 established the existence of y-eigenvalues near 0 = A]. Since the derivative of
the wave is a 1-eigenfunction for A = 0, there exists a curve of small ~-eigenvalues connected
to A = 0 (Proposition 2.2).

5.1 An explicit expression for A\ = \(v)

Let ¢~ be a y-eigenfunction, so that ¢, satisfies ¢, (L) = ¢, (—L). Asymptotically close to
A = 0, the ~-eigenfunctions is expected to be similar to the derivative of the wave, however,
since Up(f) is 2L-periodic, it can not satisfy the y-boundary conditions if v # 1. Therefore,
we have to add a perturbation to the u component of ¢, that is of the same order (O(g?))
as Up. Since the leading order perturbation in the fast v-component follows from the order of
the perturbation in u (through (2.1)), we also add an O(e?) perturbation to V,. Therefore,
we propose in our search for the small eigenvalues the following expansions for the v and v
components of ¢

uy (€) = Up(€) + ur(§5¢) and v, (€) = V(&) + *ua (s ), (5.1)
with the y-boundary conditions
u, (L) =~yu,(=L) and 4. (L) = vy, (-L).

Although it is quite natural to expect that the y-eigenfunctions have this structure for A close
to 0, it is a priori not necessary. However, if we find small y-eigenvalues by ‘ansatz’ (5.1), then
we know by Proposition 4.3 that all y-eigenfunctions must be of the form (5.1).

It is again not necessary to explicitly consider the y-boundary conditions on the fast com-
ponents of ¢,. In fact, the choice of I'/;,(g ) as the leading order part of v, is not a priori obvious,
since V;,({ ) does not satisfy the y-boundary conditions. However, it has been argued in Section
4.2 that v, can be approximated (uniformly in R) by a summation of shifted localized solutions
(4.19), i.e. the leading order approximation of v, is exponentially small outside the pulse re-
gion(s). Here, the leading order part of v;, (€) in (4.19) is given by V,(€), since u§ = the leading
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order part of U,(£) = O(£?) in (4.5), so that there is no inhomogeneous term in the leading
order v;,-equation (4.6). Note that the higher order terms of v, can also be written in the form
(4.19), vy is exponentially small in all outer regions. On the other hand it is not useful to write
the slow part of ¢, in a form similar to (4.19). Since the u-component of an eigenfunction to
(2.1) decays only on an O(¢~?)-length scale, the terms coming from n # 0 give a leading order
contribution to the u-component on [—L, L]. Instead we consider the u-component directly in
the first equation of (2.1), with its explicit y-boundary conditions.

For notational convenience, we introduce the operator £/ for the left hand side in the second
equation of (2.1)
d? _
£ = e+ [BUP VP 1),
so that v, must solve
(£ — N, = —agU;er}, Uy

Since the pair (U,(€),V,(€)) solves the eigenvalue problem (2.1) for A = 0, the operator £/
satisfies the useful relationship

LIV,(€) = —aaUp2 V2T, (€)

Note that this is an exact expression, i.e. we have not introduced any approximations of U, (§)
and of V,,(£). We substitute the expansions of u, and v, (5.1) in the eigenvalue problem (2.1).
After elimination of the terms containing Up and Vp in the resulting expression, the linear
problem for u;(€) and v;(€) reads

{ Uy = —g? [alU;171%61U1 +51U;1‘/pﬂ171’01] +64(/,L+)\)’u,1 (5 2)

Egvl = E%%—angz_lszul

Furthermore, the y-boundary conditions on ., yield

Up(L) + (L) = (Up(=L) + < (=T))

Up(L) + 22y (L) = (Up(—L) + &% (~L) ) .

So far, we have not considered the magnitude (with respect to €) of A. The second equation
of (5.2) suggests that A = O(e?). However, we will derive a solvability condition for the
second equation of (5.2) to show that A = O(e?) and to derive an explicit expression for A(y).
Therefore, we rewrite the second equation of (5.2) as a problem involving the operator £” (3.4).
We approximate the pulse around £ = 0 by

—« -1
Vo(€) = Ug ™/ Dy 6),
where U is the leading order (constant) value of Up(§) in the pulse region (Theorem 1.7), and
wp,(€) is defined in (1.20). Thus, £f = L7+ higher order terms, and the leading order part of
the second equation of (5.2) is given by the inhomogeneous equation

Ao _
LTwy = ZUu, 2/(B2—1)

62 _ a2U0*1*042/(B2*1)w52u1’ (53)

wy,
where w; denotes the leading order part of v;. The homogeneous problem L£"w = 0 is solved
by w, (Section 3.1), so that we have the following leading order solvability condition for (5.3)

A —a —-1) . —1l-« —
<wh | E_2U0 2/ (B2 1)wh — U 1—az/(B2 1)w£2u1> =0,

where ( f|g) is the standard Ls-inner product on R. Since U, is constant we find

A yroa/62=1)

—1l-a —1
4 yLmes/ (B0

(ap, [y, ) — ag wh|wh2u1>:0a
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which yields (at leading order),

It follows from (5.2), that i; = O(e*) in the outer regions and ii; = O(e?) in the pulse region.
Therefore, the first derivative 1, is at most O(¢2), so that u; is to leading order even. However,
since wy, is an odd function, this even leading order term gives no contribution to the integral
in the numerator, so that we need to take the (odd) higher order terms into account. To
approximate the integral in the numerator, we substitute the leading order Taylor expansion
of uy (&) around € = 0,

1 (g, [wy,” (ug(0) + 44 (0)€) 1 <wh|w£2£>

A=oay— —— =y
2UO <wh|wh> 2UO <wh|wh>

i1 (0),

Note that the third and higher derivatives of u; are O(¢*) or smaller, as can be verified by
taking the derivative of the first equation of (5.2) and evaluation of the resulting expression in
& = 0. Finally, using integration by parts, the expression for A is written as

o 1 w2ty .
2 |2‘ _f h gul(o;,y)’ (5‘4)

Aly) =e By, +1Up [ulde

where the dependence on « is only due to 7;(0;v). From this expression for A we conclude two
things. First, since 1 (0;7) = O(g?), we see that A\ = O(e?*) and second that ) is proportional
to the derivative 7;(0). A careful error-analysis of the above leading order arguments yields
that the leading order correction to (5.4) is O(&®).

Remark 5.1 The expression for A was derived as a solvability condition for the leading order
part of v;. Alternatively the same result can be found directly from the full equation for v;
in (5.2) by multiplying both sides of the second equation of (5.2) by V,(£) and integrating the
result over one period

+L A R L +L
. v;,,cgvldgzg—Z . VpVpd€ — az . VU2~ Wz de.

The crucial point in this calculation is to show that the integral on the left hand side is O(g?),
whereas the second integral on the right hand side is O(e?). The latter is easily shown by
substituting the Taylor series expansion of u; in the integral, as was done above. The former
requires somewhat more work.

5.2 The position of the O(¢*) spectrum

Since we know that \(y) = O(¢?), we can at leading order neglect the terms containing \ from
(5.2), so that the linear problem for the leading order parts of w; and vy is written as

{ i = =€ U+ UV ] + et (5.5)

Llvy = —aUg 'V 2

Thus, the leading order parts of u; and vy satisfy the linear eigenvalue problem (2.1) for A = 0.
The set of solutions for uy and v; to (5.5) is at leading order the same as the set of solutions of
(2.1) for A = 0. We showed in Section 3 that eigenvalue problem (2.1) has two types of solutions
that have v-components that are exponentially small in the outer regions Z.. The derivative of
the wave (U,,V,) is a fast solution of (2.1) for A = 0 — Section 3.1. Since this solution can be
absorbed in the leading order part of u and v (5.1), it does not contribute to (uq, v1). Therefore,
the solution of (5.5) must be € ®*(¢, ) (Lemma 3.6), i.e. (u1(&;¢),v1(§;¢)) is at leading order
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spanned by the slow solutions {(uf, v{), (u3,v)}, so that there exist constants ¢; and cp such
that

uy(§5¢) = cyui(§) + cus(§) + O(e) (5.6)

for all £ € [ L, L]. The constants ¢; and co are determined by the y-boundary conditions. We
now need to express i1 (0;) in terms of ¢; and co. We integrate ii; (£) over the left half of Py
and obtain

N | o
iy (0) ul(—%H/_#uldﬁ-

Since the leading order part of i, is an even function (see (5.2) and recall that the leading order
parts of u; and v; are even), we have

0
1 [ve 1
/ ) iy d§ = 5/ . id€ + h.o.t. = 5..7(0)111(0) +h.o.t.

Ve e

(4.3), (4.4). By (3.12) and Lemma 3.6 we thus have
1
11(0) = e2y/p(c; — ¢o) + 5(c1 +¢5)J(0) + h.o.t. = O(e?) (5.7)

(4.15). For notational convenience we re-introduce the vector notation of the previous sections,
i.e. the y-eigenfunction ¢ = (u, Uy, v+, 0,)" is expanded as

$,(€) = ¢9(€) + %1 (&2, (5.8)

where ¢ = (Up, Uy, V,, V,)t and ¢1 = (uy, 11, v1,91) is at leading order given by ¢ (€) =
c1(7)#1(€) + ca(7)p3(€), with ¢; 5 as above. As in Section 3.3, we decompose ¢,(—L) and
¢ (+L) with respect to V = {v{,v5} = {¢7(—L), ¢5(—L)} (3.17), with, by (3.12),

1 1
2 2
v = e_AS(O)LEi (0) = o—e2VEL | € \O/ﬁ and v§ = ete?vaL | € 0\/174 ,
0 0
up to exponentially small corrections. By (3.11), ¢1(L) is given by
¢1(L) = Cl¢i (L) + CQ¢;(L) = (Clmu + Cgmlz)’(}f + (Clmzl + Cgng)’l};, (59)

with m;; = m;;(0) as in (4.18), and, up to exponentially small corrections, ¢o(+L) by

U,(~L) 0
(- L0 )
o) = | D) | [ & rUmin | _ 2 piy (L e Agvs ), (5.10)
0 0 AV
0

where Upin = Umin (V) is the minimal value of U, (£) (1.17) and Ay = A(0, L) (1.11). Combining
(5.8), (5.9) and (5.10) yields,

1
9y (L) = & (ViUnin = + e)Vi(=L) + & (ViUmin Ao + e2)v3 (L)
62(1) = X Uin 3+ d)VEE) + 2 Whin o + )3 (1),

where d; and dy are related to ¢; and ¢y by
) _ are(0,0) (@ (5.11)
d2 o ’ C2 ’
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(4.18). The y-boundary condition ¢, (L) = v¢,(—L) induces the following leading order equa-
tions for ¢y 2,

1 1
\/ﬁUminA_O + d1 == 'Y(\/ﬁUmlnA_O + Cl)
_\/ﬁUminAO + d2 = ’Y(_\/EUminAO + 62)

which is equivalent to an inhomogeneous matrix problem,

)

1
(00,0 =41 () = 6= )i | B 65.12)

—Ao

(5.11). We conclude that we have gained full control over the O(e*) y-eigenvalues: they are at
leading order given by (5.4), with 44 (0;7) as in (5.7), and ¢; and ¢y determined by (5.12) and
(4.18). Moreover, we know by the reversibility arguments of Section 2 that A\(y) = A(¥) and
that u; (§;7) = u1(§;7) — recall that £ = 0 has been set as a point of symmetry. Thus, ¢; ,(7) =
¢ 2(7) by (5.6). Since y € S' is the only non-real ingredient in the y-boundary conditions that

determine c; 5, we also know that c; 5(3) = ¢, 5(7) (exactly). Hence, ¢; 5(7) = ¢; 5(7) and we
may conclude that the small eigenvalues are real, i.e. A\(y) € R.

Lemma 5.2 Suppose that the eigenvalues p and 1/p of M*(0,0) are not in S*. Then, the
small y-eigenvalues have the following properties (for all v € S'): A(y) € R, A(y) = O(e%),
A(—1) <0, AX(1) =0 has multiplicity 1, and A\(—1) < A(y) < A(1) =0.

Proof. We know by Proposition 4.3 that there must be y-eigenvalues and ~y-eigenfunctions
within the ball B(0,d) (1.9). The above analysis is based on our control of the full set of
independent solutions of the linear eigenvalue problem (2.2) (for A = 0), as developed in Sections
3 and 4. We have constructed the small y-eigenfunctions and we know that A(y) € R and
A(y) = O(e?). For v = —1, ¢; and ¢y do at leading order not depend on J(0),

A
C1 = —Cyp = _2\/ﬁUmlnT0A2 (513)
0

(5.12). Since ¢; + ¢, = 0, the slow derivative @, (0) (5.7) is also independent of J(0), so that
the sign of 4, (0), and hence the position of the small y-eigenvalue (5.4), is determined by the
sign of ¢; — ¢;. We know by (5.13) that ¢; — ¢, < 0, so that A\(—1) < 0.

In principle, all y-eigenvalues can be determined with the same procedure. (Note that M*(0,0)—
~I is invertible as v is by assumption not an eigenvalue of M*(0,0).) The result of such a cal-
culation yields that A(y) is in between A\(—1) < 0 and A(1) = 0. O

If M*(0,0) has an eigenvalue v* € S!, there is a singularity in equation (5.12), the coeffi-
cients ci,2 become unbounded as v — v*. Hence, the above approach, that is based on the
expansion (5.1), is no longer valid if y is asymptotically close to v*. Nevertheless, Proposition
4.3 (i) can still be applied, and it can be concluded that there are (uniquely determined) ~-
eigenvalues near 0 for all ¥ € S! not too close to v*. Moreover, the small spectrum can also
still be determined explicitly.

Lemma 5.3 Let 0 < ¢ < § < 1 and let v* € S' with |[Im(y*)| > 6. Suppose v* € S' is an
eigenvalue of M*(0,0).

(i) The O(e*) spectrum consists of two disjoint parts, 0% € {\ > 0} and o* € {\ < \(—1) < 0};
for~y € St such that |[y—~*| > § for some 0 < e < § < 1, X(y) € o% if |arg(v)| € [0,] arg(*)]),
where A(1) = 0 is simple, and \(7y) € o* if |arg(y)| € (Jarg(y*)|, 7] (with arg(y) € [—m,7]).
(i) There exist a \* < 0 and a X > 0, such that all X € [\*, =6) and all X € (5, N3] are O(1)
v-eigenvalues.
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Proof.

(i) The methods by which the small y-eigenvalues can be determined — based on (5.4), (5.7),
(5.12), (4.18) — are valid for the 4’s considered in this Lemma, so that A(y) can be explicitly
computed as a function of v # ~v*, or, equivalently, as a function of arg(y) € [0, |arg(y*)|) U
(larg(y*)|, 7). It follows that the function A = A(arg(y)) € R is monotonically increasing with
a singularity at | arg(y*)|, i.e that A(y) > 0 for 0 < arg(y) < |arg(y*)| and A(y) < A(-1) <0
for m > arg(y) > |arg(y*)|.

(i) Since Tr[M?*(0,0)] = 2Re(y*) (Proposition 3.8), we know that there exist \* < 0 and
A% > 0, such that —2 < Tr[M*(A,0)] < 2 for all A € [A*,\%]. Although the eigenvalues of
M#(),0) may not provide an accurate approximation of the zeroes of D*()) inside B(0,4),
they do so outside B(0,0) (Section 4.3). Hence, in the intervals [\*,—¢) and (4, A’ ], we have
—2 < Tr[M*(\,0)] < 2 which implies that D*(\,v) = 0 for A € [\*, —§) U (6, \"] — Proposition
3.8. O

The unbounded M-intervals o* and o* are by construction only determined for A = O(e?). Be-
yond this magnitude, the small O(g?) eigenvalues merge with the O(1) eigenvalues, that — for the
same reason — will not be O(1) for 7 close to v*. Hence, for A > 0 and for A < A\(=1) = O(e?),
there is a (smooth) transition of the O(e*) eigenvalues into O(1) eigenvalues. We do not consider
the details of this transition here. Neither do we go further into the details of the appearance
of the v* singularity into the interval of O(?*) eigenvalues, i.e. we do not consider the cases
that v* is close to £1.

Remark 5.4 One can also interpret Lemma 5.3 as a result on how the small eigenvalues
appear as an O(g?) ‘hole’ in the O(1) vy-curve of large eigenvalues. Together, Lemmas 5.2 and
5.3 show that the spectrum near A = 0 behaves as can be expected from the general literature
on eigenvalue problems for periodic systems (see for instance [23]). The critical eigenvalue at
A = 0 is either the upper bound of an interval of y-eigenvalues (Lemma 5.2), or the lower
bound (Lemma 5.3). On the other hand, Lemma 5.3 seems to contradict the results of [27]
that are obtained in a more general setting under the assumption that the spatial period of the
periodic pattern, 2L, is large enough. There, it is shown that the ~-curve of eigenvalues that
include A = 0 must be a smooth closed curve, i.e. the hole or singularity described in Lemma
5.3 seems to disagree with [27]. However, it will be shown in Section 6.1 that M*(0,0) cannot
have eigenvalues v* € S! for L (too) large. Hence, for large L the spectrum near A = 0 is
governed by Lemma 5.2, that agrees completely with [27]. For the same reason, the second
subcase of Proposition 4.3 — that is also associated with the existence of an eigenvalue v* € S*
of M#(0,0) — does not contradict the theory of [11] (that is also developed for L large enough).

6 The stability of fundamental periodic pulse solutions

In the previous sections, we have developed the machinery by which we can calculate the O(1)
and O(e?) y-eigenvalues of the linearization around a fundamental periodic pulse solution. In
this section, we apply these results and determine the stability and instability of the funda-
mental periodic pulse patterns.

6.1 Periodic solutions with large spatial periods

In [11] the stability of periodic patterns that limit on a homoclinic pattern as the period tends
to co has been studied. It was shown that for large enough spatial periods the ~y-eigenvalues
of the periodic eigenvalue problem are close to the spectrum of the linearization around the
homoclinic pulse solution. More precisely, it was shown that for every closed curve K that does
not intersect the spectrum of the homoclinic pulse, there exists an L. such that for all L > L.
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and for each 7 on the unit circle the number of 7-eigenvalues (counting y-multiplicity) inside
K equals the number of eigenvalues of the homoclinic pulse solution inside K.

Our quantitative methods enable us to determine in detail the convergence of the y-eigenvalues
to the eigenvalues of the homoclinic eigenvalue problem. In this section, we consider |A| =
|A(X, L)| (1.11) as a small parameter — note that A(A, L) € C for A ¢ R — i.e. we assume that
2L is so large that, for all A € C,., |A()\)| < 1 with respect to the (artificial) small parameter §
as introduced in (1.7) and (1.8) — recall that A®(\) # 0 for A € C.. We obtain approximations
of both the distance between the curve of v-eigenvalues and their homoclinic limit A; and of
the length of the curve of y-eigenvalues.

The position and multiplicity of the non-trivial O(1) eigenvalues Ap, i.e. Ay # 0, of the ho-
moclinic stability problem are known from [3]. In fact, they correspond to zeroes of ¢ (\) =
limy,_, o t11(A), see Remark 3.7. Such an eigenvalue can only have multiplicity 2 if two real
eigenvalues merge (and leave the real axis as two complex conjugated eigenvalues by changing
a parameter). This happens for a special value of &, i = fcomplex(1, @2, 81, B2), that can be
determined explicitly. Moreover, Ap, is O(J) close to the essential spectrum associated to the
homoclinic stability problem, i.e. A;, ¢ C. (Remark 1.4, (1.7)), if |1t — tedge] = O(J), where
Hedge = Medge (1, a2, B1, B2) is a critical value of p (that can be determined explicitly) at which
a new (homoclinic) eigenvalue appears from the essential spectrum [3]. Eigenvalue ), cannot
be O() close to an eigenvalue \} of the fast reduced limit system if y > 4, [az| > O(V/5) and
|ay] = O(1) for some 0 < ¢ < § < 1 (Remark 4.5). Therefore, we formulate the following
assumption,

(A) My |U - ,ucornpleX‘a ‘,u - ,uedge|a |a2|, |a1| = O(l) with respect to |5|7

so that we know that )y is simple and isolated and that A, A(y) C C, — where (%) is the curve
that limits on Ap in the limit L — oo. Note that this assumption can be slightly weakened
(Remark 4.5).

Lemma 6.1 Let 0 < ¢ < 0 < 1 and consider L such that 0 < |A(N)| < 1 with respect to
§ for all X € C,. Let assumption (A) be satisfied and let A\, # 0 be an eigenvalue of the
linearization (3.3) around a homoclinic pulse solution (Up (&), Vi(§) = (Up,a(&;00), Vy, a(&; 00))
(Theorem 1.7). Then there is a zero A\,(L) of t11(A,0) such that (A, — A\p(L)| = O(A(0)%,¢),
where A\, € R if A\, € R. For v € S, the y-eigenvalues \(v) of (2.2), that limit on A\, for
L — oo, are given by

2Re[v]
A0) = = g
? 8{3;\1 (/\ha 0)

with 8;;\1 (An,0) # 0. As a consequence, \(v) is up to O(JA(M,)|*) corrections approzimated by
the straight interval connecting (1) € C to A\(—1) € C, and

An)* +O(IAMR) [ €), (6.1)

IN1) = A(=1)] = 4200 oA, ),
|55 (An,0)]

min, gt [Ap = A(Y)| = [Ap = A(Ed)| + O(|A(A) 1, 6) = O(1AMNA)I*, €),
so that min,cg1 |A, — A(7)] = O(A(0)2, |A(NL)]?, €).

Note that it also follows from (6.1), that the orientation of the A()-interval, i.e. the argument
of A(1) = A(—1), remains constant as a function of L if A\, € R. However, arg[\(1) — A\(=1)] is a
periodic function of L if A, ¢ R, since A(Ap, L) ¢ R (1.11) in that case. Thus, as L increases,
the curve of y-eigenvalues approaches \p, as a shrinking interval, which rotates around its center
A(E) = Ap + O(IAN)[).

Proof. Since A\, € C, and |A()\)] < 1 with respect to § for all Ay, € C,., the results obtained in
the previous sections can be applied. Thus, A(v,g) = A(v,0) + O(e), where A(v,0) is a solution
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of (3.20) — Proposition 3.8. The (leading order) transmission functions t11 22(), 0) are given
by (4.16) and (4.17). Tr(M?(,0)) can only be O(1) with respect to |A] if ¢;1(\,0) = O(|A]?)
(t22(, 0) cannot be O(|A]~2) since that implies that t11 (A, e) = O(]A|~2) as well (4.16)). Thus,
(3.20) can be rewritten as

t1; (X, 0) = 2A(N)2Re[y] + O(|A[*, €). (6.2)

It follows from assumption (A) that t% (\,€) = 0 (Remark 3.7) and that aat?\l (An,e) # 0 (and
O(1) with respect to ¢). In fact,
t11(A,0) = tf; (A, €) (banh(e?\/uL) + O(e)) = t11 (A, €)(1 + O(|A(0)[%, €)) (6-3)

(4.16), (4.17), which yields that t11(X,0) must have a zero A = A,(L) with A\,(L) = A, +
O(|A(0)|2,¢) and that %()\h,O) # 0 and O(1) with respect to 4. Thus, (6.1) follows by a
direct Taylor expansion of (6.2). O

The quantitative control over periodic solutions on large intervals also yields a more quali-
tative result, that is similar to more general statements in the literature [11, 27].

Corollary 6.2 Let (U,(&;L),Vp(&; L)) be a family of fundamental periodic solutions of (1.2)
parameterized by its spatial period 2L and let (Un(€), Va(€)) = (Up(&; 00), Vp(&; 00)) be its ho-
moclinic limit. If (Uy(€), Vi(€)) is (spectrally) stable, respectively unstable, as solution of (1.2)
on R, then there is an L. such that (Uy(&; L), V(&5 L)) is (spectrally) stable, resp. unstable, on
R for L > L.

The (in)stability of the homoclinic pattern can be determined by the methods of [3]. For
instance, it is shown in [3] that (Ux(&), Vh(€)) is stable as solution of the classical Gierer-
Meinhardt problem (1.2), (1.4) for g > propr = 0.36... and that it is destabilized by a Hopf
bifurcation as p decreases through pimopr. It follows from our analysis that the same is true for
periodic patterns (U,(&; L), V,(€ : L)) with L large enough.

Proof. The essential spectrum of the stability problem associated to (Ux (&), V3 (€)) is € C\Ce..
If (Un(€), Vi(€)) is stable or unstable then all eigenvalues \;, # 0 must be bounded away from
the imaginary axis. It follows from [11] that for L large enough all O(1) v-eigenvalues are in
the same half plane as their homoclinic limits \j. Since

1 D

+0(1)>1
(4.18), (1.3) for L > 1, it follows that M*(0,0) cannot have eigenvalues v € S*, thus all non-
translational small eigenvalues are in the stable half plane for L large enough (Lemma 5.2). O

Remark 6.3 By (the proof of) Lemma 5.2, in combination with the information on Uy and
Umin (Section 1.1), it follows that the asymptotic length of the interval of small y-eigenvalues
is O(e*e2¢"VEL) for large L.

6.2 The destabilization of fundamental periodic pulse solutions

As L decreases the curves of y-eigenvalues, i.e. the solutions A(y) of (1.10), increase in length
and move away from the homoclinic eigenvalues. Therefore, it is possible that (part of) a curve
that is in the stable half plane for large L, crosses the imaginary axis into the unstable half
plane as L decreases. As in the homoclinic case [3], whether (and when) this occurs can only be
determined by direct evaluation of (1.10). On the other hand, it is possible to analyze whether
M?#(0,0) has an eigenvalue in S!. Recall, that if M*(0,0) has an eigenvalue in S!, there exists
unstable O(1) spectrum — Lemma 5.3.
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Lemma 6.4 The matriz M*(0,0) has an eigenvalue v = —1 € S1, i.e. A(=1) =0, at L =
Lo (). The eigenvalues p,1/p of M*(0,0) are not in S* if L > Lex(1). If L < Lgy, p,1/p €
S, and for every v € S\ {1}, there exists a uniquely determined L. = L.(v) such that v is
an eigenvalue of M*(0,0) at L = L.; 1 is never an eigenvalue of M*(0,0).

Proof.  The eigenvalues p of M*(0,0) are (at leading order) determined by T%(0,L) =
Tr(M?*(0,0)) = p+ 1/p (1.10). Here, (1.10) can be written as

D
Ba—1

f(Ag;7) = a1 — aaf1R(0; B1, B2) = 1 + >1 (6.4)
(4.14), where
(Af—7) (A8 —7) _ Af—2AFRe[y] +1

f(A07'7) = (Ag — 1)2 - (A% 7 1)2 )

since ) ) )
ef VIl e Vil o —Ag 11— A]

tanh(e*\/nL) = - B
anh(e®\/pL) e ViL § o—=*\/iL ALO_FAO 1+ A2

with Ag = A(0). It can be checked that f(Ap,7) is monotonous as function of Ay € (0,1).
Clearly f(Ao, 1) =1 for all Ag, so that (6.4) does not have a solution for v = 1. On the other
hand,

2D
(Af+1)* —2(_2 — [ Uhom \ > ?
et tanh™“(e*\/uL) = i ,

by (1.25). This yields by (1.24) that (6.4) is satisfied at the saddle-node bifurcation. Thus
M*(0,0) has an eigenvalue —1 if L = Lgy(x). Since f(Ag,v) < f(Ag,—1) for all v # —1 and
Ag € (0,1), it follows that f(ASN,v) <1+ ,821:11 if v # —1. For Ag < ASN = Ag(Lgx(p)) (or
equivalently if L > Lgx), f(Qo,7) < f(Ao,—1) < 1+ B2—D717 so that (6.4) cannot be satisfied,
i.e. M*(0,0) cannot have eigenvalues € S' for L > Lgy(1). Moreover, lima, 1 f(Ao, ) = +o0
for all v # 1, so that there exists a Ag = Ag(L) > AN for every v # +1 such that (6.4) is
satisfied, i.e. there is an L. such that M*(0,0) has eigenvalues 7,5 € S' at L = L. O

f(Ao,—l) =

Remark 6.5 For a given v € S', the critical period 2L, of the fundamental pattern at which
M*#(0,0) has an eigenvalue v, can be explicitly determined through (6.4),

1 1

Note, that L.(y) < L.(—1) = Lsx (see (1.27) and recall that 2 arccosh v'Y = arccosh(2Y —1)).

arccosh (1 + (1= Re[)) %) .

Corollary 6.6 Let (U,(&;L),V,(&L)) be a fundamental periodic solution of (1.2). If it is of
type A, i.e. if L > Lgn(u), then there exists ad >0, such that there is no O(1) spectrum in the
ball B(0,6) (1.9); all small non-translational eigenvalues are negative and contained in B(0,6).
If (Up(&; L), Vp(&; L)) is of type B, i.e. if L < Lgn(p), then are positive real O(1) v-eigenvalues;
the small eigenvalues may be either positive or negative. Hence, the periodic patterns of type B
are always unstable as solutions on R, their most unstable y-eigenvalues are always of O(1).

This corollary might seem to contradict the results obtained in [17, 29] — in which it is shown
that the destabilization at the saddle-node bifurcation is induced by the O(e?) eigenvalues.
However, this is not the case, as is explained in Section 8.2, see especially Corollary 8.4.

Of course, it is not claimed in Corollary 6.6 that all periodic patterns of type A are stable.

As was already noted, an A-pattern may destabilize by a Hopf bifurcation (see also [17, 29]).
Though (1.10) gives an expression for the y-eigenvalues, it gives no direct analytical insight in
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their positions. Therefore, we give a number of prototypical examples of the development of the
curves of O(1) v-eigenvalues in the next section for the classical Gierer-Meinhardt case (1.4).
All calculations of y-eigenvalues are based on evaluating (1.10) with the help of Mathematica.
Note that 82 = 2, so these calculations do not involve hypergeometric functions (Remark 4.2).

Proof. If L > Lsy(u), Lemma 6.4 yields that Tr[A*(0,0)] ¢ [~2,2], so that it immediately
follows that there is a 6 > ¢ > 0 (with ¢ as in (1.7)) such that there are no O(1) v-eigenvalues
inside B(0,48) (Proposition 3.8, Section 4.3). If L < Lgn(u), there exists an eigenvalue ~v*
of M#(0,0) in S!. Then by Lemma 5.3, there exists an interval of positive unstable O(1) -
eigenvalues. Thus, (2.2) has positive y-eigenvalues if L < Lgn(p), i.e. the periodic B-patterns
are unstable. The statements on the small spectrum are based on Lemmas 5.2 and 5.3. O

Remark 6.7 Lemma 6.4 only shows that A = 0 is an O(1) —1-eigenvalue to leading order (in
e) if L = Lgn(u). However, it can be shown in various ways that A = 0 indeed exactly is
an —1l-eigenvalue at the saddle-node bifurcation. In fact, the bifurcation at L = Lgn(u) can
be seen as an period doubling bifurcation, since the fundamental patterns of A- and B-type
bifurcate at Lgn(p) into the periodic AB-patterns, with twice the period of the original A-,
B-patterns. The structure of the marginally unstable —1-eigenvalue also indicates that the A-,
B-patterns bifurcate into an AB-pattern at L = Lgn(p).

6.3 The classical Gierer-Meinhardt equation

In this section we apply the theory developed in the preceding sections (i.e. in essence Theorem
1.1) to the special case of the classical Gierer-Meinhardt equation (1.2) with (1.4). We consider
as examples two special cases (u = % and p = 1), and consider the period 2L of the fundamental
periodic pattern (U, 4(&; L),V a(&; L)) of A-type as bifurcation parameter.

Theorem 6.8 Let 0 < ¢ < 1 and consider pp = 1. Let (Up (L), Vp,4(§; L)) be a fundamental
periodic pattern of (1.2) with (1.4) — Theorem 1.7. Then, all fundamental patterns of type A
are spectrally stable as solutions of (1.2) on R, i.e. (Up a(&;L),Vp a(&; L)) is stable for L >
E%ESN = 5 log[v2 — 1]| + O(¢)). As 2L decreases through Lsx, then (U, a(&; L), Vy,a(é; L))
is destabilized by the saddle-node/period-doubling bifurcation associated to the real O(1) -
eigenvalues \(); the first eigenvalue to cross the imaginary axis is the —1-eigenvalue.

Theorem 6.9 Let0 < ¢ < 1 and consider p = 3. Let (Up a(&; L), Vp, a(€; L)) be a fundamental
periodic pattern of 1.2) with (1.4). Then, (U, a(&; L), Vp,a(&; L)) is spectrally stable as solution
of (1.2) on R for L > S%f/Hopf = 2'802“' (> Lsx). As €’L decreases through .Z/Hopf, then
(Up,a(& L),V a(&; L)) is destabilized by two complex conjugate branches of O(1) y-eigenvalues
A(7); the first eigenvalues to cross the imaginary axis are 1-eigenvalues.

The proofs of Theorems 6.8 and 6.9 can be obtained by direct evaluation of (1.10), see especially
Section 4.1 and Remark 4.2. Note that both theorems confirm the result obtained in [3] on the
stability of the homoclinic patterns (Ux (&), Vi (§)) = (Up,a(&;00), Vp,a(€; 00)) (Theorem 5.11 in
[3]), that corresponds to the limits L — oo in Theorems 6.8 and 6.9. Of course, the analytical
information on Lgy is based on Corollary 6.6 and (1.27). Note also that it follows from Lemma
5.2 that we do not need to pay attention to the small O(c*) eigenvalues (for patterns on R, this
is not the case for periodic patterns on bounded intervals — see Section 8).

The outcome of the Mathematica-assisted calculations is presented graphically in the Figures
3-6. In these Figures, L = 2L has been chosen as natural bifurcation parameter. Note that
these Figures supply more information than described in Theorems 6.8 and 6.9. For instance,

it follows from Figure 3 that the complex vy-eigenvalues do cross the imaginary axis for p =1,
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Im[A]

(a) S (b) .
1 (
0.5 -1 —0.5[ 0.5 1
Re[A]
-1 -0.8 0.2
(c)
-1 -0.5 [ L 0.5 1

Figure 3: The leading order representations of the curves {\(v);y € S'} C C. of O(1) 4-
eigenvalues as given by Theorem 1.1 for the classical Gierer-Meinhardt case (1.4) with p = 1.0
and & = 0.1, for various values of L = L. In (a) L = 5,2,1.5,1and L = Lgy = |log[v2—1]| =
0.88... (Theorem 6.8). Tt is shown in (b), L = 0.75, and (c), L = 0.5, that also the complex
valued ~-eigenvalues cross through the imaginary axis (for L < Lgy). Note that the O(e?)
‘hole’ of small y-eigenvalues near 0 (Lemma 5.3) is not represented in (b) and (c), and that
part of the spectrum with negative imaginary part is not plotted in (b) and (c).

Re[A]
1.25¢

1+

0.75¢}

0.57¢

Figure 4: The real part of (all possible) O(1) y-eigenfunctions as function of L = £2L for the
classical Gierer-Meinhardt case with ¢ = 1.0 and ¢ = 0.1. The dashed line denotes (the real
part of) the 1-eigenvalues, the thick line the —1-eigenvalues, the thin line the +i-eigenvalues;
all other O(1) v-eigenvalues are in the grey area.

this only occurs after the pattern is destabilized by the saddle-node bifurcation. In Figure 5
it is shown that the branch point of two combined curves of ~-eigenvalues may pass through
the imaginary axis, and thus through the small spectrum. The precise interaction between a
branch point and the small spectrum is a subtle higher order effect that has not been considered
in the analysis of Section 5. Finally, we note that the spectrum associated to the B-patterns
(Up,B(& L), Vp 5(€; L)) seems to cover large parts of the real axis (A < Aj = 2, Lemma 3.3)
as L decreases. This observation can be proven with the methods developed in this paper (see
also Remark 4.4).
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Figure 5: The leading order representations of the curves {\(y);y € S'} C C. of O(1) ~v-
eigenvalues as given by Theorem 1.1 for the classical Gierer-Meinhardt case with p = 0.5 and
e=01; L =¢>L =5,2.5,1.51.25in (a). At L = Lyept = 2.0... (> Lsy = v2|log[v/2 — 1]| =
1.24... (1.27)), two complex conjugate A(1)’s cross the imaginary axis (Theorem 6.9). A branch
point crosses the imaginary axis (and the small spectrum) as L decreases from 1 (b) to 0.6 (c).

~Nednt

Figure 6: The real part of (all possible) O(1) y-eigenfunctions as function of L for the classical
Gierer-Meinhardt case with p = 0.5 and € = 0.1. The dashed line denotes the 1-eigenvalues,
the thick line the —1-eigenvalues, the thin line the +i-eigenvalues; all other O(1) v-eigenvalues
are in the grey area. Note that the region of y-eigenvalues is bounded from below by C\ Ce,
which extends up to A = u (+6) (1.7).

In Figure 7, the critical (destabilizing) values of L as function of y are presented. Hence, this
Figure gives the values of L and u for which a fundamental periodic pattern (Uy, a(&; L), Vp,4(&; L))
is (spectrally) stable. Moreover, it can be concluded from Figure 7 that (U, 4(&; L), Vp. a(&; L))
is destabilized by the saddle-node bifurcation for p > psn—mopr = 0.84..., i.e. the scenario
described by Theorem 6.8, and by the Hopf bifurcation scenario of Theorem 6.9 for p <
UsN—Hopt = 0.84.... Note that there is a vertical asymptote at © = ppopr = 0.36..., the
Hopf bifurcation value of u that (de)stabilizes the homoclinic pulse pattern (Up (), Vi(€)) =
(Up, a(&;00),Vp a(&;00)) [3]. Although this is not clear from the Figure, the lines representing
the 1- and the —1-eigenvalues have countably many intersections near p = ppopr as L — oo,
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Figure 7: The stability region of a fundamental 2L-periodic pulse solution
(Up,a(&L),V, a(& L)) of the classical Gierer-Meinhardt equation (1.2) with (1.4) in
(u, i)—space. In the shaded region the periodic pulse solution is unstable. The curves denote
the (i1, L)-values where a complex conjugate pair of 1-eigenvalue (dashed) or of —1-eigenvalue
(solid) crosses the imaginary axis. The bold line represents (u, Lgy)-points where a real
—1-eigenvalue passes through the origin (1.27). The inset shows a blow-up for large L near
I = PHopt, the p-value of Hopf-bifurcation of the homoclinic limit pattern.

the first of these is shown in the inset of Figure 7. This is due to the rotation of the (shrinking)
interval of +y-eigenvalues A(y) as L — oo described in Lemma 6.1. Thus, for u close to fihops,
(Up,a(&; L), Vp a(€; L)) may either be destabilized by a complex conjugate pair of v(1)- or of
v(—1)-eigenvalues (see the inset of Figure 7). This behavior also implies that a pulse pattern
(Up(&; L), V,(&; L)) may change its stability a (finite) number of times as function of L if p is
chosen close enough to ppoept (and g < props, S0 that (Up a(&; L),V a(€; L)) is stable for L
large enough — Corollary 6.2).

7 The periodic orbits of AB-type

In this section, we study the linear stability of the periodic solution (Up ap(&; L), Vp,ap(§; L))
of AB type with period 2L (Theorem 1.8). The general results from Section 2 apply to this
case. For reference, we recall the main ingredients. The linearization around (U, ap, Vp,aB) is
given by .

B(6) = A, 4p(ENG(E), (7.1)

where Ap ap(§;A) = Ap(§;X) (2.3) with U, 4 and V,, ap substituted for U, and V. Again,
the spectrum consists entirely of y-eigenvalues, so the study of the eigenvalue problem can be
restricted to one period. For technical reasons, this interval will be chosen different than in
the stability analysis of the fundamental periodic orbits. Using the translational invariance,
we assume that U, ap(£) has a minimum in £ = 0. The first pulse, which we assume to be
of A-type, is then located at €4 = Ly = La(v) (1.26). The second pulse is then located at
&g =2Ls+ Lp = 2L — Lg(v). The eigenvalue problem is studied on the interval [0, 2L]; hence
we define the associated monodromy matrix M4p by

U,up(2L) = ¥ 45(0)M45(A€),
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where U 45 () is a fundamental matrix solution of (7.1). The Evans function associated to (7.1)
is defined by
DAB()\a ’7) = det[MAB()\a 5) - 'YI]‘

It follows from the existence analysis ([6], Theorem 1.8) that on the interval [0,2L 4], the com-
ponents Uy, 45(€) and V), ap(§) are uniformly exponentially close to U, (§) and V, (), the U, V-
component of the fundamental periodic solution of A-type with period 2L 4 > 2Lgy (1) that has
a pulse in 4. Therefore, the matrix A, 45(§) is exponentially close to A, 4(€) for & € [0,2L 4],
where A, 4(€) is the matrix obtained in the linearization around (Up, 4(§),Vp,4(§)). Similarly,
for & € [2L 4,2L], the matrix A, ap(&) is uniformly exponentially close to Ay 5(€), the matrix
obtained from the linearization around the fundamental periodic solution (Up, g(§),Vp,B())
with period 2Lg. In the analysis in this section, we will divide the interval [0,2L] in the subin-
tervals [0,2L 4] and [2L 4, 2L] and approximate the solutions on these intervals by the solutions
to the eigenvalue problem of the fundamental periodic solutions.

As in the analysis of the fundamental periodic patterns, we will determine 4 independent
solutions to (7.1), such that the fundamental matrix M4p(\) spanned by these solutions has
a form that facilitates the evaluation of Dap. Since A, 4p(&;\) is exponentially close to the
limit matrix A (A) (3.1) outside the pulse regions, solutions to (7.1) behave to leading order
as combinations of EieiAff and Eie* ¢ in these outer regions. Hence, we again look for a
splitting in fast solutions ¢{’2 and slow solutions ¢ ,. The analysis is — by construction — very
similar to that of Sections 3, 4 and 5, therefore we will refrain from giving the full analytical
details.

We define the pulse regions around the pulses by

1 1 1 1

€,€A+$) and Pp=({p—

PAZ({A—\/—

and the outer regions by

To = [0,64 — =], To=[ta+ —.5—

NG NG and I, = [{p +

1 1
\/g] \/g, 2L] N
Remark 7.1 For L = Lgy, the A- and B-pulses of the AB-periodic orbit are actually the
same. Hence, the AB-periodic solution with period 2L consists of 2 copies of a fundamental
periodic solution with half the period, i.e. a period L. This implies that the ~y-eigenvalues
for the linearization around (Up ap, Vp,ap) are the same as the vy-eigenvalues for the lineariza-
tion around (Ua,Va), though the Floquet multiplier of the corresponding eigenfunctions is
different. Hence, the spectrum is the same, but the parameterization of the curves of ~-
eigenvalues is different (Remark 2.6). Since a solution ¢* that satisfies ¢*(§ + L) = vy¢*(€),
also satisfies ¢*(¢ + 2L) = 42¢*(¢), the Floquet multiplier of the eigenfunctions runs over
the unit circle twice as fast. Therefore, we consider one curve of v-eigenvalues of the lin-
earization around (U, 4(§),V,,4(€)) as two curves of y-eigenvalues of the linearization around
(Up aB(£), Vp,ap(€)). Since A = 0 is an O(1l) —1l-eigenvalue for the linearization around
(Up.al),Vp,a(f)) at L = Lgy, A = 0 is an O(1) l-eigenvalue for the linearization around
(Up,aB(&), Vp,aB(§)) at L = Lgn (Lemma 6.4, see also Figure 8(a)). Actually, A = 0 is a
1-eigenvalue of «y-multiplicity 2, since the derivative of the AB solution is also a 1-eigenvalue.

7.1 The O(1) y-eigenvalues

We define ¢/ as the solution to (7.1), that satisfies ¢f(0) = e_AfLEj:. In general, a solution

grows as the fastest growing eigenfunction £ i M€ on every outer region. Since the total length
of the outer regions is (to leading order) 2L, we expect that there exists a transmission function

tf;B()\), such that e_Aquﬁ{(QL) = tf;BE'_{—i— exponentially small terms. We make this more
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precise by first tracking (15{ (&) over the interval [0,2L 4] and then over [2L4,2L]. On [0,2L 4],
the matrix A, ap(£) is exponentially close to A, 4(§), thus the solution ¢{ (€) behaves to leading
order as the solution ¢£71(£) to (2.2), with A,(§) = Ap a(§), that was defined in Lemma 3.2.

Hence, there exists a transmission function tfl()\), such that up to exponentially small terms,
¢! (2L4) = th(\)eA CEa-DEL L hot.,

where t/, (\) = t/ (\; L4)+ exponentially small terms, with t/(\; L 4) the transmission function,
defined in Lemma 3.2 for the stability analysis of the fundamental periodic solution with period
2L 4. Similarly, on [2L 4,2L], the matrix A, ap(£) is exponentially close to A (). Hence, the

solution ¢*(§) to (7.1), defined by ¢*(2L4) = e*AfLBE_{_, behaves to leading order as the
solution d){ , with L = LB, defined in Lemma 3.2. Hence, there exists a transmission function
té()\), such that up to exponentially small terms,

¢*(2L) = th(\)er L2 EL 4 hoout,,

where té()\) = tf()\; L)+ exponentially small terms, with ¢/ (\; L) the transmission function,

defined in Lemma 3.2 for L = Lp. Since ¢{(2LA) is to leading order a multiple of ¢*(2L4),
we have ;
e Mgl (20) = t] (VN EL

up to exponentially small terms spanned by {Ef ,E7,E*}, and
th () = th (V) th(\) + heot. =t/ (A La) ¢/ (A Lp) + h.o.t. (7.2)

where all higher order terms are exponentially small. It was shown in Section 3.1, that the
zeroes of tf(\;L4) and tf(\;Lp) are close to the eigenvalues A7 of the reduced eigenvalue

problem. Hence, we conclude that tﬁB (M) has no zeroes in C, (1.8).
We again define ¢4 by ¢ (&) = Re{(—¢).

Following Subsection 3.2, we define two slow solutions ¢7 , that are independent of (;5{72 and
that span a linear subspace of solutions ®*(¢) that is invariant under translations by 2L. Since
the ideas in the proof of Lemma 3.6 also apply to (7.1), we know that in all outer regions such
solutions are exponentially close to span{E%, E® }. Therefore, ®*(0) is spanned by the vectors

vi = E7] +exp. small and v; = E° + exp. small.
Together with the vectors

Vo= o) = el
vi = ¢f0) = tf,(NeMEES 4 hot.,

Vap = {v{,vg,vf,vg} is a basis of C*. Note that, for technical reasons, this choice of the
slow base vectors differs from the choice of the slow base vectors in (3.17) by a factor 1/A,
respectively A. With respect to V4p, the monodromy matrix M 4p has the form

(ML) 0
w0 = ("G argn)

as in (3.18), so that the Evans function again splits into a product of a fast and a slow Evans
function,
Das(\,7) = det{Mip — 911 detiMfp — 1] = Dap(\1)Pha(07).

The same reasoning that was applied to the eigenvalues of M7 in Section 3.3, also applies to
the eigenvalues of M7 . Hence, M% ,()\) has no O(1) eigenvalues if A € C,: there are no fast
~-eigenvalues in C,.
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The matrix My is easily determined by using the similarities between the AB-solution and
the fundamental solution. Consider the slow solutions @7 »(£) defined by

s s 1
81(0) = N Pavi = Aavi, 93(0) = Pavy = v,

where Ay = A(\, La) (1.11). In Zy, these solutions are given by

Pi(§) = EieAs(g_L") + exp. small
$3(§) = E2eME-L4) 4 exp. small

As in (3.13), there exist transmission functions ¢{; = (), such that for £ € 7y

$7(§) = tﬁEieAs(g*L“) + télEie’As(g’L“) + exp. small
3(8) = tiquieAs(gfLA) + t‘242ES_e’AS(5’LA) + exp. small,

Hence, £ = 2L 4, we have

#3(§) = t11VSeA La 4 tmv;e*" La 4 exp. small
P5(8) = tlzvseA La 4 t22V2€_A La 4 exp. small.

With respect to {v£,v3}, the transmission over the A-pulse is at leading order given by

A L t
M4 = M5\ = UAE, A122 . (7.3)
t21 t22AA

Note that due to the different choice of basis, there appear no factors A% and 1/A? in the off-
diagonal elements of M§, as opposed to M? (3.14). Since for € € [0,2L 4], the matrix A, 45(§)
is uniformly exponentially close to Ap, 4(&), the transmission functions t{‘j are to leading order
the same as the transmission functions ¢;; (4.16), that were derived in the stability analysis of
the fundamental periodic solution with period 2L 4.

Now, by essentially the same arguments, the transmission over the B-pulse, i.e. from & = 2L 4
to £ =2L =2L 4 + 2Lp, is up to exponentially small errors given by

1
Apvi r— t11V1A + tFviAg

B
N Vi — thvi AL + {5 VviAg,
B B

where Ap = A(\,Lp). Thus, with respect to the basis {v§,vi}, the transmission over the
B-pulse is described by the matrix

1

s S tlBl 2 25‘1B2
My = ME(\) = AZ . (7.4)
th B AY

Combining the results over the A- and B-pulses, the total transformation is given by

Mjp(A) = Mp(A) M4 (%),

i.e. by
JIB IB Ja Ta
—(1 +52) " 1+ ) "
Mig(A) = A% 2A 2A A% 2A 2A ’ (7.5)
Tz a8y _Ta e Ty
2As B 2As 2As A 2As

where A2 = T2 — 0(1) is given in (4.17) with L = Ly 5. The above analysis yields the

following counterpart of Proposition 3.8.
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Proposition 7.2 For all A\ € C, and vy € S', the Evans function Dap(\,7) can be decomposed

into a product of a fast and a slow component. The fast Evans function ’Dle()\q) 18 MoN-zero
in C,., all y-eigenvalues X = \(vy,¢) € C, of (7.1) must be zeroes of the slow Evans function
Dig(N7); A= A(y,e) = A(7,0) + O(e) is a y-eigenvalue if A(vy,0) solves

s _ 1 Ja JB 2 _ Ja I\ ,JaIB _ .
TMEs (V) = 42 (H 2AS> (H 2As> ta (1 2As> <1 2As> 2ons gps €722
(7.6

with v,5 € S' determined by Tr(M3 ) = 2Re[y], and A = AyAp =e AL,

7.2 Near the reduced eigenvalues

The methods developed in Section 4.3 can directly be applied to the periodic orbits of AB-type.

Proposition 7.3 Let 0 < e < § < 1 and p > §, |aa| > V6, and |a1| = O(1) with respect
to 6. Assume that the period 2Lp of the B-part of periodic pattern (Up ap(&; L), Vp a(&; L))
satisfies e2Lp = O(1) with respect to 6.

(i) If j = 2k is even, then eigenvalue problem (2.2) has no y-eigenvalues in the ball B(\5,,d).
() If j =2k + 1 is odd and if Tr(M35 5(N\5,1,0)) ¢ [—2,2], then for every v € S*, eigenvalue
problem (7.1) has (precisely) two y-eigenvalues A1 2(7y) € B(Ay;,,1,0) (counting multiplicities);
if Te(M 3 5(M5y41,0)) € [-2,2] then (2.2) has two y-eigenvalues Ay 2(y) € B(Ay;,1,0) NR for
any v € 8" with [Re[y] — $Tr(M*(A5,,,,0))| > 6.

The main difference with Proposition 4.3 is the fact that (7.1) has two vy-eigenvalues near the
odd fast reduced eigenvalues A3, , ;, which is not surprising given the observations in Remark
7.1.

Proof. The proof is very similar to that of Proposition 4.3, therefore we focus on the differ-
ences with Proposition 4.3 and refer to the proof of that Lemma for more technical details.

(i) It follows from Proposition 7.2 and (7.2) in combination with Lemma 3.5 that the winding
number W(D 45, 0B()\};,6)) can be decomposed into

W(Dap,0B) = W((t")?,0B) + W(y* — yTr(M55(),0)) + 1,0B), (7.7)

where we have used that det(M5g) = det(Mg)det(M5) = 1. The trace of M5 consists of a
sum of products of the meromorphic expressions J4(\) and Jg(\) ((7.6), Lemma 4.1). Hence,
for § small enough

W(Dag,dB) = W((t")?,0B) + W(R?*,0B) =2—2=0
for all v € St.

(i) If Tr (M5 5( N5y 11,0)) ¢ [—2,2] then v> —~yTr(M5 (A, 0))+1 # 0for A € B(A}, ,), so that
(7.7) reduces to W(Dap,dB) =2+ 0 =2 for all v € S'. If Tr(M35(\5;,,1,0)) = v* € [-2,2],
then this argument can be applied for v € S such that [Re[y] — $Tr(M*(\5,,,,0))| >4. O

In the next section we will find that the periodic patterns of AB-type are always unstable
with respect to the O(1) eigenvalues. Hence, the small (and again O(c?)) y-eigenvalues are less
relevant for the stability of the AB-patterns (on R, see Section 8). Nevertheless, we will very
briefly sketch a procedure — that is very similar to that of Section 5 (but computationally more
involved) — by which the small eigenvalues can be determined explicitly.

We write the eigenfunctions as a perturbation of the derivative of the A-part (£ € [0,2L4]) and
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of the B-part (£ € [2L4,2L]) of the pattern, i.e. we make the ansatz

$4(€) = ¢o() +e%¢7'(€)  for £ € [0,2L4]
¢,(&) 0¢0(8) + 267 (€) for € € [2L4, 2L},

where ¢o(&) = (Up.ap(€), Up ap(€), Vp.an(€), Vp.ap(€))! and 6 is a constant (not necessarily
€ S!), that needs to be determined in the process. By the methods of Section 5, we find at
leading order over the A-region [0,2L 4] that

1 f wB2+1d£
A _ 52 |062| 1-1114 0’ h ,
and over the B-region [2L 4, 2L] that
oy 11 Jwpttdg

— 2 — »B(o-
)‘B(’Y)*E 52+1 U()(LB) 9“‘1( 5’7) fw}%d‘f )

As in Section 5 we introduce 2 x 2 constants 0114’,23 that describe the decomposition of ¢‘14’B(§)
with respect to slow solutions {#3(&;La,B), ¢5(&; La,p)}- Thus, we have introduced in total
5 unknown constants (6, cﬁ’QB). The O(e*) v-eigenvalues are now determined by imposing 5

conditions: 2 y-boundary conditions, 2 matching conditions in £ = 2L 4, and Aa(y) = Ag(7).

Remark 7.4 As an example of a more complex pattern, we may consider the AABB-pattern
(Up,a4BB(§), Vp,aaBB(€)) that consists as solution of (1.2) on R of a periodic array of two
A-pulses at distance 2L 4, followed by two B-pulses at distance 2Lp [6]. It can be shown by
an approach that is completely analogous to that of Section 7.1 that the part of the spectrum
of the stability problem associated to (U, aass(§),Vp,aaps(£)) in C, is determined by the
matrix M3 4, 5(N), with

Maps(A) = Mp(A) Mp(X) M3(A) M3 (A).

Hence, the equivalent of Proposition 7.2 can be formulated immediately, with (7.6) replaced
by the condition Tr(M$ 455(N)) € [—2,2]. This expression is a polynomial of degree 4 in the
meromorphic functions J4(A) and Jg()\), so that we obtain the equivalent of Proposition 7.3
in which there are 4 -eigenvalues near the odd fast reduced eigenvalues A3, , , for every allowed
v € S'. An analysis near the saddle-node/period-doubling bifurcation like that of Lemma 7.5
below will show that there again are O(1) unstable eigenvalues, i.e. that the AABB-pattern

(Up.4a8B(£), Vp,aapB(£)) is unstable.

7.3 Stability analysis of periodic orbits of AB-type

As for the case of fundamental patterns, expression (7.6) can be explicitly evaluated with the
aid of Mathematica. The results of such an evaluation for the classical Gierer-Meinhardt case
(1.4) are shown in Figure 8. We see in this Figure that for L > 2Lg, the AB periodic solution
(Up aB(& L), Vy ap(€; L) is unstable with respect to real O(1) vy-eigenvalues (in the classical
case). This observation can be proven for general parameter combinations.

Lemma 7.5 There ezists a critical length L = L*(p) > 2Lgn (1) such that the stability problem
associated to the solution (Up ap(&;L),Vp aB(&; L)) of (1.2) of AB-type, has positive O(1) -
eigenvalues for all L € (Lsn(p), L*(1)).-

Similar to the case of the destabilization of the fundamental patterns of type A (Corollary 6.6),
there seems to be a contradiction with the results of [28] in which patterns of AB-type are
studied on a bounded domain. However, this is again not the case — see Section 8.2.
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Figure 8: The real part of (all possible) O(1) ~-eigenfunctions as function of L = &L for
the periodic solution (U, ag(§;L),Vp,an(§;L) of AB-type of the classical Gierer-Meinhardt
equation (1.2) with (1.4) with g = 1.0 and ¢ = 0.1. Note that L > 2Lsy = |log[\/§ 1] =
1.762... The dashed line denotes (the real part of) the l-eigenvalues, the solid line the —1-
eigenvalues; all other O(1) y-eigenvalues are in the grey area. Subfigures (a)-(d) show the
curves of y-eigenvalues for L = 2Lgn, 1.765,1.82,1.85; (a) also appears in Figure 3(a), with a
different y-parameterization, the saddle-node/period-doubling break-up point at v = —1 in (a)
corresponds to y = +i in 3(a) (Remark 7.1). Note also that as L,L — oo, the 4 curves of
v-eigenvalues approach the eigenvalues A\p, Ay, of the homoclinic limit [3], and Aj = %, Ay = % -
as described in Lemma 7.7.

Proof. The proof is based on a local analysis of Tr(M$ 5(0,0)), i.e. (7.6) at A = 0, near the
saddle-node bifurcation, i.e. for both L4 and Lp close to Lgxy. Thus, we introduce the artificial
small parameter § with 0 < ¢ < § < 1 (that is not necessarily related to § in (1.7), (1.8)) and
set v = vgy — § (recall that v = vgy determines the saddle-node bifurcation (1.24)).

It follows by (3.2), (4.15) that,

Ja,8(0) 1 2 1-A%p
d = —(1+ >)tanh L = -b—=
21\5(0) ( + b) an (6 \//: A,B) 1 +A311B7
where we have introduced )
b= P2 1; >0 (7.8)

(1.3). It follows from a straightforward perturbation analysis on La g = La g(vsy — 0) that
A% = ALy — diV6E + dod + O(BVS), AL = ALy + diVb + dod + O(8V5),

where

\/_A 1+AZy , _ 11+AZN1-2A%y
SN\/_USN PTOL-AZy pUZy
and, by (1.27), (1.24), (1.23), (7.8),

Asy = A(0,Lsy) = Vo +1- Vb, Usy =Un(Lsw) = [W(;\?ﬁm

Substituting all this into (7.6) at A = 0 yields by extensive, but straightforward, calculations

16 (1+0)(14+20) 1
3 b nUsN

Te[M (05 L(vsw — 6))] = 2 - 5+ 0(5V5),
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since Tr[M 4 5(0; Lsy = L(vsn))] = 2Re[y] = 2 (Remark 7.1). Thus, Tr[M55(0; L(vsny —0))] €
[—2,2] at v = vgy — § for all allowed parameter combinations, so that A = 0 is a y-eigenvalue
of (7.1) for v € S with

45 [(1+b)(1 + 2b)
ar = +0(
&(7) N 3 (9)
(Proposition 7.2). The existence of O(1) y-eigenvalues () > 0 for L asymptotically close to
Lsy now follows from the continuity of Tr[M¥ 5(X; L)] as function of . O

In fact, we have proved that A = 0 is a ~y-eigenvalue for all L € (2Lgn (i), L(p)) for a cer-
tain L§(u) > 2Lgn(p). For the classical Gierer-Meinhardt case with p = 1 it follows that
L§(1.0) = 1.84... (see Figure 8 (¢) and (d)). Figure 8 also shows that L*(1.0) = oo in the
classical Gierer-Meinhardt case, with L*(u) as defined in Lemma 7.5.

Lemma 7.5 thus implies that the small eigenvalues do not play a role for the stability of
(Up,aB(& L), Vy ap(€; L)) as solution on R if L is increased from Lgn(p) — a situation that
is similar to that of the periodic solutions of B-type (Corollary 6.6).

Corollary 7.6 The period-doubling bifurcation of the periodic pattern (Up aB(&), Vp,aB(§)) of
AB-type from the fundamental patterns (U,(&;La ), Vp(§;La,g)) generates O(1) unstable ~y-
etgenvalues.

It is a priori not excluded by Lemma 7.5 that the AB-patterns gain stability at L = L*(u).
This is not the case, however. In principle, one could analyze relation (7.6) to confirm that
also for general parameter combinations L§(p) < oo and L*(u) = oco; moreover, A = 0 is
a —l-eigenvalue for the AB-pattern at L = L(u), and A = 0 cannot be a v-eigenvalue for
L > L§(p). For the parameter combination of the classical Gierer-Meinhardt problem (1.4),
these statements follow from the direct evaluation of (7.6) presented in Figure 8. Here, we
refrain from performing these (fairly extensive) computations and only consider the limit case
L > 1, or equivalently 0 < v < 1.

This limit is especially interesting, since it is a result for periodic orbits with arbitrarily large
period, but the results of [11] and [27] cannot be applied. Although the amplitude of the B-
pulse decreases to 0 as L — oo, the (Up aB(§), Vp,a(£)) pattern is not exponentially close (in
L) over the interval [0, 2L] to the localized homoclinic limit pattern (i.e. the limit of the A-pulse
as L — 00). Thus, we cannot use [11] to conclude that (7.1) only has eigenvalues near those of
the homoclinic limit. In fact, this is not even correct.

Lemma 7.7 Let 0 < v < 1 and assume that condition (A) — Section 6.1 — holds. Let
(Up,aB(&§ L(v)), Vp,a(&; L(v))) be a periodic pattern of AB-type and let (Up(€), Va(§)) be the
homoclinic limit that appears from the A-pulse of the AB-pattern on the interval [0,2L 4(v)]
in the limit v — 0 (Theorem 1.7). Let A\, be an eigenvalue of the linearization around
(UL(€), Vi(€)). For any v € S' and any homoclinic eigenvalue Ny, there exists a y-eigenvalue
() of (7.1) such that |\, —\(7)| = O(v,€). Moreover, for any vy € S* and any even eigenvalue
A5 € Ce, 2k € {0,1,...,J — 1} (Lemma 3.3), there exists a y-eigenvalue A(y) € R of (7.1) such
that [\, — ()] = O@P/CED) g).

Thus, although the B-part of the AB-pulse shrinks to 0 in the limit ¥ — 0, it does have a
leading order effect on the spectrum of (U, ap(§; L(v)), Vp, a5(&; L(v))). Unlike the homoclinic
limit, there always is (real) unstable spectrum in (7.1) — recall that A}, > 0. Note that the

Lemma is confirmed by Figure 8, since for L > 1 there is real spectrum near the two fast

reduced eigenvalues of the classical Gierer-Meinhardt case (1.4), A[ = % and A\ = —1.

Proof. The proof follows the same approach as the proof of Lemma 6.1, with (3.20)/(1.10)
replaced by (7.6), therefore, we need assumption (A) to ascertain that Aj, is simple, isolated
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and € C, — as in Lemma 6.1. Here, we choose § — (1.8) — such that 0 < v < § < 1.

We need to be careful about the magnitudes with respect to the small parameter v of the
two asymptotically small expressions e?,/uLp(v) and A4(v). Note that Ap = 1 at leading or-
der, so that A = A4AB = A4 at leading order in v. A straightforward asymptotic calculation
with (1.15), (1.16) and (1.21) yields that

e2/ELp(v) = O(v), Aa(v) = O(VV), (7.9)
with b as in (7.8). If A € C,, both J4,5()) are bounded and (7.6) reduces to

Ja JB
ons) (I ops

(7.3), (7.4), (7.5), (7.9). Since L4 >> 1 it follows that ¢} (\) = % ()\) at leading order (see also
(6.3)). Moreover, by (4.17) and (7.9),

HOV ) = (1+ ) = O(AP,€) = O(v,e) (7.10)

) RO = )1+ 0, 6))[1 = RV))Ow,8)] =t \)(1+ O(w,v7 ), (7.11)

so that it indeed follows by (7.10) that Tr[M55(\; L(v)] € [—2,2] for A(y) O(v,¢) close to a
zero A, of t/()\). Since R()) has a (simple) pole at A = A5, ([3], Section 4.1), expansion (7.11)
will also be O(v,¢) (7.10) for [\j, — A| = O(¥'/?,¢). However, tf()\) also has a pole near
A5, and t/()\) also appears in the right hand side of (7.10) — it could be incorporated in the
O(v,€) terms under the condition that A € C,, i.e. that R(\) is bounded. In other words, it is
a priori not clear that the right hand side of (7.10) really is asymptotically small if A is close
to \},. Nevertheless, a next order analysis shows that the fact that tf(\) = O(v=1/?%) for X
O(v'/? g)-close to A, does not have a leading order influence on (7.10), i.e. it indeed follows
that Tr[M?4 5 (\; L(v)] € [<2,2] for [\}, — | = O(v'/?,¢). m

8 Pulse patterns on bounded domains

So far, we studied the stability of periodic pulse patterns on R. Of course, most applications
and numerical simulations require the problem to be posed on a bounded domain. In this
section we apply the analysis of the preceding sections and determine the spectrum, and thus
the stability, of pulse patterns (Up(&), V,(£)) on a bounded domain [0, X] with homogeneous
Neumann boundary conditions.

8.1 The structure of the spectrum

We consider a stationary singular pulse pattern (Uy(§), V4(€)), that is a solution of (1.2) on
[0, X] with the boundary conditions Uy (0) = V;(0) = 0 and Uy(X) = V3(X) = 0. This solution
can be an equidistant array of identical pulses (of A- or B-type), or a combination of A- and
B-pulses. In fact, we can distinguish between three types of patterns (Us(€), V5(€)) (see also [6]):

(T) All localized pulses of V;(€) are in the interior of [0, X], i.e. V(&) is exponentially small
at £ =0, X and Up(€) has local minima at the boundaries.
(H) V5(€) has ‘half a pulse’ at both boundaries, i.e. both V;(§) and Uy (€) are at an O(1) local
maximum at £ = 0, X.
(TH) V(&) has half a pulse at one of the boundaries and is exponentially small at the other.
Without loss of generality we may assume that the ‘half-pulse’ is situated at £ = 0.

We refer to Figure 10 for examples of patterns of type (I) and (H). The analysis in this section
will reveal that different types may give different stability properties, even if the number and
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the type of the pulses is the same, see especially Corollary 8.3 and the simulations depicted in
Figure 10.

By the homogeneous Neumann boundary conditions and the reversibility symmetry of
(1.2), (Uy(€), Vs(€)) can be extended to a solution of (1.2) on [—X, X], i.e. (Up(€), V4(€)) =
R(Uy (=€), Vp(=€)) with R as defined in (2.5). It follows from the homogeneous Neumann
boundary conditions at £ = X that Uy(—X) = Up(X) and d/déUs(—X) = d/deUy(X). Thus,
there is a uniquely determined solution (Ux (&), Vx p(§)) of (1.2) associated to (Uy(§), Vi(&))
that is 2X-periodic on R and is such that (Ux (&), Vx p(€)) = (Us(§), Vu(€)) on [0, X].

An eigenfunction ¢p(§) of the linearized eigenvalue problem associated to (Up(&), V4(£)) can
be extended in a similar fashion to a 2X-periodic solution ¢x , (&) of the stability problem (2.2)
associated to (Ux (&), Vxp(€)). As the thus constructed ¢x (&) is a 2X-periodic solution of
(2.2), it is by definition a 1-eigenfunction — an eigenfunction associated to a l-eigenvalue — of
(2.2). Note that not all 1-eigenfunctions of (2.2) correspond to eigenfunctions associated to
(Us(£), Vu(&))- For instance, the derivative of (Ux (), Vx p(€)) is a 1-eigenfunction that does
not satisfy the (homogeneous) Neumann boundary conditions (d/d¢U,(§) and d/dEV,(E) are
odd at £ =0, X).

Most often, the minimal period 2L (by definition) of (Ux, (), Vx,p(§)) is smaller than 2X.
We define N by N = X/L and (U,(&; L), V,(&; L)) as the periodic solution of (1.2) of minimal
period 2L such that (U,(&), V,(€)) = (Ux,p(£), Vx »(€)) on a certain subinterval of [-X, X]| of
length 2L. Note that N cannot be even for patterns (Uy(§), V3 (§) of type (IH), that N is even
for patterns of type (I) and (H) if (Uy(€), Vi(€)) consists of identical pulses, and that N can be
either even or odd if (Uy(€), Vi (€)) is of type (I),(H) and consists different (A- and B-)pulses.
If N > 1, it is natural to express the eigenvalues of the linear stability problem associated to
(Up(£), Vu(&)) in terms of the y-eigenvalues associated to (U, (&; L), V(& L)).

Lemma 8.1 Let (Up(§), Vs(§)) be a stationary pulse solution of (1.2) on [0, X] that satisfies
homogeneous boundary conditions and let (Up(&; L), Vp(§; L)) be the corresponding periodic so-
lution on R that has minimal period 2L = 2X/N for N =1,2,3,.... Then, X € C. can only be
an eigenvalue of the stability problem associated to (Uy(€), V4(£)), if A = A7) is a y-eigenvalue
of (2.2) such that v € T'n, where

Iy ={yes'|y¥ =1}. (8.1)

Proof. The proof follows immediately from the arguments in Remark 2.6. See also Proposi-
tion 3.1 in [10] for a more general version of this Lemma. O

At this point, it is not clear yet which of the v € T'y-eigenvalues of (2.2) may give rise to
an eigenfunction that satisfies the homogeneous Neumann boundary conditions on [0, X]. By
construction, an eigenfunction of the linear problem associated to (Up(), V4(£)) must be sym-
metric at both endpoints of the interval (see Remark 2.5). In general, a y-eigenfunction ¢(&) of
(2.2) associated to the minimal period periodic solution (U,(&; L), V,(&; L)) is not symmetric.
However, we know that A also is a ¥-eigenvalue with J-eigenfunction R¢(&y — &) — where &
is a point of symmetry of (U,(&; L), V,(&; L)) (Section 2). If these functions are independent,
these two eigenfunctions may be used to construct an eigenfunction to the problem associated
to (Up(&), Vp(£)), i.e. a function that is symmetric in £ = 0 and £ = X.

Recall that we can also use the symmetry operator R to characterize whether a function ¢(§)
is symmetric in a given point &y, R¢(&o — 1) = 06(§o + 1) for 0 = 1; ¢(§) is anti-symmetric in
& if § = —1 (Remark 2.5). Recall also that any 2L-periodic solution (U, (&; L), V,(&; L)) has
internal reflection points at &, = &y + kL, k € Z, where of course &, can be set to be equal to
0 ([6], Theorem 1.7).
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Proposition 8.2 Let (Uy(€), Vi (€)) be a pulse solution of (1.2) on [0, X] that satisfies homo-
geneous boundary conditions and let (U,(&; L), V,(&; L)) be the corresponding periodic solution
on R that has reflection points at &, = nL, n € Z, and that has minimal period 2L = 2X/N
for certain N = 1,2,3,.... Then, X\ € C, is an eigenvalue of the linearized equations associated
to (Up(€),Vu(€)) if and only if X satisfies one of the following three conditions.

(i) X is a 1l-eigenvalue of the eigenvalue problem (2.2) associated to (Uy(&; L), V,(E; L)) and
there exists a 1-eigenfunction that is not anti-symmetric in &, for at least one n € Z.
(i1) X is a —1-eigenvalue of problem (2.2) associated to (U,(&;L),V,(§; L)), N is even, and
there exists an —1-eigenfunction that is not anti-symmetric in one of the endpoints of
[0, X].
(iit) X is a ~y-eigenvalue of problem (2.2) associated to (Uy(&; L), V(& L)) withy € Ty \ R,

Thus, this Proposition gives a complete characterization of the spectrum of the linearization
around the (multi-)pulse pattern (Up(§), V5(§)) on the interval [0, X] (with homogeneous Neu-
mann boundary conditions). However, it does not give information on the multiplicity of the
eigenvalues. Since the multiplicity of an eigenvalue A is not relevant for the stability question
if A # 0, we do not go further into this here. Moreover, we already noticed that the ‘trivial’
translational eigenfunction at A\ = 0 does not satisfy the homogeneous Neumann boundary
conditions. Hence, the presence of an eigenvalue at the origin in the stability problem associ-
ated to (Up(&), V5(§)) immediately implies that (Uy(&), V5(§)) is about to bifurcate, i.e. that it
generically is in the transition from stable to unstable (or vice versa).

Proof. Consider Ay € C. such that the linearization (2.2) around (Up(§; L), Vp(§; L)) has
a 7-eigenfunction ¢,(£). To ¢,(£), we associate its symmetrical counterpart Re,(—¢) (2.5) —
note that R¢,(—£) is a J-eigenfunction of (2.2). If ¢, () and R¢p,(—¢&) are independent, we can
define

¢+ (§) = 6p(€) £ Rop(—£)- (8.2)

By construction, ¢ (&) is symmetric in £ = 0, i.e. ¢, (£) satisfies the homogeneous boundary
conditions at £ =0, and ¢_ (&) is anti-symmetric in ¢ = 0 (Remark 2.5).

Hence, we first need to determine the dimension of {¢,(§), Rp,(—§)}. Clearly, the condition
¢p(€) = ORPp(—&) on R implies that 6 = £1, i.e. ¢,(€) and Rpp(—E)} can only be dependent
if ¢, (&) is symmetrical or anti-symmetrical in £ = 0 (Remark 2.5). In that case,

¢p(L+n) =v0p(—L +n) = 70Rep(L — ), (8.3)

for n € R, which implies that v8 = £1. Thus, ¢,(§) and R¢,(—£)} can only be dependent for
~ = £1. This implies that the combination ¢, (§) (8.2) is a candidate for being an eigenfunction
with eigenvalue \g of the linear problem associated to (Uy(§),V5(€)) on [0, X] for v € Ty \ R,
since it is a solution of (2.2) for A = Ay, and it satisfies the homogeneous Neumann boundary
conditions at £ = 0.

Before we consider the more special cases v = +1, we first prove part (iii) of the Proposi-
tion. Since ¥V = 1, the solution ¢, () is symmetric in ¢ = kNL for k € Z,

¢4+ (ENL —n) = ¢p(kNL —n) + Rgp(—kNL +1n)
= "N g, (~kNL —n) + v *NRe,(kNL + 1)
= ¢p(—kNL —n) + R$,(kNL +n)
= R[¢p(ENL + ) + R¢p(—kNL — n)]
= Rp, (ENL +1n)

for n € R Since X = NL, it follows that ¢, () is a solution of (2.2) that is symmetric in
both £ =0 and £ = X, i.e. ¢ (&) is an eigenfunction at A = Ao for the linear stability problem
associated to (Up(§), Vu(§)).
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For the special cases v = =+1, the multiplicity may be > 2, so that ¢,(§) and R¢,(—¢&)}
can be independent, and the symmetric/anti-symmetric eigenfunctions ¢ (§) will exist. In
such cases, A = A is also an eigenfunction for the (U, (), Vi(€)) stability problem. Note that

these cases are covered by (i) and (ii) (where N must be even to have —1 € I'y, Lemma 8.1).

Thus, to finish the proof of (i) and (i), we may assume that ¢, () is either symmetric or
anti-symmetric in £ = 0, i.e. that ¢,(§) = ORp,(—¢) for § = £1. It follows from (8.3) that
#p(€) is also symmetric/anti-symmetric in { = L, and that the symmetry-type is the same as
in £ =0 for 7 = 1, but changes for v = —1. More in general, for k € Z,

¢p(2kL +n) = 7k¢p(77) = 7k9R¢p(_77) = 0R¢,(2kL — n)
¢p((2k+1)L+n) = +**'¢(~L+n) = +"*0RG,(L—n) = ~0Rs,((2k+1)L (— 77)),
8.4
so that it follows that ¢,(£) has the same symmetry-type at every £ = nL for v = 1, and that
its type alternates for v = —1. This immediately proves part (i) of the Proposition. Since
X = NL and N must be even in part (i) of the Proposition (Lemma 8.1), ¢,(¢) is either
symmetric or anti-symmetric at both boundary points. O

8.2 M identical pulses on [0, X]

As an application of the results of the preceding subsection, we study the stability of a
pulse pattern (Uy(€), Vp(€)) that consists of M identical pulses on the interval [0, X]. Since
(Ub(€), Vs(€)) may be of type (IH), we allow for M € 1N/{0}. The associated 2.X-periodic solu-
tion (Ux p(&), Vx p(§)) consists of 2M identical pulses. The periodic solution (U,(&; L), V,(&; L))
of minimal period is a fundamental periodic solution (of either type A or B) with period
2L = X/M = 2X/N, so that N = 2M. By Proposition 8.2, the spectrum of the linearization
around the M-pulse pattern (Uy(€), V5(€)) is given by the y-eigenvalues of the eigenvalue prob-
lem (2.2) associated to (Uy,(§; L), V,(&; L)) with v € Ty (8.1), where we need to be extra careful
with the special cases v = £1 (parts (i) and (ii) of Proposition 8.2). Of course, the conclusion
whether or not a +1-eigenfunction of (2.2) corresponds to an eigenfunction associated to the
full (U(€), V4(£)) pattern depends on the character of the pattern —i.e. whether it is type (I),
(H), or (TH).

We know from the theory developed in preceding sections that the (relevant part of the) spec-
trum of the linearization around the fundamental periodic solution (Up(&; L), V(&5 L)) consists
of a curve of small O(e*) y-eigenvalues, connected to the translational eigenvalue A = 0, and
a number of curves of O(1) ~y-eigenvalues. Recall that (U,(§; L), V,(&; L)) has two reflection
points per period (by construction [6], Theorem 1.7), one at £ = {, = 0 (without loss of gener-
ality) such that U,(¢; L) and V,,(&; L) are at a local maximum (i.e. & determines the center of
the pulse), and one at & = L, exactly between two adjacent pulses (i.e. Up(§; L) and V,(&; L)
are both at a local minimum).

If ¢,(¢) is an eigenfunction of (2.2) that corresponds to a small v-eigenvalue, then its v-
component is to leading order equal to the derivative of the wave d/d€V,(&; L) in a pulse
region (Section 5). Since the u-component of ¢, () is at leading order 0 in a pulse region (5.1),
it follows that ¢,(&) is to leading order anti-symmetric in the reflection points s, = 2kL. By
Proposition 4.3, the small y-eigenvalues have y-multiplicity one. Hence, ¢,(§) and R¢,(—§)
cannot be independent for v = +1, i.e. ¥ € S! such that ¥ = v, so that ¢,(£) must be exactly
anti-symmetric in all reflection points &a, = 2kL for v = 1. It follows from (8.4) that ¢,(¢)
is anti-symmetric in all reflection points &, = nL, n € Z for v = 1, so that ¢,(£) cannot be an
eigenfunction of the stability problem associated to (Uy(&), V(€)) for v = 1 (part (i) of Propo-
sition 8.2). Note that we already knew this, for the small 1-eigenfunction is the derivative of
the wave. On the other hand, it also follows from (8.4) that ¢, (&) is symmetric at the reflection
points &1 = (2k+ 1)L for v = —1. Hence, the eigenfunction ¢, () corresponding to an O(s*)
—1-eigenvalue of (2.2) is an eigenfunction of the stability problem associated to (Up(€), Vi(£))
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if and only if (Uy(£), V5(€)) is of type (I).

The large vy-eigenfunctions are, by construction, to leading order symmetric with respect to
the reflection point £of, i.e. the centers of the pulses. This follows immediately from the fact
that the solutions w;, (€) of (4.7) must be even with respect to the center of the pulse — recall
that the v-component of an O(1) v-eigenfunction ¢, (&) is to leading order a scaled version of
wp(§) in the pulse region, while its u-component is to leading order constant (Section 4.1).
Therefore, by the same arguments as applied to the small eigenvalue case, if X is a O(1) 1-
eigenvalue with geometric v-multiplicity one, then the corresponding 1-eigenfunction must be
ezactly symmetric in all reflection points &, = nL. Moreover, an O(1) —1-eigenfunction is
symmetric in the points &5 at the centers of the pulse, and anti-symmetric at the points €241
in between the pulses. Hence, the 1-eigenfunction corresponding to an O(1) 1-eigenvalue of
(2.2) satisfies the Neumann boundary conditions at £ = 0, X, irrespective of the type of the
(Up(&), Vu(&)) pattern, whereas the O(1) —1-eigenfunctions satisfy the boundary conditions if
and only if (Uy(&), V4(§)) is of type (H).

Corollary 8.3 Let (Up(§), Vu(€)) be a pulse solution of (1.2) on [0, X] that consists of M €
$N/{0} identical pulses and that satisfies homogeneous Neumann boundary conditions, and let
(Up(& L), V(& L)) be the corresponding fundamental periodic solution on R with minimal period
2L = X/M = 2X/N. Then, A\ € C. is an eigenvalue of the linearized equations associated to
(Up(€), V(&) depending on the type of (Uy(£), Vy(€)) and on the magnitude of the y-eigenvalues
of (2.2) associated to (U,(&; L), V(& L)):

(I) A € C. is an eigenvalue if \ is an O(1) y-eigenvalue with v € Ty /{—1} or an O(e*)
y-eigenvalue with v € ' /{1}.
(H) X € C, is an eigenvalue if X is an O(1) y-eigenvalue withy € T'x or an O(e*) y-eigenvalue
with v € Dy /{-1,1}.
(IH) X\ € C. is an eigenvalue if X is an O(1) y-eigenvalue with v € T'x/{—1} or an O(e*)
y-eigenvalue with v € T /{—1,1}.

Note that Ty \R =T9p \R =0 for M = %, 1, so that v = 41 are the only possibilities for
patterns consisting of a half pulse (type (IH)), two half pulses (type (H)), or one full pulse
(I). As a consequence, the half pulse pattern only has eigenvalues that correspond to O(1)
1-eigenvalues of (2.2), the two half pulses pattern only has eigenvalues that correspond to O(1)
+1-eigenvalues, and the one pulse pattern only has eigenvalues that correspond to O(1) 1-

eigenvalues and the O(e*) —1-eigenvalue (that is always negative, Lemmas 5.2 and 5.3).

In combination with Lemma 5.3, Corollary 8.3 can also be used to derive a somewhat sur-
prising result on the character of the destabilization of the M-pulse pattern (Uy(&),V5(€))
caused by the saddle-node (or period doubling) bifurcation, i.e. the parameter value at which
the associated periodic orbits (U,(&; L), V,,(§; L)) changes of type A into type B. In Section 6.2,
the destabilization of the fundamental pattern (U,(&; L), V,(&; L)) has been studied as function
of L. Here, it is more natural to fix L, i.e. to fix X and M, and to vary the main bifurcation
parameter p of (1.2). It follows from (1.27) that for given L fixed there is a critical value of
, tsn(L) at which the pattern (U,(&; L), V,(&; L)) passes through the saddle-node bifurcation.
Clearly, (Up(&; L), Vp(&; L)) is of A-type for p > psn(L) and of B-type for p < psn(L).

We assume that the solution (U,(&;L),V,(§; L)) is stable as solution of (1.2) on R for p >
usn(L), i.e. that the A-pattern did not destabilize by a Hopf bifurcation. We know by Corollary
6.6 that the stability problem associated to (U,(&; L), V,(€; L)) has O(1) unstable eigenvalues
as soon as 1t < pusn(L). However, the most unstable eigenvalue is a —1-eigenvalue (Lemma 6.4).
This O(1) —1-eigenvalue only corresponds to an eigenvalue associated to (Up(&), V3(€)) if this
pattern is of type (H). Thus, if (Up(€), Vi(€)) is of type (I) or (IH), it will not be destabilized
by the O(1) —1-eigenvalue! Nevertheless, in these cases (Uy(€), Vi (€)) is also destabilized at a
bifurcation value that is at leading order the same as pugn (L) (if M > 2, see below).
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Figure 9: A sketch of the interaction of the O(1) v-eigenvalues (black) and the O(e?) -
eigenvalues (gray) as p decreases through ugn(L). The markers indicate the positions of the
y-eigenvalues with y = eX#7/4 and k = 1,2,3,4 (A = 0 is a small 1 = e’-eigenvalue). Note
that the transition between the O(1) and the O(e?) spectrum, for p < pusn(L), has not been
studied in this paper.

This can be seen by Figure 9, that gives a graphic representation of the relation between the
small and the O(1) spectrum as p decreases through usn(L), as determined in (the proofs of)
Lemmas 5.2 and 5.3. If 4 < psn (L) with pgn(L) — p = § for some 0 < § < 1, the largest O(1)
y-eigenvalue, vy = —1 (Lemma 6.4), is still > &* away from 0 (for € small enough — Corollary
6.6), the entire O(e*) spectrum is (also) in the stable half plane (Lemma 5.2). If p < psn(L)
with pugn(L) — p = 6 < 1, only a small part of the O(1)-spectrum has passed through A = 0
(Lemma 6.4). However, except for those O(§) close to v = —1, all (!) O(e*) y-eigenvalues have
moved through the imaginary axis. This follows immediately from the structure of the graph
of \ as function of |arg[y]| as described in the proof of Lemma 5.3. This means that the most
unstable eigenvalue A} of the stability problem associated to (Uy(§), V5(€)) of type (I) or (IH)
on [0, X] is the O(e?) y-eigenvalue with v = e*(M=17/M j e the small eigenvalue with + as
close as possible to —1. Note that this corresponds to k = 3 in Figure 9. Note also that A}
does not exist if M = %, 1.

Corollary 8.4 Let (Up(§),Vs(§)) be a pulse solution of (1.2) on [0, X] that consists of M €
%N/{O} identical pulses and that satisfies homogeneous Neumann boundary conditions, and
let (Up(&;L),Vp(&; L)) be the corresponding fundamental periodic solution on R with minimal
period 2L = X/M = 2X/N. Assume that (U,(&; L), V,(&§ L)) is stable as solution on R for
> psn(L).

o If (Up(£), V(&) is of type (H), then it is destabilized as p decreases through pusn(L) by an
O(1) eigenvalue associated to v = —1 in (2.2).

o If (Us(€),Vu(€)) is of type (I) or (IH) and if M > 2, then it is destabilized as p decreases
through usn(L) by an O(e*) eigenvalue associated to vy = eXM-1)mi/M

o (Up(£),Vp(€)) does not destabilize as p decreases through psn(L) if it is of type (I) or (IH)
with M = % or 1.

This Corollary proves that there is no contradiction between the results presented in [17, 29] and
those of the present paper. In [17, 29] it has been shown that the destabilization of an M-pulse
pattern on a bounded domain at the saddle-node bifurcation is always associated with the small
spectrum. However, in [17, 29] bounded interval patterns of type (I) are considered. In this
paper, it has been shown that there are always O(1) unstable eigenvalues beyond the saddle-
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node bifurcation in the stability problem for (fundamental) periodic patterns on R (Corollary
6.6). Corollary 8.4 shows that, near the saddle-node bifurcation, the O(1) eigenvalues cannot
be ‘seen’ by patterns of type (I) on a bounded domain. Hence, these patterns are destabilized
by the ‘less unstable’ O(e*) eigenvalues. It is for the same reason that there is no contradiction
between the statement on the instability of patterns of AB-type on R (Lemma 7.5) and the
results obtained in [28]. In this paper, AB-patterns of type (I) (i.e. on a bounded domain) are
considered, and they are shown to be unstable with respect to the O(¢?) eigenvalues. Again,
the unstable O(1)-eigenvalues of Lemma 7.5 cannot be ‘seen’ by the type (I) pattern.

The statements of this Corollary are confirmed by the numerical simulations. It has been
checked that the (Uy(€), V4(€)) pattern with M = 1 indeed does not bifurcate at usn (L) if it
is of (I) type, while the M = 1 pattern of type (H) does bifurcate at ugn(L). In Figure 10,
numerical simulations of two M = 2 patterns, of types (I) and (H), are presented for u just
beyond pgn(L). Clearly the (H) pattern evolves on a much faster time scale, i.e. the time scale
associated to an O(1) unstable eigenvalue, than the (I) pattern (that has an unstable eigen-
value of O(g*)). Moreover, the destabilizing eigenfunctions have been computed numerically.
If (Up(&), Vp(€)) is of type (I), the (unstable) eigenfunction clearly consist (at leading order) of
‘locally odd copies’ of the derivative of the localized pulses (Figure 10). Hence, it is (numeri-
cally) confirmed that the destabilization is associated with the O(e?) eigenvalues (Section 5).
The unstable eigenfunction consist of localized even pulses, associated to the solution v;,(§) of
(4.6), for the (H)-pattern, i.e. the (H)-pattern is indeed destabilized by an O(1) eigenvalue.

Remark 8.5 Note that the first O(1) eigenvalue of the stability problem associated to (Uy(£), V5(&))
of type (I) or (IH) that crosses through the imaginary axis is the eigenvalue associated to
v =7k, = eFM-D7m/M By Remark 6.5 this occurs (at leading order) at

2

2
ok l ﬂ2_ 1
W=y = x) <arccosh(l + (1 + cos M) D )> ,

which agrees with the results found in [17, 29]. Note that p}, approaches psn(L) as M — oo
(Remark 6.5). We may also conclude that if u < psn(L) with pugn(L) — p = § < 1, then
there is an Mj(d) such that the O(1) eigenvalue associated to 3, is positive for M > My(9).
In other words, if one considers a pulse pattern (Up(€), V4(€)) that consists of many identical
pulses (i.e. if M is large enough) as an initial condition for a numerical simulation of (1.2) with
= psn(L) — 6, then (Uy(§), Vp(§)) will be destabilized on the fast time scale, i.e. by an O(1)
eigenvalue, irrespective of the type of (Uy(£), Vi (€))-

Remark 8.6 According to Corollary 8.3, the stability problem for a periodic pattern on a
bounded domain only has finitely many eigenvalues A € C.. This implies that this stability
problem must have infinitely many additional eigenvalues A € C\ C,, i.e. in (a neighborhood
of) the essential spectrum of the homoclinic limit pattern. See Remark 1.4.

Figure 10: Numerical simulations of the destabilization of two different pulse solutions
(Up(z), Vo(z)) on the same bounded domain z € [0,12], both with M = 2, u = 1.08, £ = 0.3,
and (1.4). The patterns correspond to the same fundamental pattern (U,(&; L), V,(§; L)) with
L =¢2L = 0.9, but are of different types; (I) in the left column, (H) in the right. The bifurca-
tion value pgn (L) = (log[v/2 — 1])2/L? + O(e) ~ 0.96 + O(e) > 1.08, as is found numerically.
Both patterns bifurcate into the same pulse pattern of type (I) with M = 1. In the first row,
the U-components (thick lines) and V-components (thin lines) of the initial pattern are plotted.
The second row shows the evolution of the amplitude of the V-components of the pulses; note
the significant difference in the time scales. The third row presents the V-component of the
(numerically computed) most unstable eigenfunctions.
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