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Abstract— Automated formatting is an important technique
for the software maintainer. It is either applied separately to
improve the readability of source code, or as part of a source
code transformation tool chain. In this paper we report on the
application of generic tools for constructing formatters.

In an industrial setting automated formatters need to be
tailored to the requirements of the customer. The (legacy)
programming language or dialect and the corporate formatting
conventions are specific and non-negotiable. Can generic format-
ting tools deal with such unexpected requirements?

Driven by an industrial case of 78 thousand lines of Cobol code,
several limitations in existing formatting technology have been
addressed. We improved its flexibility by replacing a generative
phase by a generic tool, and we added a little expressiveness
to the formatting backend. Most importantly, we employed a
multi-stage formatting architecture that can cope with any kind
of formatting convention using more computational power.

I. INTRODUCTION

Automated formatting, or pretty-printing, is an important
technique for the software maintainer. Properly formatted
source code reduces the time required to understand and thus
modify it [1]. There exist some language-specific formatting
tools that can be used off-the-shelf [2], [3]. These tools suffer
from a profusion of command line arguments required to deal
with the highly variable formatting conventions that users of
the tool will have. When a language-specific formatting tool is
not available for a certain legacy or domain-specific language,
generic formatting tools [4]–[7] can be applied. Such tools
allow a formatting convention for any language to be defined
and can then generate the formatting tool from this definition.
They can even provide a more flexible alternative to existing
language-specific formatters with their many command line
arguments.

TABLE I

REQUESTED LAYOUT STANDARD IN THE COBOL CASE STUDY.

Description Column
Start of divisions, sections, declarations, para-
graphs

01

Start of PIC and REDEFINES clauses 41
Start of VALUE, COMP and OCCURS clauses 51
Start of statements 09
Second part of statements (e.g. MOVE Id TO . . . ) 25
Third part of Statements (e.g. MOVE Id TO . . . 49
Fourth part of Statements (e.g. MOVE . . . TO Id) 53

Description Indentation
A nested data declaration (record) should indent
with respect to its associated group variable

4

Declarations following a level 88 field should
appear directly under the level 88 field

0

In a data declaration, a level number and a variable
name are separated

2

Indentation of nested statements 4

A. An industrial application and its requirements

In the context of a software renovation research project, we
were asked by a company to enforce a corporate formatting
standard to the source code of a medium sized Cobol system.
The system had about 78 thousand lines of code spread over
91 Cobol programs.

We were given a document [8] with conventions for for-
matting a number of Cobol language constructs, which is
summarized in Table I. For several constructs, the assigned
starting columns and indentation depths are displayed. The
requested standard is illustrated by a code example in Figure 1,
containing column numbers, data declarations and a number of



statements. The example shows a record structure for storing
a date. Level 03 sub-records are used to store the day, month
and year, and a level 88 condition entry is declared to check
if there is a date. Then in the PROCEDURE DIVISION, if
no date is present in the record, the date is retrieved from the
system clock. In addition to this, the date is stored in another
record.

Many formatting conventions are geared to clarify the log-
ical structure of the source code. For example, the statements
inside an IF are indented to clearly indicate that their exe-
cution is subject to the conditional. However, this formatting
convention also contains some more subjective rules. Figure 1
shows how the FROM part of the ACCEPT statement is aligned
with the TO parts of MOVE statements that are outside the
conditional. This is an example of alignment that crosscuts
the logical structure of the program. In a more traditional
formatting convention the FROM part of the ACCEPT statement
would be indented relative to the beginning of the entire
statement. Instead the convention dictates that we must indent
the first ACCEPT part and put the FROM part at an absolute
column, regardless of the current indentation level.

Another point of interest is the 88 declaration. The trailing
03 fields are not indented with respect to the level 88 field.
In fact, when we read the fine print of the standard we found
out that trailing fields after an 88 declaration are not to be
indented. It is a formatting exception that assigns a particular
meaning to the number 88. The more general scheme is that
declarations with a higher number should be indented more.
In this example 01 is not indented, while 03 is indented four
positions. The Cobol level number thus dictates the indentation
depth. The 88 declaration introduces an exception to this rule,
since subsequent declarations are not indented.

B. Contributions

In Section III we describe in detail the formatter that meets
the above requirements. First we will evaluate limitations
of existing formatting technology, and propose our improve-
ments. We claim that the resulting architecture can be expected
to handle all kinds of unexpected formatting conventions
in any programming language. Specific contributions of this
paper are:

• Demonstrating the use of generic formatting technology
on an industrial case;

• Introducing a simplified formatting pipeline that needs
no default formatter to be generated, and allows arbitrary
computational power while mapping language constructs
to formatting instructions, i.e. context-sensitive format-
ting.

C. Generic formatters

Assuming there is no off-the-shelf Cobol formatter with
enough command line arguments to serve our purposes, we
will have to develop a tailor-made formatter. There is no
need to start from scratch however. Generic formatters (pretty-
printers) exist that should automate the boilerplate part of

formatting, leaving only some high-level configuration to be
expressed by us.

Generic formatters assume the existence of a parser that
produces a parse tree of the input program encoded in a
well-known format. These can pretty-print the parse tree to
text or other output formats using default formatting rules.
These also accept high-level user-defined formatting rules,
in order to adapt the formatter to specific requirements. The
expressiveness of these user-defined rules defines the amount
of variability that is allowed for defining a formatter.

Many formatting systems use some variant of the Box
language as an intermediate format [5]–[7], [9], [10]. The Box
language has operators that define exactly the two-dimensional
relative positions of source code elements such as keywords
and identifiers. From a Box structure, a reusable Box back-end
generates formatted text, or any other visual representation of
the source code (e.g. in HTML).

The remainder of this section will give a brief explanation
of each Box operator. Table II shows an example of each
Box operator being used. Box operators can be combined
recursively. String literals, denoted as S in Table II, are atomic
Box expressions. H boxes place their operands horizontally,
while V boxes place them vertically with respect to each
other. The two hybrid operators, HV and HOV place their
operands either horizontally or vertically. The first maximizes
the number of horizontally placed operands, while the second
puts all operands vertically if they do not fit next to each
other on a single line. The I and WD operators are used to
define static and dynamic indentation respectively. Finally, an
A box declares an alignment environment, in which R boxes
are aligned in columns. The absolute placement of boxes on a
two-dimensional page follows from their relative positioning,
their width, and the available space. Each Box operator has
various parameters to fine-tune it. For example, H hs=2 will
separate each operand of the H box by two spaces. Note that
Box operators never lose operands, or change the order of
appearance of their operands on a page read left-to-right, and
top-to-bottom.

The development of generic pretty-printers has been tackled
in various ways. All these approaches are in one way or the
other influenced by the early work by Oppen [4] on pretty-
printing and Coutaz [11] on user interfaces. Oppen’s work can
be characterized as the lexical approach. A stream of lexical
tokens interwoven with escape characters to direct the pretty-
printing is the input for Oppen’s pretty-printer. TXL [12] uses
an approach which strongly resembles the original approach
of Oppen (see Chapter 5 of [13]). TXL grammar rules can also
be used to define formatting conventions. As such, a grammar
must be adapted to each set of formatting requirements. The
Box layout abstraction, introduced in [11] for defining user
interfaces, offers a general way of expressing two dimensional
formatting and decouples the formatting of back-ends from
syntax trees. The pretty-print engines of PPML [10], [14]
pioneered the use the Box language for formatting source
code. Box was extended in [15] and [5] to be able to cope with
the details of larger programming languages, such as Pascal
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Column 10 20 30 40 50 60 70
12345678901234567890123456789012345678901234567890123456789012345678901

DATA DIVISION.
WORKING-STORAGE SECTION.

01 WD_DATE VALUE ZERO.
88 WD_NO_DATE VALUE ZERO.
03 WD_DD PIC 9(02).
03 WD_MM PIC 9(02).
03 WD_JJ PIC 9(02).

PROCEDURE DIVISION.
INITIALIZE_DATE SECTION.
INIT_00.

IF WD_NO_DATE
ACCEPT WD_DATE FROM DATE

END-IF
MOVE WD_DD TO WR_DD
MOVE WD_MM TO WR_MM
MOVE WD_JJ TO WR_JJ.

Fig. 1. Example program with standardized formatting according to Table I.

TABLE II

BOX FORMATTING OPERATORS

”S” = S H[ B1 B2 ] = B1 B2 V[ B1 B2 ] =
B1

B2

HV[ B1 B2 B3 ] = B1 B2 B3 or
B1 B2

B3

or
B1

B2 B3

or

B1

B2

B3

HOV[ B1 B2 B3 ] = B1 B2 B3 or

B1

B2

B3

V[ B1 I[ B2 ] B3 ] =

B1

B2

B3

V[ B1 H[ WD[ B1 ] B2 ] ] =
B1

B2

A[ R[ B1 B2 ] R[ B3 B4 ] ] =
B1 B2

B3 B4

and Cobol.

One approach to obtain Box based formatters is to generate
pretty-print rewrite rules that map syntax constructs to Box
operators. This approach is described in [5]. The starting point
of this work is the generation of a collection of default pretty-
print rules based on the concrete underlying syntax which
controles the major part of the pretty-printing of terms. If
the behavior of a specific rule does not satisfy the required
layout, a new rule can be added by the user that supersedes the
behavior of the default rules. The drawback of this approach
is that this technique is highly volatile to modifications in

the underlying grammar. If the grammar is adapted the large
set of default rules has to be regenerated. An advantage of
this approach is that context information can be taken into
consideration during pretty-printing. Although this can only
be achieved by overriding almost all generated default rules,
the details of these rules can not be hidden from the user.

An alternative approach to the generation of a collection
of pretty-print rules was presented in [6]. The starting point
of this work is a table consisting of abstract syntax tree
nodes and default pretty-print rules, which is also based on
a Box-like language. These rules can be overridden by giving
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Stage 1 Stage 2 Stage 3

Parser

Parsetree
User-defined

 mapping
Hybrid

 Box/Parsetree
Default

 mapping
Boxtree

Syntactic
Safety Checker

box2text

box2html

box2pdf

...

Text

HTML

Text

PDF

...

Fig. 2. A multistage formatting pipeline that allows any formatting convention, and still automates the bulk of formatting.

an alternative pretty-print rule for a specific abstract syntax
tree node. The advantage of this approach is that it is less
sensitive to modifications in the underlying grammar. The
table approach has been used to develop pretty-printers for
re-engineering purposes [7].

The Box language is also used by the commercial DMS
program transformation system [9]. It uses a mapping from
production rules to Box constructs, which allows similar
expressability to the table approach described above.

A drawback of the two latter approaches is that they do not
take context information into account and thus any unforeseen
requirements are not easily dealt with.

II. AN ARCHITECTURE FOR

CONTEXT-SENSITIVE FORMATTING

Our industrial application illustrates that formatting is a pro-
cess which heavily depends on specific user requirements. The
application of formatting source codes is bound by strict, but
possibly irregular rules given by the owner of the code base.
Both the used language, as well as the corporate conventions
may be unique.

All of the generic pretty-printing approaches described
above, apart from [5], do not cope well with unexpected
formatting conventions that require more elaborate analysis
of the source code. For example, extra information such as
nesting depth, specific identifiers (the 88 field in Cobol), or
relative positions between several constructs in a language is
often important; this is context-sensitive information.

When language constructs are mapped to the Box language,
we should allow more elaborate user-defined computation.
However, default pretty-printing is still very practical because
it automates the boilerplate part of creating a formatting tool.

The next section describes how language constructs can be
partially mapped to Box, so that a generic tool can later be
used to finish the mapping by applying its default rules.

A. A multistage formatting pipeline

We split the formatting process into three stages as shown
in Figure 2. In Stage 1 user-defined rules are applied to a
parse tree. These rules define how selected language constructs
are to be formatted according to specific conventions. Not

all constructs need to be addressed, only those of interest.
Applying these rules to the parse tree results in an hybrid
tree containing both source language constructs and Box
language constructs. In Stage 2 a generic engine will manage
the transformation of the source language constructs, that are
ignored by the user-defined rules, to Box language constructs.
This guarantees that its output contains only Box operators.
The resulting tree will then be transformed into a human
readable format by Box back-ends in Stage 3. The remainder
of this section describes all three stages in detail.

Stage 1, user-defined mapping: The input for Stage 1 con-
sists of a parse tree. The user-defined mapping that is applied
to this parse tree consists of transforming particular language
constructs to Box constructs. The language constructs that are
transformed, depend on the formatting requirements that are
not handled as desired by the default mapping in Stage 2.
Any programming language or tool can be used to map certain
selected language constructs to Box constructs. For our Cobol
application we used ASF+SDF [16], because its application
domain is in these kind of language transformations.

Applying a user-defined mapping on the input parse tree
results in a hybrid parse tree containing both source language
constructs and Box constructs. Figure 3 illustrates such an
hybrid tree, where Box language operators can have pro-
gramming language constructs as children, and vice versa.
The borders between the source code language formalism and
Box formalism are guarded by encapsulating nodes which
are marked by two special node attributes: from-box and
to-box. The outermost pyramid shows a Cobol parse tree
that is partially formatted. It has one child that has been
transformed to Box constructs. The transition from Cobol to
Box is guarded by a from-box node. Although this part of
the program is not formatted completely, it does contain an
unformatted Cobol part again. The transition from Box back
to Cobol is guarded by a to-box node.

In short, from-box and to-box nodes can be used to
encapsulate Box constructs and weave them into the constructs
of any host language in a type safe manner. Each Box
expression nested in a host tree represents a partially formatted
piece of source code.

Stage 2, default mapping: In Stage 2 the default formatting
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Cobol

Cobol

Box

from−box

to−box

Fig. 3. A hybrid tree with guarding from-box and to-box nodes.

engine applies default pretty-print rules to the hybrid parse
tree result of Stage 1. All Cobol constructs that are left in the
hybrid tree are then mapped to Box operators. The algorithm
used by the formatting engine skips over all Box expressions
that are between a from-box and a to-box node, since
they have been formatted already (see Figure 3). The resulting
tree contains only Box expressions. It is guaranteed that all
source language constructs have been transformed into Box
constructs.

It is surprising that in general more nodes are formatted
in Stage 2 than in Stage 1. Programming languages share
typical syntactic idioms that can be formatted in a similar way.
The most obvious example is the block structure: a syntax
rule that begins and ends with a literal, and has a list of
other constructs in the middle. There is an easy opportunity
for reuse. Stage 2 benefits from these similarities by using
some smart heuristics. It extracts information from parse
trees to identify syntactical idioms, and maps them to Box
expressions. We reuse the default mapping that was proposed
in [5], but now we implement it on the hybrid tree instead
of generating a default implementation that the user needs
to adapt. The benefit is twofold: the user can choose the
technology he prefers to use for the user-defined formatter
and we avoid common maintenance problems with generated
code altogether.

Stage 3, Box back-ends: For Stage 3 several reusable Box
back-ends are available [5]–[7] that can be reused to output
formatted programs. Using the Box tree from Stage 2, the size
of every Box will be computed and the output will depend
on these sizes. The H and V operators simply output text
horizontally or vertically. However, if the text in a HV or
HOV box does not fit in the horizontal space, then it is split
horizontally between two or more lines or printed vertically.
Other operators work in a similar way; if the text contained
in the operand does not fit the sizes of the surrounding box,
the operator will format the text accordingly.

B. Syntax safety

The default formatter in Stage 2 is constructed in such a
manner that it guarantees syntax safety. It will not throw away,
flip, or invent programs or program parts. With a user-defined

formatter, that might use arbitrary computational power we do
not have such a guarantee. Therefore, Stage 1 also contains a
tool that correlates the hybrid tree with the original parse tree.
If the user-defined formatter terminates, this tool can assert
that as least the resulting Box language constructs represent
exactly the programming language constructs from the original
parse tree, and output an error message if not.

C. Conservative pretty-printing

In [7], [9] it is described how syntax trees can be pretty-
printed partially. When formatting is part of a larger re-
engineering pipeline, there are other tools that transform the
source code before it is formatted. For many applications only
formatting the parts of a program that have been transformed
is a strict requirement. In our setting, the user is responsible
in Stage 1 not to touch any constructs that have not been
changed. The language used to implement Stage 1 may have
support for this.

The default mapping in Stage 2 also needs to take this into
account. We have not implemented this yet. We will probably
apply the approach explained in [7].

III. CASE STUDY: COBOL LAYOUT STANDARDIZATION

In this project, we were driven by an industrial application:
the layout of a medium sized DEC Cobol system must be
standardized according to specific conventions (Table I). We
describe what kind of effort was needed to create a formatter
that meets all requirements using the above described for-
matting pipeline (Figure 2). In particular, we describe how
we dealt with specific language constructs that had to be
standardized. Furthermore, we report on a small benchmark
on the performance of the formatter.

A. Implementation of the formatting pipeline

For implementing both the parser and the user-defined
formatting we have used the language specification formalism
ASF+SDF [16]. This is a formal language that is well-equipped
for transformations of source code. Using SDF grammar
productions, the syntax of Cobol has been defined. The SDF

grammar was derived from the online IBM VS Cobol II
grammar [17]–[19] and adapted to be able to parse DEC
Cobol-specific constructs; the adaptation was done using the
Grammar Deployment Kit [20]. For an elaborate agenda on
grammars, see also [21]. The adapted grammar productions
were used to generate a parser for DEC Cobol. The parser
outputs a parse tree that can be used in Stage 1 (see Figure 2).

In the case that the default mapping was different from the
formatting convention, ASF rewrite rules have been defined to
implement the mapping of Cobol constructs to Box language
constructs. These rewrite rules are applied to the parse tree in
Stage 1.

The Cobol SDF grammar [17], [19] is not discussed here,
except for production rules to illustrate a few examples.
Instead we focus on the formatter written in ASF. ASF rewrite
rules, or equations, have a tag, a left-hand side, a right-hand
side and optionally some conditions that guard the application
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context-free syntax
"BEGIN" Sort1 Sort2 "END" -> Sort3
context-free syntax

from-box( Box ) -> Sort3 {from-box}
to-box ( Sort1 ) -> Box {to-box}
to-box ( Sort2 ) -> Box {to-box}

variables
"#Sort1" -> Sort1
"#Sort2" -> Sort2

equations
[format-example-construct]
... (optional conditions)
===>
BEGIN #Sort1 #Sort2 END
=
from-box(
V [ "BEGIN"

to-box(#Sort1)
I is=2 [to-box(Sort2)]
"END"

])

Fig. 4. General scheme of mapping a language construct to Box using
ASF+SDF.

of an equation. If a language construct in a parsed program
matches the left-hand side of an equation, it is replaced by
the right-hand side. An equation may have complex matching
patterns. By defining parameterized functions, equations can
also receive context information to guide a transformation.

As our examples will illustrate, ASF equations use the
concrete syntax of the manipulated language on both sides
and in the conditions. The mapping of Cobol constructs to
Box constructs is therefore immediately recognizable as such.

For efficiency reasons, Stage 2 and 3 are linked together
in a single tool called Pandora. Pandora is distributed with
the ASF+SDF Meta-Environment [22]–[24] and can be used
with and without a user-defined mapping. As our industrial
application will show, we need most operators of the Box
language as presented in Table II, and one important extension:
tab stops.

Tab stops support placing of constructs at fixed columns
independent of the current indentation level. The crosscutting
concern mentioned in Section I-A, where parts of a language
construction have to be placed at fixed columns, has inspired
this extension.

B. General implementation scheme

The implementation of a pretty-printer involves specifying
at least one rewrite rule for each construct that the standardiza-
tion document describes, unless the default mapping (Stage 2)
coincides with the standard. We will discuss a number of
Cobol constructs with their implementation:

• Data declarations;
• Structured statements (e.g. IF);
• Non-structured statements (e.g. MOVE).

The general implementation scheme is illustrated by Figure 4.
An example construct, with keywords BEGIN and END

is formatted by a single rewrite rule. The syntax is defined
by a production rule, and we define some meta variables.

equations
[] IndStatement = 9
[] IndSecondPartStatement = 25
[] IndDDFirstClause = 41
[] IndThirdPartStatement = 49
[] IndDDOtherClauses = 51
[] IndFourthPartStatement = 53

[] DatanameSpace = 2
[] IndDataEntry = 4
[] IndStructured = 4

[] determine-ind (#Level-number)
= ... (not shown)

[] get-group-variable(#Data-description-entries)
= ... (not shown)

Fig. 5. Constant and parameterized functions for column numbers.

We prefix the variables with hash signs in our examples
for readability, and use ? to indicate a variable matches
an optional construct. The left-hand side of the rule tagged
format-example-construct matches all instances of
this construct. On the right-hand side, we replace the construct
by a Box expression. In this example we format all parts of
the construct vertically using a V box. One of the members of
this construct is indented two positions using I is=2.

The from-box and to-box constructs (See Section II-A)
mark the borders between the Cobol and Box formalisms. The
members of the example construct, captured by the variables
#Sort1 and #Sort2, are nested in the Box expression using
to-box productions. The entire construct is translated to Box,
and this Box expression is nested in its surroundings using a
from-box production. The above scheme is applied to all
constructs we format.

We implemented the conventions from Table I as a number
of constant ASF functions, and some parameterized functions.
Figure 5 displays the defined constants, and the left-hand sides
of the parameterized functions. determine-ind computes
the indentation level of data declarations based on the level
number. For example, for 01 it returns 0, and for 03 it
returns 4. The function get-group-variable is used to
retrieve the level number of previous data declarations. This
is a typical example of context-information being used to
influence indentation.

In the remainder of this section, we describe some of the
rules for a number of Cobol constructs we implemented in our
case-study. For each construct, we show the SDF production
that defines its syntax, together with the corresponding rewrite
rule that defines its formatting.

C. Formatting data declarations

In Cobol, there are various types of data declarations. We
briefly summarize the syntax and semantics of this construct.

A single data declaration is called a data description entry,
and several entries are grouped into a WORKING-STORAGE
SECTION. See Figure 6 for the context-free production rules
in SDF. An entry consists of a level number (e.g. 01, 03, . . . ),
an optional data-name or FILLER, and zero or more clauses

6



context-free syntax
"WORKING-STORAGE" "SECTION" "." Data-description-entry* -> Working-storage-section
Level-number (Data-name|"FILLER")? Data-description-entry-clauses "." -> Data-description-entry

equations
[format-data-description-entry-using-level-number]
#Level-number != 88
===>
#Level-number #Data-nameOrFILLER? #Picture-clause #Data-description-entry-clauses,
=
from-box(
H hs=0 [

H ts=determine-ind(#Level-number) hs=2 [to-box(#Level-number) to-box(#Data-nameOrFILLER?)]
H ts=IndDDFirstClause [to-box(#Picture-clause)]
H ts=IndDDOtherClauses [to-box(#Data-description-entry-clauses)]
"."

])

equations
[format-data-description-entry-level-88-using-context-information]
#Level-number := get-group-level-number(#Data-description-entries1),
#Ind-levelnumber := determine-ind(#Level-number) + IndDataEntry
===>
WORKING-STORAGE SECTION.

#Data-description-entries1
88 #Data-nameOrFILLER? #Data-description-entry-clauses .
#Data-description-entries2

=
WORKING-STORAGE SECTION.

#Data-description-entries1
from-box(
H hs=0 [

H ts=#Ind-levelnumber hs=2 ["88" to-box(#Data-nameOrFILLER?)]
H ts=IndDDFirstClause [to-box(#Data-description-entry-clauses)]
"."

])
#Data-description-entries2

Fig. 6. Two SDF production rules for Cobol data declarations, and two conditional ASF rewrite rules that map them to Box.

for specifying properties of the data item. In Cobol, a filler is a
data item which can not be referred to. Properties of data items
are for instance its size, usage, and value. The declaration is
terminated by a period. A number of data description entries
can be grouped to form a record structure. The grouping is
only indicated by the different level numbers, not by the tree
structure of the program. An entry with a higher level number
is subordinate to an entry with a lower level, i.e., 03 is a
sub-record of 01. This is also shown in Figure 1. The picture
clause, indicated by the PIC keyword, is used to specify the
size of the variable. The value clause, indicated by the VALUE
keyword, is used to initialize the value of the variable. A
special level number is the level 88 declaration; it can be used
as a condition for the associated group variable in conditional
statements, such as an IF statement.

In order to formalize the layout standard for data description
entries in ASF+SDF, we implemented a number a rewrite rules.
To give an idea of what such a rewrite rule contains, we show
two of the actual rules for the data description entry from
our specification (Figure 6). On the left-hand side of the first
rule, we see the syntax defined by the left-hand side of the
production rule for Data-description-entry. On the
right-hand side of the rewrite rule, we see the formalization
of the layout, expressed with Box operators. The following

will help to understand this Box term:

• The first H hs=0 specifies that the parts of a data
description should be printed horizontal with no spaces
in between, since the spacing is set by tab stops;

• Next, H ts=. . . defines the tab stop position of the
data names or FILLERs. We use the helper function
determine-ind that was described earlier. The hs=2
specifies that the #Level-number and the optional
data-name or FILLER are separated by two spaces;

• Then the #Picture-clause is set at a certain tab stop;
• The #Data-description-entry-clauses are

printed at a different tab stop;
• Finally, we close the statement with the atomic box ".".

So the rewrite rule in Figure 6 is used to pretty-print data
declarations. In addition to this rule, we implemented several
other rules to deal with different flavors of data declarations.
For instance, a data description entry without a picture clause
requires an additional rule.

Level 88 data declarations are slightly more complicated. Its
formatting convention requires context sensitive information.
The second rule in Figure 6 deals with 88 declarations. The
rule matches a larger context, namely a list of data description
entries in a working storage section, instead of a single
declaration. This provides the context needed to determine the
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group variable of the current record. We retrieve this informa-
tion by applying the function get-group-level-number
to the declarations that precede an 88 declaration. Using
the retrieved level number, the indentation of the record is
determined, and by adding IndDataEntry we calculate the
required indentation for the level 88 variable.

D. Formatting structured statements

In Cobol there are a number of structured statements. A
structured statement is a statement which can contain other
statements. Some examples of such statements in Cobol are:
IF statement (conditional), EVALUATE statement (switch),
PERFORM statement (loop). There are some more structured
statements in Cobol, but we do not discuss them here. We
focus on the IF statement.

In Figure 7, two SDF production rules show the syntax
of the Cobol IF statement, and two ASF rewrite rules show
the formatting conventions for IF. In the first rule, the IF
statement is divided into three parts, which are printed in
vertical mode:

• The first part consists of the IF keyword, the
#Condition and the optional THEN. These are printed
in horizontal mode. In addition, the #Condition is
printed at a certain tab stop using ts=...;

• The second part is the #Statement-list, which is
formatted with an indentation using an I box;

• The last part is the optional #Else-phrase, which is
formatted below the #Statement-list because of the
outermost V.

The second rule from Figure 7 specifies that the closing
keyword END-IF should be printed in vertical mode using a
V box.

E. Formatting non-structured statements

In Cobol, a non-structured statement consists of a single
statement. For instance, the ADD, COMPUTE and DIVIDE
statements without SIZE ERROR parts for error handling are
non-structured. All such statements are formatted on a single
line, using an H box. When possible they are divided into
three parts. Each part has its defined tab stop according to the
standardization document.

A statement which always belongs to the category of non-
structured statements is the MOVE statement, since it has no
error handling parts. An example is shown below:

MOVE A TO B

As opposed to what one may assume from this statement, the
contents of A are not moved to B but copied instead. According
to the syntax, which is shown in Figure 8, an identifier or literal
can be moved to one or more receiving identifiers.

In addition to this format, the MOVE statement has a
second variant, which allows to move several sub-records to
corresponding sub-records of the receiving identifier at the
same time. We do not discuss that case, since its formatting
is similar with regard to the layout standardization.

In Figure 8, the ASF rewrite rule is shown for formalizing
layout of the MOVE statement. The rule defines the required
layout convention: each part of the statement is printed in a
different column using three applications of the H operator
with a certain tab stop value.

F. Summary

In this case study, we implemented formatting rules to
enforce the requested layout standardization on several con-
structs from the Cobol grammar. We implemented rules for
10 different statements, and a number of rules for the data
declarations. In addition, rules were implemented to format
divisions, sections and paragraphs. In total, about 50 ASF

rules were implemented to cover most of the constructs that
appeared in the code of the case study, the rest of the constructs
were formatted according to the default rules.

Several rewrite rules, such as for the MOVE statements are
simple one-to-one mappings. They do not use any context
information, but they use the tab stop feature of the Box
language, to be able to define alignment that crosscuts the
logical structure of a program. Note that the absolute tab stop
feature is not available in most implementations of the Box
language.

On the other hand, with the Cobol data declarations we have
shown how to use both context information and assign specific
semantics to selected level numbers. We used freedom of
applying arbitrary computational power to analyze a program
and influence its formatting.

G. Performance

We measured the performance of formatting 91 Cobol files,
totalling 78,000 lines of Cobol code. In order to format the
code, the programs of the Cobol system were first parsed, then
in Stage 1 the rewrite rules were applied to introduce the Box
expressions. Subsequently, the rewritten programs were then
run through Pandora to apply the default rules as in Stage 2,
and then the Box expressions were converted to proper text by
Pandora, as in Stage 3. We measured the performance of each
stage, using compiled ASF rules in Stage 1. Table III gives
an overview. Parsing of 78 KLOC was done in 420 seconds,
compiled rewriting took only 22 seconds. Pandora took 74
seconds to perform Stage 2 and 3, of which 32 seconds are
spent by the default mapping.

The above measurements show that formatting 78,000 lines
of code using this architecture is feasible. The parsing stage
takes most of the time. Please note that the parser we used is
not optimized for speed.

IV. CONCLUSIONS

We have taken a fixed set of formatting requirements for
a Cobol system, as spelled out in a standardization document
and applied generic formatting technology to implement them.
It appeared that corporate conventions can dictate alignment
that crosscuts the logical structure of a program, and can even
dictate indentation that is dynamically computed from context
information.
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context-free syntax
"IF" Condition "THEN"? Statement-list Else-phrase? -> If-statement-non-closed
If-statement-non-closed "END-IF" -> If-statement

equations
[if-statement-non-closed]
IF #Condition #THEN? #Statement-list #Else-phrase?
=
from-box(
V [ H [ "IF" H ts=IndSecondPartStatement [to-box(#Condition)] to-box(#THEN?)]

I is=IndNestedStatement [to-box(#Statement-list)]
to-box(#Else-phrase?)

])

[if-statement]
#If-statement-non-closed END-IF
=
from-box(
V [ to-box(#If-statement-non-closed)

"END-IF"
])

Fig. 7. Two SDF production rules for the Cobol IF statement, and two ASF rewrite rules to formalize its layout standard.

context-free syntax
"MOVE" ( Identifier | Literal ) "TO" Identifier-list -> Move-statement

equations
[move-statement]
MOVE #IdentifierOrLiteral TO #Identifier-list
=
from-box(
H [ "MOVE"

H ts=IndSecondPartStatement [to-box(#IdentifierOrLiteral)]
H ts=IndThirdPartStatement ["TO"]
H ts=IndFourthPartStatement [to-box(#Identifier-list)]

])

Fig. 8. An SDF production rule for the Cobol MOVE statement, and the ASF rewrite rule to formalize its layout standard.

TABLE III

PERFORMANCE OF THE STAGED PRETTY-PRINTER ON 78 KLOC COBOL

Phase Time (s)
Parsing 420
Stage 1: Rewriting 22
Stage 2: Pandora default mapping 32
Stage 3: Pandora box2text 42

We have proposed a formatting pipeline that allows arbitrary
computational power for mapping language constructs to the
Box language. The enabling feature is a hybrid format that
merges Box expressions with parse trees. Much of the boil-
erplate part of formatting can still be automated by a default
mapping to Box. Absolute tab stops, an important feature of
Box, which is not found in many Box back-ends, is used
extensively in our case study.

We have implemented all requirements of our industrial
partner by defining a number of high level rewrite rules that
each map selected Cobol constructs to Box expressions. The
efficiency of this method for formatting proved to be adequate.
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