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1. INTRODUCTION

The dream of composing software systems out of reusable components is as old as the field of software en-
gineering itself. The notion ofvariability is closely related to the concept of reuse. If the variable parts of
a software system can be identified, the common parts can be reused, thus shortening time-to-market and in-
creasing customer satisfaction.

The concept of variability is a central topic in research onproduct lines. A product line contains different
systems, all implemented using the same set of reusable software assets. Component-based software engineer-
ing is a way of implementing product lines. By letting multiple components implement the same interface,
different implementations can be chosen for the same feature. Different component compositions result in
different software products. Components are then the units of configuration.

However, there is a saying “maximizing reuse, minimizes use” [SGM02]. This dictum is based on the
assumption that maximally reusable components are by implication maximally small. But if we canconfig-
ure components for reuse in different contexts, this assumption does not necessarily hold. Suchconfigurable
componentsneed not be tiny at all. They are, in fact, a different approach to reuse: instead of focussing on
factorization (decomposing a system in smaller and smaller pieces), the focus is on malleability (allowing
lightweight adaptation of components for use in different contexts).

Composing systems out of configurable components raises questions concerning the relation between vari-
ability and composition. A choice has to be made about when components are configured and when they are
composed, and in what order. Another question is how to bind configuration parameters to implementations.
While there is much work on implementing variability (see, e.g., [AG01]), the verified instantiation of products
using configurable components has received little attention.
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In this paper we describe how configurable Java components can be composed to automatically derive valid
product instances. Components are described in a component description language formal enough to be able
to verify the consistency of component variability and configuration. It is the starting point for instantiating
products by composing components and binding of features. To implement the variability described in configu-
ration interfaces, we use a combination of Aspect Oriented Programming (AOP) [KLM+97], and Java property
files.

This paper is organized as follows. In Section 2, we provide some background to configurable components.
We survey the concepts of product families, product lines, and product populations, and discuss how features
are bound to implementations in the case of Java components. Then, in Section 2, we present a language for
component descriptions. We describe an example product population that is subsequently used to illustrate the
notation. In Section 3, we discuss the consistency requirements for configuration and composition how these
requirements enable automated product instantiation. We show how component descriptions are mapped to
configuration and composition actions. Finally we present related work and future work.

2. CONFIGURABLE COMPONENTS

2.1 Background
The notion of variability is important as it is the dual of software reuse. The idea is that, if we can identify what
is common to different product variants, and what is variable, the common parts can be reused in all product
variants. A commonality and variability analysis can have a great impact on the architecture of a system, since
a good modularization allows the variation of components, modules or subsystems through information hiding.
The units of decomposition (components, modules, subsystems etc.) thus become the units of variation.

However, there are cases, when components as the only units of variation cannot be used for implementing
variability. There are many examples of features that cannot adequately be decomposed in any unit of de-
composition. For some of these feature a simple compile-time conditional (e.g. using the C preprocessor) is
enough. In other cases more advanced techniques, such as Aspect Oriented Programming (AOP) [KLM+97],
must be applied to obtain variation at the level of components (e.g. a component with logging support, or
without). Common to all these cases is that variability occurs at the level of components themselves, instead of
at the level of the composition.

To further motivate the idea of configurable components, we put it in the context of three common approaches
to variability. The following hierarchy of approaches to variability is by no means meant to be definitive. Its
purpose is primarily to tentatively give clear definitions to concepts concerning variability. Of course, the
borders between the approaches are fuzzy and not absolute.

The oldest approach to variability is theproduct familyapproach. In a product family, manyvariations
of the samesystem are derived from a set of software components. Configuration tends to be fine-grained.
Keywords such as tailoring, customization, platform/protocol/format variation come to mind. The primary
driver is to increase customer satisfaction. Examples of product families are large ERP software suites [JBB04]
and the Linux kernel. Both examples exist in many variations, yet each variation fulfills more or less the same
requirements.

Theproduct lineapproach goes one step further than the product family approach. In this case, manydifferent
systemsare derived from the same set of software components. For product lines, the concept ofarchitecture
is crucial since the units of variation are usually more coarse-grained. An example of a product line is the
package base developed at CWI. From this set of packages different toolsets for language analysis are derived:
ASF+SDF Meta-Environment, ApiGen, JTom, XT. Each toolset fulfills different requirements, yet (re)uses the
same components.

The most elaborate form of reuse is obtained in theproduct populationapproach. Product populations
contain manydifferent productsin manydifferent variations. In fact, the approach can be seen as the union
of product family and product line approach: each product in the product line is a product family on its own.
Product populations are more rare than product families and product lines. The canonical example is the
product population developed by Van Ommering in the field of consumer electronics [vO00]. A single set of
components supports different products (software for DVD players, TVs, Videorecorders etc.)and different
variants of these products (for different types of DVD players, TVs, Videorecorders etc.).
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The product population approach is the natural environment for configurable components. Using config-
urable components, different products can be derived by composing components differently. Because each
component exposes variability, such compositions are by implication configurable as well. Thus, each compo-
sition represents a product family. In other words: each product family is a composition ofcomponent families.

2.2 Properties, Aspects, and Dependencies
In the previous subsection we presented a bird’s eye view on configurable components. In this subsection, we
zoom in and discuss the features of configurable components in the context of this paper.

A basic java component is represented by a javapackage. Packages contain classes and interfaces that
form the exported interface of the component. In Java, a package always corresponds to a directory. The
composition of packages is performed by feeding the appropriate directories including the compiled sources
into the standardjar tool.

To enable reasoning about the configuration and composition of java components, these components have
to be described in a formal component description language. Descriptions in this language, consist of acon-
figuration interfaceandbinding interface. The configuration interface models the configuration space of a
component. The process of selecting features is called theconfiguration task. When a consistent set of features
is selected, the composition algorithm executes the appropriate configuration actions, defined in the binding
interface. The result is ajar -file ready for deployment.

The configuration interface of a component communicates the component’svariability to the outside world
(clients of the component). The binding interface, on the other hand, describes therealization of variabil-
ity local to the component. Realizing variability amounts to bindingvariation points(parameters) to certain
implementation variants. Our model supports two realization techniques:

• PropertiesSome variation points need to be bound at runtime. One way of implementing this is by
checking for a certain property in the component’s property-file. A selected feature could thus result
in the setting of some property. Combining this technique with the Abstract Factory?? design pattern
enables choosing between different implementations of the same interface.

• AspectsAspect Oriented Programming (AOP) [KLM+97] is targeted at cross cutting features (features
that resist conventional modularization).Aspectsencapsulate this kind of features. Integrating an aspect
with the source code of the component (weaving) can be seen as a technique for realizing variability,
since there is always the choicenot to weave.

Usually components cannot be deployed in isolation, that is, a component usually hasdependencies. Com-
ponent descriptions can contain references to other components as part of their binding interface. The binding
interface thus also functions as arequiresinterface. If a component (theclient component) depends on another
component (the dependency component), it may pass configuration parameters to it. This way, a component
can (partially) configure the component it depends on.

3. COMPONENTDESCRIPTION

3.1 A Small Tree Transformation Product Population
In order to evaluate our component description language, we first present tiny product population to illustrate
the concept. We have actually implemented this product population, and used it to instantiate multiple products.

Consider developing a small application for transforming trees. This application consists of a number of dif-
ferent components. First there is atransformer component, providing a number of primitives to transform
and/or analyze tree structured data. An optional feature of this transformation component is the tracing of the
transformation process.

Another component provides the classes for the required tree data structure. Thistree component contains
two different implementations for the sameTree interface. In addition to the choice between different imple-
mentations, trees can optionally be enhanced with aVisitable interface. This allows the trees to be used
together with yet another component, a generic visitor/traversal framework (implementing the Visitor design
pattern [GHJV86]).
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The transformation component obviously has a dependency on the tree component, but it also requires the
traversal functionality. If the tree component is required to provide the traversal feature, it should in turn
depend on the traversal component. The choice among tree implementations, however is left to the user of the
transformation component. In other words: the some of the variability of the tree component propagates to the
transformation component.

Why do these three components represent a product population? There are two reasons for this. Firstly, both
the tree component and thetraversal component can be (re)used independently of thetransform
component. That is, they can be reused in products other than the transformation application. Secondly, the
all components described here, except the traversal component, are configurable. That is, bothtree and
transformer represent a component family. If different systems are composed using these configurable
components, these different systems become, by implication, configurable themselves. Therefore: each type of
system is a product family as well.

3.2 Component Description Language
Our component description language is has a syntax similar to Java. A component description consists of
two parts. The first part is the configuration interface. This interface declares how a component should be
configured. The second part consists of configuration and compositionactions, which specify how to bind
variation points to implementation variants. An example of the notation is displayed in Figure 1. The example
represents the term rewriting product population described in the introduction.

package transformer {
Transformer: tracing?
if (tracing) { weave(Tracing); }
require(tree, traversal);

}

package tree {
Tree: all(one-of(list,array), traversal?)
if (array) { treefactory = array.ArrayTreeFactory; }
if (list) { treefactory = list.ListTreeFactory; }
if (traversal) {

require(traversals);
weave(TreeTraversal);
if (list) { weave(list.ListTreeTraversal); }
if (array) { weave(array.ArrayTreeTraversal); }

}
}

package traversals { }

Figure 1: Description of the tree transformation product population

The configuration interface of component consists of afeature description[vDK02]. Feature descriptions are
textual analogs of feature diagrams. Features can be defined to mandatory (all), alternative (one-of), inclusive
(more-of), or optional (?). Features that cannot be decomposed any further are atomic features (lowercase fea-
turenames). Finally, a feature description may declare additional constraints on atomic features (not displayed
in the example). An example of such a constraint would be that some atomic featurea requires or excludes the
presence of aother atomic feature.

The action part consists of java-like conditionals and statements. Conditionals check whether a particular
atomic feature is enabled or not. The statements bind variants to variation points by performing one or more of
three actions:

• setting a property (p = v)
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• weaving an aspect (weave(a))

• requiring another component (require(n, f ∗))

When a property is set, the local property file of the current component is modified. The weaving of an aspect
is enabled by adding the aspect to the argumentfile passed to Aspect/J. Finally, requiring another component
induces a build-time dependency. This means that the classpath should be adjusted in order to find the required
component. Required features can be passed to the dependency component.

As an example to the notation, Fig. 1 displays the description of the tree transformation population. It
consists of three components:transformer , tree and traversals . The transformer component
has one dependency ontree and it requires the traversal functionality to be present. The if-statement ensures
that if the tracing feature is enabled, theTracing aspect is weaved into the sources oftransformer .

Thetree component has a more elaborate configuration interface. It can be instantiated using different tree
implementations: array- or list-based. These implementations are hidden with the Abstract Factory design pat-
tern [GHJV86]. Depending on the chosen implementation variant, a property is set to indicate which concrete
tree factory should be used.

Enabling the traversal feature, is implemented using a combination of aspects. This feature also induces a
dependency on thetraversals component, which cannot be configured any further.

In the next section we will describe how the consistency of these component description can be automatically
checked, and how they are used for instantiating products.

4. AUTOMATING PRODUCT INSTANTATION

4.1 Consistency Requirements
Component descriptions should be consistent to prevent the derivation of invalid product instances. The com-
ponent description language discussed in the previous section allows a number of checks to be automatically
performed: well-formedness checks and consistency checks. We are currently working on a Feature Analysis
and Manipulation Environment (FAME) which is a suitable platform for the implementation of these checks.
FAME supports the controlled evolution, analysis, and querying of textual feature descriptions. We plan to
extend this environment with support for the component description language described here.

Well-formedness The first consistency requirements is well-formedness. Non-well-formed component de-
scriptions are not logically flawed, but can nevertheless lead to spurious product instantiations. Well-formedness
applies to both configuration interfaces and binding interfaces.

Well-formedness of the configuration interface equals well-formedness of feature definitions. The feature
description should not, for instance, include a feature expression like the following:more-of(foo,foo) .
Another well-formedness violation is duplicate definitions for the same composite features. For the well-
formedness of a configuration interface, we have implemented a typechecker which detects many kinds of
violations.

The binding interface of component description should also be well-formed. This means that binding actions
are not ambiguous. As an example, consider two alternative featuresa andb. Then, the following statement is
not well-formed:

if (a) {
if (b) {

...
}
...

}

Although this kind of configuration conditionals is not logically inconsistent, they are meaningless, sincea and
b never occur together.

Well-formedness of binding actions can be checked as follows. Nested conditionals induce (sub)sets of
feature selections. For the example above (if (a) { if (b) {... }}) the induced feature set is{a,b}.
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We can use this feature set to check the Well-formedness of configuration and composition actions. For an
action to be meaningful, such a feature set should be a subset of a consistent feature selection. Clearly, if
featurea andb are alternative, they will not both be part of a consistent feature selection. In that case the
action is not well-formed. For thetree component, for instance, the actionif (array) { if (list)
{... }} is not well-formed.

Configuration consistency The first consistency requirement is internal consistency of the configuration in-
terface. An inconsistent configuration interface cannot be configured, and thus cannot be instantiated.. An
example of an inconsistent feature description would be the following:

A: one-of(b, c)
b requires c

Featureb requires featurec , but they are defined to be alternative. This is a contradiction.
The second requirement is that any feature selectionusedto configure a component is valid with respect

to the configuration interface. For all components depending (conditionally) on a componentc, the union of
features passed toc should not invalidate the configuration interface ofc. Assume, for instance, that component
c declares two atomic features to be alternative, saya andb. Then, if a certain component enablesa and another
component that is part of the same composition, enablesb then this is a consistency violation.

We have described a method to check these logical consistency requirements elsewhere [vdS04]. That tech-
nique is based on translating component descriptions to Binary Decision Diagrams (BDDs) [Bry92]. A slightly
different mapping of the component descriptions of this paper can be used to obtain the same results.

4.2 Composition and Binding
If component descriptions are consistent, they can be used to generate product instances by composing all
components required for a certain (consistent) selection of features. To compose Java components means
compiling all required source files and putting the result in a JAR-file. Assume we have a set of required
componentsC, and a set of required featuresF that pass the consistency tests defined in the previous subsection.
Then, a valid product instance is created by the following process:

• For each componentc∈C

– Add the sources ofc to the set of all sources.

– Obtain the actions ofc that are by enabledF .

– For each action:

∗ weave(a): add aspecta to the set of all sources

∗ p = v: set propertyp to v

• Compile the set of all sources using AspectJ

• Create ajar -file, including property files.

We plan to describe the composition and binding process using the example in an extended version of this
paper.

5. CONCLUDING REMARKS

5.1 Related Work
Our work is greatly influenced by the KOALA component model, developed by Rob van Ommering [vOB02,
vO01, vO00]. KOALA allows the description of configurable components. Configuration occurs by binding
values or implementations to interfaces which may declare configuration parameters. A KOALA compiler
then creates a configured C implementation. A drawback of the approach is the tight coupling between the
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mechanisms of variation and the C programming language. We have therefore separated the realization of
the variability from the configuration interface description. This way, implementation details are completely
hidden behind abstract feature descriptions, yet it is still possible to link configuration interface and binding
interface in a meaningful way.

Another source of influence is package-based software development [dJ03]. In package-based software
development a software system is decomposed in source packages. Package descriptions declare a list of build-
time configuration flags and dependencies. Source-tree composition [dJ02] is then used to obtain a bundle that
has a top-level build process. The binding of compile-time flags to implementations is completely hidden using
theautoconf tool set. Thus it is not possible to check any consistency constraints automatically. Moreover,
using a feature description as configuration interface is more expressive than just a list of options.

In [vDdJK02] the authors investigate how products can be instantiated using both source-tree composition
and feature descriptions. However, these feature descriptions have a meaning at the level of the composition
only. In our approach feature descriptions function both at the component-level and at the composition-level.
Binding of variation points is implemented using reflection and customer factories. There is no direct mapping
of feature sets to configuration actions.

Checking feature diagrams for consistency is an active area of research [vDK02, CBB+03, Man02] but the
level of formality varies. The problem is that checking the consistency is equivalent to satisfiability, so most
approaches do not scale. Our approach is based on BDDs [vdS04], which make the exponential feature space
manageable.

5.2 Contribution
Configurable components increase the opportunities for reuse and product variation. However, they also present
both conceptual and technical challenges. In this paper we have dealed with these challenges by describing
components in a formal component description language.

The conceptual complexity of composing configurable components is ameliorated by automating formal
reasoning about variability, configuration and composition. Component descriptions and compositions can be
checked for consistency so that valid product instantiation is guaranteed.

Technical challenges include the question on how to realize variability and how to maintain a meaningful
link between abstract configuration interface and concrete binding interface. We have shown how this can be
accomplished for Java components, when feature binding is realized using property files and aspect oriented
programming.

5.3 Future Work
We plan further research in four directions: tool support, further formalization, generalization and validation.
Tool-support is needed for configuration and composition. Further formalization will help to understand and
manage the complexity that is introduced by variability inheritance. It is worth investigating whether our com-
ponent model could be made oblivious to implementation language. That is, the set of possible configuration
action becomes a parameter of the component description language. Heterogeneoous product populations could
then be uniformly described using our component description language. Finally, to really assess the flexibility
of the approach we will have to validate it in practice.

Acknowledgements Gratitude goes to Gerco Ballintijn and Slinger Jansen for valuable suggestions to improve
drafts of this paper.
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