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itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is
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existence of limiting trajectories under uniform equicontinuity assumptions. We give a
compactness result for the trajectory space of impulse differential inclusions, a class of
nondeterministic hybrid system, and discuss how to describe hybrid automata, a widely-used
class of hybrid system, as impulse differential inclusions. For systems with compact trajectory
space, we obtain results on Zeno properties, symbolic dynamics and invariant measures. We
give examples showing the application of the results obtained using the trajectory space
approach.
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Abstract

In this paper, we present a general framework for describing and studying hybrid
systems. We represent the trajectories of the system as functions on a hybrid time
domain, and the system itself by its trajectory space, which is the set of all possible
trajectories. The trajectory space is given a natural topology, the compact-open
hybrid Skorohod topology, and we prove the existence of limiting trajectories under
uniform equicontinuity assumptions. We give a compactness result for the trajectory
space of impulse differential inclusions, a class of nondeterministic hybrid system,
and discuss how to describe hybrid automata, a widely-used class of hybrid system,
as impulse differential inclusions. For systems with compact trajectory space, we
obtain results on Zeno properties, symbolic dynamics and invariant measures. We
give examples showing the application of the results obtained using the trajectory
space approach.
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1 Introduction

The aim of this paper is to develop a general framework for the study of the dynamical prop-
erties of a hybrid system. Rather than focus on the defining equations of motion, our main
object of study is the trajectory space of a system, a set of hybrid trajectories which give all
possible behaviours of the system. The most important property of a trajectory space is that
of compactness; it is possible to give straightforward proof of several core results on hybrid
systems using compactness assumptions alone. In this article we give a characterisation of Zeno
behaviour for systems with compact trajectory space, and show that symbolic descriptions of
the system result in a compact shift space, and prove the existence of invariant measures.

The theory considers trajectories which are continuous functions whose domain is a hybrid time
domain. Hybrid time domains are topologically equivalent to the hybrid time trajectories as used
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by Lygeros et. al. [16], but have the advantage of having an explicit coordinate system. The
natural topology on the space of trajectories is the (compact-open) hybrid Skorohod topology, first
introduced for hybrid systems by Broucke [4], and also studied by Broucke and Arapostathis [5]
and Caspi and Benveniste [8]. We give an equivalent definition of the hybrid Skorohod topology
based on the graph of the system, which is simpler to analyse when two or more discrete events
occur at the same time. The approach of considering hybrid trajectories on hybrid time domains
with the hybrid Skorohod topology has also been used by Goebel et. al. [13]1.

The trajectory-space gives a framework which can be applied for hybrid systems specified in a
number of different ways. A popular class of hybrid system is that of hybrid automata [23]. A hy-

brid automaton is described by a tuple (Q,E, ρ, {X inv
q }, {fq}, {Xguard

q,e }, {rq,e}), where (Q,E, ρ)
is a discrete-event system, the differential equations ẋ = fq(x, u) describe the continuous dynam-

ics in the continuous state spaces X inv
q , and the guard sets Xguard

q,e and reset maps rq,e describe
the interaction of the discrete and continuous systems. This description of hybrid automata is
useful when modelling a system, but contains many details which are irrelevant to the system
dynamics.

When analysing dynamical properties of a system, it is often preferable to consider the class of
impulse differential inclusions introduced by Aubin et. al. [3]. An impulse differential inclusion
is described by a triple (X,F,G), where X is the state space, the multivalued reset map F
describes the discrete-time dynamics and the differential inclusion G the continuous-time dy-
namics. We show that if the differential inclusion and reset map are upper-semicontinuous with
closed compact values, then the trajectory space of the resulting hybrid system is compact. A
proof can be extracted from the proof of Theorem 4 of [3].

The motivation for this work was to provide a framework allowing fundamental techniques
from the theory of nonlinear dynamical systems in discrete or continuous time to used for the
study of hybrid-time dynamical systems, notably those of symbolic dynamics [14] and ergodic
theory [20, 21]. In symbolic dynamics, one gives an abstract description the system behaviour
in terms of itineraries of orbits, which give the order in which different regions of the state
space are visited. The resulting shift is a system which is simulated by the original system,
and can be computed for discrete-time systems using the techniques of fixed-point index [6]
and Conley index [18] theory. In ergodic theory, one considers invariant measures of a system,
which give a stochastic description of a system and allow the computation of the time-averaged
behaviour. Compactness (or local compactness) of the state space or trajectory space is crucial
for obtaining a compact shift space, application of techniques of index theory, and for proving
the existence of invariant measures. In this paper we show that the results on compact shift
spaces and existence of invariant measures carry over to hybrid systems with compact trajectory
space. General techniques for the computation of symbolic dynamics and invariant measures
are important areas of research in their own right, and beyond the scope of this paper.

The study of hybrid systems is complicated by the fact that the system evolution may not depend
continuously on the initial state, even over finite time intervals. One important cause of this
behaviour is due to tangential or grazing incidence of system trajectories with the guard sets. On
one side of such a trajectory a discrete event does occur, possibly causing discontinuous evolution
of the system state; on the other side no discrete event occurs, and the system keeps evolving
according to the continuous dynamics. Loss of continuous dependence on initial conditions may
also occur if two discrete events are enabled in the same system state, requiring an arbitrary
choice as to which event occurs.

The discontinuities associated with grazing and multiple enabled events are important if one

1The terminology used here differs slightly from that of [9] and [13]; in [9], hybrid time domains are
called hybrid time sets, and in [13], and the hybrid Skorohod topology is called the graph topology.
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wishes to use topological and ergodic techniques for the study of hybrid systems. To obtain
(local) compactness of the trajectory space, we require that at a point of discontinuity, all
possible limiting behaviours are allowed. In the case of grazing incidence with a guard set, this
means that the corresponding discrete event may or may not occur. In this way, the difficulties
occurring at points of discontinuous dependence on initial conditions are tamed at the expense
of requiring the study of non-deterministic systems. For this reason, and since non-determinism
does not cause any technical difficulties when considering trajectory spaces, we consider non-
deterministic systems from the outset.

Aside from symbolic dynamics and invariant measures, useful results on other important dy-
namical properties can be obtained by studying the trajectory space. In this paper, we show
that a hybrid system with compact trajectory space exhibits Zeno behaviour if, and only if, it
has a Zeno state, extending a result of Zhang et al. [24] giving conditions for Zeno behaviour
in hybrid automata. Other important dynamical properties include stability, invariant and vi-
able sets, and bifurcations. Conditions for robust stability were obtained by Goebel et. al. [13]
using essentially the trajectory space approach described here. Invariant and viable sets were
studied by Aubin et. al. [3] in the context of impulse differential inclusions with locally com-
pact trajectory space. There is also a considerable body of knowledge on bifurcation theory for
piecewise-smooth hybrid systems, most notably the original work of Nordmark on the grazing
bifurcation [19] and on period-adding routes to chaos [7];for an overview see [15].

The paper is organised as follows:

In Section 2, we define hybrid time domains and hybrid trajectories, and define some important
properties of the trajectory space. We define a number of operators on hybrid time trajectories,
and discuss how to obtain the evolution on the state space from the hybrid trajectory space. We
give two number of equivalent definitions of the compact-open hybrid Skorohod topology. We
generalise the concept of hybrid time domain to subsets of arbitrary hybrid time axes, which
can be any partially-ordered set.

In Section 3, we consider hybrid systems described by impulse differential inclusions and hybrid
automata. We show that for impulse differential inclusions with upper-semicontinuous reset
maps and flows, the trajectory space is compact. We also discuss how to convert hybrid automata
to upper-semicontinuous impulse differential inclusions given the right semantics for the system
evolution.

In Section 4, we consider properties of systems with compact trajectory space. We first give
checkable conditions for a system to be Zeno, and conditions for the existence of a trajectory with
no discrete events. We then show that for systems with compact trajectory space, a description
in terms of symbolic dynamics always yields a compact shift space. We finally discuss the
existence of invariant measures. We show that an invariant measure on the trajectory space
always exists for at least one of the return operator or the time-evolution operator. Under
certain cases, including that of deterministic systems, an invariant measure can be projected to
give an invariant measure on the state space.

In Section 5, we present three examples illustrating some of the important issues in the dynamics
of hybrid systems. We first discuss the bouncing ball system, and show that generalised hybrid
time axes can be used to give a complete treatment of the dynamics. We consider a switched
arrival system exhibiting Zeno behaviour, derive symbolic dynamics for the system, and give
invariant measures for the return map and time-evolution map. We give an example of a heating
system with periodic environmental fluctuations, which may have no invariant measures.

Finally, in Section 6 we give some conclusions and possible directions for further research.
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2 The trajectory space of a hybrid system

We first give a framework for the study of hybrid systems based on the hybrid trajectory space,
which models all possible system trajectories. We give an appropriate topology for this space,
the compact-open hybrid Skorohod topology, and define operators modelling time-evolution.

2.1 Hybrid system trajectories

To describe the behaviour of a hybrid system, we need a notion of a time axis which includes
both discrete and continuous time. This can be constructed using the times of the discrete
events.

Definition 2.1. An event time sequence (tn)n∗

n=0 with n∗ ∈ Z
+ ∪ {∞} is a monotone sequence

with t0 = 0 and tn > tn−1 for 1 6 n 6 n∗. If n∗ = ∞ we take t∞ = limn→∞ tn.

The time tn is the time of the nth discrete event. The number n∗ is the number of events. The
number of events up to (and including) time t is given by nt = sup{n ∈ Z

+ | tn 6 t}.

In [16], an event time sequence is used to define a hybrid time trajectory τ , which is the sequence
of intervals (In)n∗

n=0 with In = [tn, tn+1]. A hybrid trajectory is then defined to be a function
from τ to X. Unfortunately, specifying points in a hybrid time trajectory is awkward, since no
coordinate system is given.

Instead of using hybrid time trajectories, we use hybrid time domains, which are topologically
equivalent but have an explicit coordinate system, and hence are easier to work with.

Definition 2.2. Let (tn)n∗

n=0 be an event time sequence with total execution time t∗. The hybrid
time domain determined by the event time sequence is the set:

T = {(t, n) | n < n∗ and t ∈ [tn, tn+1], or n = n∗ and t ∈ [tn∗
, t∗]} ⊂ Z

+ × R
+.

The topology on T is the subspace topology inherited from the set Z
+ ×R

+, which is called the
hybrid time axis.

Note that the point (0, 0) is an element of any hybrid time domain. If tn = tn+1 for some n,
then the nth time interval [tn, tn+1] consists of a single point. Resets of the continuous state are
possible since a hybrid time domain is not connected (unless there are no events.

An example of a hybrid time trajectory and hybrid time domain for the same event time sequence
is shown in Figure 1.

We now give a definition of hybrid trajectory using hybrid time domains.

Definition 2.3. A hybrid trajectory in a topological space X is a continuous function ξ : T → X
for some hybrid time domain T .

We denote the hybrid time domain of ξ by T (ξ) or dom(ξ), the number of events of ξ by n∗(ξ),
and the total execution time of ξ by t∗(ξ). The event times tn are given by tn(ξ) = inf{t ∈ R

+ |
(t, n) ∈ T (ξ)}, and the number of events up to time t is given by nt(ξ) = sup{n ∈ Z

+ | (t, n) ∈
T (ξ)}.
A hybrid trajectory ξ is finite if n∗(ξ) < ∞ and t∗(ξ) < ∞, otherwise it is infinite. A hybrid
trajectory ξ1 : T1 → X is a prefix of ξ2 : T2 → X if T1 ⊂ T2 and ξ1 = ξ2|T1 .

The graph of a hybrid trajectory ξ : T → X is the set

Gr(ξ) = {(t, n, x) ∈ R
+ × Z

+ × X | (t, n) ∈ T and x = ξ(t, n)}.
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Figure 1: (a) A hybrid time trajectory, and (b) the hybrid time domain for the same
event time sequence.

Notice that the definition of hybrid trajectory allows for more than one event at a given time.
In particular, two trajectories are considered different even if they only vary at a single point
at a time t at which two events occur. Although it may seem more natural to consider such
trajectories equal, this causes difficulties when defining the topology on a set of trajectories.

The evolution of a hybrid system is defined in terms of shift operators on its trajectories.

Definition 2.4. Let T be a hybrid time domain, and (s,m) ∈ T . Then we can shift T by
(s,m) to obtain a new hybrid time domain

σ̂m
s T = {(t, n) ∈ R

+ × Z
+ | (t + s, n + m) ∈ T }.

Similarly, if ξ : T → X is a hybrid trajectory and (s,m) ∈ T , then the hybrid shift operator σ̂m
s

is defined on ξ, and is given by

σ̂m
s ξ(t, n) = ξ(t + s, n + m) whenever (t, n) ∈ σ̂m

s T .
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Figure 2: The shift operator on a hybrid time domain.

The shift operator on a hybrid time domain is shown in Figure 2. We will discuss shift operators
further in Section 2.3.

A hybrid system can be described by the set of all its trajectories.

Definition 2.5 (Hybrid trajectory space). A hybrid trajectory space H in a space X is a
set of hybrid trajectories in X.

A set of hybrid trajectories H is invariant under the hybrid shift operator if for all ξ ∈ H and
(s,m) ∈ T (ξ), the trajectory σ̂s

mξ is also in H. A set of hybrid trajectories H is prefix-free if no
trajectory is a prefix of any other, and non-blocking if every finite trajectory is a prefix of an
infinite trajectory.

The trajectory space of a hybrid system will typically be invariant with respect to the hybrid
shift operator, and will usually be taken to be prefix-free.
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2.2 The compact-open Skorohod topology

The natural topology for a space of trajectories H of a hybrid system is the compact-open
Skorohod topology. The key feature of a Skorohod topology on a function space is that it allows
some distortion of the domain set, and hence can be used to measure the distance between
discontinuous functions. Compact-open topologies are natural for trajectory spaces of dynamical
systems. The original definition of Skorohod topology and the definition of [4] were given in
terms of reparameterisations of the domain of trajectories. In this paper, we instead give a
definition in terms of the graphs of the trajectories, since this simpler, especially in the case that
multiple events occur at the same time. For technical reasons, we assume that the trajectory
space H is prefix-free. We give two definitions, one in terms of a basis of open sets, and one in
terms of a metric. The hybrid Skorohod topology given here is the same as the graph topology
of Goebel et. al. [13].

If ξ is a hybrid trajectory and K a compact subset of R
+ ×Z

+, define ξ|K to be the restriction
of ξ to the set T (ξ) ∩ K, and Nε(Gr(ξ)) to be the open ε-neighbourhood of the graph of ξ.

Definition 2.6 (Compact-open hybrid Skorohod topology). Let ξ be a hybrid trajectory,
K a compact subset of R

+ × Z
+, and ε > 0. The (K, ε)-neighbourhood of ξ is the set of

trajectories
U(ξ,K, ε) =

{

ξ′ | Gr(ξ′|K) ⊂ Nε(Gr(ξ))
}

.

The open sets U(ξ,K, ε) form a basis of open sets for the Skorohod topology of H.

Here, K ensures a restriction to a compact hybrid time domain, and ε is a uniform error bound.
The term “compact-open” refers to the property that ξ ′ restricted to a compact set lies in an
open neighbourhood of ξ.

To obtain a metric description, we use essentially the same concept, but need to make the
definition symmetric. Recall that the Hausdorff semi-distance between sets A and B is d̃(A,B) =
supx∈A infy∈B d(x, y), and that d(A,B) = max{d̃(A,B), d̃(B,A)} defines the Hausdorff distance.
We need an increasing sequence of compact subsets KN of R

+×Z
+ whose union equals R

+×Z
+;

for definiteness we take KN = [0, N ]×{0, . . . , N}. We also need to assume that the distance d on
X is bounded; this is automatic if X is compact, otherwise we can replace d(·, ·) by tan−1 d(·, ·)
without changing the induced topology.

Definition 2.7 (Compact-open hybrid Skorohod metric). The hybrid Skorohod metric is
given by

d(ξ, ξ′) =

∞
∑

N=0

max
{

d̃
(

Gr(ξ|KN
),Gr(ξ′)

)

, d̃
(

Gr(ξ′|KN
),Gr(ξ)

)

}

2N
.

Note that we do not restrict the graph of the right-hand element in d̃(·, ·) to KN . This is
since if ξ has nth event with (tn(ξ), n) ∈ KN , but (tn(ξ′), n) 6∈ KN , we still need to compare
(tn(ξ), n + 1, ξ(tn(ξ), n + 1)) with (tn(ξ′), n + 1, ξ′(tn(ξ′), n + 1)).

The distance is finite, since any point (t, n, x) ∈ Gr(ξ) with t, n 6 N is within 2N + diam(X) of
the point (0, 0, ξ′(0, 0)) ∈ Gr(ξ′), and hence d̃

(

Gr(ξ|KN
),Gr(ξ′)

)

6 2N+diam(X) and so the sum
converges uniformly. The topology defined by the metric and that of the (K, ε)-neighbourhoods
of trajectories can easily be shown to define the same topology on infinite trajectories.

We can also define a (K, ε)-neighbourhood of a hybrid time domain T as {T ′ | T ′∩K ⊂ Nε(T )},
and the distance between two hybrid time domains as

d(T , T ′) =

∞
∑

N=0

max
{

d̃
(

T ∩ KN , T ′
)

, d̃
(

T ′ ∩ KN , T
)

}

2N
.
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The topology generated by (K, ε)-neighbourhoods and the topology generated by the metric are
the same. It is clear that if ξi → ξ∞, then T (ξi) → T (ξ∞) since d(T (ξ), T (ξ′)) 6 d(ξ, ξ′) for any
two hybrid trajectories ξ, ξ ′. Further, the topology on hybrid time domains is the same as that
on trajectories if X is a one-point space (or all trajectories have the same constant value).

Lemma 2.8 (Convergence of hybrid time domains). Ti → T∞ if and only if tn(Ti) →
tn(T∞) for all n (where we use the convention that tn(T ) = ∞ if n > n∗(T )).

Proof. Suppose Ti → T∞. Suppose n 6 n∗(T∞) and take N > max{n, tn(T∞)}. Then since
d(Ti ∩ KN , T∞) → 0 as i → ∞, the sequences (tn(Ti), n) and (tn(Ti), n + 1) must approach T∞
as i → ∞. This means that lim supi→∞ tn(Ti) 6 tn(T∞) and lim inf i→∞ tn(Ti) > tn(T∞), hence
limi→∞ tn(Ti) = tn(T∞). Suppose instead n > n∗(T∞), so that tn(T∞) = ∞. Then if there exists
N such that Ti ∩ KN contains a point (t, n) for infinitely many i, we have d(Ti ∩ KN , T∞) > 1
for these i, contradicting convergence. This implies tn(Ti) → ∞ as i → ∞.

Now suppose tn(Ti) converges as i → ∞ for all n. Since tn(Ti) 6 tn+1(Ti) for all i, we have
limi→∞ tn(Ti) 6 limi→∞ tn+1(Ti) for all n. Hence the limi→∞ tn(Ti) give the event times for
some hybrid time domain T∞. It remains to show that Ti → T∞ as i → ∞. Fix N ∈ Z

+ and
ε > 0, and j such that for all n 6 N and i > j, either |tn(Ti) − tn(T∞)| < ε or tn(T∞) = ∞
and tn(Ti) > N . Then if (t, n) ∈ Ti for some i > j, we have n 6 n∗(T∞), since otherwise
we would have t > tn(Ti) > N . But then tn(Ti) 6 t 6 tn+1(Ti) and tn(Ti) − ε 6 tn(T∞) 6

tn+1(T∞) 6 tn+1(Ti) + ε, from which we see that there exists t′ with (t′, n) ∈ T∞ and d(t, t′) < ε
as required.

Theorem 2.9 (Compactness of the set of hybrid time domains). The set of hybrid time
domains is compact.

Proof. The space R
+ ∪ {∞} is compact (every sequence of positive real numbers has a subse-

quence which either has a real limit or tends to infinity), so we can find subsequences of hybrid
time domains Tij,k

such that t∗(Tij,k
) converges as k → ∞ for all j, and tn(Tij,k

) converges as
k → ∞ for all n 6 j. Taking the subsequence Til,l we have convergence of tn(Til,l) for all n, and
hence by Lemma 2.8, Til,l converges to some T∞ as l → ∞.

The following lemma is useful in determining points of limiting trajectories.

Lemma 2.10. Let ξi be a sequence of trajectories with limi→∞ ξi = ξ∞. Let K be a compact
subset of R

+×Z
+, and (ti, ni) ∈ T (ξi)∩K be a sequence such that (ti, ni) → (t∞, n∞) as i → ∞.

Then (t∞, n∞) ∈ T (ξ∞), and ξ∞(t∞, n∞) = limi→∞ ξi(ti, ni).

Proof. Since ni → n∞, we have ni = n∞ for all i sufficiently large. Then t∞ = limi→∞ ti >

limi→∞ tn∞
(ξi) = tn∞

(ξ∞) and similarly t∞ 6 tn∞+1(ξ∞), so (t∞, n∞) ∈ T (ξ∞). Let xi =
ξi(ti, ni) and x∞ = limi→∞ xi. Since ξi → ξ∞, we have d̃(Gr(ξ∞),Gr(ξi∩K)) → 0, so there exist
(t′i, n

′
i, x

′
i) ∈ Gr(ξ∞) such that d((ti, ni, xi), (t

′
i, n

′
i, x

′
i)) → 0 as i → ∞. But then (t′i, n

′
i, x

′
i) →

(t∞, n∞, x∞) as i → ∞, so (t∞, n∞, x∞) ∈ Gr(ξ∞), and hence x∞ = ξ∞(t∞, n∞) as required.

The set of all hybrid trajectories is not compact in the Skorohod topology since a sequence
of continuous functions on a fixed interval may converge point-wise to a function which is not
continuous. Under sufficiently strong equicontinuity conditions on the trajectories, we can show
H is compact.

Recall that a function f is uniformly continuous if there exists a function δ : (0,∞) → (0,∞)
such that d(f(x), f(y)) 6 ε whenever d(x, y) 6 δ(ε). Any such function δ is called a modulus
of continuity of f . We say that f is δ-uniformly continuous if we need to explicitly specify
the modulus of continuity. A set of functions is δ-uniformly equicontinuous if each function is
δ-uniformly continuous.
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Theorem 2.11 (Compactness of hybrid trajectory space). Let X be a compact met-
ric space, δ a modulus of continuity, and H be the set of all δ-uniformly continuous hybrid
trajectories in X. Then H is compact.

Proof. Let (ξi) be a sequence of functions in H. We need to show that some subsequence of (ξi)
has a limit point ξ∞. By taking a subsequence if necessary, by Lemma 2.9 we can assume that
the hybrid time domains Ti = T (ξi) converge to a hybrid time domain ξ∞.

Extend the functions ξi from the interval [tn(ξi), tn+1(ξi)] over the intervals [tn(ξ∞), tn+1(ξ∞)]
for each n. Since the set of δ-uniformly equicontinuous functions on a compact interval (and
hence on a finite disjoint union of compact intervals) is compact, for any compact subset K
of T∞, we can take a subsequence such that limi→∞ ξi(t, n) exists pointwise and the limiting
function ξ∞|K is δ-uniformly continuous. The result follows by constructing ξ∞ on an increasing
family of compact subsets of T∞ by taking nested subsequences.

2.3 Hybrid shift operators and evolution maps

The hybrid shift operators σ̂m
s of Section 2.1 are only defined for systems with (s,m) ∈ T . It

is also useful to shift a trajectory by a certain number of events or a certain time, since these
operators are defined for all trajectories with sufficiently many events or sufficiently large total
execution times.

Definition 2.12 (Shift operators). Define the event-shift operators ρ̂m and the time-shift
operators τ̂s by

ρ̂mξ(t, n) = σ̂m
tm(ξ)ξ = ξ(t + tm(ξ), n + m) and τ̂sξ(t, n) = σ̂s

ns(ξ)
ξ = ξ(t + s, n + ns(ξ)).

The shift operators form semigroups under composition. In other words,

σ̂m2
s2

◦ σ̂m1
s1

= σ̂m1+m2
s1+s2

, ρ̂m2 ◦ ρ̂m1 = ρ̂m1+m2 and τ̂s2 ◦ τ̂s1 = τ̂s1+s2 .

Unfortunately, the time-shift operators are not continuous in the hybrid Skorohod topology for
systems with discrete events.

Example 2.13. Consider the trajectories ξa with a single event at time a, and let ξa(0, t) = 1
for t 6 a and ξa(1, t) = 0 for t > a. Then d(ξa, ξb) < 2|a − b|. However, if we take a 6 s < b,
then the time shift τ̂s(ξa) has no events, whereas τ̂s(ξb) has one event at time b− s. Then at any
time, either the number of events or the state of the system differs between ξa and ξb. Hence
d(τ̂sξa, τ̂sξb) = 2, so τ̂s is not continuous.

This difficulty arises since under τ̂s, nearby trajectories may have different numbers of events.

Though it may be possible to find a stronger topology under which τ̂s is continuous, we do not do
so here. However, it is straightforward to show that the time-evolution operators are continuous
on the set of trajectories with no events. The event-shift operators are better behaved, since
nearby trajectories have resets at nearby times.

Theorem 2.14 (Continuity of the event-shift operator). The event-shift operators ρ̂m are
continuous on their domains of definition.

Proof. Suppose ξi are hybrid trajectories converging to ξ∞ and that ξ∞ has at least m events.
Then each ξi has at least m events for i sufficiently large, and tm(ξi) → tm(ξ∞) as i → ∞.
Fix ε > 0, and let K ⊂ KN be a compact subset of R

+ × Z
+. Take N ′ sufficiently large
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that N ′ > max{N + m,N + tm(ξ) + ε}, and let K ′ = KN ′ . Take j sufficiently large that
|tm(ξj)−tm(ξ∞)| < ε/2 for all i > j, and ξi|K′ lies within the ε/2-neighbourhood of ξ∞. Then for
any (t, n, x) ∈ Gr(σ̂m

tm(ξi)
ξi|K), we have (t′, n′, x′) ∈ Gr(σ̂m

tm(ξ∞)ξi) such that (t+tm(ξi), n+m,x))

and (t′+tm(ξ∞), n′+m,x′) are within ε/2 of each other. Hence (t, n, x) and (t′, n′, x′) are within
ε since |tm(ξj) − tm(ξ∞)| < ε/2.

We note that the set of trajectories with at least m events is not a closed subset of the set of all
hybrid trajectories, since we may have a convergent sequence of trajectories ξi → ξ∞ such that
tm(ξi) → ∞, in which case n∗(ξ∞) < m.

We can obtain purely discrete-time or purely continuous-time representations of hybrid-time
trajectories using projection operators. The event projection of a hybrid trajectory ξ : T → X
is given by the (finite or infinite) sequence π∗ξ : n∗(ξ) → X with

π∗ξ (n) = ξ(tn, n),

and represents a trajectory of some discrete-time system. There is no such natural definition
of a time projection, since any attempt to define a time projection operator results in discon-
tinuities. We therefore give two possible time projections, one of which is single valued and
right-continuous, the other of which is multi-valued and upper-semicontinuous. The former is a
function π∗ξ : [0, t∗(ξ)] → X with

π∗ξ (t) = ξ(t, nt),

and the latter is a multivalued function π∗ξ : [0, t∗(ξ)] ⇒ X with

π∗ξ (t) = {ξ(t, n) | (t, n) ∈ T }.

Given a set of hybrid trajectories, we can define multivalued evolution maps on the state space.
We consider a multivalued map φ : X ⇒ X to be a map on subsets of X such that for any
A ⊂ X, φ(A) =

⋃

x∈A φ({x}) ⊂ X. By an abuse of notation we write φ(x) for φ({x}). These
evolution maps give sets of points reachable from a given initial set after a certain number of
events, or a certain time.

Definition 2.15 (Evolution maps). The event-evolution and time-evolution maps are given,
respectively, by

ρm(A) = {x ∈ X | ∃ ξ ∈ H with ξ(0, 0) ∈ A and ξ(tm,m) = x},
τs(A) = {x ∈ X | ∃ ξ ∈ H and n ∈ Z

+ with ξ(0, 0) ∈ A and ξ(s, n) = x}.

The maps ρm are all defined if every trajectory has infinitely many events, and the maps τs

are defined whenever there are no Zeno trajectories. Unfortunately, the image of a compact set
under these maps need not be compact. Further, these maps cannot be used to integrate the
system. We therefore define the following bounded integration maps:

σ6m
6s (x) = {x ∈ X | ∃ ξ ∈ H, n 6 m and t 6 s with ξ(0, 0) ∈ A and ξ(t, n) = x};

ρ m
6s(A) = {x ∈ X | ∃ ξ ∈ H with tm(ξ) 6 s, ξ(0, 0) ∈ A and ξ(tm,m) = x};

τ6m
s (A) = {x ∈ X | ∃ ξ ∈ H and n 6 m with ξ(0, 0) ∈ A and ξ(s, n) = x}.

The hybrid evolution map σ<m
6s gives the set of points reachable within time s and with less

than m events. The map ρ m
6s gives the set of points reachable directly after the mth event, as

long as this occurs before time s. The map τ 6m
s gives the set of points reachable after time s,

as long as no more than m events have occurred.
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Of particular interest are is the map νm
s (A) := ρ 1

6s(A) ∪ τ60
s (A), which gives the set of points

reachable either after the first event, as long as this occurs within time s, and to the set of points
reachable after time s otherwise. Any point reachable from A lies in the set σ0

6s

(

(ν1
s )m(A)

)

for
some m.

2.4 General hybrid trajectories

We now give an generalisation of the concept of hybrid trajectory on a hybrid time domain.

Let T be a partially-ordered set. An interval I in T is a set such that

1. I is totally ordered i.e. ∀x, y ∈ I, x 6 y or y 6 x, and

2. if y ∈ T is such that x 6 y 6 z for some x, z ∈ I, then either y ∈ I, or I ∪ {y} is not
totally ordered.

If ∃a ∈ I, ∀x ∈ I, a 6 x, then a is the minimal element of I; similarly if ∃b ∈ I,∀x ∈ I, b > x,
then b is the maximal element of I. An interval is closed if it has a minimal and maximal
element. Intuitively, an interval is a totally ordered set into which elements cannot be inserted
within its bounds without destroying the total order. This notion of interval generalises the
concept of an interval in R to arbitrary partially ordered sets.

The hybrid time domains defined in Definition 2.2 are intervals in the partially-ordered set
R

+ × Z
+ with minimal element 0. Using the concept of intervals of partially ordered sets, we

can generalise the notion of hybrid time axis to include any partially-ordered set; the notion of
hybrid time domain generalises accordingly.

Definition 2.16. Let the hybrid time axis T be a partially-ordered set with the order topology.
A (generalised) hybrid time domain in T is an interval T in T. A (generalised) hybrid trajectory
in X is a continuous function ξ : T → X for some hybrid time domain T in T.

Although this definition may seem too abstract to be of much use in applications, we shall see
that it enables us to provide an appropriate notion of solution for systems with certain types of
Zeno behaviour, most notably the bouncing ball of Example 5.1.

Many of the concepts introduced for the hybrid time axis R
+×Z

+ generalise to the more abstract
setting. In particular, given a projection π from T to a totally ordered set O such that π maps
intervals in T to intervals in O, we can define projections on hybrid trajectories by

π̂ξ (s) = ξ({t | π(t) = s}), πξ (s) = ξ(inf{t | π(t) = s}) πξ (s) = ξ(sup{t | π(t) = s}).

The projection π̂ gives rise to multivalued trajectories on O.

We can also shift hybrid trajectories, and catenate two hybrid trajectories. If σ : T → T is a
homeomorphism, and ξ : T → X is a hybrid trajectory, then σ̂ξ : σ−1(T ) → X is defined by

σ̂ξ (t) = ξ(σ(t)).

If ξ1 : T1 → X and ξ2 : T2 → X are hybrid trajectories such that T1 has maximal element c ∈ T,
T2 has minimal element c, and ξ1(c) = ξ2(c), then T1 ∪ T2 is an interval in T, and the function
ξ1 · ξ2 : T1 ∪ T2 → X defined by

ξ1 · ξ2(t) =

{

ξ1(t) if t ∈ T1;
ξ2(t) if t ∈ T2,

is continuous, so is a hybrid trajectory.
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3 Hybrid system models

Hybrid systems occur in a wide variety of applications, and there are a number of modelling
frameworks. In some frameworks, the “hybrid” nature is due to the interplay between discrete
and continuous variables in the state space. In discrete time, the general dynamical behaviour of
such systems is adequately described by that of iterated maps, though such systems may require
hybrid numerical techniques. In continuous time, the state space is partitioned into subsets,
and the system behaviour undergoes a discontinuous change when the state crosses from one
partition element to another. Such systems often arise as simplifications of general nonlinear
systems with the dynamics on each partition element being described by an affine differential
equation. These systems are adequately described by the theory of differential inclusions [2, 10],
with sliding modes [12] possible on the boundaries of partition elements. An explicit hybrid
model with each subsets being represented by a different discrete state is possible, but care
must be taken with the modelling to ensure that spurious Zeno behaviours are not introduced.
The hybrid nature is still important in the development of numerical methods for simulation and
verification, where different regions of the discrete state space must be considered separately.
However, in terms of defining an appropriate solution concept and determining the dynamical
properties, such systems can be considered non-hybrid.

Where the hybrid nature of the system is intrinsic in the application, such as in impacting
systems, electrical circuits with switches and (ideal) diodes, fast-slow systems, systems with
hysteresis effects and continuous systems with discrete (computer) controllers, the dual discrete-
and continuous-time behaviour is typically more apparent. Such systems are often modelled
using the framework of hybrid automaton, which we discuss in more detail below. In all cases,
trajectories of the system can be modelled by continuous functions on hybrid time domains. As
long as the set of trajectories of a system is uniformly equicontinuous, the closure of the set of
trajectories is compact. Since any additional trajectories obtained by taking the closure are just
limits of existing trajectories, this does not change the behaviour of the system which can be
observed in practise.

3.1 Impulse differential inclusions

The results so far presented have been expressed purely in terms of hybrid trajectory spaces,
with compactness of the space being a crucial property. We now discuss a class of hybrid systems
for which the trajectory space is always compact. These systems are the impulse differential
inclusions of [3].

Of crucial importance is the concept of upper-semicontinuity, which is a generalisation of con-
tinuity for multivalued maps. A multivalued map F : X ⇒ Y is upper-semicontinuous if
f−1(B) := {x | f(x)∩B 6= ∅} is closed whenever B is closed, and weakly upper-semicontinuous
if f−1(B) := {x | f(x)∩B 6= ∅} is closed whenever B is compact. A multivalued map F : X ⇒ Y
with closed values (i.e. F (x) is closed for all x) is weakly upper-semicontinuous if and only if
its graph Gr(F ) := {(x, y) ∈ X × X | y ∈ F (x)} its closed.

The continuous behaviour of our hybrid systems will be described in terms of differential in-
clusions, a generalisation of differential equations. The subject of differential inclusions is a
substantial topic in its own right. The basic results, including existence and of solutions, can be
found in the book of Aubin and Cellina [2]; here we briefly summarise the relevant material.

The natural solution space for a differential inclusion is the space of absolutely continuous
functions. Recall that a function ξ : [a, b] → X is absolutely continuous if for every ε > 0
there exists δ > 0 such that for every countable collection of disjoint subintervals [ak, bk] with
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∑

k(bk −ak) 6 δ, we have
∑

k d(ξ(ak), ξ(bk)) 6 ε. If ξ is an absolutely continuous function, then
its derivate ξ̇ is well-defined Lebesgue almost everywhere.

A set of absolutely continuous functions is absolutely equicontinuous if the same modulus of
continuity δ(ε) applies to each. A sequence of absolutely equicontinuous functions taking values
in a compact set has a convergent subsequence, and the limit is absolutely continuous with the
same modulus of continuity.

A differential inclusion ẋ ∈ F (x, t) always has a solution if the state space X is a closed manifold,
and if the right hand side F is upper-semicontinuous in x, measurable in t, and F (x, t) takes
nonempty closed convex values. If further the values of F (x, t) are compact, then the solution
space consists of functions which are absolutely continuous. The set of solutions is compact
in the compact-open topology, which means that any sequence of solutions has a subsequence
which converges uniformly on compact time intervals to another solution.

If the state space X is a non-compact manifold (without boundary), then solutions may escape
in finite time. In the case that X is a Banach space, this can be prevented by assuming linear
growth; i.e. that there exists k > 0 such that for all t, F (x, t) ⊂ B(c(1 + ||x||)).
We now give a formal definition of a hybrid system as an impulse differential inclusion.

Definition 3.1 (Impulse differential inclusion). A hybrid system H is given by an impulse
differential inclusion (X,F,G) where

• The closed manifold X is the state space.

• The function F : X ⇒ TX, F (x) ⊂ TxX defines a differential inclusion ẋ ∈ F (x).

• The function G : X ⇒ X defines a reset condition xn+1 ∈ G(xn).

A trajectory or execution of H is an absolutely continuous function ξ : T → X such that

ξ̇(t, n) ∈ F (ξ(t, n)) for almost every t ∈ (tn, tn+1);

ξ(tn, n) ∈ G(ξ(tn, n−1)).

The system may be non-deterministic, so there may be more than one possible trajectory for a
given initial condition. A discrete event cannot occur at a state x with G(x) = ∅. An event must
occur if there is no further continuous trajectory, such as on reaching the boundary of the set
on which F (x) 6= ∅, since no continuous evolution is possible if F (x) = ∅. Otherwise a discrete
event may or may not occur. In this way it is possible to model systems for which a discrete
event is forced to occur at a particular state. For more generality, the differential inclusion could
be replaced by a set-valued semiflow.

Control laws also have a natural interpretation in this context. A feedback control law for a
plant described by an impulse differential inclusion (X,FP , GP )is specified by giving a system
(X,FC , GC) describing the allowable continuous-time and discrete-time evolutions. The closed
loop dynamics induced by coupling the plant system (X,FP , GP ) with the controller (X,FC , GC)
is then the system (X,FP ∩FC , GP ∩GC), where we define the intersections by (FP ∩FC)(x) =
FP (x) ∩ FC(x).

The following theorem shows that the trajectory space of an upper-semicontinuous impulse
differential inclusion. It is possible to extract a proof from the proof of Theorem 4 of [3]; we
give a simpler proof here.
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Theorem 3.2 (Trajectory space of impulse differential inclusions). Let H = (X,F,G) be
an impulse differential inclusion such that X is compact, and F and G are upper-semicontinuous
with compact values, and F has linear growth. Let H be the set of trajectories of H with initial
point in some compact set X0 of X. Then the trajectory space H is compact in the hybrid
Skorohod topology.

Proof. Standard results from the theory of differential inclusions [2] show that the solution set
of ẋ ∈ F (x) is uniformly equicontinuous, and further, the limit of solutions on any compact
interval is also a solution. Therefore H is a set of uniformly equicontinuous functions, and by
Theorem 2.11, we need only show that the solution set of the hybrid system is closed. To this end,
let ξi be a convergent sequence of trajectories of H with limit ξ∞. Then since ξ∞(tn(ξ∞), n−1) =
limi→∞ ξi(tn(ξi), n− 1), ξ∞(tn(ξ∞), n) = limi→∞ ξi(tn(ξi), n) and ξi(tn(ξi), n) ∈ G(ξi(tn(ξi), n−
1)), the fact that the graph of G is closed gives ξ∞(tn(ξ∞), n) ∈ G(ξ∞(tn(ξ∞), n − 1)). For
any t ∈ (tn(ξ∞), tn+1(ξ∞)) we have ξ∞(t, n) = limi→∞ ξi(t, n). Since the limit of ξi on any
compact subinterval of (tn(ξ∞), tn+1(ξ∞)) × {n} is a solution to ẋ ∈ F (x) almost everywhere,
the limiting hybrid trajectory ξ∞ solves the differential inclusion between events. Hence ξ∞ ∈ H
as required.

3.2 Hybrid automata

A popular framework for hybrid systems is that of a hybrid automaton [23]. We now describe
how hybrid automata can be modelled in the framework of impulse differential inclusions. This
gives an indication of the generality of impulse differential differential inclusions and hybrid
trajectories as a modelling framework.

The system consists of finitely many discrete states Q and discrete events E. If an event e is
occurs in state q, a discrete state transition occurs, and the new discrete state is q ′ = ρ(q, e),
where ρ : Q × E → Q. The discrete state transitions are driven by the continuous dynamics,
which are described as follows. The continuous variables lie in some space R

n, and for any
q ∈ Q evolve according to a differential equation ẋ = fq(x, u), where u lies in some input space
U . The continuous variables are constrained by some invariant condition x ∈ X inv

q . Whenever

some guard condition x ∈ Xguard
(q,e) is satisfied in state q, the discrete transition e is enabled, and

the system may jump to the discrete state ρ(q, e), with the continuous variables being reset by
x′ = rq,e(x).

Such a system can be modelled by an impulse differential inclusion as follows. The state space
of the system is X = Q × R

n, giving the set of all possible continuous and discrete states. The
differential inclusion is given by (q̇, ẋ) ∈ F (q, x) where

F (q, x) = (0, fq(x)) if x ∈ X inv
q , and F (q, x) = ∅ otherwise.

The reset condition is given by a union over all events of the reset conditions for each events, so

G(q, x) =
⋃

e∈E|x∈X
guard
(q,e)

(

ρ(q, e), r(q,e)(x)
)

.

Note that the right-hand side of the differential inclusion is ∅ unless (q, x) satisfies the invari-
ant x ∈ X inv

q , which prohibits violation of the invariant condition in each discrete state. An
alternative formulation is to include the invariant conditions directly into the state set, so that
X =

⊔

q∈Q{q} × X inv
q . In this case F (q, x) does not need to be defined if x 6∈ X inv

q , since then
(q, x) 6∈ X.
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4 Hybrid systems with compact trajectory space

We now discuss features of hybrid systems with compact trajectory space. We assume through-
out that the trajectory space H of our hybrid system is invariant under the hybrid shift operators.
We also assume that that every trajectory is infinite (either infinitely many events, or infinite
execution time, or both), or equivalently, that the system is prefix-free and non-blocking. How-
ever, the results given extend easily to systems which are blocking. We focus on Zeno behaviour,
symbolic dynamics and the existence of invariant measures.

4.1 Zeno trajectories

The existence Zeno trajectories in a hybrid system is typically due to over-simplification in the
model, though it may indicate chattering behaviour in the system under consideration.

Definition 4.1 (Zeno trajectories). A hybrid trajectory ξ of a hybrid system is Zeno if
infinitely many events occur in finite time T . (i.e. limi→∞ ti(ξ) < ∞) A hybrid trajectory ξ is
instantaneously Zeno if ti(ξ) = 0 for all i ∈ Z

+. (i.e. infinitely many events can occur without
any continuous dynamics.) A state x ∈ X is a Zeno state if there is an instantaneously Zeno
trajectory ξ with ξ(0, 0) = x. A set of hybrid trajectories H is uniformly non-Zeno if there is
an integer M and a time S such that for any trajectory ξ, there are at most M discrete events
in any time interval of length S.

If a hybrid system is uniformly non-Zeno and non-blocking, then all trajectories are defined for
all t ∈ R+.

We now show that for systems with compact trajectory space, the existence of a Zeno trajectory
is equivalent to the existence of a trajectory with infinitely many events at a single time, which
is more easily verified from the system definition since it only depends on the discrete transition
map. The results here extend the setting of Proposition 6 of Zhang et. al. [24], and give a
converse to by showing that the existence of a Zeno trajectory implies the existence of a Zeno
state. We also show that a non-Zeno system must be uniformly non-Zeno.

Theorem 4.2 (Zeno systems). A non-blocking hybrid system with compact trajectory space
H is either uniformly non-Zeno or has an instantaneously Zeno trajectory.

Proof. Suppose H is not uniformly non-Zeno. We first show that H has a Zeno trajectory. Let
ξi be a sequence of trajectories such that ξi has at least i events in time S. Since H is compact,
the ξi have a subsequence converging to a trajectory ξ∞; by restricting to this subsequence we
assume that the ξi converge. Then since limn→∞ tn(ξi) 6 S for all n, the limit ξ∞ is Zeno.

Now consider the images of the Zeno trajectory ξ∞ under the return operator. We have

tn(ρ̂mξ∞) = tn+m(ξ∞) − tm(ξ∞) → t∞(ξ∞) − t∞(ξ∞) = 0

as i → ∞. Since H is invariant, ρ̂mξ∞ ∈ H for all m ∈ Z
+. Since H is compact, there exists a

converging subsequence ρ̂miξ∞ with limit η ∈ H. Then for any n, tn(η) = limi→∞ tn(ρ̂miξ∞) = 0,
so η is an instantaneously Zeno trajectory.

The significance of this result is that it shows that for systems with compact trajectory space,
Zenoness can be decided by considering only the discrete-time behaviour. This is a signifi-
cant advantage for systems for which the reset map is tractable e.g. piecewise-linear, but the
continuous dynamics is complicated.
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4.2 Bounded inter-event times

Dual to Zeno trajectories are trajectories with no events. Not surprisingly, there is an analogous
result in terms of bounded inter-event times.

Definition 4.3 (Bounded inter-event time). A hybrid trajectory space H has bounded
inter-event times if there exists T > 0 such that for all trajectories ξ, and all n for which tn(ξ)
is defined, we have tn(ξ) − tn−1(ξ) 6 T .

Bounded inter-event time is a kind of dual to uniform non-Zenoness; instead of implying that
every trajectory is defined for infinite times, it implies that every trajectory has infinitely many
events.

Theorem 4.4 (Bounded inter-event time). A non-blocking hybrid system with compact
trajectory space H either has bounded inter-event times, or a trajectory with no events.

Proof. Let ξi be a sequence of trajectories, and ni a sequence of integers such that tni+1(ξi) −
tni

(ξi) → ∞ as i → ∞. Let ηi = σ̂
tni
ni ξi, so t1(ηi) = t1(ηi) − t0(ηi) → ∞ as i → ∞. Since H is

compact, ηi has a subsequence with limit η∞, and we have n∗(η∞) = 0 as required.

Note that all trajectories of a uniformly non-Zeno system with bounded inter-event times have
infinite execution times and infinitely many events.

4.3 Finite simulation and symbolic dynamics

One of the fundamental techniques for the study of system dynamics in discrete time is to
represent an orbit symbolically by its itinerary, which gives an approximate description of an
orbit in terms of the regions of phase space it visits. Given a set of regions, the shift space of a
system is the set of all possible itineraries. Of particular interest are the sofic shift spaces, since
these can be given as the possible event sequences of a finite automaton. For an introduction to
the use of symbolic dynamics in the study of dynamical systems, see Kitchens [14].

An important problem of systems theory is the construction of simulating automata, which
generate shift spaces containing the shift space of the original system. For hybrid systems, we
can construct symbolic dynamics by considering the evolution maps on the trajectory space.

Definition 4.5 (Itinerary). Let R1, . . . Rk be compact subsets of X (not necessarily disjoint
or covering). A sequence (sn) is a itinerary for a sequence (xn) if xn ∈ Rsn for all n.

Note that a sequence (xi) may have many itineraries, or none at all. We can define itineraries
for multivalued maps φ : X ⇒ X. A sequence (xn) is an orbit of φ if xn+1 ∈ φ(xn) for all n.

Definition 4.6 (Shift space). If φ : X ⇒ X is a multivalued map, then the shift space of φ
on R1, . . . Rk is the set of all possible itineraries of orbits of φ.

It is straightforward to show that if φ : X ⇒ X is a multivalued map with a closed graph,
then the shift space of φ is compact. For any sequence of itineraries of φ has a convergent
subsequence, and this limit is the itinerary of an orbit of φ obtained by taking a limit point of
the orbits giving the sequence of itineraries. If φ is a multivalued map such that φ(A) is compact
whenever A is compact, then the graph of φ is closed.

Theorem 4.7. The shift space is compact for the maps σ6m
6s , ρ m

6s and τ6m
s .
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Proof. If K is a compact subset of R
+ ×Z

+, H a compact set of hybrid trajectories and A is a
compact subset of X, we claim that the set

{x ∈ X | ∃ξ ∈ H, (t, n) ∈ K ∩ T (ξ) with ξ(t, n) = x}
is compact. For consider a sequence xi = ξi(ti, ni) with (ti, ni) ∈ K. By taking subsequence if
necessary, we can assume that xi, ξi, ti and ni converge to some x∞, ξ∞, t∞ and n∞, respectively.
Then by Lemma 2.10, x∞ = ξ∞(t∞, n∞). By taking K = {(t, n) | t 6 s and n 6 m}, we see
that σ6m

6s (A) is compact for compact A, and by taking K = {(t, n) | t = s and n 6 m} we see

that τ6m
s (A) is compact for compact A.

To show that τ6m
s (A) is compact, we suppose ξi is a sequence of trajectories with tm(ξi) 6 s for

all m. Then ξi has a subsequence with limit ξ∞, and tm(ξ∞) = limi→∞ tm(ξi) 6 s. Restricting to
this subsequence, let xi = ξi(tm(ξi),m) for all n, and x∞ = limi→∞ xi. Again, by Lemma 2.10,
we have x∞ = ξ∞(tm(ξ∞),m) as required.

In general shift spaces are not Markov, since whether a region Rsn follows a word Rs0 . . . Rsn−1

can depend on all elements of the word. An important class of shift space are the sofic shifts,
which are described by a finite automaton. The fundamental problem of symbolic dynamics is
to compute sofic shifts approximating the true shift dynamics from above and below.

4.4 Invariant measures

If f : X → X is a single-valued map, a measure µ on X is an invariant measure for f if
µ(f−1(A)) = µ(A) for all measurable sets A. Invariant measures are important since they allow
the time-averaged behaviour of a system to be computed. In particular, if a probability measure
µ gives an estimate of the initial state of the system, and is also invariant, then µ(A) gives the
probability that the system state x is in the set A at any given time, and

∫

f(x) dµ(x) gives the
time-averaged value of the function f .

It is a well-known result of ergodic theory (see for example [20, 21]) that any continuous map
on a compact metric space has an invariant probability measure, and this result generalises to
continuous flows. We would like to give a probabilistic description of a hybrid system by finding
an invariant probability measure for its return map or time evolution map. However, since the
return map or time evolution map of a hybrid system may be discontinuous or multivalued, we
instead consider invariant measures for the return operator or time evolution operator on the
trajectory space, and later project to the state space.

A map may fail to have an invariant measure if the phase space is not compact (the measure
“escapes” to infinity) or if the map is discontinuous, as the following simple example shows.

Example 4.8. Let f : [0, 1] → [0, 1] be the function given by
{

f(0) = 1
f(x) = x/2 if 0 < x 6 1

If µ were an invariant measure, then µ({0}) = µ
(

f−1({0})
)

= µ(∅) = 0. Then since the
preimage f−1 ((1/2, 1]) = {0}, we have µ

(

f−1(1/2, 1]
)

= µ
(

f−1(1/4, 1]
)

= µ{0} = 0. An
inductive argument shows that µ ((1/2n, 1]) = 0 for all n ∈ N, and so µ ((0, 1]) = 0. But then
µ ([0, 1]) = 0, and so there is no invariant probability measure.

Such situations occur naturally in hybrid systems if a discontinuity point, particularly a tangency
of the continuous dynamics with the reset condition, lies on a limiting trajectory which is a stable
limit cycle, but not a trajectory of the real system. Such a situation may be given by the heating
system of Example 5.3.
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Definition 4.9 (Invariant measures for hybrid systems). Let H be a compact invariant
hybrid trajectory space. A measure µ on H is return-invariant if µ is an invariant measure for
ρ̂m for all m ∈ Z

+. A measure µ on H is time-invariant if µ is an invariant measure for τ̂s for
all s ∈ R

+.

Theorem 4.10 (Existence of invariant measures). Let H be a nonempty compact invariant
set of hybrid trajectories. Then there exists a measure µ which is either return-invariant or time-
invariant.

Proof. For any T ∈ R
+, the subset of H with inter-event time bounded by T is compact and

invariant under the return operators ρ̂m. If there is a trajectory with bounded inter-event times,
then there exists T > 0 such that the set of trajectories with inter-event time bounded by T is
nonempty. Since the return operators are continuous on their domains of definition, this implies
the existence of a return-invariant measure.

If there is a trajectory ξ with unbounded inter-event times, then t1(ρ̂
miξ) → ∞ as i → ∞, so

any limit trajectory of ρ̂miξ has no events. The set of trajectories with no events is compact
and invariant under the time-evolution operators τ̂s, and the time-evolution operators act con-
tinuously on this set. Hence if there is a trajectory ξ with unbounded inter-event times, then
there is a time-invariant measure supported on the set of trajectories with no events.

Any return-invariant measure must be supported on the set of trajectories which are either
instantaneously Zeno, or have infinitely many events with bounded inter-event times. Any time-
invariant measure must be supported on the set of trajectories which either have no events,
or infinitely many events, but a bounded number in any time interval. Note that the time-
evolution operators may have an invariant measure supported on the set of trajectories with
infinitely many events even though they are not continuous on this set; continuity is a sufficient
condition for the existence of an invariant measure, but is not necessary.

If µ is an invariant measure for an operator σ̂ on the trajectory space H of a hybrid system
(either ρ̂m or τ̂s), then we can define an induced measure µ̃ on X by µ̃(A) = µ(π−1(A)) where
π is the projection to the state space given by π ξ = ξ(0, 0).

Theorem 4.11 (Invariant measures for deterministic systems). Suppose H is the tra-
jectory space for a deterministic hybrid system, and µ is an invariant measure for an operator
σ̂ on S (either the return operator or the time-evolution operator). Then

µ̃ = µ ◦ π−1

is an invariant measure for the map σ̃ : X → X defined by σ̃(πξ) = π(σ̂ξ).

Proof. We have

µ̃(σ̃−1(A)) = µ(π−1(σ̃−1(A))) = µ(σ̂−1(π−1(A))) = µ(π−1(A)) = µ̃(A)

as required.

Remark 4.12. For multi-valued mappings F : X ⇒ X, we can define

F⇐(A) = {x | F (x) ⊂ A} and F−1(A) = {x | F (x) ∩ A 6= ∅}.

Then we say a measure µ is invariant for F if µ(F ⇐(A)) = µ(A) = µ(F−1(A)) for all Borel sets
A. However, such a map need not have any invariant measures.
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5 Examples

Example 5.1 (A bouncing ball). We first give an example illustrating how the generalised
hybrid time axis can model a system which is hard to model using traditional hybrid system
techniques.

A ball bouncing on a table can be modelled as follows: The state of the ball is given by the
height x and the velocity v = ẋ. If the ball is not in contact with the table, the motion is
governed by gravity: (ẋ, v̇) = (v,−g) if x > 0. When the ball bounces, a discrete event occurs,
and the velocity is reset: (x+, v+) = (0,−λv) if x = 0, v 6 0. If the ball is stationary, then the
ball remains stationary: (x, v) = (0, 0).

If the system starts at (0, v0) with v0 > 0, then the next event occurs after time t1 = v0/2g, and
the state at (t1, 1) is (0, λv0/2g). Hence the nth event occurs at time

tn =
1

2g

n−1
∑

i=0

λi

with limit t∞ = 1/2g(1 − λ). The velocity just after the nth event is vn = λnv0. Therefore any
trajectory starting with x > 0 or x = 0 and v0 > 0 is Zeno. However, for any Zeno trajectory,
(x(t, n), v(t, n)) → (0, 0) as n → ∞.

To define trajectories for this system, we take as hybrid time axis the set T = R
+ × Z

+
∞, where

Z
+
∞ = Z

+ ∪ {∞} = {0, 1, 2, . . . ,∞}. We can define an infinite-time trajectory ξ on Z
+
∞ × R

+ as
follows

ξ(t, n) =

{

φ(t − tn, 0, λnv0) if t ∈ [tn, tn+1];

(0, 0) if t ∈ [t∞,∞) and n = ∞.

where φ(t, x0, v0) = (x0 + v0t − gt2/2, v0 − gt). This is a continuous function on Z
+
∞ × R

+,
since lim(t,n)→(t∞,∞) ξ(t, n) = (0, 0) = ξ(t∞,∞). Further, after t∞, the ball “rolls” without
undergoing any more discrete events, even though F (0, 0) = (0, 0) is defined, since the definition
of the hybrid time domain T itself precludes more events!

To compactify the trajectory space, we take the stationary trajectory ξ ≡ (0, 0) defined on the
hybrid time domain T = {(0, n) | n ∈ Z

+} ∪ {(t,∞) | t ∈ R
+}. This represents a ball which

starts and stays at rest, and is a limit of trajectories starting at (x0, v0) as (x0, v0) → (0, 0). The
resulting system has compact trajectory space, and models all behaviours of the ball.

Example 5.2 (A switched arrival system). We now give an example of a system exhibiting
Zeno behaviour for which we can compute symbolic dynamics, and invariant measures for both
the return map and the time-shift map.

ρ

ρ

ρ1 ρ2 ρ3

Figure 3: A switched arrival system comprising three tanks with constant outflows
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Consider a system comprising three tanks T1, T2 and T3 with constant outflows ρ1, ρ2 and ρ3.
The tanks are filled through a single inflow with capacity ρ = ρ1 + ρ2 + ρ3. The volume of fluid
in tank i is given by xi, and the total volume is preserved, so x1 +x2 +x3 is a constant which we
can take to be 1. The continuous state can therefore be given by the (x1, x2) coordinates. Only
only one tank can be filled at a time, yielding discrete states qi corresponding to filling tank Ti.
This system has been been studied in detail in [22, 17].

x1

x2

x1 x1

x2 x2

q = 1 q = 2 q = 3

Figure 4: State-space of the switched arrival system.

Consider the switching law under which the system switches state to state qi as soon as tank
Ti empties. The system is described by a deterministic upper-semicontinuous evolution law,
with Zeno trajectories occurring if two tanks empty at the same time. Instantaneously Zeno
trajectories therefore exist in the system, and occur if two tanks start empty.

The order in which the tanks are filled gives a natural symbolic description of the system. It is
fairly straightforward to show that the any sequence of tanks gives a possible ordering for filling.
Taking Ri = {(q, x) | q = i} for i = 1, 2, 3 gives symbolic dynamics for first return map r as

Σ = {(sn) ∈ {1, 2, 3}Z
+ | ∀n > 0, sn+1 6= sn}.

Indeed, assuming the system starts in a state for which one of the tanks is empty, the dynamics
is determined uniquely by the order in which the tanks are filled.

There is a natural invariant measure µ for the return map of the system, which has constant
distribution on each of the sets xi = 0. The total measure of the set x1 = 0 is given by

µ({x1 = 0}) =
1

2

ρ1(ρ2 + ρ3)

ρ1ρ2 + ρ2ρ3 + ρ3ρ1

with analogous expressions holding for the sets x2 = 0 and x3 = 0. Under this measure, the set of
initial conditions giving rise to Zeno trajectories has measure zero. However, the measure of the
set of non-uniformly Zeno functions is also zero, which means that for almost every trajectory,
each tank becomes arbitrarily close to being filled. Other measures exist, some of which are
supported on uniformly non-Zeno sets.

The system also admits time-invariant measures on the state space. Since the continuous-time
evolution preserves Lebesgue measure in the (x1, x2) space, we look for an invariant measure µ
such that the measure µi in state qi is a constant multiple ci of Lebesgue measure λ. We need
to ensure that measure is preserved by trajectories crossing from one discrete state to another.
Since the flow across the line x1 = 0 is equal to 1−ρ1 in state q1, and −ρ1 otherwise, we see that
in a neighbourhood of x1 = 0 in state q1, the flux is c1(1 − ρ1) − c2ρ1 − c3ρ3, which must equal
zero for a time-invariant measure. We obtain similar equations for states q2 and q3. Solving
these equations gives ci ∝ ρi, so the invariant measure is

µi = 2ρiλ

in discrete state qi. Hence the average amount of time the system spends filling tank i is
proportional to the rate of outflow ρi.
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We note that while the theory of Section 4.4 we gave ensures the existence of invariant measures
for operators on the trajectory space, we are really interested in invariant measures on the
state space, and these can be constructed directly. The theory ensures that at least one return-
invariant measure exists since the system is deterministic.

Example 5.3 (A simple heating model). We now give an example of a system illustrating
the importance of allowing non-determinism for the existence of invariant measures. This system
exhibits grazing behaviour, and also the typical associated period-adding bifurcation sequence.

Consider thermal system with temperature T (t) driven by external fluctuations f(t) and an input
u(t). Suppose f(t) is a periodic (sinusoidal) function given by f(t) = Tenv = Tav + A cos(2πt),
and u(t) can be switched arbitrarily between two values 0 and P , corresponding to a discrete
state q ∈ {off,on} of a heating device. The system can then be modelled by the differential
equation

Ṫ (t) = Tav + A cos(2πt) + Pδ(q(t) = on) − KT (t),

which can be made autonomous by introducing an auxiliary variable t = θ ∈ [0, 1] and setting
θ̇ = 1.

We wish to devise a feedback controller so as to maintain the temperature within an allowable
range [Tmin, Tmax]. A simple control law is to turn the heater on if T reaches Tmin, and turn the
heater off if T reaches Tmax.

The dynamics in each state is governed by a linear equation which can be solved explicitly.
There is a single limit cycle in each state given by the sinusoidal orbit

T (t) =
KA

4π2 + K2
cos(t) +

2πA

4π2 + K2
sin(t) +

Tav + Pδ(q = on)

K
.

Of critical importance are the values for which the control law achieves the desired control
without switching, since then the invariant measures are supported on the limit cycles. In the
state q = on, the temperature is maintained between Tmin and Tmax if

Tmin 6
Tav + P

K
− A√

4π2 + K2
and

Tav + P

K
+

A√
4π2 + K2

6 Tmax.

In Figure 5, we show a simulation for the parameter values Tav = 15.0, A = 5.0, P = 5.0 and
K = 1.0. (Note that this corresponds to the room being extremely well-insulated from the
environment.) A limit cycle with q = on can only exist if Tmax > 20 + 5/

√
4π2 + 1 ≈ 20.78588.

For Tmax smaller than this value, the temperature gradually builds over a number of days to the
maximum allowed temperature, at which the heating is turned off, and the temperature falls
back to the minimum temperature. Notice that as Tmax increases, the period of the limit cycle
increases by one via a period-adding bifurcation whenever the continuous dynamics is tangent
to the switching condition. There is an invariant measure supported on this limit cycle.

For Tmax = (Tav + P )/K + A/
√

4π2 + K2, the maximum daily temperature is an increasing
sequence limiting on Tmax, and hence the limiting behaviour as t → ∞ is the periodic trajectory.
However, if we were to insist on a event precisely at this value, this limiting behaviour would
not be a trajectory of the system, and there would be no invariant measure.

For certain parameters, there may be times t for which Ṫ < 0 with T = Tmin even for q = on.
In this case, turning the heating off may result in the temperature dropping below the minimum
threshold value before recovering. In Figure 6(a), we show a system with a limit cycle with
q = on with maximum value near Tmax. Slightly reducing Tmax results in the situation shown in
Figure 6(b), in which the heater is turned off and the temperature quickly drops to Tmin. The
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Figure 5: Simulation of the heated room system generated by Charon[1]. T (0) = 20.0,
Tmin = 15.0, Tenv = 15.0 + 5.0 cos(2πt), P = 5.0, K = 1.0. (a) Tmax = 20.77, (b)
Tmax = 20.78, (c) Tmax = 20.785, and (d) Tmax = 20.79.

T
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20.0
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0 1 2 3 (a) (b)
Tmin

Tmax

(a) (b)

Figure 6: Turning the heater off near the maximum of the limit cycle may cause violation
of system constraint Tmin = 19.0. (a) Tmax = 20.80, (b) Tmax = 20.75.

heater is then turned on, but even with q = on we still have Ṫ < 0 at this particular time, and
the temperature falls below the minimum allowable temperature Tmin before recovering.

This example shows that a small change in the parameters of a hybrid system can cause a
rapid system failure, even if the system is operating far from the dangerous region, and hence
that detecting tangencies of the continuous dynamics with the switching surfaces and grazing
bifurcations is an important problem. In this example, a control law satisfying the constraints
can be obtained by switching the heater on at a temperature Ton > Tmin.

6 Conclusions and further research

We have presented a framework for the study of the dynamics of nonlinear hybrid systems. This
framework is general enough to include most hybrid systems models, including those with sliding
modes and discontinuous resets. The key concept is to consider the set of functions modelling
the possible trajectories; this set consists of (absolutely) continuous functions from a hybrid
time domain to the state space.

There are two natural projections from functions defined on a hybrid time domain to functions
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defined on the positive integers or the positive real numbers. Corresponding to these projections
is a natural shift operator of the hybrid trajectory set. At least one of these shift operators has
an invariant measure if the hybrid trajectory set is compact. For deterministic hybrid systems,
these invariant measures on the trajectory spaces give rise to invariant measures on the state
space itself. The detection of Zeno behaviour of systems with compact trajectory set is reduced
to a study of the discrete events alone.

Since compactness of the trajectory space is the fundamental condition in the theory, we give
natural conditions on a hybrid system for it to have a compact trajectory set. The conditions
require that the reset maps be upper-semicontinuous functions, and can be imposed on general
hybrid system models. Some care must be taken in the modelling to avoid Zeno behaviour; in
particular, discrete events which do not cause discontinuous jumps in the trajectories are best
modelled in the continuous dynamics as Filippov sliding modes.

In this paper, we have only considered pure deterministic or nondeterministic systems. However,
many industrial models are given as stochastic systems, and it should be possible to extend the
frameworks given here to the case of stochastic behaviour. Upper-semicontinuity of evolution
maps then then arises naturally as a zero-noise limit.

The results contained in this paper provides only a theoretical framework for the study of hybrid
systems, and are generally related to existence results. The most important area of further work
is in the development appropriate computational tools, such as for simulation and verification
of impulse differential inclusions, determining Zeno behaviour, finding symbolic dynamics, and
computing invariant measures. Topological tools such as the Conley index [18] may be useful in
finding symbolic dynamics; for these compactness of the trajectory space is vital, but successful
application of the index requires further technical work on homotopy and homology theory for
nondeterministic and hybrid systems. For continuous-time or discrete-time nonlinear systems,
particle filters [11] are a popular technique for approximating and computing measures. Particle
methods are based on iteration of measures by the Perron-Frobenius operator. The resulting
measures can be interpreted as the long-term probability of the system being a particular set
of states given the initial probability density, and hence have a more intuitive meaning than
general invariant measures. Such methods are numerically straightforward to implement, and
can be tuned to the problem at hand such as the estimation of (small) failure probabilities or
finding state approximations.
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