Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering
SEN Algebra, bitstreams, and circuits

J.J.M.M. Rutten
ReporT SEN-RO502 JANuARY 2005



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)
Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X



Algebra, bitstreams, and circuits

ABSTRACT

We define, analyse, and relate in a uniform way four different algebraic structures on the set of
bitstreams, motivating each of them in terms of the digital circuits they can describe. For one of
these, the 2-adic numbers, we characterise a class of linear digital circuits in terms of rational
streams.

2000 Mathematics Subject Classification: 68Q10,45,55,70,85

Keywords and Phrases: Coalgebra, stream calculus, digital circuit, coinduction

Note: To appear in volume 16 of the series ““Contributions to General Algebra", Verlag Johannes Heyn, Klagenfurt,
2005.






Algebra, Bitstreams, and Circuits

J.J.M.M. Rutten
CWI and VUA
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Email: janr@cwi.nl, URL: www.cwi.nl/~janr

January 13, 2005

Abstract: We define, analyse, and relate in a uniform way four different al-
gebraic structures on the set of bitstreams (infinite sequences of 0’s and 1’s),
motivating each of them in terms of the digital circuits they can describe. For
one of these, the 2-adic numbers, we characterise a class of linear digital circuits
in terms of rational streams.

Note: To appear in volume 16 of the series “Contributions to General Alge-
bra”, Verlag Johannes Heyn, Klagenfurt, 2005.

1 Introduction

We study the set 2“ of bitstreams: infinite sequences of 0’s and 1’s. Exploiting
the fact that 2“ carries a final coalgebra structure given by the operation of
(stream) derivative [Brz64], we define in a uniform manner various operators
on 2¢ by means of (stream) differential equations, and prove various properties
about them by coinduction (cf. [JR97]). Next we use bitstreams and the various
bitstream operators to define the semantics of sequential digital circuits, which
have memory and allow feedback, and will include examples such as flip-flops,
half- and full adders. Circuits without feedback loops and memory (sometimes
called logical circuits) can be described by means of functions from Booleans to
Booleans, which have been broadly studied and are well understood [Weg87].
Here we use (functions on) streams of Booleans instead of just Booleans, because
output values may depend on previous input values, due to the presence of
feedback and memory.

The operators on 2 come in four groups, each of which constitutes a differ-
ent algebraic structure on 2¥: a Boolean algebra, a Kleene algebra [Koz94], and
two integral domains including that of the 2-adic integers [Gou93]. What will be
new here are not these structures as such, which are well-known (with the possi-
ble exception of the bitstream Kleene algebra), but the uniform way in which the
operators of these algebras are defined (or, if you like, characterised), by means



of stream differential equations. This will allow us to reason about mixed alge-
braic expressions, containing operators from different algebraic structures, and
to prove so-called mized laws by coinduction. These mixed expressions will
come up naturally in the semantics of sequential circuits. Moreover, we shall
give a complete characterisation of the class of 2-adic linear circuits, which are
built using a basic gate for 2-adic sum, in terms of rational bitstreams.

The main contributions of the present paper are: (a) the uniform definition
by means of stream differential equations of all the operators of all four algebraic
structures; (b) the formulation and systematic proof (by coinduction) of various
mixed laws; (c) the introduction and study of the Kleene algebra structure on
2%, which turns out to be a basic and useful model for sequential circuits; and
(d) the complete characterisation of a class of linear circuits in terms of rational
streams.

There does not seem to exist much literature on the systematic study of
bitstream algebra in the context of digital circuits. Exceptions are the work by
Vuillemin [Vui94, Vui00, Vui03], who analyses three of the four algebraic struc-
tures mentioned above (not the Kleene algebra), and studies algorithms for the
construction of digital circuits from algebraic descriptions. Apart from the lat-
ter point, which we do not address here, the present treatment of bitstreams
extends the results of Vuillemin by points (a) through (d) above. Bitstreams or
binary sequences are also prominent in the study of linear feedback shift regis-
ters [Gol82]. Some algebra is used there: bitstreams are typically represented
as formal power series with coefficients in the integers modulo 2. However, op-
erations for multiplication do not seem to play an important role in that theory,
and mixed algebraic expressions do not occur at all. The 2-adic numbers have
been used in a generalisation of shift registers called feedback shift registers with
carry operation [GK97]; mixed algebra does not play a role there either.

2 The final coalgebra of bitstreams

We introduce the set of bitstreams, the operations of initial value and stream
derivative, and the proof and definition principles of coinduction.
Let 2= {0,1} and IN = {0, 1,2, ...}. We define the set of bitstreams (streams
for short) by
2¢={o|o:IN— 2}

Individual bitstreams will be denoted by o = (¢(0),0(1),0(2),...), also written
as (09, 01,02,...). The following convention will be useful: we include the set 2
into the set 2* by putting [0] = (0,0,0,...) and [1] = (1,0,0,0,...). For a stream
o € 2%, we call o(0) the initial value and we define the (stream) derivative of o
by ¢’ = (0(1),0(2),0(3),...). (In computer science, initial value and derivative
of a stream are better known as head and tail.)

Initial value and derivative define in fact two functions (—)(0) : 2¥ — 2 and
(=) : 2% — 2¢, which turn the set 2¢ into a coalgebra (2¢,(—)(0),(—)"). This
coalgebra is final in the set of all (similar such) coalgebras, in the following sense:
For every triple (5, o, t) consisting of a set S and functions0: S — 2andt: S —



S, there exists a unique function h : S — 2¢ (called a homomorphism of coal-
gebras) such that, for all s € S, o(s) = h(s)(0) and (h(s))" = h(t(s)). (A proof
is easy: take for h the function given by h(s) = (o(s), o(t(s)), o(t(t(s))),...), for
all s € S, and show that it is the only possible choice.) The theory of coalge-
bra will play no explicit role in the present paper (see [JR97, Rut01] for more
information on coalgebra). We have mentioned it nonetheless, because it shows
that the operations of initial value and derivative are universal (precisely in the
sense that finality is called a universal property in category theory). Moreover,
it is the basis for the proof and definition principles of coinduction, which we
introduce next.

Coinductive proofs will be formulated in terms of the following notion. A
relation R C 2% x 2¢ is called a (stream) bisimulation if, for all (o, 7) € R,

(i) o(0) =7(0), and (i1) (¢',7') ER

The following theorem, called the coinduction proof principle, has a straightfor-
ward proof (omitted here) but is surprisingly powerful.

Theorem 1 For all o,7 € 2¥: if there is a bisimulation R C 2“ x 2% with
(0,7) € R, then o = T.

Thus in order to prove the equality of two bitstreams, it suffices to construct
a bisimulation that relates them. We shall see only a few examples of proofs by
coinduction in this paper; for many more, see [Rut01, Rut03].

Next we show how we can define constant bitstreams and functions on
bitstreams, much as in mathematical calculus, by (stream) differential equa-
tions, which specify their initial value and derivative. For instance, v’ = v and
~v(0) = 1 defines the constant stream v = (1,1,1,...); and the two equations
F(0,7) = g(0",7), £(2,7)(0) = o(0) and g(o,7)' = F(o,7") g(0,7)(0) = 7(0),
define the function f(o,7) = (c(0),7(0),0(1),7(1),...). The following theorem
asserts the existence of a unique solution for a large class of differential equa-
tions. It may well be skipped at first reading: the only potential difficulty lies
in its generality, and for all the concrete differential equations that will follow in
this paper, the reader should have no difficulty in proving by elementary means
that they have a unique solution.

Theorem 2 Let Y. be a set of function symbols. Consider the following system
of (stream) differential equations, one for every g € ¥ with arity r € IN:

g(Ula .. 'aUr)l = T(Ula .. 'aUTaU’la .. '50'4-70'1(0)7 . .,0’,«(0))

g(o1,...,00)(0) = ¢(01(0),...,5.(0))

where: (i) o1,...,00 € 2%; (i1) T is an arbitrary composition of function symbols
from 2 (possibly including g itself), applied to (a subset of ) the arguments that
are listed (recall that [a] = (a,0,0,0,...) for a € 2); and (¥ii) ¢ : 2" — 2 is an
arbitrary function (or a constant in case r = 0). Then there is a unique family
of functions (g : (2¥)" — 2¥ )4ex satisfying the system of equations above.



Proof: There are many ways to prove this theorem. Here we briefly sketch two
of them. The first proof is the coalgebraically purest one, since it is phrased
entirely in coalgebraic terms, exploiting the basic fact that 2“ is a final coal-
gebra. Let Trm be the set of terms built from the function symbols in ¥ and
from constants c,, one for every bitstream o. The set Trm can be turned into
a coalgebra (T'rm, {o,t) : Trm — 2 x Trm) by defining o and ¢, first on the
constants ¢, as o(¢,) = 0(0) and t(¢,) = ¢,’, and then by induction on syntac-
tically more complex terms, following the equations of the theorem. By finality,
there exists a unique homomorphism from the coalgebra T'rm into the coalgebra
2%, which assigns to each syntactic term g(cyy,...,Cs,.) @ stream in 2¢. This
stream is then what we define to be the value of g(o4,...,0,), where now g
denotes a function on bitstreams (of arity r). For details, we refer the reader to
[Rut03], where this construction is carried out for (a subset of) the operators of
the calculus of streams of real numbers. For a more general treatment of this
type of coinductive definitions, see also [Len99, Bar(04].

Alternatively, one may wish to exploit the presence of an obvious ultrametric
on 2“. It is easy to see that the differential equations from the theorem define
contractions (due to their shape which ensures that they are guarded). By Ba-
nach’s fixed point theorem, the solutions of the equations are then obtained as
the unique fixed points of these contractions. For examples of this type of use
of (ultra)metrics in theoretical computer science, see [AN80, BZ82, SHLG94].

Note that Theorem 2 gives us a very general definition principle, which is of
a syntactic nature: it suffices to look at the syntactic format of the differential
equations to be sure that they have a unique solution. Theorem 2 is sufficient
for our present purposes but can be generalised in many different ways. For
instance, the term T above could also be applied to higher-order derivatives
of the arguments of g (as in even(o) = even(c”), even(o)(0) = ¢(0), which
defines even(o) = (0(0), 0(2),0(4),...)).

3 Boolean algebra

The first algebraic structure that we consider is (2¢,V,A,—,[0],(1)). It has
the operations of or, and, negation, and the constants [0] = (0,0,0,...) and
(1) = (1,1,1,...). It inherits its Boolean algebra structure from the Boolean
operators on 2 = {0,1}, which we denote as follows: for all a,b € 2 = {0,1},
a Vb = max{a,b}, a A b = min{a,b}, —a = 1 — a. With these, the Boolean
operators on bitstreams can be defined as follows: for all o,7 € 2¢, n > 0,

(cVT1)(n)=0(n)Vr(n)
(c AT)(n) =0a(n) AT(n)

(mo)(n) = =(a(n))
The constants are the neutral elements for or and and: [0] + o = o and (1) A
o = o, and we have the familiar laws from Boolean algebra such as —(o V



T) = =0 A -1, 0 Vo = o, and the like. The Boolean operators on bitstreams
can, equivalently, be defined as the unique solutions of the following system of
differential equations:

derivative: initial value: name:
(cvr) =0d"VvV7 | (6VvT)(0)=09VTH | Or
(cAT)Y =0"AT" | (6 AT)(0) =09 ATo | and

(z0)' = ~(d') (20)(0) = =(90) negation

4 Kleene algebra

Next we consider the structure
AK = (2(.0’ \/7 ] (_)*’ [0]7 [1])

It has constants [0] = (0,0,0,...) and [1] = (1,0,0,0,...), where the latter is
not to be confused with the constant (1) = (1,1,1,...) that was introduced in
Section 3. The operator V, here also called sum, is as before, and we define the
concatenation product of streams o and 7 by

(c-1)(n)= (oo ATn)V (61 ATr_1)V -V (00 A T0)

for all n > 0. Finally, we define the operator of Kleene star by

c* = [1JVoV (c-0)V (oc-0-0)V -

where the operation of infinite sum is defined, for families of streams (7;)icr,
by (\/;7i)(n) = max{r;(n) | i € I}, for all n > 0. Equivalently, these operators
can also be defined as the unique solutions of the following system of differential
equations:

derivative: initial value: name:
(cvr)=0VT (cVT1)(0)=0¢VTH | Or (SUmM)

(o-1) =(0"-17)V([oo]-7") | (6-7)(0) =09 ATp | concatenation product
(c*) =o' 0" (e*)(0) =1 Kleene star

(Note that we write [¢] to denote the stream (o9, 0,0,0, . ..), which is consistent
with our earlier notation of [0] = (0,0,0,...) and [1] = (1,0,0,...).) Without
the star, the above structure is a semi-ring [BR88] (which is more or less a ring
without subtraction): sum is commutative, sum and product are associative and
have neutral elements [0] and [1]: oV [0] = o, ¢-[0] = [0], o-[1] = o, and product
distributes over sum in the usual way. In this semiring, V is moreover idempotent
and - is commutative: Vo = o and o-7 = 7-0. The presence of star makes of
the above structure moreover a Kleene algebra [Koz94], satisfying the following
laws, the first of which is particularly simple because of the idempotency of sum
and the commutativity of product: for all o, 7, p € 2,

(cvrm)" = o*-71*
o* = [1]V(oc-07)
o=(p-o)VT = o=p"-7 (1)



where the latter law (1) only holds if p(0) = 0. If the streams p and 7 are given,
the left equality of (1) can be considered as an equation in one unknown, o.
The right equality shows the (unique) solution of this equation, by expressing o
in terms of p and 7. (As we shall see later, such equations arise naturally when
studying digital circuits, in Section 7.)

Let us next introduce a constant stream that will prove very useful in the
definitions of many operators on streams. Also it will be crucial for our semantic
description of registers and feedback loops in Boolean circuits, in Section 7. We
define:

X =(0,1,0,0,0,...)
If we define X° = [1] and X"™! = X - X", then X% = (0,0,1,0,0,0,...),
X3 =(0,0,0,1,0,0,0,...), and so on. Using the operation of infinite sum that
was introduced above, we also have:

o = [oo]V ([o1] X)V (fo2] - X*) V - = \[[o(n)] - X"

This formula shows that streams o are formal power series in one formal vari-
able (namely, the constant X). Also, it shows that the Kleene algebra of the
present section can be understood in formal language theoretical terms. We can
associate with a stream o the formal language {X" | o(n) = 1}, that is, a set
of finite words over the one-letter alphabet X. With this association, the con-
stant stream [0] corresponds to the empty language; the stream [1] corresponds
to the language {¢} containing the empty word X° = ¢; and the operations of
sum, product, and star correspond to the familiar operations of formal language
theory: union, concatenation, and Kleene star.

Here are a few examples of streams defined by terms in the present Kleene
algebra. For any n > 0 and ay,...,a, € 2, we have

[ao] V ([a1] - X) V...V (Jan] - X™) = (a0, a1,-.-,a,,0,0,0,...)
We call such streams polynomial. Now if we define
(@oar -+ an) = (lao] V (fas] - X) V...V ([ag] - X)) - (X"H1)*
then it is easy to show that (apa1 ---a,) = (a1 ---anag), whence
(agay -+ an) = (a0, Q1,5+, Qny GOy A1y e ey Ay e )
Such streams we call periodic. For instance,
(010) = X - (X*)* = (0,1,0,0,1,0,0,1,0,...)

(Our earlier notation for (1) = (1,1,1,...) is consistent with the present use of
sharp angular brackets, since according to the definition above, (1) = [1]- X* =
X*=(1,1,1,...).) For a last example, we note that the concatenation product
of X* with a stream o yields

X*-0 = (0(0),0(0)Vo(l),0(0)Vo(l)Va(2),...) (2)

that is, the stream of all partial sums of o. This stream will appear in the
semantics of a feedback circuit in Section 7.



5 Sum and product modulo-2

Let the operation of addition modulo-2 (aka exclusive or) be defined as usual:
a®b=(aA-b)V (maAb), for all a,b € 2 ={0,1}. In this section, we consider
the structure

Amod2 = (2w’ D,0,®,0, [0]’ [1])

consisting of the set of bitstreams with (again the constants [0] = (0,0,0,...)
and [1] = (1,0,0,0,...) and) the operations of sum, minus, product and inverse,
all modulo-2, which we define, for all o,7 € 2%, n > 0, as follows:

(cdT)(n) = 0, ®™n
(©o)(n) = on
(c®@7)(n) = (6o ATh)® (1 AT 1)D - ® (00 ATo)

Note that we use the same symbol for the addition modulo-2 of Booleans and
streams. Also note that ©o0 = o, as 0 @ ¢ = [0]. The operator of inverse
modulo-2 is defined only for streams o with oy = 1, that is, streams of the form
o=[1]® (X ®r), for arbitrary 7 € 2¥ (recall that X = (0,1,0,0,0,...) and
note that X ® 7 = (0, 79, 71, T2, . . .)). For such streams, we define

lo(lle(X®7) = [ (X@71)d (X@7)(X®T1))d ---

where the infinite sum is defined similarly to the infinite sum of Section 4. Equiv-
alently, these operators can be defined as the unique solutions of the following
systems of differential equations:

derivative: initial value: name:
(cor)=0c"7 (c®7)(0) =09 P19 | sum modulo-2

(60) =6(d) (e )( ) =0q minus modulo-2
(cdT1) = (cr ®T)® (o] @7") | (c®@71)(0) = 00 A 1o | product modulo-2
(loo) =0"®(l0o) (120)(0) = inverse mod-2 (o¢ = 1)

We shall write 0 @7 for 0 ® (1@ 7). (The notation Z will not be used to denote
o @ T, but is reserved for the operation of division in the algebra As,gic, in
Section 6.)

The above structure is a ring in which sum is idempotent and product is
commutative, with [0] and [1] as the neutral elements. The structure is moreover
an integral domain (that is, it has no zero-divisors) since o # [0] and 7 # [0]
imply ¢ ® 7 # [0]. Furthermore, the operation of 1 @ o acts as an inverse to
product: ¢ ® (1@ o) = [1] for all ¢ with o9 = 1. For @ we have the usual
properties (such as (100)® (1@7) =10 (c ® 7)).

The operators in the present section will be used to describe flip-flops and
other circuits, in Section 7.



6 The 2-adic operators
We introduce the algebra

A2adic = (20.1, +7 ! Xa/a [0]7 [1])

consisting of the set of streams and the usual constants, now with the 2-adic op-
erators of addition, minus, product and inverse (division). The main motivation
for these operators lies in their use in binary arithmetic on bitstreams (as we
shall see shortly), which is also the reason why in the presence of these operators,
the elements of 2“ are sometimes called the 2-adic numbers [Kob77, Vui94].

There are various ways of defining the 2-adic operators. A quick and coal-
gebraically clean way is to take them as the unique solution of the following
system of differential equations, which is a variation on the systems that we
have seen in the preceding sections:

derivative: initial value: name:

(c+71) = (0" +7")+ [o0 A T0] (c+7)(0) =09 ® 19 | 2-adic sum

(o) = —(o' + [00]) (—)(0) = o 2-adic minus

(o x1) = (0" x1)+ ([oo] x ') | (6 xT)(0) = 00 ATy | 2-adic product
(1/0) =—=(o' x (1/0)) (1/0)(0) = 2-adic inverse (g =

As usual, we shall write /7 or Z for o x (1/7); also we write —o for —[1] x 0.

The sum o + 7 is computed by elementwise addition but with the proviso
that ‘overflow’ bits are carried over to higher-order positions (that is to say,
next right in the stream). This explains the initial value (o + 7)(0) = 09 ® 79
and the presence of the ‘carry’ term [og A 7] in the derivative (o + 7)". (Note
that as a consequence, there is no easy formula for the n-th value (o + 7)(n).)
The definition of minus is completely determined by the ‘requirement’ that
o0+ (—o) = [0]: taking initial values on both sides implies that oo @ ((—0)(0)) =
0, whence (—0)(0) = 09; and taking derivatives on both sides implies o/ +(—0)'+
[o0] = [0], from which the shape of the differential equation for —c follows.
Multiplication is defined in terms of shift and addition. In fact, the above
equation expresses the 2-adic product in terms of the 2-adic sum in precisely the
same way as the corresponding equation in Section 5 expresses product modulo-
2 in terms of addition modulo-2. The definition of inverse, finally, follows from
the ‘requirement’ that o x (1/0) = [1], for any o € 2¥ with gy = 1, again by
taking initial values and derivatives on both sides.

The structure (2,4, —, X, /, [0], [1]) is again a commutative ring and integral
domain. Sum, however, is no longer idempotent, and there are some unusual,
surprising facts, such as

7[1] = (171717"') (3)

(which equals 1/([1] — X)) and 6 + 0 = X X 0.
We mentioned above that in the present context, bitstreams are also called
2-adic numbers. This can be explained by viewing (certain) bitstreams as the



binary representations of (certain) numbers, as follows. For n € IN, we define
the binary representation B(n) as the unique stream satisfying the following
system of differential equations (one for each n):

(B(n))" = B((n — odd(n))/2), (B(n))(0) = odd(n)

where odd(n) = 1, if n is odd, and = 0 if n is even. (Note that we are using
the same symbols for the operators on numbers and streams.) This defines the
usual binary representation of the natural numbers, with infinitely many 0’s
appended at the end. For instance, B(13) = (1,0,1,1,0,0,0,...) (note that the
least significant bit is on the left). The definition of B can be extended to the
set Z of all integers and even to the set Q = {n/(2m + 1) | n,m € Z} of all
rationals with odd denominator, by using the same equations as before: we put
(B(q))" = B((q — odd(q))/2) and (B(q))(0) = odd(q), for all ¢ € Q, where now
odd(n/2m + 1) = odd(n). Viewed as a function B : Q — 2¥, it is in fact a

homomorphism of integral domains, since B(0) = [0], B(1) = [1] and, for all
n,me 7,
B(n+m) B(n) + B(m)
B(-n) = —B(n)
B(nxm) = B(n)x B(m)
B(n/2m+1) = B(n)/B(2m+1)

In Section 7, the 2-adic operators will be used in circuits for binary arithmetic.

7 Bitstreams and circuits

We show how bitstreams and the various bitstream operators can be used to
define the semantics of Boolean (digital) circuits, in terms of functions from (in-
put) streams to (output) streams. Circuits without feedback loops and memory
(sometimes called logical circuits) can be described by means of Boolean func-
tions (functions from Booleans to Booleans), which have been broadly studied
and are well understood [Weg87]. Here we use bitstreams, that is, infinite
sequences of Booleans, instead of just Booleans, because our circuits will in
general be sequential: they have feedback loops and contain memory (in the
form of registers). As a consequence, output values may depend on previous
input values.

As we shall see, digital circuits will in general be built from copiers (aka
splitters); wires; basic gates for the Boolean connectives and, or, and negation;
registers (for memory); and they will contain feedback loops. Their semantics
will typically involve operators from two or more of the four bitstream algebras
that we have considered sofar. We have no systematic results for this most
general case, but we shall consider a number of examples. (In Section 9, we
shall look at a special class of so-called linear circuits, for which we do have
a complete characterisation.) The relevance of these examples lies in the fact



that they lead to mixed algebraic expressions and thereby motivate the use of
mized laws, involving operators from different algebras. We shall use a number
of such laws in the present section, and prove them (and several other ones), by
coinduction, in Section 8.
Circuits will generally have a number of input ends, denoted by arrow shafts
——— , and a number of output ends, denoted by arrow heads —— . Often,
we shall concentrate on circuits that have exactly one input and one output end,
just for convenience and without loss of generality. For streams o,7 € 2¥, we
shall write
g '— e — > T

and say that the circuit inputs the stream o and outputs the stream 7. Typically,
the output is a function of the input: 7 = f(¢), for some f : 2¢ — 2% and we
say that the circuit implements the function f. Operationally, the behaviour of
a circuit consists of an infinite sequence of actions, at time moments 0, 1,2, .. ..
At each moment n > 0, the circuit simultaneously (also called synchronously)
inputs the value o, € 2 at its input end and outputs the value 7, € 2 at
its output end. In general, the value 7, will depend on current and previous
values o;, for i < n. Here are the basic gates, out of which all circuits will be
constructed:

(a) Wires are basic gates with one input end and one output end, and are
either fully connected or fully disconnected:

o—1—>0 o+—0—>[0]

(b) A copier simply produces two identical copies of its input:
/> o

c
\) o

Ot

(¢) An or (or sum) gate takes two input streams o and 7 and produces their
sum as output:

U)—\
V—=(oVT)

r

(d) An and gate takes two input streams o and 7 and produces o AT as output:

U}\
AN— (0 AT)

—

10



(e) An inverter or negation gate takes an input stream o and produces its
negation as output:

Ot———> -0

(f) A register gate is defined by
o +—r— (0,00,01,02,...)

It can be viewed as a one-place memory cell. Initially, it contains 0, which
is the first value to be output and after which the elements of o follow,
delayed by one time step. In our algebraic modelling of the register, we
have three options, because of the following mixed law:

X0 = X®oc= Xxo= (0,00,01,002,...) (4)

As we shall see below, it will depend on the context which operator can
be used best.

Note that all of the above basic gates but the register can be modelled within
Boolean algebra (and without the need for streams). It is the use of registers
that forces us to move from Boolean algebra to (one or more of) the other
algebras introduced in the previous sections.

We shall also consider the following two sum gates, which can be considered
as ‘macro’ gates and can be constructed out of the basic gates above (details
will be given in Section 9):

U)—\ U)—\
&> (0aT) +—>(0+7)

T)—/ TF/

They take inputs ¢ and 7 and produce outputs o & 7 and o + 7, which are the
respective sum operators from the algebras A,,,q2 and Asggic-

As we mentioned before, we shall typically consider sequential circuits, al-
lowing feedback. Feedback loops are always required to pass through (at least)
one register. As we shall see, this will ensure that the corresponding seman-
tic equations will be well-formed (guarded, with a technical term), so that the
circuit will have a well-defined behaviour. Here is a first example:

O=<—R—O

I I

oF——V—>0}—Cc—>T

It is a variation on a flip-flop circuit that we shall see below. The explicit
denotation of composition by the symbol o in the circuit above may seem a bit

11



pedantic but will allow us to compute the input/output behaviour of circuits
by systematically replacing the o symbols by ‘internal’ streams, as follows:

pP1 =—R— P2

I T

o—V—PB3FH—Cc——>T
Each of the basic gates in the circuit above gives rise to a semantic equation:
T=p3=p2, p3=0Vp, p1=X":ps

Note that because of the presence of the or gate, we have used the concatenation
product from Kleene algebra Ax in the equation for the register (instead of the
two alternatives mentioned in identity (4)). Next we can express the output
T in terms of the input o, by solving the above system of equations in Ag,
eliminating the ‘internal’ variables p;. This gives 7 = (X - 7) V 0. Applying
identity (1) from Section 4 gives 7 = X* - ¢ and, by identity (2) from Section 4,

7 = (0(0),0(0)Vo(l),0(0)Ve(l)Vo(2),...)

Thus this circuit outputs 0’s until the arrival of the first 1, after which it will
output always 1’s.
The following flip-flop circuit is an obvious variation on the one above:

pP1 <—PR— P2

I T

O— @ —pP3—Cc——>T
As before, it gives rise to three equations:

T=p3=p2, p3=0Dp1, p1 =X ®p2

but note our choice for ® in the equation for the register, which allows us to
solve this system within the algebra A,,,42. This gives 7 = (X ® 7) & o, and
(1] ® X) ® T = o, recalling that ©p = p for all p € 2¥. As a consequence, we
obtain

= 1o (1l®X))®c= (c(0),0(0)®0c(1),0(0)do(l)®d0c(2),...)

(The latter equality follows easily from the definitions of the operators and the
observation that 1@ ([1] ® X) = (1,1,1,...).) We see that this circuit acts as
a switch (flip-flop), outputting 1’s only when an odd number of 1’s has been
input.
Using the same feedback circuit once again, but now with the macro gate
for 2-adic addition:
P1 <—PR—— P2

I T

o—+—pPp3+—cCc—>T

12



gives rise to the equations

T=p3=p2 p3=0+p1, p1=X X pa

Calculating in the algebra As,gic gives

1
T = Xo= —0
1]+ X
where the latter equality follows from ﬁ = (1,1,1,...) = —[1]. So we see

that the circuit above computes for a 2-adic number its 2-adic minus.

The semantics of each of the three example circuits above was given within
one and the same algebra. Next we look at some examples that will involve
some basic reasoning with mixed terms, containing operators from two or more
different algebras. Our first example of this type is again a feedback loop, now
without input and using a not-gate:

/R/\m\

P2 c T

/\_‘\ P3 /

Note that even though this circuit has no inputs, it produces an output stream =
because of the presence of the register R that contains (by definition) an initial
value 0. We obtain the following equations:

T=p1=p3, p3="p2, p2=XOp1

where © in the equation for the register is one of {-, ®, X}, since we have
again three options for the equation for the register, according to mixed law
(4). These three equations together imply

T = =(Xor) (5)

As it turns out, we are able to solve this equation in each of our algebras, because
of the presence of the following three mixed laws that relate the operator — with
the respective product operators: for all o € 2¢,

~(X-0) = [V (X--0) (6)
o = (lo(lleX)) o (7)
o = —([1]+0) (8)

(As we indicated above, these and other mixed laws will be proved only in
Section 8.) We can now compute with (5) and each of these laws as follows:

(i) 7=—=(X - 1) and (6) imply
T = [1]+(X--7)
= [+ X =(=(X-7)))
= [+ &X*7)

Using identity (1), from Section 4, we find 7 = (X?)*.

13



(ii) 7 =~(X ® ) and (7) imply
r=(lo(lleX)e(XarT)
As a consequence, ([1]® X)®@7=10 ([1]® X) and
T = (lo(lleX))e (1o(1]e X))
1o ([1]® X?) [since X & X =[0]]

(i) 7 = =(X x7) and (8) imply 7 = —([1]4+ (X x7)). This gives ([1]+X)xT =

—[1], whence
__ -l
[+X
_ 1 ) o
S W< _x e ==l
1
T oa-x

Of course, the three resulting algebraic expressions should be equal, and one
can easily verify that they are:

1
= (X)=10(J®X?) = ——— = (1,0,1,0,1,0,...
= (X = 106X = grem = (10,1010,
Here is a last example circuit, this time using an and gate:

O0O<"71—0<——R—10<"1—0O

T !

ot A Ot c T

We use the following mixed law (which is a variation on law (6) above): for all
pE 2,

~([v(X-p) = X--p (9)
The circuit above produces an output stream 7 satisfying 7 = o A (=(X - —=7)).
Taking the negation of both sides gives =7 = =o'V (X - =7). Thus -7 = X* - -0,
by (1). Although this still is a mixed expression, containing operators from
both Boolean and Kleene algebra, it may be considered a satisfactory answer,
because of the following equalities:

T = ~(X*--0)

=(=a(0), =a(0) V =o(1),=c(0) V =o (1) V =c(2),...)
(6(0),0(0) Ao(1),0(0) Ao(1) Aa(2),...)

The examples presented in this section illustrate how to use the various
bitstream algebras to give a precise description of the input/output behaviour of
general sequential circuits. They also show the relevance of mixed laws (collected
in Section 8). At the same time, there is a clear need for the algebraic treatment
of more such examples, leading to more mixed laws and, ideally, to classifications
of both.

14



8 Mixed laws

We present various mixed laws, involving operators from two or more bitstream
algebras. Some of these laws were motivated and applied in the semantics of
example circuits, in Section 7. Similar such examples can be given for the other
laws. All of these mixed laws can be conveniently proved with the coinduction
proof principle (introduced in Section 2), by constructing a suitable relation
on bitstreams and proving that it is a bisimulation relation. For the latter,
we have to check that the relation is closed under the taking of (elementwise)
derivatives, which is where we can profit from the use of differential equations
in the definitions of the operators.

Theorem 3 For all o,7 € 29, n > 0,

-] = (1= -1

-[1] = X-(1)

X0 = X®oc= Xxo= (0,00,01,002,...)

o = loo] V(X -0') = [oo] ® (X ®0’) = [oo] + (X x o)
-X = []v(X?(1)
@y = te(e X = my

-0 = [qoo)]V(X-—o)= 1o (e X))do= —([1]+0)
-0 = o®(X-X* 0)

o+1 = (oVT)+(0oAT)

(cad7)+ (X x(6AT))

Proof: Some of the above identities are straightforward, others require a little
bit of work. All can be easily proved by coinduction. We mention one example:
in order to prove —o = —([1] + o), consider the following relation R C 2% x 2¢:

R={(-0, (1] +0)) | o € 2}

According to Theorem 1, it is sufficient to show that R is a bisimulation relation.
For o € 2, we have, firstly,

(—o)(0) = -oo
= 1&g
= (=([1]+2))(0)

Computing derivatives gives, secondly, (—o)" = —(o’) and

—([1+0) = =((+0) +[(=([1] +2))(0))

[recall that (—7)" = —(7' + [70]), for all T € 2]
= —((([0]+ &) + [o0]) + [-o0])
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[since (7 +p)' = (7' + p') + [10 A po] and [1]’ = [0]]
= —(0'+[1]) [using [a] + [-a] = [1], for a € 2]
= —([]+7)

This proves that ((—o)’, (—([1] + ¢))’) € R, and concludes the proof that R is
a bisimulation.

9 Linear circuits and rational streams

We introduce the class of 2-adic linear circuits, which are built using the ‘macro’
+-gate that was introduced, but not formally defined, in Section 7. Below we
include the details of its definition. Then we give a complete characterisation
of these circuits in terms of the notion of 2-adic rationality.

We call a circuit 2-adic linear (or linear for short) if it is built from the
following basic gates:

(a) Fully connected or disconnected wires, copiers, and registers, as before.

(b) The 2-adic sum gate (aka sequential binary adder) takes two inputs o and
7 and produces their 2-adic sum o + 7 as output. It is usually constructed
out of so-called half-adder circuits

0'\—\ /—IT
/—H—>U/\T
odT

(whose definition is straightforward and omitted) as follows:

0)—\+ . - 0»—\H/—!T
T)—/ o< o<—R—|o:\/

/—H4>O»—/

o+T

(In our algebraic framework, one can prove, formally and without too
much effort, that the circuit on the right indeed produces output o + 7 on
input o and 7.)

(¢c) A minus gate produces on input o its 2-adic negative —o, and can be
defined as follows:

ob——1— —0 = O<—R—1O

I T

o——+ —>0o}—c¢Cc—> —0CO

(The fact that the circuit on the right produces —o on input o was proved
in Section 7.)
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There is some redundancy in this definition of 2-adic linearity. Clearly, the
minus gate is not a primitive, since it is defined in terms of the other basic
gates. The same applies also to registers, which can be built out of a copier and
a +-gate as follows:

/—>O>—\
o——c +—=04+0=XXxo0

\_) o /
So all what is needed, really, are copiers, wires, and +-gates.
Here is a simple example of a 2-adic linear circuit:
/1\

b——1—0}—R——>O}I—R——> O }—1——>
\1/

In this picture, we have omitted the explicit representation of copier and sum
gates, under the following convention: if a (composition) node in the picture of a
circuit has both incoming and outgoing arrows, then first the incoming streams
have to be added; then the resulting sum is copied and output along each of
the outgoing arrows. As before, we consider intermediate streams pq, pa, p3 for
each of the connection points:

/1\

ot 1 P1t R—> P2 —R——> P3 +—1—>T
\1/

and obtain the following equations:

p1 = o+p2+p3
p2 = X xXp

ps = X Xpg

T = p3

Eliminating the internal streams yields the following solution:

X2

T ox—xz

g

Thus the circuit above transforms an input stream by multiplying it with a (for
this circuit) fixed stream.

The same happens with any (finite) 2-adic linear circuit, as Theorem 4
below asserts. It uses the notion of rationality, which we define next. We
shall simply write 0 for [0] = (0,0,0,...), 1 for [1] = (1,0,0,0,...), and —1 for
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—[1] = (1,1,1,...). Also we shall write, accordingly, o — 7 for o + (—7). Now
we call a stream 7 polynomial if it is of the form

ﬂ'ZCO—‘r(ClXX)+(CQXX2)+---+(CkXXk)

where all ¢; are either 0, 1, or —1. We call a stream o 2-adic rational if it is of
the form
o=

SRR

2

for polynomial streams 7 and p with p(0) = 1. For instance, the stream 17))((77)(2

that we encountered above, is rational. It satisfies

X2

T—x xz = (0011)= (0,0,1,1,0,0,1,1,0,0,1,1,...)

One can easily show that any 2-adic rational stream is ultimately (that is,
after a finite prefix) periodic, a fact that is well-known in 2-adic number theory
[Kob77, Vui94]. It does not play a role in what follows.

Theorem 4 below is formulated for circuits with precisely one input and one
output end, but it can easily be generalised for circuits with many input and
output ends. Its shows that any 2-adic linear finite circuit multiplies the 2-adic
number that it inputs with a fixed (rational) 2-adic number. Conversely, any
such function can be implemented by a finite linear circuit. Although the proof
of this theorem constructs circuits that are not necessarily minimal, they are
generally very small. Therefore, the theorem can be used to reduce circuits by
describing their behaviour by an algebraic expression, from the simplified result
of which a smaller circuit can be obtained.

Theorem 4

(a) Every finite 2-adic linear circuit, possibly with feedback loops (which pass
through at least one register) implements a stream function f : 2¥ — 2 of
the form, for all o € 2¥: f(o) = p X o, for a fivred 2-adic rational stream

p-

(b) Conversely, any function of this form can be implemented by a finite 2-adic
linear circuat.

Proof: We have seen many examples in the previous sections bearing witness to
statement (a). For a general proof, consider a finite circuit C' containing k > 1
registers. We associate with the input end of C' a stream ¢ and with the output
end of C' a stream 7. With the output end of each register R;, we associate a
stream ;. For the input end of each register R;, we look at all incoming paths
that: (i) start in either an output end of any of the registers or the input end
of C, (ii) lead via adders, copiers, and multipliers, (iii) to the input end of R;.
Because all feedback loops pass through at least one register, there are only
finitely many of such paths. This leads to an equation of the form

@ = (a; x X xa') 4+ (af x X x a*) + (a;i x X x 0)

18



for some ai,ag € {0,1,—1}. We have one such equation for each 1 < i < k.
Solving this system of k equations in stream calculus as before, yields for each
register an expression a; = p; X o, for some rational stream p;. Finally, we play
the same game for 7, at the output end of C, as we did for each of the registers.
This will yield the following type of expression for 7:

T

(by x 1) + -+ (bg x ag) + (b x o)
(b1 x p1) 4+ (b X pg) +b) X o

for some b,b; € {0,1,—1}, which proves (a). For (b), we consider a function
f(o) = p x o with

_T'0+(T‘1XX)+(T2XX2)+(T3XX3)
T 11 (51 x X) + (52 X X2) + (3 x X3)

The general case can be treated similarly. We claim that the following circuit
implements the function f:

p

‘R//

where we have denoted the output stream by 7 and the intermediate streams
by po, p1, p2, p3- They satisfy the following equations:

po = o= (s1xp1)—(s2Xp2)— (3% p3)
p1 = X Xpy, pp=X xp1, p3=X X py
T = (rox po)+ (r1 X p1) + (r2 X p2) + (73 X p3)

It follows that 7 = p X o, with p as above.

The above result is to the best of our knowledge new. A similar result on
mod-2 linear circuits and mod-2 rationality exists in various different forms
in the literature, although often presented in a semi-formal symbolic form (cf.
[Koh78, Chap. 15]).
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