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equalities between terms as labels instead of Boolean variables. We provide an approach to
build a reduced ordered EUF-BDD (EUF-ROBDD) and prove that every path to a leaf is
satisfiable by construction. Moreover, EUF-ROBDDs are logically equivalent representations of
EUF-formulae, so they can also be used to represent state spaces in symbolic model checking
with data.
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1 Introduction

Binary Decision Diagrams (BDDs) are one of the biggest breakthroughs in
computer-aided design. Reduced ordered BDDs [1] form a canonical representa-
tion of Boolean formulas, making testing of equivalence straightforward. Unfor-
tunately, their power is mostly restricted to propositional logic, which is often
not sufficiently expressive for verification. The equality logic with uninterpreted
functions (EUF) has been proposed for verifying hardware [2]. EUF formulae
have been successfully applied for the verification of pipelined processors [2],
and translation validation [3].

Using uninterpreted functions simplifies proofs as the only retained infor-
mation about a function is the property of functional consistency, i.e. if x = y



then f(x) = f(y). The abstraction process does not preserve validity and may
transform a valid formula into an invalid one, e.g. x + y = y + x is valid but
f(x, y) = f(y, x) is not. However, in some application domains the process of
abstraction is justified.

The original approach to decide this logic was to solve equalities while main-
taining congruence closure with respect to the uninterpreted functions [4]. This
is mainly applied to the conjunction of equalities. Disjunctions can be treated by
case splitting [5]. Another approach is based on work of Ackermann [6], who has
shown that deciding the validity of EUF formulae can be reduced to checking the
satisfiability of pure equality logic formulae. Such reduction can be performed by
replacing each application of an uninterpreted function symbol with a new vari-
able and for each pair of function applications to add a constraint which enforces
the property of functional consistency, i.e. while replacing any two subterms of
the form F (x) and F (y) by new variables f1 and f2 , we have to add a constraint
of the form x = y → f1 = f2.

Due to the finite domain property, which states that an equality logic formula
is satisfiable if and only if it is satisfiable over a finite domain, Pnueli et al. [3]
find a small domain for each variable, which is large enough to maintain satisfi-
ability. Goel et al. [7] proposed to decide equality logic formulae by replacing all
equalities with new Boolean variables. Similarly, in [8] a BDD-based decision pro-
cedure for combinations of theories is presented. As a result of both approaches,
BDDs are not a canonical representation for formulas anymore. Also, there can
be paths to a leaf which are not satisfiable. Hence, all paths must be checked, for
instance if they satisfy transitivity of equality. Therefore, the constraint solver
can be invoked exponentially many times because of the Boolean structure of
the formula.

Bryant et al. [9] reduce an equality formula to a propositional one by adding
transitivity constraints. In that approach it is analyzed which transitivity prop-
erties may be relevant. Tveretina et al [10] proposed a resolution-based approach
to check satisfiability of equality logic formulae.

In [11], equational BDDs (EQ-BDDs) are defined, in which all paths are
satisfiable by construction. That approach extends the notion of orderedness to
capture the properties of reflexivity, symmetry, transitivity, and substitutivity.
The advantage of the method is that satisfiability checking for a given ordered
EQ-BDD can be done immediately. However, it is restricted to the case when
equalities do not contain function symbols. EQ-BDDs have been extended in [12].
Here some interpreted functions, viz. natural numbers with zero and successor
were added. In [13] an alternative solution was provided, with a different orien-
tation of the equations.

Contribution. We introduce EUF-BDDs, which are BDDs with internal nodes
labelled by equalities between ground terms. We introduce reduced ordered EUF-
BDDs, and prove that these have no contradictory paths. This makes them
suitable for theorem proving and satisfiability checking. Moreover, contrary to
the approaches to EUF mentioned above, we obtain a representation which is
logically equivalent to the original formula. This method extends the approach
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introduced in [11]. However, the changed orientation of [13] is essential for the
completeness of our method. So technically, the EQ-BDDs of [11] are not a special
case of our EUF-BDDs, because the orientation of the guards is reversed.

Application. We have made a prototype implementation of our EUF-BDDs
in the special purpose theorem prover for the µCRL toolset [14]. The prover is
used to discharge proof obligations generated in protocol verifications, and it is
also used in the symbolic model checker with data, proposed in [15]. In the latter
application it is essential to have a concise representation of formulas, which is
provided by EUF-BDDs.

2 Basic Definitions

2.1 Syntax

In this section we define a syntax for formulae. A signature is a tuple Σ =
(Fun, ar), where Fun = {f, g, h, . . . } is an enumerable set of function symbols
and ar : Fun → N is a function describing the arity of the function symbols.
Function symbols with the arity 0 are called constants (typically a, b, c, . . . ).
The set of constant symbols is denoted by Const. The set Term of terms is
defined inductively: for n ≥ 0, f(t1, . . . , tn) is a term if t1, . . . , tn are terms,
f ∈ Fun, and ar(f) = n. For n = 0, we write a instead of a(). In the following,
we use the lower case letters s, t, and u to denote terms. The set SubTerm(t) of
subterms of a term t is defined inductively: for n ≥ 0, SubTerm(f(t1, . . . , tn)) =
{f(t1, . . . , tn)}∪

⋃n
i=1 SubTerm(ti). A subterm of a term t is called proper if it is

distinct from t. The set of proper subterms of a term t is denoted by SubTermp(t).

Definition 1. (Equalities) An equality is a pair of terms (s, t) ∈ (Term×Term).
We write an equality as s ≈ t. The set of equalities over Σ is defined by Eq(Σ)
or if it is not relevant by Eq.

Here we write ‘≈’ for equality, and we use ≡ to denote syntactical identity
between two elements. We define the set of subterms occurring in an equality
s ≈ t as SubTerm(s ≈ t) = SubTerm(s) ∪ SubTerm(t), and the set of proper
subterms occurring in s ≈ t as SubTermp(s ≈ t) = SubTermp(s) ∪ SubTermp(t).

Definition 2. Formulae (denoted by For(Σ)) are expressions satisfying the fol-
lowing syntax.

ϕ := true | false | Eq | ITE(ϕ,ϕ, ϕ)

In the following, the abbreviation ¬ϕ stands for ITE(ϕ, false, true), ϕ ∧ ψ

stands for ITE(ϕ,ψ, false), ϕ ∨ ψ stands for ¬(¬ϕ ∧ ¬ψ), ϕ → ψ stands for
¬ϕ ∨ ψ, and ϕ↔ ψ stands for (ϕ→ ψ) ∧ (ψ → ϕ).

We write s 6≈ t as an abbreviation of ¬(s ≈ t). For a given formula ϕ, the set
of all equalities occurring in ϕ is denoted by Eq(ϕ).

We define the set of subterms occurring in a formula ϕ as SubTerm(ϕ) =
⋃

e∈Eq(ϕ) SubTerm(e), and the set of proper subterms occurring in a formula

3



ϕ as SubTermp(ϕ) =
⋃

e∈Eq(ϕ) SubTermp(e). We define the set Lit of literals as

Lit = {l | l ∈ Eq} ∪ {¬l | l ∈ Eq}. Given a conjunction of literals ϕ, by Lit(ϕ) we
denote the set of all literals occurring in it.

2.2 Semantics

A structure D over a signature Σ = (Fun, ar) is defined to consist of a non-
empty set D called the domain, and for every f ∈ Fun, with ar(f) = n, a map
fD : Dn → D. The interpretation [[t]]D : Term(Σ) → D of a term t is inductively
defined as follows. For n ≥ 0, [[f(t1, . . . , tn)]]D = fD([[t1]]D, . . . , [[tn]]D), where
t1, . . . , tn ∈ Term. The interpretation [[ϕ]]D : For(Σ) → {true, false} of a formula
ϕ is defined as usual, i.e. [[true]]D = true, [[false]]D = false, [[s ≈ t]]D = true, if
[[s]]D = [[t]]D, and false otherwise.

[[ITE(ϕ,ψ, χ)]]D =

{

[[ψ]]D if [[ϕ]]D = true

[[χ]]D otherwise

Definition 3. A structure D satisfies a formula ϕ if [[ϕ]]D = true. A formula
ϕ is called satisfiable if there exists a satisfying structure. Otherwise ϕ is called
a contradiction. If each structure D satisfies ϕ then ϕ is a tautology. We say
that a formula ϕ is logically equivalent to a formula ψ if for every structure D,
[[ϕ]]D = [[ψ]]D.

3 Binary Decision Diagrams for EUF-logic

This paper presents a new data structure called an EUF-BDD for representing
and manipulating formulas containing equalities and uninterpreted functions. We
consider EUF-BDDs as a restricted subset of formulas.

Definition 4. We define the set B of EUF-BDDs as follows.

B := true | false | ITE(Eq,B,B)

It is straightforward to show that every formula defined above is equivalent
to at least one EUF-BDD.

EUF-BDDs are nested ITE formulas which are represented in implemen-
tations as directed acyclic graphs. The difference between BDDs representing
Boolean formulae and EUF-BDDs is, that in the latter case internal nodes are
labelled with equalities. An EUF-BDD can be represented as a rooted, directed
acyclic graph with nodes of out-degree zero labelled by true and false, and a set
of nodes of out-degree two labelled by equalities between ground terms. For a
node l the two outgoing edges are given by two functions low(l) and high(l).

Throughout the paper we use T and S to denote EUF-BDDs.

Example 5. The EUF-BDD representing the property of functional consistency
a ≈ b → f(a) ≈ f(b) can be depicted as in Figure 1. The EUF-BDD can be
written as ITE(a ≈ b, ITE(f(a) ≈ f(b), true, false), true).
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a ≈ b

f(a) ≈ f(b)

truefalse

Fig. 1. Dashed lines represent low/false edges, and solid ones represent high/true edges.

In order to define ordered EUF-BDDs, we need a total well-founded order
on equalities. This is built from a total well-founded order on terms. To en-
sure structural properties of ordered EUF-BDDs, this total order should satisfy
certain properties.

Definition 6. (Order on terms) We define a simplification order on the set
Term as satisfying the following conditions:

1. For all s, t ∈ Term, s ≺ t if s ∈ SubTermp(t).
2. For each f ∈ Fun and for all 1 ≤ i, j ≤ n, and si, t ∈ Term, if sj ≺ t then

f(s1, . . . , sj , . . . , sn) ≺ f(s1, . . . , t, . . . , sn).
3. The order is total and well-founded.
4. Â is the reverse of ≺.

In the sequel, we work with an arbitrary but fixed simplification order ≺. An
example of such an order is the recursive path order [16], which we also used in
our implementation.

Definition 7. (Order on equalities) Given a simplification order ≺ on terms,
the total well-founded order on the set Eq is defined as follows.

(s ≈ t) ≺ (u ≈ v) if either s ≺ u or s ≡ u and t ≺ v.

We use terminology from term rewrite systems (TRS). In particular, by a
normal form with respect to some TRS we mean a term to which no rules of
the TRS are applicable. A system is terminating if no infinite rewrite sequence
exists.

A first operation on EUF-BDDs is simplification of equalities as defined be-
low.

Definition 8. (Simplified equalities and EUF-BDDs) An equality s ≈ t

is called simplified, if s Â t. In order to simplify all equalities in a BDD, we
introduce the following rewrite rules:

– s ≈ t→ t ≈ s, for all s, t ∈ Term such that s ≺ t.
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– ITE(t ≈ t, T1, T2) → T1.

Suppose T is an EUF-BDD. By T ↓ we mean the normal form of T obtained
after applying these rules. An EUF-BDD T is called simplified if T ≡ T ↓.

In the following, by t[s] we mean a term t such that s ∈ SubTerm(t), by
e[s] we mean an equality such that s ∈ SubTerm(e), and by T [s] we mean an
EUF-BDD T such that there is a node l in T associated with an equality e(l)
and s ∈ SubTerm(e(l)).

Given the order on equalities, we can define a system of reduction rules as in
[11], but now the equations are oriented differently, as in [13]. Now starting with
an arbitrary simplified EUF-BDD, we can transform it by repeatedly applying
the following reduction rules.

Definition 9. (Reduction rules on simplified EUF-BDDs) We define a
TRS Reduce-Order as follows.

1. ITE(e, T, T ) → T

2. ITE(e, T1, ITE(e, T2, T3)) → ITE(e, T1, T3)

3. ITE(e, ITE(e, T1, T2), T3)) → ITE(e, T1, T3)
4. ITE(e1, ITE(e2, T1, T2), T3) → ITE(e2, ITE(e1, T1, T3), ITE(e1, T2, T3)), if e1 Â e2.
5. ITE(e1, T1, ITE(e2, T2, T3)) → ITE(e2, ITE(e1, T1, T2), ITE(e1, T1, T3)), if e1 Â e2.
6. ITE(s ≈ t, T1[s], T2) → ITE(s ≈ t, T1[t] ↓, T2), if s Â t.

Rules 1−5 are the rules for simplifying BDDs for propositional logic, eliminat-
ing redundant tests and ensuring the right ordering. Rule 6 allows to substitute
equals for equals. Note that we immediately apply simplification after a substi-
tution. The transformation by the reduction rules yields a logically equivalent
EUF-BDD.

Definition 10. (EUF-ROBDDs) We define an EUF-ROBDD to be a simpli-
fied EUF-BDD which is a normal form with respect to the TRS Reduce-Order.

It follows from Definition 10 that in a reduced ordered EUF-BDD (EUF-
ROBDD) all equalities labelling the nodes are oriented, i.e. for a given order
≺ on terms, if a node l is associated with an equality s ≈ t then s Â t; the
equalities along a path appear only in a fixed order; and for each EUF-ROBDD
of the form ITE(s ≈ t, T1, T2), s doesn’t occur in T1.

Example 11. Consider ϕ ≡ (x ≈ y ∧ y ≈ z) → f(x) ≈ f(z). For a given order
x ≺ y ≺ z, the derivation of an EUF-ROBDD is depicted in Figure 2. The EUF-
ROBDD consists of one node true. In the picture, we combined several steps in
one arrow. Note that intermediate EUF-BDDs should always be kept simplified.
In the middle arrow of the picture, we explicitly show a simplification step.

An EUF-ROBDD is a normal form with respect to the TRS Reduce-Order.
The following theorem states that the system of reduction rules is terminating.
As a consequence, for each EUF-BDD there exists a logically equivalent EUF-
ROBDD.
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y ≈ x

f(z) ≈ f(x)

z ≈ y

false true

6 y ≈ x

f(x) ≈ f(x)

z ≈ x

false true

simp y ≈ x

z ≈ x

true

1
true

Fig. 2. The derivation of the EUF-ROBDD for (x ≈ y ∧ y ≈ z) → f(x) ≈ f(z).

Theorem 12. The rewrite system Reduce-Order is terminating.

The proof is based on the recursive path order (RPO) [16] to prove termina-
tion. The details can be found in an appendix.

4 Satisfiability of Paths in EUF-ROBDDs

Checking equivalence of two Boolean functions can be done by comparing their
ROBDD representation: equivalent formulas have identical ROBDDs. Unfortu-
nately, the canonicity property of EUF-ROBDDs is violated as is shown for the
plain equality case in [11]. In this section we prove that if the EUF-ROBDD
corresponding to a formula ϕ consists of one node true then ϕ is a tautology,
if the EUF-ROBDD consists of one node false then ϕ is a contradiction, and in
all other cases ϕ is satisfiable. As a consequence, our approach allows to check
whether ϕ and ψ are equivalent. It can be done by verifying whether ϕ ↔ ψ is
a tautology.

When BDDs are used to represent formulas including equalities and uninter-
preted functions, a path to the true leaf in the BDD might not be consistent,
i.e. the set of literals occurring along the path does not have a model. We show
that each path in an EUF-ROBDD is satisfiable by construction.

For proving satisfiability of a path, we see it as a conjunction of literals
occurring along the path, where ∧ is considered modulo associativity and com-
mutativity. We use letters α and β to denote finite sequences of literals, ε for the
empty sequence and α.β for the concatenation of sequences α and β.

Definition 13. (EUF-BDD paths)

– We define the set Path(T ) of all paths contained in an EUF-BDD T induc-
tively as follows.

• Path(true) = Path(false) = ε,
• Path(ITE(e, T1, T2)) = {e.α | α ∈ Path(T1)} ∪ {¬e.α | α ∈ Path(T2)}.
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– For a given path α ≡ l1. . . . .ln, we use an abbreviation ϕα to denote a formula
l1 ∧ · · · ∧ ln.

– The formula ϕα corresponds to a path α.
– We say that α is a satisfiable path if ϕα is satisfiable.

Example 14. Consider an EUF-BDD
ITE(a ≈ b, true, ITE(f(a) ≈ g(c), ITE(b ≈ c, false, true)), false). The EUF-BDD
and the path a 6≈ b.f(a) ≈ g(c).b 6≈ c are depicted in Figure 3.

a ≈ b

true f(a) ≈ g(c)

b ≈ c false

truefalse

Fig. 3. The path a 6≈ b.f(a) ≈ g(c).b 6≈ c.

4.1 Satisfiability of Reduced Formulas

To prove satisfiability of paths in EUF-ROBDDs we use a satisfiability criterium
from [17]. Before turning to a proof that every path in an EUF-ROBDD is satis-
fiable, we need to give a definition of a non-propagated equality and a definition
of a reduced formula. In [17] the definition of non-propagated equalities is given
for CNFs. Here, for sake of simplicity, we rather speak of formulas, but actually
we are interested in the case when a formula is a conjunction of literals. Since we
see a path as a conjunction of literals, where ∧ is considered modulo associativity
and commutativity, this corresponds to a set of unit clauses, as in [17].

Definition 15. (Non-propagated equality) An equality s ≈ t is called non-
propagated in a formula ϕ if the following holds.

– ϕ ≡ (s ≈ t) ∧ ψ for some formula ψ.
– s, t ∈ SubTerm(ψ), and

The set of all non-propagated equalities in ϕ is denoted by NPEq(ϕ).

Definition 16. (Reduced formula) We say that ϕ ≡ l1 ∧ · · · ∧ ln, where
li ∈ Lit, for all 1 ≤ i ≤ n, is reduced if the following holds.
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– NPEq(ϕ) = ∅, and

– for each t ∈ Term, (t 6≈ t) 6∈ Lit(ϕ).

In the following Red is used to denote the set of reduced formulas.

Theorem 17. Every ϕ ∈ Red is satisfiable.

Proof. See [17]. ut

4.2 Satisfiability of EUF-ROBDD Paths

In this section we prove that every path in an EUF-ROBDD is satisfiable. For
a given path α, we transform ϕα into the logically equivalent reduced formula
ϕred

α .

The idea of the proof is that a path in a (simplified) EUF-ROBDD con-
tains segments of the form s 6≈ t0. · · · .s 6≈ tn.s ≈ t. The term s doesn’t occur
as a subterm in any ti, nor in any of the other segments. We obtain a path
corresponding to ϕred

α ∈ Red by propagating s ≈ t, i.e. replacing the segment
by t 6≈ t0. · · · .t 6≈ tn.s ≈ t. Note that this operation doesn’t introduce new
subterms, so propagated equalities in other segments remain propagated. The
result is an equivalent formula in Red, hence it is satisfiable.

Example 18. For a given order a ≺ b ≺ c ≺ f(d) ≺ g(a), the EUF-ROBDD rep-
resentation of ITE(f(d) ≈ a, true, ITE(f(d) ≈ b, true, ITE(f(d) ≈ c, ITE(g(a) ≈
c, true, false), false))) is depicted in Figure 4.

Consider the path f(d) 6≈ a.f(d) 6≈ b.f(d) ≈ c.g(a) ≈ c. The formula corre-
sponding to the path contains one non-propagated equality f(d) ≈ c. By prop-
agating this equality, i.e. replacing f(d) 6≈ a ∧ f(d) 6≈ b with c 6≈ a ∧ c 6≈ b, we
obtain a reduced formula c 6≈ a ∧ c 6≈ b ∧ f(d) ≈ c ∧ g(a) ≈ c.

The formula corresponding to the path and the reduced formula are logically
equivalent. By Theorem 17, the reduced formula is satisfiable. Therefore, the
path is also satisfiable.

Theorem 19. Every path in an EUF-BDD is satisfiable.

The full proof can be found in an appendix.

Corollary 20. From Theorem 19

– The only tautological EUF-ROBDD is true.

– The only contradictory EUF-ROBDD is false.

– All other EUF-ROBDDs are satisfiable.
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f(d) ≈ a

f(d) ≈ b

g(a) ≈ c

f(d) ≈ c

falsetrue

Fig. 4. The EUF-ROBDD representation of a formula ITE(f(d) ≈ a, true, ITE(f(d) ≈

b, true, ITE(f(d) ≈ c, ITE(g(a) ≈ c, true, false), false))).

5 Implementation and Applications

We implemented our proposal for EUF-BDDs within the special purpose theorem
prover for the µCRL toolset [14]. The language µCRL combines abstract data
types with process algebra. The prover is used to discharge proof obligations
generated in protocol verifications, in particular to prove process invariants and
confluence of internal computation steps [18]. It is also used in the symbolic
model checker with data, proposed in [15]. In the latter application it is essential
to have a concise representation of formulas, which is provided by EUF-BDDs.

Usually, symbolic model checking uses ordered binary decision diagrams to
provide a compact representation of the transition system. BDD-based model
checking performs an exhaustive traversal of the model by considering all possible
behaviors in a compact way. Such exhaustive exploration allows BDD based
model checking algorithms to conclude whether a given property is satisfied.

In a similar way, the symbolic model checker with data represents a possibly
infinite state space by BDDs extended with equalities and function symbols. In
this case, the main operation for the model checker is to compute the sequence of
EUF-ROBDDs Φn(⊥) [for some operator Φ]. A fixed point has been reached as
soon as the formula Φn(⊥) ⇐⇒ Φn+1(⊥) is a tautology, which can be checked
by our method.

As input, the prover takes a data specification consisting of a signature of
constructor and defined symbols, and a set of equations. It also takes a quantifier-
free formula as input, and it returns a logically equivalent EUF-ROBDD. If the
result is either true or false, we know for sure that the formula is a tautology or
a contradiction, respectively. For the other cases, we would like to conclude that
both the formula and its negation are satisfiable. However, this is only possible
for certain fragments. We call the prover complete for such fragments.

The previous implementation of this theorem prover [19] was based on EQ-
BDDs [11], and consequently it was only complete for the case of equality logic
with equations between variables. The implementation also used plain term
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rewriting with equations from the abstract datatype. It was sound for any data
specification, but not complete.

The current implementation is based on the observations in this paper. Con-
sequently, it is now complete for the theory with equality and uninterpreted
function symbols. It is sound – but incomplete – for the case that functions
denote constructors, or when they are specified by means of equations.

In the current implementation, we use the reversed equation order as intro-
duced in [13]. Moreover, we use the lexicographic path order to compare terms;
this order satisfies the conditions of Definition 6. Given a formula ϕ, we find
the smallest equation t ≈ s in it, then recursively compute the EUF-BDDs A of
ϕ[t := s] and B of ϕ[t ≈ s := false], and return ITE(t ≈ s,A,B). This procedure
must be repeated in order to obtain an EUF-ROBDD.

The new prover was applied to many existing case studies (see for instance [18,
14] for a description). It is confirmed that the new prover can handle more for-
mulas. Moreover, it was never slower than the version of [19].

TF

f(b)=b

f(a)=b

T F

f(c)=f(a)

c=a

f(b)=f(a)

c=a

b=a

Fig. 5. EUF-ROBDDs obtained by the implementation

The resulting EUF-ROBDD can be visualized (using graphviz/dot) for small
formulas. Figure 5 shows the EUF-ROBDDs for the formulas f(f(f(f(f(a))))) ≈
b ∧ f(f(a)) ≈ f(a) and (f(b) ≈ f(c) ⇒ a ≈ b) ⇔ (f(b) ≈ f(c) ⇒ a ≈ c),
respectively.

6 Conclusions

We have extended the approach from [11] in the presence of uninterpreted func-
tion symbols, and the changed orientation of [13] is essential for the completeness
of our method. Starting from the EUF-BDD representing an arbitrary EUF for-
mula and applying rewrite rules of a rewrite system Reduce-Order, a normal form,

11



called an EUF-ROBDD, can be calculated. We proved that all paths in a EUF-
ROBDD are satisfiable by construction. our approach is suitable for checking
tautology, satisfiability, and equivalence of formulas. A prototype implementa-
tion of this method works within the special purpose theorem prover for the
µCRL toolset [14].

Future work. We have not yet studied strategies for choosing an ordering on
equalities. A good ordering is crucial since it yields a compact representation: for
some Boolean functions, the ROBDD sizes are linear in the number of variables
for one ordering, and exponential for another.

It is interesting to extend our methods beyond the EUF fragment. The cur-
rent implementation handles any data specified by a TRS, but is in general
incomplete. The study in [12] shows that finding complete extensions may be
hard.
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A Proof of Theorem 12

We use recursive path order (RPO) [16] to prove termination. The main idea
of recursive path order is that two terms are compared by first comparing their
root symbols and then recursively comparing their subterms. We do it by viewing
BDDs as binary trees, i.e. ITE(e, T1, T2) can be seen as the tree e(T1, T2).

Definition 21. (Recursive path order for BDDs) We say that for simplified
EUF-BDDs S and T , S Ârpo T , where S ≡ f(S1, S2), T ≡ g(T1, T2), if one
of the following holds.

1. S1 ºrpo T or S2 ºrpo T .
2. f Â g, and S Ârpo T1 and S Ârpo T2.
3. f ≡ g, and S Ârpo T1 and S Ârpo T2, and either S1 Ârpo T1 or (S1 ≡ T1

and S2 Ârpo T2).

Lemma 22. Let T [s] be a simplified EUF-BDD, and s and t be terms such that
s Â t, for some order satisfying Definition 6. Then T [s] Ârpo T [t] ↓.

Proof. Suppose T [s] contains an internal node labelled with en equality e[s].
Consider e[t] ↓. Then one of the following holds.

– e[t] ↓≡ true.
Suppose T [s] ≡ e[s](T1, T2) contains one internal node which is labelled by
an equality e[s].
By Definition 8, T [t] ↓≡ T1. Therefore, taking into account Definition 21(1),
T [s] Ârpo T [t].
For induction hypothesis assume that for each simplified EUF-BDD T ′[s]
containing at most n− 1 internal nodes, T ′[s] Ârpo T

′[t] ↓.
Suppose T [s] ≡ e(T1, T2) has n internal nodes.
If s ∈ SubTerm(e) then by Definition 8, T [t] ↓≡ T1. Therefore, taking into
account Definition 21(1), T [s] Ârpo T [t].
If s 6∈ SubTerm(e) then s occurs either in T1 or in T2. By induction hy-
pothesis, if s occurs in T1, then T1[s] Â T1[t] ↓, and if s occurs in T2, then
T2[s] Â T2[t] ↓. Hence, by 1 and 3 of Definition 21, T [s] Â T [t] ↓.

– e[t] ↓6≡ true.
First we show that for each equality e[s], e[s] ↓Â e[t] ↓.
Suppose e[s] ↓≡ u ≈ v and e[t] ≡ u′ ≈ v′. Then one of the following holds.

• u′ Â v′. Then e[t] ↓≡ u′ ≈ v′, and one of the following holds.

∗ u′ ≺ u. In this case by Definition 7, e[s] ↓Â e[t] ↓.
∗ u′ ≡ u and v′ ≺ v. By Definition 7, e[s] ↓Â e[t] ↓.

• u′ ≺ v′. Then e[t] ↓≡ v′ ≈ u′. Since v′ ¹ v ≺ u, by Definition 7,
e[s] ↓Â e[t] ↓.

Suppose T [s] contains one internal node labelled by an equality e[s]. Since
T [s] is simplified, e[s] ≡ e[s] ↓. Taking into account that e[s] Â e[t] ↓ and 1
and 2 of Definition 21, we obtain T [s] Ârpo T [t] ↓.
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For induction hypothesis assume that for each simplified EUF-BDD T ′[s]
containing at most n− 1 internal nodes, T ′[s] Ârpo T

′[t] ↓.
Suppose T [s] ≡ e(T1, T2) has n internal nodes.
If s ∈ SubTerm(e) then e Â e[t] ↓. Therefore taking into account 1 and 2 of
Definition 21, we obtain T [s] Â T [t] ↓.
If s 6∈ SubTerm(e) then s occurs either in T1 or in T2. By induction hy-
pothesis, if s occurs in T1, then T1[s] Â T1[t] ↓, and if s occurs in T2, then
T2[s] Â T2[t] ↓. Hence, by 1 and 3 of Definition 21, T [s] Â T [t] ↓.

ut

Now we give a proof of Theorem 12.

Proof. We show that every rewrite rule is contained in Ârpo.

1. e(T, T ) Ârpo T by 1 of Definition 21.

2. e(T1, e(T2, T3)) Ârpo e(T1, T3) by 1 and 3 of Definition 21.

3. e(e, T1, T2), T3)) Ârpo e(T1, T3) by 1 and 3 of Definition 21.

4. Suppose e1 Â e2. Then

– e1(e2(T1, T2), T3) Ârpo e1(T1, T3) by 1 and 3 of Definition 21.
– e1(e2(T1, T2), T3) Ârpo e1(T2, T3) by 1 and 3 of Definition 21.

We conclude e1(e2(T1, T2), T3) Ârpo e2(e1(T1, T3), e1(T2, T3)) by 2.

5. Suppose e1 Â e2. Then
– e1(T1, e2(T2, T3)) Ârpo e1(T1, T2) by 1 and 3.
– e1(T1, e2(T2, T3)) Ârpo e1(T1, T3) by 1 and 3.

We conclude e1(T1, e2(T2, T3)) Ârpo e2(e1(T1, T2), e1(T1, T3)) by 2.

6. Suppose s Â t. Then
T1[s] Ârpo T1[t] ↓ by Lemma 22.
Hence (s ≈ t)(T1[s], T2) Ârpo (s ≈ t)(T1[t] ↓, T2) by 1 and 3 of Definition 21.

ut

B Proof of Theorem 19

Definition 23. (Proper formulas) We say that a formula ϕ ≡ l1 ∧ · · · ∧ ln is
proper if the following holds.

1. for every (s ≈ t) ∈ Eq(ϕ), s Â t.
2. for every s ≈ t ∈ {l1, . . . , ln} and for every e ∈ Eq(ϕ) if e Â (s ≈ t) then

s 6∈ SubTerm(e).

Lemma 24. A formula ϕ corresponds to a path in an EUF-ROBDD if and only
if it is a proper formula.

Proof. Assume ϕ ≡ l1 ∧ · · · ∧ ln and l1. . . . .ln is a corresponding path in an
EUF-BDD.

(⇒) Suppose a formula ϕ corresponds to a path in an EUF-ROBDD. We
have to check Definition 23.
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1. Definition 23(1) holds (otherwise not all equalities are simplified).
2. Definition 23(2) holds(otherwise Rule 6 would be applicable).

Hence, ϕ is a proper formula.
(⇐) Suppose ϕ is a proper formula. W.l.o.g. we can assume that all i 6= j,

li 6≡ lj .
Consider the path l1. . . . .ln. Since we consider ∧ modulo associativity, w.l.o.g.

we can assume that for every 1 ≤ i < j ≤ n, e(li) ≺ e(lj).
All equalities are simplified by Definition 23(1). By Definition 23(2), for every

li ≡ si ≈ ti, 1 ≤ i < n, si 6∈ SubTerm(li+1, . . . , ln).
Hence, no rule of Defenition 9 is applicable. Therefore, l1. . . . .ln is a path in

an EUF-ROBDD. ut

Lemma 25. Let for s, t ∈ Term, α.(s ≈ t).β be a path in an EUF-ROBDD.
Then the following holds.

1. For every (s′ ≈ t′) ∈ α ∪ β, s 6∈ SubTerm(s′ ≈ t′).
2. s 6∈ SubTermp(α.(s ≈ t).β).

Proof. 1. Since α is a path in EUF-ROBDD, then s 6∈ SubTerm(β) (otherwise
Rule 6 of Definition 9 would be applicable.)
Consider

(u ≈ v) ∈ α

Then the following holds (we use the first property of Definition 6).

– s 6∈ SubTerm(u) since u ≺ s (if u ≡ s then Rule 6 of Definition 9 would
be applicable, and if u Â s, Rule 4 or 5 would be applicable).

– s 6∈ SubTerm(v) since v ≺ u ¹ s (every EUF-ROBDD is simplified).

Hence,
s 6∈ SubTerm(u ≈ v).

2. – s 6∈ SubTermp(β) (otherwise Rule 6 of Definition 9 would be applicable)
– For each (u ≈ v) ∈ α, s 6∈ SubTermp(u ≈ v) by Lemma 25(1).
– For each (u 6≈ v) ∈ α,

• s 6∈ SubTermp(u) since u ¹ s (otherwise Rule 4 or Rule 5 of Defini-
tion 9 would be applicable ), and

• s 6∈ SubTermp(v) since v ≺ u ¹ s (the EUF-ROBDD is a simplified
EUF-BDD).

– s 6∈ SubTermp(t) because t ≺ s (the EUF-BDD is simplified).
Hence,

s 6∈ SubTermp(α.s ≈ t.β).

ut

Suppose s, t ∈ Term and s 6∈ SubTerm(t). We denote by ϕ[s := t] the formula
obtained from ϕ, where all occurrences of s are repeatedly replaced by t until
no occurrence of s is left. At first we prove a technical lemma which we use in a
proof of Lemma 27.
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Lemma 26. Suppose α ≡ α1.(s ≈ t).α2 is a path in an EUF-ROBDD, β ≡
β1.(s ≈ t).β2, where β1 ⊆ α2 and β2 ⊆ α2.

Then SubTerm(ϕβ) = SubTerm(ϕβ1
[s := t] ∧ (s ≈ t) ∧ ϕβ2

[s := t]).

Proof. We use a trivial observation that for s, t, u ∈ Term, if s 6∈ SubTerm(u)
then SubTerm(u[s := t]) ≡ SubTerm(u). By Lemma 25, s 6∈ SubTermp(α1 ∪ α2).
Since (β1 ∪ β2) ⊆ (α1 ∪ α2), we conclude s 6∈ SubTermp(β1 ∪ β2).

Hence,

SubTerm(ϕβ) = SubTerm(ϕβ1
∧ (s ≈ t) ∧ ϕβ2

)

= SubTerm(ϕβ1
∧ ϕβ2

) ∪ SubTerm({s ≈ t})

= SubTerm(ϕβ1
[s := t] ∧ ϕβ2

[s := t]) ∪ SubTerm({s ≈ t})

= SubTerm(ϕβ1
[s := t] ∧ (s ≈ t) ∧ ϕβ2

[s := t])

ut

Lemma 27. Let α ≡ α1.(s ≈ t).α2 be a path in an EUF-ROBDD, and (s ≈
t) ∈ NPEq(ϕα), where s, t ∈ Term. Then the following holds.

1. |NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t])| < |NPEq(ϕα)|.
2. ϕα1

[s := t] ∧ (s ≈ t) ∧ ϕα2
[s := t] is a proper formula.

Proof. 1. By Lemma 26

SubTerm(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]) = SubTerm(ϕα).

Let us consider an arbitrary equality (u ≈ v) ∈ α such that

– (u ≈ v) 6≡ (s ≈ t),
– (u ≈ v) 6∈ NPEq(ϕα).

By Lemma 25(1),

s 6∈ SubTerm(u ≈ v).

Taking into account a trivial observation that for s, t, u ∈ Term, if s 6∈
SubTerm(u) then SubTerm(u[s := t]) ≡ SubTerm(u), we obtain

(u ≈ v)[s := t] ≡ (u ≈ v).

We wil show that (u ≈ v) 6∈ NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]).
Consider α′ ≡ α\{u ≈ v}. One can see that either (u ≈ v) ∈ α1 or (u ≈ v) ∈
α2. W.l.o.g. we can consider the case (u ≈ v) ∈ α1. Let α′

1 ≡ α1\{u ≈ v}.
By Lemma 26,

SubTerm(ϕα′) = SubTerm(ϕα′

1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]).

Taking into account Definition 15, we obtain that

(u ≈ v) 6∈ NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]).
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We can conclude that for each (u ≈ v) ∈ α such that (u ≈ v) 6∈ NPEq(ϕα),

(u ≈ v)[s := t] 6∈ NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]),

i.e. the size of the set NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t]) cannot be
bigger than the size of the set NPEq(ϕα).
Since (s ≈ t) ∈ NPEq(ϕα) and (s ≈ t) 6∈ NPEq(ϕα1

[s := t]∧(s ≈ t)∧ϕα2
[s :=

t]), we can conclude that

|NPEq(ϕα1
[s := t] ∧ (s ≈ t) ∧ ϕα2

[s := t])| < |NPEq(ϕα)|.

2. Taking into account Lemma 25 and a definition of an EUF-BDD, we obtain
that there are t1, . . . , tk, k ≥ 0 such that

α1 ≡ α.s 6≈ t1. . . . .s 6≈ tk,

where ti ≺ t,1 ≤ i ≤ k, and s 6∈ SubTerm(α′ ∪ α2).
We show that Definition 23 holds.
We denote α s 6≈ t1. . . . .s 6≈ tk, α∗ = s 6≈ t1[s := t]. . . . .s 6≈ tk[s := t] =
t 6≈ t1. . . . .t 6≈ tk, and A = ϕα1

∧ (s ≈ t) ∧ ϕα2
, A = ϕα1

[s := t] ∧ (s ≈
t) ∧ ϕα2

[s := t].

(a) We check Definition 23(1).
Consider an arbitrary l ∈ Lit(A). Then the following holds.

– l ∈ α∗. Then l ≡ (t 6≈ ti) for some i ∈ {1, . . . , k}. We conclude that
e(l) is not of the shape r ≈ r.

– l ∈ α[s := t] ∧ (s ≈ t) ∧ α2[s := t]. We have shown that

α[s := t] ∧ (s ≈ t) ∧ α2[s := t] ≡ α ∧ (s ≈ t) ∧ α2.

Hence, e(l) is not of the shape r ≈ r.

(b) We check Definition 23(2).
By the observation above for each (u ≈ v) ∈ Lit(A),

(u ≈ v)[s := t] ≡ (u ≈ v).

Consider an arbitrary (u ≈ v) ∈ Eq(A).
Then one of the following holds.

– (u ≈ v) ∈ Eq((s ≈ t) ∧ ϕα2
[s := t]).

Taking into account

(s ≈ t) ∧ ϕα2
[s := t] ≡ (s ≈ t) ∧ ϕα2

we obtain that Definition 23(2) holds.
– (u ≈ v) ∈ Eq(ϕα1

[s := t]). Then taking into account Lemma 25 and
Lemma 26 we obtain that Definition 23(2) also holds.

ut
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Proof. Consider an arbitrary path α in an EUF-ROBDD. We have to prove that
ϕα is satisfiable. We claim that there exists a formula ϕred

α ∈ Red, which is
satisfiable iff ϕα is. But ϕred

α is satisfiable by Theorem 17, which finishes the
proof. We now prove the claim by induction on |NPEq(ϕα)|.

If |NPEq(ϕα)| = 0, note that r 6≈ r cannot occur in simplified paths, so
ϕα ∈ Red, and we are finished.

Next, if |NPEq(ϕα)| > 0, then ϕα is of the form ϕ1 ∧ (s ≈ t) ∧ ϕ2, where
s ≈ t is not propagated. Define ϕ′ := ϕ1[s := t] ∧ (s ≈ t) ∧ ϕ2[s := t]. By
Lemma 27(1), |NPEq(ϕ′)| < |NPEq(ϕα)|, and by Lemma 27(2), no occurrences
of r 6≈ r are introduced. Taking into account Lemma 27(2) and by induction
hypothesis, we find ϕ′

red ∈ Red, equivalent to ϕ′.
We now show that ϕα and ϕ′ are logically equivalent. Suppose [[ϕα]]D = true

for a structure D. Hence, [[s]]D = [[t]]D. For each l[s := t] ∈ Lit(ϕ′), taking into
account that [[l]]D = true, we obtain that [[l[s := t]]]D = true. Hence, [[ϕ′]]D = true.
Assume that [[ϕ′]]D = true for a structure D. Taking into account the shape of
ϕ′, we obtain [[s]]D = [[t]]D. Hence, taking into account that for each l ∈ ϕα,
[[l[s := t]]]D = true, we obtain that [[l]]D = true. Hence, [[ϕα]]D = true. We
conclude that ϕα and ϕ′ are logically equivalent.

ut
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