
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Composition of negotiation protocols for E-commerce
applications

N.K. Diakov, Z.V. Zlatev, S.V. Pokraev

REPORT SEN-R0501 JANUARY 2005

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Composition of negotiation protocols for E-commerce
applications

ABSTRACT
A company doing e-business needs capabilities to negotiate electronically the parameters of its
deals in order to fully utilize the potential of the Information and Communication technology
(ICT). Businesses continuously engage in interactions of competitive or cooperative nature. This
paper focuses on the specification and the composition of negotiation protocols. In particular,
we specify and implement a cooperative alliance protocol and we compose it with an auction
protocol. We require a specification and implementation language that allows the following two
properties of negotiation protocols: (a) compositional construction and (b) dynamic
reconfiguration. We apply the Reo coordination language to demonstrate that one can
implement and compose together negotiation protocols possessing the desired properties.

1998 ACM Computing Classification System: C.2.4, D.1.3, D.3.2, D.3.3, F.3, J.4
Keywords and Phrases: Automated negotiation, negotiation protocols, coordination, Reo language

Composition of Negotiation Protocols for E-Commerce Applications

Nikolay Diakov
Centrum voor Wiskunde en

Informatica
P.O. Box 94079, 1090 GB

Amsterdam, The Netherlands
Tel.: +31 (20) 592 4073

nikolay.diakov@cwi.nl

Zlatko Zlatev
Centre for Telematics and
Information Technology

University of Twente,
P.O. Box 217 7500AE,

Enschede, The Netherlands
Tel.: +31 (53) 489 5334
Z.V.Zlatev@ewi.utwente.nl

Stanislav Pokraev
Telematica Instituut

P.O. Box 589, 7500 AN Enschede,
The Netherlands

Tel.: +31 (53) 485 0490
stanislav.pokraev@telin.nl

Abstract

A company doing e-business needs capabilities to
negotiate electronically the parameters of its deals in order
to fully utilize the potential of the Information and
Communication technology (ICT). Businesses continuously
engage in interactions of competitive or cooperative nature.
This paper focuses on the specification and the composition
of negotiation protocols. In particular, we specify and
implement a cooperative alliance protocol and we compose
it with an auction protocol. We require a specification and
implementation language that allows the following two
properties of negotiation protocols: (a) compositional
construction and (b) dynamic reconfiguration. We apply the
Reo coordination language to demonstrate that one can
implement and compose together negotiation protocols
possessing the desired properties.

1. Introduction
As a result of the diffusion of Internet technology in the

mid-90s, the business world encountered a new disruptive
possibility [7][9] to exchange data by computer networks at
low cost. Like any disruptive technology, computer-based
networking has changed business activities and
constellations of businesses significantly. The changes in
the fundamental equations of business models require
rethinking of these models.

One of the business activities that require such
rethinking is the coordination among business partners. In
the analysis of the potential impact of ICT on business,
Malone, Yates and Benjamin [18] predict that in an e-
business environment more transactions will be executed
through markets than among business units within one
company. Not assessing the validity of their prediction, new
types of businesses based on execution of market
transactions have appeared and sustained; eBay is a good

example of such an innovative business. Traditional value
nets were disrupted, which led to their deconstruction
[11](page 39-69). New formations of cooperating
businesses are taking their places [26](page 87-237).

In markets, business activities are coordinated through
price, which is the value a business assigns to a resource.
Since various businesses assign different values to
resources, they need to negotiate to reach mutually
acceptable agreements. For this reason, we consider it
important to enable businesses to do negotiation in an e-
business environment.

A market is only one extreme in the coordination
mechanisms used by businesses [18]. A full spectrum of
collaborations exists between a spot market transaction and
a transaction within one company. It includes various types
of alliances differing in the level of interdependences of
involved businesses [20][13]. Examples of alliances are:
outsourcing partnership, joint teaming relationship,
franchise alliance, strategic alliance and joint venture. For
this reason, we consider it important to enable businesses to
form alliances in an e-business environment.
The coordination mechanisms in markets and alliances
require two different types of negotiation: competitive and
cooperative, respectively. In this paper, we combine the two
negotiation types by composing protocol specifications of
two distinct negotiations: an auction (competitive) and an
alliance (cooperative).

Our motivating case is an open and dynamic negotiation
environment: one with varying number of participants of
various types who may join and leave at arbitrary time
during negotiation. An example of such a negotiation is an
on-line auction, where: (1) any combination of sellers,
auctioneers or bidders is allowed and (2) various formations
among participants are possible.

We identify [22][26] two problems with negotiation
protocols in an open electronic negotiation environment:

mailto:stanislav.pokraev@telin.nl
mailto:Z.V.Zlatev@ewi.utwente.nl
mailto:nikolay.diakov@cwi.nl

1. Lack of support for temporary business
constellations. In a many-to-many negotiation,
participants can form alliances. These alliances are
not stable because the shared interests are only
temporary; they can break in the course of the
negotiation process. Moreover, participants may
leave and join the negotiation process at an
arbitrary moment in time. Supporting a negotiation
protocol with these characteristics requires its
implementation to have the ability to adapt to the
changes in the negotiation environment;

2. Inability to deal with nested negotiations. Apart
from the negotiation among alliances, there is a
negotiation of similar complexity when forming an
alliance. Moreover, negotiation is required within
an alliance to prepare each new agreement
proposal. The alliance formation and proposal
preparation represent separate negotiation
processes. Nested negotiations require the ability to
compose one negotiation protocol with other ones
in a systematic way.

In order to facilitate an open and dynamic negotiation
environment, we consider the following requirements for a
protocol specification language:

- Dynamic reconfigurability – this allows to
accommodate dynamic changes in the negotiation
environment, such as changing number or type of
participants and forming or dissolving of alliances.
This requirement addresses problem 1;

- Composability – this allows to design protocols in
a modular style. Furthermore, composability allows
to build a negotiation protocol that includes nested
independent negotiations. Furthermore,
composability during runtime enhances the
previous requirement by allowing one to
dynamically add new protocols, switch protocols,
etc. This requirement addresses problems 1 and 2.

In this paper, we apply the Reo coordination language
[5] to demonstrate that one can specify, implement and
compose together negotiation protocols that possess the
above-mentioned properties. Reo has formal semantics, but
also a formal computational model that defines the rules
according to which one can execute a particular
specification.

The rest of the paper has the following organization. We
introduce the Reo coordination paradigm and language.
Then, we present an example alliance protocol, construct its
implementation using Reo, and compose it with an existing
auction protocol. After that, we discuss our observations on
using Reo with negotiation protocols. We overview related
work. At the end, we summarize our results and outline
future work.

2. The Reo coordination paradigm
Reo presents a paradigm for composition of software

components based on the notion of channels. Reo enforces
a channel-based coordination model that defines how
designers can build complex coordinators, called
connectors, out of simpler ones. Application designers can
use Reo as a ’glue code‘ language for compositional
construction of connectors that orchestrate the cooperative
behavior of component instances in a component-based
system [5]. The Reo coordination language provides,
among others, the following features:

- Loose coupling among components;
- Support for distribution and mobility of

heterogeneous components;
- Exogenous coordination (i.e., by third parties);
- Dynamic reconfigurability that allows one to

change a connector during runtime using
topological operations;

- Formal semantics based on a coinductive calculus
of flow [2][23] and (alternatively) on constraint
automata [3].

- Formal computational model that defines the rules
for computing Reo connectors in a distributed
computing environment [11];

- A serialization of its visual notation in XML
validated by XML Schema, for interoperability
among design and analysis tools;

- A comprehensive visual notation.
2.1. Basic concepts

From the point of view of Reo, a system consists of a
number of component instances, interacting through
connectors. Reo assumes that a component instance
contains one or more active entities (e.g., processes, agents,
threads, actors, etc.), which communicate with entities
outside of their component instance only through
connectors. Reo completely abstracts from the details of the
communication within a component instance. Instead, Reo
focuses on the communication between component-
instances, which takes place exclusively through
connectors. Reo allows compositional construction of a
connector out of simpler connectors, where channels
represent the atomic connectors.

A channel has precisely two channel ends. Reo
introduces two types of channel ends: sink and source. A
sink dispenses data out of its channel. A source accepts data
into its channel.

Reo models a connector as a graph of nodes and edges,
where zero or more channel ends may coincide on every
node, every channel end coincides on exactly one node, and
an edge exists between two nodes if and only if there exists
a channel whose channel ends coincide on those nodes.

Reo has three types of nodes: mixed, source, and sink. A
mixed node contains both source and sink channel ends. A
mixed node serves as a pumping station for its coincident

channel ends: it non-deterministically selects a data item
available at one of its sink channel ends and replicates the
data item to all of its source channel ends when all of them
can accept the data item. A source node contains only
source channel ends. If a component writes a data item to a
source node, the node replicates the data item to all of its
source channel ends when all of them can accept the data
item. A sink node contains only sink channel ends. When a
component tries to take a data item from a sink node, the
node non-deterministically selects a data item available at
one of its sink channel ends.
2.2. Reo operations

Any active entity inside a component instance can
perform Reo operations on a channel end. Reo defines two
types of operations: topological – ones that allow
manipulation of connector topology, and IO – ones that
allow input/output of data. Due to space limitation, we
discuss only operations that we use later in the text.

Topological operations include, among others, join and
split. The join operation allows joining of two nodes
identified by two channel ends, each coincident with one of
the nodes. The split operation allows for splitting a node
into two nodes by specifying the channel ends that the
performer requires to coincide on the new nodes.

IO operations include, among others, take and write.
The take operation allows the performer to read and remove
a data item from a sink. The write operation allows the
performer to write data to a source.
2.3. A useful set of primitive channels

Reo assumes the availability of an arbitrary set of
channel types, each with well-defined behavior. In this
paper, we consider the following non-exhaustive set of
channel types, each with some distinctive properties: Sync,
Filter, SyncDrain, LossySync, FIFO1. A Sync channel has a
source and a sink. Writing a message succeeds on the
source of a Sync channel if and only if taking of a message
succeeds at the same time on its sink. The Filter channel
behaves like the Sync except that it loses all data that do not
match the specified pattern of the Filter. A SyncDrain has
two sources. Writing a message succeeds on one of the
sources of a SyncDrain channel if and only if writing a
message succeeds on the other source. A LossySync
channel has a sink and a source. The source always accepts
all data items. If the sink does not have a pending read or
take operation, the LossySync loses the data item, otherwise
the channel behaves as a Sync. The Sync, Filter, SyncDrain,
SyncSpout and LossySync belong to the family of
synchronous channels. The FIFO1 channel has a source and
a sink. The FIFO1 channel maintains a buffer with capacity
of one. Writing a message succeeds on the source of a
FIFO1 if and only if its buffer does not contain any
messages. Taking of a message succeeds on the sink of a
FIFO if and only if its buffer already contains a message.
The FIFO1 belongs to the family of asynchronous channels.

Figure 1 shows the visual notation for the basic channels we
introduced above.

FIFO1FilterSync SyncDrain LossySync

Pattern

Figure 1. Visual notation for basic channels
2.4. Connector encapsulation

In analogy with electrical circuits, we call a design a
circuit in Reo. When designing large circuits, we find it
useful to abstract from the details of a particular connector
that we want to instantiate and reuse. In Reo, we do this
through encapsulating the circuit of a connector. In the
visual notation we represent an encapsulated circuit using a
box. On the borders of the box, we position the nodes that
the connector exposes to the outside. In effect, the box
represents a new component, with internal behavior defined
entirely in Reo.

Exclusive
Router 2

“A”
“A”

Figure 2. Exclusive Router 2 connector (left)
and one of its instances (right)

Figure 2 shows how we define the Exclusive Router 2
connector [2]. The Exclusive Router 2 routes synchronously
its input to precisely one of its outputs. We also show how
we depict an instance of the Exclusive Router 2. Note that
we may label nodes on the border of a connector, in order
to assign some designer meaning to the messages passing
through that node. This labeling serves only to simplify the
presentation of a circuit, and to allow designers to
distinguish the role of the nodes, i.e., input or output. It has
no implications on the semantics of the circuit.

3. Example: auction with alliances
In this section, we apply Reo in an example business

case that includes negotiations. These require the
composition of protocols with the properties listed in
section 1.
3.1. Business case

A company called DeRio produces a certain range of
products. DeRio has recently closed a deal with a new
partner situated at a distant location. To fulfill its
contractual obligations, DeRio needs a transportation
service from its factory to the customer address. Figure 3
shows a possible transportation route between point A, the
factory and point E, the customer address.

DeRio decides to set up an auction to determine the best
service offer. All parameters of the services, such as
delivery deadline and payment terms, are fixed. The price
is the only negotiable parameter. Several companies
respond to the announcement; among them are DHS and

UPL, widely recognized players in the transportation
domain and Neptun and Aviz, companies specializing in
particular kind of transport, e.g. water or land transport.

A

B

C D

E

DeRio
factory

customer
address

trucktrain

boattruck

Figure 3. Transportation route
Neptun and Aviz cannot compete individually with DHS

and UPL for some reason (e.g., Neptun only offers boat and
train transport at good prices, while Aviz offers only truck
transport at good prices). To gain competitive advantage,
they decide to form an alliance called AlNeviz. Figure 4
shows a schematic setup of the auction, the participants and
the alliance.

Auction

Allia
nce

Neptun

Aviz

AlNeviz

UPLDHS

DeRio

Figure 4. DeRio auction setup
Our business case includes two negotiations, namely: a

negotiation in a form of auctioning among bidders and a
negotiation among partners within an alliance. We covered
the auctioning in previous work [26]. Further in this
section, we specify and implement the alliance protocol,
and compose it together with the auction protocol.
3.2. Alliance protocol

In our example business case, we consider two distinct
roles that alliance participants can play:

- Chairman – hosts the alliance. In this example,
Neptun;

- Ally – participates in the alliance. In this
example, Aviz and Neptun.

Below, we list an informal specification of the alliance
protocol. The numbering represents an enumeration; it does
not suggest a particular sequence in applying. When we
introduce a term for the first time we show it in italic:

1. An alliance has one chairman and at least one ally;
2. Upon alliance initiation all participants are

informed about the current price and bid step;
3. At any moment participants are informed about

changes in the auction’s current price and bid-step;
4. The next auction bid is determined in two distinct

subsequent phases: (1) bid-determination phase,
and (2) involvement-discussion phase;

5. During the bid-determination phase, each
participant submits its tender to the chairman. The
next bid becomes the highest valid bid of all bids
submitted during this phase. Each participant is
informed about the potential next bid;

6. During the involvement-discussion phase,
participants take turns to discuss their involvement
in the next bid. Everyone has an equal opportunity
to send its proposals to the other participants;

7. During the involvement-discussion phase, a fall of
the current auction price under the potential next
bid triggers a new cycle of the bid-determination
and involvement-discussion phases;

8. The chair decides when to end the involvement-
discussion phase;

9. After the completion of the involvement-
discussion phase, the chair submits the next
auction bid;

10. Upon closing of the auction, participants are
informed about the outcome of the auction.

3.3. Protocol specification and implementation
Using the specification from the previous section, we

construct a Reo circuit that specifies the alliance protocol.
The resulting specification of alliance circuit also serves as
an implementation, because Reo has a formal
computational model. First, we introduce basic
components; then, an external library of connectors; then,
the larger auxiliary connectors; and at the end, we introduce
the alliance protocol circuit.
3.3.1. Basic components

In addition to the basic channels introduced earlier, we
need several basic components that can operate on the data
passing through channels (Figure 5).

a <= b
“b”

“a”

a < b
“b”

“a”

1) 2)

Figure 5. Basic components
The first component offers two source (input) nodes and

one sink (output) node. We have labeled the sources with
“a” and “b”. When we write two messages a and b
representing integers to “a” and “b” respectively, the
component outputs “true” if a < b and “false” otherwise,
through its sink. The second component has the same
characteristics as the first one; however, it outputs “true” if
a <= b and “false” otherwise. One can find a method for
formal definition of the behavior of the components in [5]
using the Reo algebraic semantics [23].
3.3.2. Library of connectors

We depict in gray color all component instances used in
the connectors and alliance protocol circuit that we refer to
[2][26] for their definition. These components constitute:
Initially Closed Valve (ICV), Initially Opened Valve (IOV),
Exclusive Routers with more than two outputs, Sequencer,

Sequencer with reset, Bid Validator, and Constant Writer.
Both valves regulate the flow of data; however, the ICV
initially does not allow flow, while IOV initially allows
flow. Both valves have nodes through which one can toggle
their state from opened to closed and the other way around.
An exclusive router of order higher than two routes to more
than two channel ends. A Sequencer produces a data item
from its outputs in a pre-defined order. A Sequencer with
reset allows one to reset the Sequencer to its initial state. A
Bid Validator determines the validity of a data item
representing the bid in an auction. A Constant Writer
produces the same data (determined during instantiation)
item each time someone asks to read from its offered
channel end.
3.3.3. Larger connectors

Using the basic components, we build three larger
connectors that we use in the protocol implementation.

Exclusive
Router 2

FIFO2

“read”

“write”
Figure 6. Variable (un-initialized)

The Variable connector (Figure 6) serves as a
placeholder for data items similar to a variable in
imperative programming languages. It offers a sink node
and a source node. The Variable always accepts a message
written on its source and the last message written represents
the value of the variable. The Variable always offers a
message containing its value to anyone that makes a take
operation on the component’s sink. An un-initialized
Variable makes a read on its sink to wait for write to supply
an initial value.

true
a < b

“b”

“a”

“valid
next
bid”

“next
bid”

“bid
step”

“previous
bid”

“current
price”

Bid
Validator

Figure 7. Next Bid Validator
The Next Bid Validator connector offers four source

nodes and one sink node. The Next Bid Validator
represents a component that takes as input the previous bid,
the current price in the auction, the next bid, and the current
bid step, and outputs the bid it received as input, if and only
if the value of the bid meets the requirements described in
rule 5 of the alliance protocol. We use this component to

determine the validity of bids made by bidders, in order to
determine the next bid of the alliance on the auction.

“msg_send”

ICV

“msg_receive”

“enable/
disable”

S
eq

ue
n c

e r
3

“i”

Figure 8. Generic Com System 3 (initially
disabled)

The Generic Com System 3 connector offers four source
nodes and one sink node. The Generic Com System 3
represents a component that takes as input messages from
three of its source nodes and routes these messages to its
sink node. We use a Sequencer to enforce an equal
opportunity for participants to exchange messages with
other participants (rule 6). The Generic Com System 3
initially does not allow sending or receiving of messages.
One can enable or disable (toggle) the Generic Com System
3 by writing a signal message to its fourth source node.
Furthermore, one can easily modify the Generic Com
System 3 to facilitate an arbitrary number of senders, where
each sender must exclusively write to only one of the
sources. Note that if a participant acts as both sender and
receiver, it will receive its own messages too. We use this
component in the alliance protocol to allow participants to
discuss their involvement in the next bid of the alliance
during the involvement-discussion phase.
3.3.4. Alliance protocol circuit

In this section we construct an alliance protocol.
Figure 9 shows the visual specification of the alliance

protocol circuit. Using tools, one can obtain an XML
serialization of this specification. Furthermore, one can also
obtain a complete algebraic specification by applying the
Reo algebraic semantic rules for channel composition to all
channels and component instances in the circuit.

The Alliance protocol consists of one instance of the
Alliance connector, one instance of the Generic Com
System N connector, and two or more instances of an
Participant connector. Note that N represents the number of
participants in the alliance. The Alliance connector
coordinates the activities of the chairman – Neptun (that
represents the alliance). The Participant connector
coordinates the activities of participants – both Neptun and
Aviz. Figure 9 depicts only one Participant instance. The
Alliance connector automatically registers and pays the
auction fee to the auction.

A participant in the alliance interacts with other
participants exclusively through an instance of a Participant
connector.

Bidder::
“current
price”

Bidder::
“result”

Bidder::
“bid”

Bidder::
“bid step”

Bidder::
“bidder id”

Bidder::
“bidder

payment”

Ally::
“result”

Constant
Writer

(”AlNeviz”)

Constant
Writer
(”200”)

A

B

C

D

E

G

F
Generic Com

System N
(initially

disabled)

ParticipantAllianceBidder

ICV

“i”

Exclusive
Router 4

Variable
(“0”)

FIFO1

“valid
next
bid”

“next
bid”

“bid
step”“previous

bid”

“current
price”

Next Bid
Validator IOV

“i”

Variable

Variable

FIFO
1

Sequencer 2
with Reset

IOV

“i”
a < = b

“b”“a”

ICV

Constant
Writer (”0”)

“i”

ICV

“i”

Chair::
“send bid”

Ally::
“bid step”

Ally::
“current
price”

Ally::
“ally bid”

Ally::
“alliance
next bid”

Ally::
“send msg”

Ally::
“receive

msg”

“enable/
disable”

“reset”

Figure 9. The Alliance protocol circuit
In addition to using a Participant connector instance, the

chairman also performs its chairman duties using a labeled
node on the Alliance connector.

All Participant instances connect to the Alliance and
Generic Com System N through joining their nodes with the
respective sink and source nodes A, B, C, D, and F (using
auxiliary Sync channels).

In this implementation, we have made several technical
choices that the informal protocol description does not
specify in detail. When facing such technical choices, we
prefer the simpler ones in terms of Reo primitives used to
implement the circuit. Furthermore, because we want to
keep the implementation comprehensible, we do not check
for proper input values nor do we perform error handling.
3.4. Composition of the alliance protocol and the

auction protocol
Figure 10 shows the composition of the two negotiation

protocols. For each protocol, we only depict one instance of
each connector type. Consult the description of the
individual protocols and the cardinality of their relations.

Initiator AllianceAuction Bidder Participant

GCS

Figure 10. Auction protocol with alliances

The Initiator, Auction and Bidder connectors belong to
the auction protocol [26]. The alliance appears to the
auction as a normal bidder. The auction protocol provides a
separate Bidder connector instance to each of its bidders.
Therefore, the alliance also has precisely one Bidder
connector instance in order to interact with the auction
circuit. We connect an Alliance connector instance to a
Bidder connector instance by joining the corresponding
input/output nodes of the Bidder to the corresponding nodes
of the Alliance circuit with the help of auxiliary Sync
channels.
4. Observations on using Reo with negotiation

protocols
In this section, we present several observations, we

made during working with Reo on the auction and alliance
protocols. Furthermore, we give an idea about the
additional possibilities that become available to protocol
designers, should they decide to select Reo as their
specification and implementation language.

The Reo coordination paradigm allows for strict
separation of coordination from data processing. Therefore,
we can assess the amount of pure coordination in
comparison with data manipulation in the alliance protocol.
Gray components, the Variable instances, the Generic Com
System N, and all channels from Figure 9 (the alliance
protocol circuit) represent coordination elements. The white
components (except the Variable instances and the Generic
Com System N) perform some data processing. One can see
the significant amount of coordination that occurs in this

implementation of the alliance protocol. Using a
coordination language, such as Reo, which treats
coordination as a first class modeling concept, allowed us
to deal more efficiently with the coordination issues in the
alliance protocol. This observation illustrates that designers
can use Reo also for modeling of other e-commerce
applications that involve significant amount of
coordination.

The strong formal apparatus behind Reo gives the
following additional advantages:

- Simulator for Reo – a tool that implements a non-
distributed version of the Reo computational
model, to allow running and testing protocol
prototypes;

- Distributed coordination middleware for Reo – a
tool (under development) that implement the full
Reo computational model to allow one to run Reo
circuits directly in a distributed environment. The
Reo coordination middleware allows plugging in of
different component models for structuring the user
applications into entities, and of transport protocols
for the communication between the entities at the
level of channels;

- Model checker – Time Scheduled Data Stream
Logic [4] represents an existing theory that a model
checker tool (under development) can use to check
properties, such as, liveness, reachability, and
deadlock conditions.

5. Related work
Several coordination languages have been proposed and

used for negotiation protocol specification. Two such
languages from the Multi-Agent Systems field are
AgenTalk [17][16] and COOL [6]. They are based on
Finite State Machines (FSM) and used in negotiation
protocol specification. Nevertheless, they are limited in
their expressiveness and not suitable for the negotiation
environment described in section 1. The AgenTalk
language does not have formal semantics [17] and does not
support dynamic reconfigurability and composability.
AgenTalk has an inheritance mechanism as means for reuse
of design but this is not dynamic. The COOL language uses
FSM as its formal basis, where the transitions are
exchanges of speech-act-based messages. COOL does not
have formal computational model and does not have
language primitives for dynamic reconfiguration.

Another group of specification languages originates
from the Web services initiative. One example is the
Business Process Execution Language for Web Services
(BPEL4WS)[10]. BPEL4WS combines the formalisms
used in its predecessors, namely the support for graph
oriented processes from WSFL and the structural constructs
for processes from XLANG [25]. BPEL4WS is designed
for composition of Web services; although, it lack the

dynamic reconfigurability. This and other drawbacks are
discussed by Kim et al. [15] and Van der Aalst [1].

Web Services Conversation Language (WSCL) [24] is
language that specifies the documents exchanged and the
sequence the document exchanges. WSCL is limited in its
expressiveness; it limits the number of the participants in a
conversation to two, does not support parallel activities, and
decision activities can only use as conditions the output of
the a preceding activity. WSCL does not have language
primitives for dynamic reconfiguration of the conversation
protocol.

Business Process Modeling Language (BPML) [8] is
language similar to XLANG. BPML has a well-defined but
not formal semantics. It provides composability,
transactions, executable specifications, dynamic
participation, etc. However, BPML does not have language
primitives for dynamic reconfiguration.

General formal modeling techniques exist, such as π-
calculus, data-flow models, Kahn-networks, and Petri-nets.
We view them as specialized channel-based models that
incorporate certain specific primitive coordination
constructs [5]. Recent work [13] on comparing Reo and
Petri-nets, showed that one can relatively easy transform
existing Petri-net models into a Reo circuit, while the
opposite proves to be difficult. In our view, the inherently
dynamic topology of connectors and the very liberal notion
of channels make Reo more general, and hence more
powerful.

6. Conclusions
In this paper we have presented an approach for

composition of negotiation protocols using the Reo
coordination language. We use the inherent features of Reo,
such as composability and dynamic reconfiguration, to
produce a specification of an alliance protocol that can
facilitate a dynamic and open negotiation environment. We
compose the alliance protocol together with an auction
protocol to form a new auction with alliances protocol.

Reo offers topological operations that one can use to
modify a Reo circuit during runtime. These allow to adding
a new bidder to or remove an existing one from the protocol
circuit. This addresses the problem of temporary alliances,
which may dissolve during the negotiation process should a
disagreement arise among the allies. To our knowledge,
only specialized channel-based models allow for some
specific forms of dynamic reconfigurability.

The Reo composability and dynamic reconfigurability
allow to design and to implement protocols in a modular
style. In such a way, we isolate and reuse coordination
designs. After a composition, the overall behavior of the
new negotiation process remains predictable. Reo
composability allows for support of nested negotiation
protocols. We demonstrate this with assembling an auction
protocol together with an alliance protocol. Non-
composable languages, such as AgenTalk, COOL,

BPEL4WS, and WSCL, do not allow one to derive
properties of a composition from its constituent nested
protocols.
7. Future work

We want to deploy and study negotiation protocol
implementations with alliances in a distributed
environment. This will contribute to the point we make that
Reo does not only constitute modeling paradigm, but also
an executable paradigm in a distributed environment.

8. References
[1] Aalst van der, W.M.P., Don't go with the flow: Web services
composition standards ex-posed, Trends and Controversies, IEEE
Intelligent Systems, Jan/Feb, 2003.
[2] Arbab, F., Abstract Behavior Types: A Foundation Model for
Components and Their Composition, In: Pro ceedings of the First
International Symposium on Formal Methods for Components
and Objects (FMCO 2002), LNCS 2852, 2003, pp.33-70.
[3] Arbab, F., Baier, C., Rutten, J., Sirjani, M., Modeling
Component Connectors in Reo by Constraint Automata,
Electronic Notes in Theoretical Computer Science, vol. 97, No.
22, July, 2004, pp. 25-46.
[4] Arbab, F., Baier, C., de Boer, F., Rutten, J., Models and
Temporal Logics for Timed Component Connectors, Proc. of the
IEEE International Conference on Software Engineering and
Formal Methods (SEFM '04), Beijing, China, 26-30 September,
2004.
[5] Arbab, F., Reo: A Channel-based Coordination Model for
Component Composition, Mathematical Structures in Computer
Science, Cambridge University Press, Vol. 14, No. 3, June 2004,
pp. 329-366.
[6] Barbuceanu, M. and Fox, M.S., COOL: A language for
Describing Coordination in Multi Agent Systems, Proc. First
International Conference on Multi-Agent Systems (ICMAS’95),
1995, pp. 17-24.
[7] Bower, J. L. & Christensen, C. M., Disruptive technologies:
catching the wave, Harvard Business Review, 73, 1 (January-
February) , 1995, pp. 43—53.
[8] BPMI.org, BPML 1.0 Specification, online available at:
http://www.bpmi.org/specifications.esp
[9] Christensen, C.M., The Innovator’s Dilemma, Harvard
Business School Press, Boston, Mass, 1997.
[10] Curbera, F., Goland, Y.,Klein, J., Leyman, F., Roller, D.,
Thatte, S. and Weerawarana, S., Business Process Execution
Language for Web Services (BPEL4WS) 1.1, May 2003, online
available at: http://www.ibm.com/developerworks/library/ws-
bpel/
[11] Evans P. & Wurster, T. S., Blown to Bits: How the New
Economics of Information Transforms Strategy, Harvard Business
School, 2000
[12] Everaars, K., Costa, D., Diakov, N.K., Arbab, F., Reo
Rewrite Rules: Functional Specification, work in progress,
presented at The Amsterdam Coordination Group (ACG), May,
2004.
[13] Gordon, M., Vantage Partners, LLC, Negotiating the
Alliance, A.S.A.P.'s Collaborative Commerce Summit 2001 and

Alliance Best Practices Training Workshops, online available at:
http://www.strategic-
alliances.org/slideshows/Summit2001Scottsdale/GordonVantPart.
pdf
[14] Guillen-Scholten, J., A Translation from Reo to Petri Nets
and Vice-Versa, work in progress presented at the The
Amsterdam Coordination Group (ACG), June, 2004.
[15] Kim, J.B., Segev, A., Patankar, A.K., Cho, M.G., Web
Services and BPEL4WS for Dynamic eBusiness Negotiation
Processes, In: Zhang, L. (ed.), Proceedings of the International
Conference on Web Services, ICWS '03, Las Vegas, Nevada,
USA. CSREA Press 2003, 2003, pp. 111-117, ISBN 1-892512-
49-1.
[16] Kuwabara, K., Ishida, T., and Osato, N., AgenTalk:
Describing Multiagent Coordination Protocols with Inheritance,
Proc. 7th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI '95), 1995, pp. 460-465.
[17] Kuwabara, K., Ishida, T., and Osato, N.,AgenTalk:
Coordination Protocol Description for Multiagent Systems, Proc.
First International Conference on Multi-Agent Systems (ICMAS
'95), 1995, p. 455.
[18] Lam M.D., Why Alliances Fail, Pharmaceutical Executive,
2004, online available at: http://www.pharmexec.com/
pharmexec/article/articleDetail.jsp?id=98299&pageID=1
[19] Malone, T.W., Yates, J., Benjamin, R.I., Electronic Markets
and Electronic Hierarchies, Communications of the ACM, vol. 30,
June, 1987, pp. 484-497.
[20] Margulis, M. & Pekár, Jr., P., The Next Wave of Alliance
Formations: Forging Successful Partnerships with Emerging and
Middle Market Companies, Houlihan Lokey Howard & Zukin,
2004, online available at: http://www.hlhz.com/download.asp?
fid=406
[21] Mousavi, M.R., Sirjani, M., Arbab, F., Specification,
Simulation, and Verification of Component Connectors in Reo,
Technical Report No. 04-15, Department of Computer Science,
Eindhoven University of Technology, Eindhoven, The
Netherlands, June 2004.
[22] Pokraev, St., Zlatev, Z., Brussee, R. & Eck, P. van, Semantic
Support for Automated Negotiation with Alliances. In Seruca, E.
[et al.] (eds.): Proceedings of the Sixth International Conference
on Enterprise Information Systems, ICEIS 2004, Porto INSTICC,
Portugal, April 14-17, vol.4, 2004, pp. 244-249.
[23] Rutten, J.J.M.M., Kwiatkowska, M., Gethin, N., Parker., D.,
Chapter 5: Component Connectors, In Mathematical Techniques
for analysing concurrent and probabilistic systems, CRM
Monograph series Volume 23, American Mathematical Society,
2004, p. 215.
[24] W3C, Web Services Conversation Language (WSCL) 1.0,
W3C Note, March, 2002, online available at: http://www.w3.org/
TR/wscl10/
[25] Weerawarana, S. and Curbera, F. P., Concepts in business
processes, 2002, online available at: http://www-106.ibm.com/
developerworks/webservices/library/ws-bpelcol1/
[26] Weill, P. & Vitale, M., Place to Space: Migrating to
Ebusiness Models, Harvard Business School Press, 2001
[27] Zlatev, Z., Diakov, N. and Pokraev, S., 2004, “Construction
of Negotiation Protocols for E-Commerce Applications”, ACM
SIGecom Exchanges, Vol. 5, No. 2, November, pp. 12-22.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.w3.org/ TR/wscl10/
http://www.w3.org/ TR/wscl10/
http://www.hlhz.com/download.asp? fid=406
http://www.hlhz.com/download.asp? fid=406
http://www.pharmexec.com/ pharmexec/article/articleDetail.jsp?id=98299&pageID=1
http://www.pharmexec.com/ pharmexec/article/articleDetail.jsp?id=98299&pageID=1

	Introduction
	The Reo coordination paradigm
	Basic concepts
	Reo operations
	A useful set of primitive channels
	Connector encapsulation

	Example: auction with alliances
	Business case
	Alliance protocol
	Protocol specification and implementation
	Basic components
	Library of connectors
	Larger connectors
	Alliance protocol circuit

	Composition of the alliance protocol and the auction protocol

	Observations on using Reo with negotiation protocols
	Related work
	Conclusions
	Future work
	References

