
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

Extending Rebeca with synchronous messages and 
reusable components

M. Sirjani, F.S. de Boer, A. Movaghar, A. Shali

REPORT SEN-R0505 FEBRUARY 2005

SEN
Software Engineering



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Extending Rebeca with synchronous messages and
reusable components

ABSTRACT
In this paper, we propose extended Rebeca as a tool-supported actor-based language for
modeling and verifying of concurrent and distributed systems. We enrich Rebeca with a formal
concept of components which integrates the message-driven computational model of actor-
based languages with synchronous message passing. Components are used to encapsulate a
set of internal active objects which react asynchronously to messages by means of methods
and which additionally interact via a synchronous message passing mechanism. Components
themselves interact only via asynchronous and anonymous messages. We present our
compositional verification approach and abstraction techniques, and the theory corresponding
to it, based on formal semantics of Rebeca. These techniques are exploited to overcome state
explosion problem in model checking.

2000 Mathematics Subject Classification:  68N19
1998 ACM Computing Classification System: D.2.4 ; D.3.1 ; F.3.2
Keywords and Phrases: the actor model; reactive systems; Rebeca; components; modular verification





Extending Rebeca with Synchronous Messages and
Reusable Components

Marjan Sirjania,b Frank de Boerb Ali Movaghara Amin Shalic
aDepartment of Computer Engineering

Sharif University of Technology
Azadi Ave., Tehran, Iran

bDepartment of Software Engineering
Centrum voor Wiskunde en Informatica

Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands
cDepartment of Electrical and Computer Engineering

University of Tehran
Karegar Ave., Tehran, Iran

msirjani@cwi.nl f.s.de.boer@cwi.nl movaghar@sharif.edu shali@ece.ut.ac.ir

Abstract. In this paper, we propose extended Rebeca as a tool-supported actor-
based language for modeling and verifying of concurrent and distributed sys-
tems. We enrich Rebeca with a formal concept of components which integrates
the message-driven computational model of actor-based languages with synchro-
nous message passing. Components are used to encapsulate a set of internal ac-
tive objects which react asynchronously to messages by means of methods and
which additionally interact via a synchronous message passing mechanism. Com-
ponents themselves interact only via asynchronous and anonymous messages. We
present our compositional verification approach and abstraction techniques, and
the theory corresponding to it, based on formal semantics of Rebeca. These tech-
niques are exploited to overcome state explosion problem in model checking.
Keywords: the actor model, reactive systems, Rebeca, component, modular ver-
ification.

1 Introduction

With the increasing use of concurrent and distributed systems, establishing a reliable
approach in developing such systems is a critical problem. This problem can only be
solved in a rigorous manner by verification methods which are based on a formal se-
mantics. In a formal verification approach, we need a modeling language to represent
the behavior of the system, a specification language to embody the required properties,
and an analysis method to verify the behavior against the required properties.

Despite the recent successful application of formal methods, further research is still
required. One of the major problems in practice is the difference in abstraction level
and the resulting semantic gap between the modeling and programming languages used
by software designers and programmers and the modeling languages used by the ver-
ification tools. Deductive approaches in formal verification are mostly based on math-
ematical oriented languages which cannot be easily used by software engineers, and
modeling languages supported by model checker tools usually are not very close to



programming languages used by practitioners. On the other hand, languages used by
practitioners, as modelers or programmers, are too informal or too heavy to be ana-
lyzed. Another problem lies in the analysis methods. Deductive methods need a high
expertise and interaction with theorem provers, and model checkers suffer from the state
explosion problem, when the number of system components grows.

Rebeca (Reactive Objects Language) is an actor-based language with a formal
foundation, introduced in [15, 17] and which is designed in an effort to bridge the gap
between formal verification approaches and real applications. Rebeca is supported by
a front-end tool for the translation of Rebeca codes into existing model-checker lan-
guages [16, 18]. Compositional verification and abstraction techniques are introduced
to reduce the state space and make it possible to verify complicated reactive systems.

In this paper, we introduce an extended version of Rebeca, by enriching the model
of computation with a formal concept of a component. The motivation is to provide a
general framework which integrates in a formally consistent manner, both synchrony
and asynchrony; introducing components to encapsulate tightly coupled reactive ob-
jects which may have synchronous communication; and present a tool-supported for-
mal verification approach which provide us with open components whose behavior are
verified. Certain properties are proven to be preserved when these model checked com-
ponents are composed with other arbitrary components. Components are introduced for
integrating different communication patterns (synchronous and asynchronous), at dif-
ferent levels of abstraction. At the highest level of abstraction, components only interact
asynchronously via broadcasting anonymous messages. At a lower level of abstraction
(within a component), computations, on the one hand are driven by asynchronous mes-
sages, and on the other hand can be synchronized by a handshaking communication
mechanism. We present a formal operational semantics of the extended Rebeca lan-
guage and show how components can be used in a modular verification approach. The
modular verification approach, not only provide us with reliable components, but also
is useful to overcome the state explosion problem in model checking.

Plan of the paper. In the next section we first discuss related work, including re-
lated work on actor models and some other concurrent modeling languages, and also
automatic verification tools. In Section 3, we show syntax and formal semantics of Re-
beca, extended by synchronous messages and broadcast communication. We start with
the local configuration within a component and then move to components and global
configuration as the higher level structures in our operational semantics; a simple exam-
ple is included to explain Rebeca syntax and semantics. Section 5 explains our approach
for verifying properties of components, based on a formal structural operational seman-
tics, in order to offer reliable off-the-shelf components. We use our simple example
again, to show our model and module checking approach. In Section 6, we have a short
conclusion and a description of our future work.

2 Related Work

Different object-oriented models and languages for concurrent systems have been pro-
posed since the 1980s. The actor model was originally introduced by Hewitt [11] as
an agent-based language. It was later developed by Agha [5] into a concurrent object-

2



based model. The actor model is proposed as a model of concurrent computation in
distributed, open systems. Some interesting work has been done on formalizing the
actor model [19, 10].

The actor model was first explained as a simple functional model [4, 5], but several
imperative languages have also been developed based on it [20]. Besides its theoretical
basis, the actor model and languages provide a very useful framework for understanding
and developing open distributed systems.

Input-output automata for modelling asynchronous distributed systems is intro-
duced by Lynch and Tuttle in [14]. They showed how to construct modular and hi-
erarchical correctness proofs for their models. Alur and Henzinger proposed RML (Re-
active Modules Language) for modelling a system and used a subset of linear temporal
logic, alternating-time temporal logic, to specify its properties [8]. RML supports com-
positional design and verification.

Many models, including those we mentioned above, have tools for facilitating their
analysis ([7]). There are also model checkers which are developed with their own mod-
eling languages, such as NuSMV [1] and Spin [3]. However, to the best of our knowl-
edge, our work presents a first component-based ipmerative actor-language which inte-
grates synchronous message passing and which is supported by compositional verifica-
tion techniques. Furthermore, the design of the Rebeca language is based on a powerful
yet simple paradigm; providing the basic necessary constructs in a Java-like syntax
which is easy to use for practitioners. The event-driven nature of its semantics, leads
to straightforward approaches which decrease the state space significantly. Abstraction
techniques which preserve LTL-X and ACTL properties, can be applied automatically.
In our previous work [17], components are sub-models which are the result of decom-
posing a closed model in order to apply compositional verification, but here the concept
of components is what we have in component-based modeling which are independent
modules with well-defined interfaces. Once verified, a component can be used as a reli-
able off-the-shelf module. Hence, in the modular verification approach presented here,
although the strategy in abstraction techniques is the same, but the technical details are
quite different. A similar approach in using abstraction technique for model checking
open SDL systems is used in [12].

3 Rebeca

A model in Rebeca consists of a set of rebecs (reactive object) which are concurrently
executed. Rebecs are encapsulated active objects, with no shared variables. Each rebec
is instantiated from a class and has a single thread of execution which is triggered by
reading messages from an unbounded queue. Each message specifies a unique method
to be invoked when the message is serviced. When a message is read from the queue,
its method is invoked and the message is deleted from the queue. Note that reading
messages, thus, drives the computation of a rebec. Rebecs do not provide an explicit
control over the message queue. In order to increase the modeling power of actor-based
languages, we extend the asynchronous communication mechanism of Rebeca with
synchronous message passing and a mechanism for broadcasting anonymous messages.

3



Synchronous messages are specified only as a signature specifying the name of the
message and the types of its parameters.

For sending a synchronous or asynchronous message to an internal rebec, we spec-
ify its name. An anonymous send statement represents a broadcast to other components.
In order to introduce the extended version of Rebeca we need the following definition.

Definition 1 (Basic definitions).

– The predefined types T : Int for integers, Bool for Booleans, and Reb for rebec
names, i.e., identities of the active object in Rebeca.

– The set V ar is the set of variables of type T with typical elements x1, x2, . . . , xn,
including instance variables and also local variables. We show local variables by
u1, . . . , un, values by v1, . . . , vn, and rebec names by r, r′, . . ..

– The set V al is the union of all the values for all the types, i.e., all the values for
type Int, {True, False} for type Bool, and all the rebec names for type Reb.

– The set Mes is the set of messages with typical elements m,m1, . . . , mn.

A model in rebeca is a number of class definitions followed by rebecs instantiated
from them. Components are declared as sets of rebecs. Each class, consists of an inter-
face, declaration of instance variables and its body which is a set of method definitions.
The following describes the syntax of the basic actions, and the methods in Rebeca.
In the following definition, a shows the basic actions, and A stands for a name of a
class (sometimes refer to as rebec template). S is the body of a method that includes
local variable declarations and a sequential statement composed of the basic actions. A
method definition, mtd, consists of a method signature and method body (S).

Definition 2 (Syntax of extended Rebeca).

The basic actions, and the methods in Rebeca are defined by the following BNF-grammar
(we abstract from the syntax of expressions ei, and brackets ([]) show the optional parts).

a ::= x = e | x = new(A) | [x.]m(e1, ..., en) | receive(m1, ...,mn)
S ::= a;S | a
mtd ::= m(u1 : t1, . . . , un : tn)[: S]

An assignment statement, x = e, assigns the value resulting from the evaluation of
the expression e to variable x. A create statement x = new(A), creates a new rebec as
an instance of class A and assigns its unique identity to the variable x. A class A, is a
template that rebecs are instantiated from.

A send statement, can be sending a message to a rebec, specifying its name; or it can
be an anonymous send. An anonymous send statement m(e1, ..., en), which does not
indicate the name of the receiver, causes an asynchronous broadcast of the message m
with actual parameters e1 to en. This broadcast in fact will involve all the components of
the system as described in the following section on the semantics. Within a component,
this in turn, will cause sending an asynchronous message to all its rebecs.

Execution of a send statement, r.m(e1, ..., en), consists of sending a message m
with actual parameters e1 to en to the rebec r. Message passing can be both syn-
chronous as well as asynchronous. Asynchronous messages define a corresponding

4



message-handler S, also called a method, and there is no explicit receive statement
for them. An asynchronous message will be stored in unbounded message queue of the
callee, after which the caller proceeds with its own computation. When this message is
read by the callee the corresponding statement is executed.

Synchronous messages are specified only in terms of their signature, they do not
specify a corresponding handler S. Synchronous message passing involves a ‘hand-
shake’ between the execution of a send-statement by the caller and a receive statement
by the callee in which the (synchronous) message name specified by the caller is in-
cluded. A receive statement, receive(m1, ...,mn), denotes a nondeterministic choice
between receiving messages m1 to mn. This kind of synchronous message passing is
a two-way blocking, one-way addressing, and one-way data passing communication. It
means that both sender and receiver should wait at the rendezvous point, only sender
specifies the name of the receiver, and data is passed from sender to receiver.

When a sender sends a synchronous message it is blocked, waiting for the receiver
to reach to the corresponding receive statement (which includes the message sent by
the sender as an option). But this happen only if the receiver is not already waiting for
that message, in the latter case the sender and the receiver meet, the data is passed to
the receiver and they both got unblocked and continue their execution. If there are more
than one sender waiting for a receive statement, then arriving to that receive statement,
the receiver makes a nondeterministic choice between the coming messages. According
to that choice the corresponding sender got unblocked, passes the data, and continue its
execution. Other senders stay in their blocked state.

The body of each method, S, is a sequential statement composed of the basic ac-
tions. A method definition, mtd, defined as m(u1 : t1, . . . , un : tn)[: S], denotes the
method that is correspondent to message m with virtual parameter u1 to un of type t1
to tn, and the body S. The definition of method body S is optional, and we have the
convention that m(u1 : t1, . . . , un : tn) : S corresponds to an asynchronous message,
and m(u1 : t1, . . . , un : tn) corresponds to a synchronous message.

4 Operational Semantics

We will define the semantics of extended Rebeca in terms of a labeled transition system.
Semantics is defined in a structured manner which reflects the hierarchy of re-

becs, component and component system: First we introduce a labelled transition system
which describes the behavior of a rebec in isolation. This transition system forms the
basis for a labelled transition system which descibes the behavior of a component as
a set of rebecs. Finally, the latter system is used as a basis for describing the overall
behavior of a system of components

Definition 3 (Local configuration).

Assuming a model with rebec template definitions: A1 = B1, . . . , An = Bn, where Bi

is the body of the class, rebecs are instantiated from these templates. A local configura-
tion l for a rebec is defined as a tuple l =< r, σ, S, q > where

– r denotes the rebec identity,

5



– σ ∈ V ar → V al assigns values to the variables of the rebec,
– S is the statement to be executed next, and
– q denotes the unbounded FIFO queue containing asynchronous messages.

Next, we introduce a labelled transition relation which describes the behavior of a rebec
in isolation. The labels indicate the nature of the transition:

– the label τ indicates an internal computation step;
– a label m(v1, . . . , vn) indicates that the asynchronous message m(v1, . . . , vn) has

been broadcasted;
– a label r.m(v1, . . . , vn) indicates that the asynchronous or synchronous message

m(v1, . . . , vn) has been sent to the rebec r (which is required to be different from
the executing rebec);

– a label r.m(v1, . . . , vn), where r denotes the executing rebec itself, indicates the
reception of the message m(v1, . . . , vn).

For notational convenience, the parameters of a message are dropped in the following
definitions when it does not cause loss of information, i.e., m(v1, . . . , vn) is shown
simply by m.

Definition 4 (Local transition for processing message queue).

When the point of control is at the end of a method, its execution is finished which is
denoted by nil. If there is a message at the top of the rebec’s queue it is popped and
the corresponding method is called for execution. The parameter values are substituted
before execution. It is worthwhile to observe here that we don’t have recursion in meth-
ods so we don’t need to worry about fresh local variables. The above is formalized by
the following transition:

〈r, σ, nil, q.m(v1, . . . , vn)〉 τ→ 〈r, σ′, S, q〉
where, given the method definition m(u1 : t1, . . . , un : tn) : S, σ′ = σ{v1/u1, . . . ,
vn/un} denotes the state resulting from assigning the values v1, . . . , vn to the formal
parameters u1, . . . , un. Note that σ{v/u} denotes the result of assigning the value v to
u in the state σ.

Definition 5 (Local transition for assignment).

When the next statement to be executed is an assignment we have the following transi-
tion rule:

〈r, σ, x = e;S, q〉 τ→ 〈r, σ′, S, q〉,
where σ′ = σ{σ(e)/x} and σ(e) denotes the value of expression e in σ.

Definition 6 (Local transitions for send).

When the next statement to be executed is a send statement we distinguish between
broadcast, sending to self, and sending to others :

6



– 〈r, σ,m(e1, . . . , en); S, q〉 m(v̄)−→ 〈r, σ, S, q〉
where v̄ = (v1, . . . , vn), and vi = σ(ei).

– 〈r, σ, x.m(e1, . . . , en); S, q〉 r′.m(v̄)−→ 〈r, σ, S, q〉
where σ(x) = r′, r 6= r′, v̄ = (v1, . . . , vn), and vi = σ(ei).

– 〈r, σ, x.m(e1, . . . , en); S, q〉 τ−→ 〈r, σ, S, q.m(v1, . . . , vn)〉
where σ(x) = r, and vi = σ(ei).

The first case above describes the anonymous broadcast of an asynchronous mes-
sage. The second case describes sending a synchronous or asynchronous message to
another rebec. Finally, the last case describes sending of an asynchronous message to
the rebec itself. Note that we do not allow sending synchronous messages to self, which
will cause deadlock.

Definition 7 (Local transitions for receive).

We distinguish between the reception of synchronous and asynchronous messages:

– The following transition describes the reception of an asynchronous message for
which the receiving rebec has a corresponding server:

〈r, σ, S, q〉 r.m−→ 〈r, σ, S, q.m〉
– Asynchronous messages for which the receiving rebec does not have a correspond-

ing receiver are simply discarded:

〈r, σ, S, q〉 r.m−→ 〈r, σ, S, q〉
– Finally, we have the following transition which described the reception of a syn-

chronous message:

〈r, σ, receive(m1, . . . , mn); S, q〉 r.m(v̄)−→ 〈r, σ′, S, q〉
where, given the method definition m(u1, . . . , un) and v̄ = (v1, . . . , vn), σ′ =
σ{v1/u1, . . . , vn/un}.

Definition 8 (Local transition for creation).

When the next statement to be executed is a creation statement we have the following
transition:

〈r, σ, x = new(A); S, q〉 r′→ 〈r, σ′, S, q〉 where σ′ = σ{r′/x}. Here r′ is chosen
arbitrarily. Freshness of r′ is ensured in the context of a component (described in the
next section).

Next we describe the semantics of a component which is specified by a set of rebecs.

Definition 9 (Component configuration).

A component is a non-empty, finite set of rebecs and a component configuration is
shown as C = {l1, . . . , ln} where li denotes the local configuration of rebec ri.

Components interact only by broadcasting anonymous messages. The set of pub-
lic methods of the rebecs inside a component define its (provided) interface. A message

7



received by a component is broadcasted to all its internal rebecs. We formalize the exter-
nally observable behavior of a component by means of a transition relation with labels
!m and ?m which indicate sending and receiving anonymous asynchronous message
m, respectively. Communications between rebecs of a component are hidden.

Definition 10 (Component transition for internal communication).

The following transition describes internal synchronous and asynchronous message
passing,

li
rj .m→ l′i, lj

rj .m→ l′j , i 6=j

{l1,...,li,...,lj ,...,ln} τ→{l1,...,l′j ,...,l′j ,...,ln}
Note that this rule describes sending a synchronous or an asynchronous message from
ri to rj (i 6= j).

Definition 11 (Component transition for send).

The following rule describes broadcast of an anonymous asynchronous message gener-
ated by an internal rebec.

li
m→l′i

{l1,...,li,...,ln}!m→{l1,...,l′i,...,ln}
Definition 12 (Component transition for receive).

The following rule describes the internal broadcast of a received anonymous (asynchro-
nous) message.

li
ri.m→ l′i, for all i∈{1,...,n}

{l1,...,li...,ln}?m→{l′1,...,l′i...,l′n}
Definition 13 (Component transition for creation).

The following rule describes the creation of an internal rebec.

li
r→l′i

{l1,...,li,...,ln} τ→{l1,...,l′i,...,ln,ln+1}
where ln+1 denotes the initial local configuration of the newly created rebec r which is
required not to exist in {l1, . . . , li, . . . , ln}, i.e., r 6= ri, i ∈ {1, . . . , n}.

Definition 14 (Component internal transition ).

Finally, the following rule describes the internal interleaving execution of rebecs within
a component.

li
τ→l′i

{l1,...,li,...,ln} τ→{l1,...,l′i,...,ln}

A global model simply consists of a set of components.

8



Definition 15 (Global configuration).

A global configuration is a finite set of component configurations {C1, . . . , Cn}.
Next we define the global transition system which describes the behavior of a set of

components as a closed system.

Definition 16 (Global transition for communication).

This transition describes the broadcasting mechanism of asynchronous anonymous mes-
sages.

Ci
!m→C ′i, Cj

?m→C ′j , i 6=j

{C1,...,Ci,...,Cj ,...,Cn} τ→{C ′1,...,C ′i,...,C ′j ,...,C ′n}
Note that an anonymous asynchronous message is broadcasted to all the other com-

ponents.

Definition 17 (Global internal transition ).

All the other transitions of components are as internal computation steps in the global
configuration.

Ci
τ→C ′i

{C1,...,Ci,...,Cn} τ→{C1,...,C ′i,...,Cn}

4.1 Example: Bridge Controller

Here, we explain a simple example to show our modeling approach. Consider a bridge
with a one-way track where only one train can pass at a time. This example can be
easily extended to multiple tracks. Trains enter the bridge from its left side, pass it,
and exit from the right side. Rebeca code for this example is shown in Figure 1. We
model the two ends of the bridge by two objects controlling these ends. These objects
are described by the classes leftController and rightController. The rebecs theLeftCtrl
and theRightCtrl are instantiated from these two classes and together form a compo-
nent. Trains are modeled by the Train class. Many trains can be instantiated from this
class, but in this example we only have two trains instantiated. Each single train in-
stance is modeled as a component. Trains announce their arrival by broadcasting the
anonymous message Arriva(MyTrainNr) to the Controller component. To this message
only the leftController will react by broadcasting the YouMayPass(MyTrainNr) message
after which the leftController waits for the synchronous message passed. The message
YouMayPass(MyTrainNr) will be received by both trains, however only the train iden-
tified by MyTrainNr will enter the bridge (after the test the other train will remove the
message from its queue and wait for the next message). Passing the bridge is modeled
by broadcasting the message Leave to the Controller component. To this message only
the rightController will react by sending the synchronous message passed to the left-
Cntroller which enables the leftController to receive a new Arrive messages. Note that
thus no trains are allowed to enter the bridge (by executing GoOnTheBridge) while the

9



activeclass leftController() { activeclass Train() {
knownobjects { rightController right; } knownobjects {}
provided { Arrive; } provided { YouMayPass; }
required { YouMayPass; } required { Arrive; Leave; }
statevars { int trainsin; } statevars { boolean OnTheBridge; }
msgsrv initial() { msgsrv initial(int MyTrainNr) {

trainsin = 0; self.ReachBridge();
} OnTheBridge = false;
msgsrv Arrive (int TrainNr) { }

YouMayPass(TrainNr); msgsrv YouMayPass(int TrainNr) {
trainsin = trainsin + 1; if (TrainNr == MyTrainNr) {
receive(passed); self.GoOnTheBridge();

} OnTheBridge = true;
} }

}
msgsrv GoOnTheBridge() {

Leave();
OnTheBridge = false;
self.ReachBridge();

activeclass rightController() { }
knownobjects { leftController left; } msgsrv ReachBridge() {
provide { Leave; } Arrive(MyTrainNr);
request {} }
statevars { int trainsout; } }
msgsrv initial() {

trainsout = 0; main {
} Train train1(1);
msgsrv Leave() { Train train2(2);

trainsout = trainsout + 1; leftController theLeftCtrl(theRightCtrl);
left.passed(); rightController theRightCtrl(theLeftCtrl);

} Components:
} {train1}; {train2};

{theLeftCtrl, theRightCtrl};
}

Fig. 1. Bridge controller example, modeled in extended Rebeca

10



leftController is suspended. Two variables, trainsin and trainsout, are added to the code
for verification purposes, explained in Section 5.1.

In Figure 1, encapsulation of rebecs in a component and also three types of message
passing can be seen. The two left and right controllers of the bridge are tightly cou-
pled and are encapsulated in a component. It allows the synchronous message passing
between them. Trains are independent objects and can communicate by broadcasting
asynchronous messages. It is also shown that the broadcasted messages are only ser-
viced by the provider rebecs.

5 Formal Verification

Formal verification of properties for components, is a problem of model checking of
open systems. By an open system, we mean a system that interacts with its environment
and whose behavior depends on this interaction; unlike a closed system, whose behav-
ior is completely determined by the state of the system. The crucial point in model
checking an open system, which is usually referred to as module checking, is modeling
the environment. To model the nondeterminism, an environment can be modeled as a
general process with arbitrary behavior [13, 6].

For module checking components in extended Rebeca, we define a general environ-
ment. A component interacts with its environment by means of sending and receiving
asynchronous anonymous messages. Because of the asynchronous nature of the com-
munication mechanism, we only need to model the messages generated by the environ-
ment. Each message generated by the environment is broadcasted to the internal rebecs
of the component. If the required service is provided by a rebec, the message is put in
the rebec’s queue.

To model an environment which simulates all the possible behaviors of a real envi-
ronment, we need to consider an environment nondeterministically sending unbounded
number of messages. It is clear that model checking will be impossible in this case.
To overcome this problem, we use an abstraction technique. Instead of putting incom-
ing messages in the queues of rebecs, they may be assumed as a constant (although
unbounded) set of requests to be processed at any time, in a fair interleaving with the
processing of the requests in the queue. This way of modeling the environment, gener-
ates a closed model which is bisimilar to the model resulting from a general environ-
ment which nondeterministically sends unbounded number of messages.

We will proceed by a formal definition of a general environment for Rebeca compo-
nents. Then we show that the component’s behavior in this general environment, weakly
simulates the behavior of the component being concurrently executed with any arbitrary
component. So, we can use model checking to prove certain properties for a component
interacting with a general environment, and then deduce that these properties preserve
for that component in any environment. Before showing the weak simulation, we use
our abstraction technique to overcome the unboundedness problem of queues in a gen-
eral environment, and make model checking feasible. Before that, we also use common
data abstraction techniques on parameters of incoming messages, to make the number
of messages bounded.

11



Definition 18 (Environment of a component).

For each component C, we define a component EC as a general environment for C,
where EC nondeterministically broadcasts all the provided messages of C.

The global configuration made by C and EC is a closed model which we denote it as
M , i.e. M = {C,EC}. The interface and body of component EC can automatically be
derived from the interface of C. The required messages of EC are all the provided mes-
sages of C, EC has no provided message and no instance variable. For each provided
messages mC of C, there is a rebec in EC , which has one method named active in its
body. This method sends two messages: first mC to C, and second an active message
to itself. Sending the active message to itself makes an infinite loop for sending the mC

to C. According to the broadcast mechanism, the environment component EC also re-
ceives all the messages from component C. As there are no provided messages in EC ,
they are all purged.

In modeling environment as a component, we use the existing data abstraction tech-
niques for the parameters of incoming messages to reduce the number of messages to a
finite set, but still the number of sent messages can be unbounded. Given this assump-
tion, we proceed to next definition.

Definition 19 (Queue abstraction).

In the model M = {C, EC}, instead of putting all the messages coming from EC in
the message queues of rebecs in C, we model each external message by a transition
of C. More specifically, for each external message m we introduce the following local
transition:

〈r, σ,nil , q〉 r.m−→ 〈r, σ, S, q〉,
where S is the handler of m. In this way, the queues of the closed system C only contain
internal messages and we obtain a finite model of M in case the transition system of
the closed system C is finite. This abstraction of M we denote by Ca.

Theorem 1 (Correctness of the queue abstraction).

The model M = {C, EC}, is bisimilar to model Ca (with the conventional definition
for bisimulation). The proof is based on the fair interleaving manner of processing the
messages in the queue and the set of provided messages.

Now, we will proceed by defining the weak simulation relation between two models
in Rebeca, first one consists of a component and the general environment (namely
{C, EC}), and the second one consists of that component composed by any arbitrary
component (namely {C, C ′}). Our final goal is to prove certain properties for {C,EC},
and conclude that they preserve for {C, C ′}. Here, according to Theorem 1, we can de-
velop the weak simulation relation upon the abstracted model (Ca instead of {C, EC}).

Next, we define a general definition for weak simulation, and then continue by ap-
plying the definition on our specific models.

12



Definition 20 (Weak Simulation).

Given two transition systems Σ1 = (S1, T1, I1) and Σ2 = (S2, T2, I2) where Si is the
set of states for Σi, Ti ⊆ Si × Si is the transition relation, Ii is the initial state for Σi:

1. A relation H is a R-simulation between Σ1 and Σ2, where H,R ⊆ S1×S2, if and
only if for all s1 and s2, if H(s1, s2) then the following conditions holds:
(a) R(s1, s2).
(b) For every state s′1 such that (s1, s

′
1) ∈ T1 we have (s′1, s2) ∈ H (stuttering), or

else there is a state s′2 with the property that (s2, s
′
2) ∈ T2 and (s′1, s

′
2) ∈ H .

2. We say that Σ2 R-simulates Σ1 (denoted by Σ1 ≤ Σ2) if there exists a R-simulation
H between Σ1 and Σ2 such that H(I1, I2).

The above general definition for the specific case of models in extended Rebeca, shall be
instantiated by defining relation H between the states of two systems. For that we need
a projection definition: si ↓ C means the projection of state si of the model Mi, over
variables and queues of rebecs in component C, and for the queues, only considering
messages coming from internal rebecs. It means ignoring the variables and contents of
message queues of other components in M and also ignoring the messages sent from
other components in the queues of rebecs in C. So, s1 ↓ C = s2 ↓ C means variables
of rebecs in component C have the same value in states s1 and s2, and also the message
queues of rebecs in C have the same content in states s1 and s2, considering only the
messages coming from internal rebecs of C.
Based on Definitions 18 , 19 and 20, we have the following theorem.

Theorem 2 (Weak simulation between models).

Given a component C and an arbitrary component C ′, the transition system Σ1 =
(S1, T1, I1) of the (abstracted) model Ca, R-simulates the transition system Σ2 =
(S2, T2, I2) of the model M2 = {C, C ′}, where R(s1, s2) iff s1 ↓ C = s2 ↓ C.

The formal proof is not included here, but the extension to Rebeca is made carefully
to keep the proof similar to one in [15]. Intuitively, it is based on the fact that in each
state of the transition system Σ2, the enabled transitions are a subset of enabled tran-
sitions in the correspondent state of the transition system Σ1. By correspondent states,
we mean the states in Σ1 and Σ2 which satisfy the simulation relation, starting from
the initial state. This is because of the definition of general environment which covers
all the possible messages, and hence transitions.

Definition 21 (Satisfaction relation).

1. A computation of a component C is a maximal execution path beginning at the
initial state. Given an LTL formula φ, we say that C |= φ iff φ holds for all compu-
tations of C.

2. Given a CTL formula φ, we say that C |= φ iff φ holds in the initial state of C.

We have the following theorem from [9].

13



Theorem 3 (Property preservation).

If M1 weakly simulates M2, then for every ACTL* or LTL formula φ without the next
operator (with atomic propositions on variables in M1), M2 |= φ implies M1 |= φ.

In the module checking approach we used Definition 18, by modeling a general
environment as a component. Then, we used Definition 19 and Theorem 1 to abstract
from unbounded queues resulting from external messages and as such obtain a reduction
of the state-space.

Next, we shall explain how to model check the obtained closed model. In model
checking the asynchronous kernel of Rebeca, we gained a significant state reduction due
to the asynchronous nature of communication and computation which allows to model
the execution of a method as an atomic operation. In the presence of the synchronous
communication mechanism this is no longer possible because of the additional syn-
chronization between sender and receiver which requires the introduction of new states.
However, this extension is bounded by the number of synchronous messages and re-
becs, and as an internal behavior of a component, it is resolved by model checking,
without any effects on the theorem.

5.1 Verifying Properties of the Bridge Controller

Consider the Bridge controller model in Figure 1, which is explained in Section 4.1.
Safety property of the model is verified using our tool, Rebeca Verifier [18]. Rebeca
Verifier enables us to enter our model as Rebeca code, and enter the properties as LTL
formulas based on variables in the Rebeca code. The model and the properties are then
translated to the modeling and specification languages of the back-end model checker,
Spin [3]. In this example we explain how we can check the mutual exclusion property,
which is at any moment only one train should be on the bridge. This property can
be specified using the state variable OnTheBridge of the trains. The LTL formula for
checking this property is the followings (¤ denotes always) :

– Mutual exclusion: ¤!(train1.OnTheBridge && train2.OnTheBridge)

To show our module checking approach and the abstraction techniques discussed,
we consider the controller as an open component C. Our purpose is to check its proper-
ties in all the possible conditions, i.e., in a general environment. A general environment
can be considered as an environment sending to controller component, all of its pro-
vided messages in a nondeterministic way, what we called EC . The provided messages
are Arrive serviced by leftController and Leave serviced by rightController. Our tool
supports module checking components by modeling the abstracted environment Ca in-
stead of EC . Here, it means that in those states where the statement to be executed is
nil, we can take a message from top of the queue to execute it, or execute one of the
two provided message servers, Arrive and Leave, which are not put in the queue but are
placed in a constant set and is considered to be always enabled.

In Module checking the controller component, we remove all other rebecs includ-
ing their state variables and queues. So, we cannot reach OnTheBridge variables to

14



check the properties. In this case, state variables trainsin of theLeftCtrl and trainsout of
the theRightCtrl are used to check the mutual exclusion property which is restated as:
¤ (theLeftCtrl.trainsin − theRightCtrl.trainsout ≤ 1). Model checking proves
that this property holds, and based on our theory established in Section 5, we can con-
clude that this property holds for any model consisting of the controller component and
any arbitrary component.

6 Conclusion and Future Work

In this paper, we have enriched the modeling power of the basic message-driven, asyn-
chronous computational model of the actor-based language Rebeca by introducing a
formal concept of components for structuring a model in Rebeca and to integrate asyn-
chrony by synchronous message passing. We exploited the additional structuring mech-
anisms, provided by components, in a compositional verification approach based on
model-checking. Formal semantics of Rebeca is used to establish the verification the-
ory corresponding this approach. We use the Rebeca Verifier tool as an integrated tool
, which uses NuSMV and Spin as back-end model checkers to verify properties of Re-
beca models and also supports modularization and abstraction techniques provided.

Our research group in Tehran and Sharif universities is working on the Rebeca Ver-
ifier tool. The next step will involve the extension to components and providing the
fully automated module checking technique for extended Rebeca. For more details and
further information refer to our home page [2].

Furthermore, we used Rebeca for modeling security protocols, using dynamic data
structures to describe the behavior of intruders.For model checking these applications,
we therefore need appropriate abstraction techniques.

Acknowledgement

Part of the work of the second author is funded by the European IST project Omega
(2001-33522).

References

1. NuSMV user manual. availabe through http://nusmv.irst.itc.it/NuSMV/ userman/index-
v2.html.

2. Rebeca. http://khorshid.ut.ac.ir/∼rebeca.
3. Spin user manual. available through http://netlib.bell-labs.com/netlib/spin/whatisspin.html.
4. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, USA, 1990.
5. G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation. Journal of

Functional Programming, 7:1–72, 1997.
6. R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular verifica-

tion. In CONCUR: 10th International Conference on Concurrency Theory, Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, Germany, 1999.

15



7. R. Alur, T. A. Henzinger, F. Y. C. Mang, and S. Qadeer. MOCHA: Modularity in model
checking. In Proceedings of CAV’98, volume 1427, pages 521–525. Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1998.

8. R. Alur and T.A. Henzinger. Reactive Modules. Formal Methods in System Design: An
International Journal, 15(1):7–48, July 1999.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

10. M. Gaspari and G. Zavattaro. An actor algebra for specifying distributed systems: The hur-
ried philosophers case study. Lecture Notes in Computer Science, 2001:216–246, 2001.

11. C. Hewitt. Description and theoretical analysis (using schemata) of PLANNER: A language
for proving theorems and manipulating models in a robot. MIT Artificial Intelligence Tech-
nical Report 258, Department of Computer Science, MIT, April 1972.

12. N. Ioustinova, N. Sidorova, and M. Steffen. Closing open SDL-systems for model checking
with DTSpin. In FME’2002, volume 2391 of Lecture Notes in Computer Science, pages
531–548. Springer-Verlag, Berlin, Germany, 2002.

13. O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. Information and Computation,
164(2):322–344, 2001.

14. N.A Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CS, 1996.
15. M. Sirjani and A. Movaghar. An actor-based model for formal modelling of reactive systems:

Rebeca. Technical Report CS-TR-80-01, Tehran, Iran, 2001.
16. M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, and A. Shali. Model checking Rebeca

by SMV. In Proceedings of the Workshop on Automated Verification of Critical Systems
(AVoCS’03), pages 233–236, Southampton, UK, April 2003.

17. M. Sirjani, A. Movaghar, A. Shali, and F.S. de Boer. Modeling and verification of reactive
systems using rebeca. Fundamenta Informaticae, 63(4):385–410, Dec. 2004.

18. M. Sirjani, A. Shali, M.M. Jaghoori, H. Iravanchi, and A. Movaghar. A front-end tool for
automated abstraction and modular verification of actor-based models. In Proceedings of
ACSD 2004, pages 145–148. IEEE Computer Society, June 2004.

19. C. Talcott. Actor theories in rewriting logic. Theoretical Computer Science, 285(2):441–485,
August 2002.

20. C. Varela and G. Agha. Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.

16


