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1. FROM MARKOV CHAIN TO MARKOV POINT PROCESS, AND BEYOND

Markov chains are one of the most fundamental and intensively studied processes in prob-
ability, see e.g. [2]. If we restrict ourselves to a bounded time horizon, say 0,1,..., N for
some N € N, a discrete Markov chain is a random vector (X, ..., Xy) with values in some
denumerable set L # () for which

P(Xi =T; | Xo=x0;..-;X5.1= xifl) = ]P’(X,' =Z; | Xi 1= :Cifl) (1.1)

forall 1 < ¢ < N andall z; € L, j = 0,...,i. In words, the Markov property (1.1)
states that the future and the past are conditionally independent given the present. The
right hand side is referred to as the transition probability at time ¢ from z; 1 to x;. If
P(X; = z; | Xi—1 = ®i—1) = p(xi—1, ;) does not depend on 4, the Markov chain is said to be
stationary. By the product rule, the joint distribution can be factorised as

N

P(Xo = zo;...; XN =zn) = P(Xo = z0) Hp(mi,l,:ci). (1.2)
=1



For example, for the simple random walk on L = 72, p(z,y) = 1/4 if x and y are horizontally
or vertically adjacent in L, that is, ||z — y|| = 1, and zero otherwise [25]. To tie in with a
more general concept of Markovianity, the time slots 2 — 1, 4+ 1 (if within the finite horizon)
may be called neighbours of i, 7 € {0,..., N}.

The concept of Markovianity plays an important role in space as well as in time, especially
in image analysis and statistical physics. Since, in contrast to the setting in the previous
paragraph, there is no natural order, a symmetric, reflexive neighbourhood relation ~ must
be defined on the domain of definition, which we assume to be a finite set I. The generic
example is a rectangular grid I C Z? with i ~ j if and only if ||i — j|| < 1. Then, a discrete
Markov random field with respect to ~ is a random vector X = (X;);cr, with values of the
components X; in some denumerable set L # (), that satisfies the local Markov property

P(Xi =i | X =2, #1) =P(Xi =2 | X; = ;,j € 0(1))

where 0(i) = {j € I\ {i} : j ~ i} is the set of neighbours of i. The expression should be
compared to (1.1); indeed a Markov chain is a Markov random field on I = {0,1,..., N}
with ¢ ~ j if and only if |¢ — j| <1, 4,5 € I. To state the analogue of (1.2), define a clique
to be a set of sites C' such that for all ¢,57 € C these sites are neighbours, that is ¢ ~ j. By
default, the empty set is a clique. If we assume for simplicity that the joint probability mass
function of the random vector X has no zeroes, it defines a Markov random field if and only
if it can be factorised as

P(Xo = wo;...; XN =2N) = H vo(xj,j € C) (1.3)
cliques C

for some clique interaction functions pc(-) > 0. Models of this kind are very popular in
statistical physics under the name Gibbs random field. An early example is the Ising model
for spins in a magnetic field [15]. For this model on a 2D grid with horizontal and vertical
neighbours, L = {—1, 1} for the two spin types. The interaction functions are 15 (x;) = e*®i
and @y; jy(zi,z;) = €% with g set to the unique constant for which the right hand side
of (1.3) is a probability mass function. The constant « reflects the external magnetic field
and influences the frequencies of the two spin types. For 8 > 0, neighbouring sites tend to
agree in spin, for 8 < 0, they tend to have different spins. The product form allows for easy
interpretation and definition of new models. For further details, the reader is referred to [11].

The next step is to leave discrete domains and move into Euclidean space. Thus, let D C R¢
be a disc, rectangle or other bounded set of positive volume. A realisation of a Markov point
process on D is a subset x = {z1,...,z,} of D with random, finite n > 0. Again define a
reflexive, symmetric neighbourhood relation ~, for instance by x ~ y if and only if ||z —y|| <
R for some R > 0. Note that each point has uncountably many potential neighbours, in
contrast to the discrete case. Moreover, the probability of finding a point at any particular
location a € D will usually be 0, so densities rather than probability mass functions are
needed. A suitable dominating measure is the homogeneous Poisson process (see e.g. [17]),
because of its lack of spatial interaction. Indeed, given such a Poisson process places n points
in D, the locations are i.i.d. and uniformly distributed over D. If desirable, one could easily
attach marks to the points, for example a measurement or type label of an object located at
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the point. Doing so, the domain becomes D x M, where M is the mark set, and each x; can
be written as (d;,m;). In this set-up, a Markov point process X is defined by a density f(-)
that is hereditary in the sense that f(x) > 0 = f(y) > 0 for all configurations y C x and
satisfies [26, 18] the local Markov condition, that is, whenever f(x) > 0 the ratio

f(xU{u})
) (1.4)

depends only on u and {x; : u ~ x;}. Note that since realisations x of X are sets of (marked)
points, f(-) is symmetric, i.e. invariant under permutations of the x; that constitute x. An
example of a process satisfying the above condition is the hard core model, a homogeneous
Poisson process conditioned to contain no pair of points that are closer than R to one another.
A factorisation is provided by the Hammersley—Clifford theorem which states [1, 26] that a
marked point process with density f(-) is Markov if and only if

= I & (1.5)

cliques ycx

for some non-negative, measurable interaction functions ¢(-). For the hard core model,
o({z,y}) = 1{||lx — y|| > R}, ¢(y) = 1 for singletons and configurations y containing three
or more points. The interaction function for the empty set acts as normalising constant to
make sure that f(-) integrates to unity.

Although Markov point processes are useful modelling tools [18], the assumption of per-
mutation invariance may be too restrictive. For instance in image interpretation, occlusion of
one object by another may be dealt with by an ordering of the objects in terms of proximity
to the camera [20], or in scene modelling various kinds of alignment of the parts that make
up an objects may be modelled by means of non-symmetric neighbour relations [22]. Non-
symmetric densities also arise naturally when local scale and intensity is taken into account
by transforming the conditional intensity of a homogeneous template process, see [14].

In stark contrast to the vast literature on spatial point processes, sequential patterns have
not been studied much. Indeed, an analogue to the theory of Markov point processes does
not exist in the non-symmetrical setting. The present paper fills this gap.

2. DEFINITIONS AND NOTATION
This paper is concerned with finite sequential spatial processes. Realisations of such a process
at least consist of a finite sequence

X=(z1,.--,%n), n €Ny

of points in some bounded subset D of the plane. Additionally, to each point z;, a mark
m; in some complete, separable metric space, say M, may be attached. The mark may be a
discrete type label, a real valued measurement taken at each location, or a vector of shape
parameters to represent an object located at x;. Thus, we may write

—

y = (yl’ R ,yn) = ((whml)a ey (wnamn)), n c I\IO



for the configuration of marked points, and shall denote the family of all such configurations
by Nt.

As an aside, the plane R? may be replaced by R? or any other complete separable metric
space, equipped with the Borel o-algebra and a finite diffuse Borel measure.

The distribution of a finite sequential spatial process may be defined as follows. Given a
finite diffuse Borel measure u(-) on (D, Bp) so that u(D) > 0, usually Lebesgue measure,
and a mark probability measure up(-) on M equipped with its Borel o-algebra M, specify

1. a probability mass function g¢,, n € Ny, for the number of points in D;

2. for each n, a Borel measurable and (u X par)"-integrable joint probability density
Pn(y1,-..,yn) for the sequence of marked points yi,...,y, € D x M, given it has
length n.

Alternatively, a probability density f(-) may be specified directly on NT = U (D x M),
the space of finite point configurations in D with marks in M, with respect to the reference
measure

X e H(D)
P =3 L[] ) € FY dusnartn)-di < partan)

defined for F' in the o-algebra on finite marked point sequences generated by the product Borel
o-fields on (D x M)™. In words, v(-) corresponds to a random sequence of Poisson length
with independent components distributed according to the normalised reference measure

u(-) pa(+)/ (D).

It is readily observed that

G = — /D/M---/D/Mf(yl,---,yn)dux,uM(yl)---dﬂXNM(yn)
pn(Y) - n!qn, f(y)

for each n € N, and gy = exp(—u(D)) f(0). Reversely, if the length n(¥) of ¥ is n,

F(F) = P nl g, pu(F).

Note that neither f(-) nor the p,(-,...,-) are required to be symmetric [3, Ch. 5].
We are now ready to define and analyse a Markov concept for random sequences in the
plane. To do so, we begin by defining the sequential conditional intensity

CHCACRIO))
i) 90
= 0 otherwise (2.1)

Ai((z,m)|¥)

for inserting (z,m) ¢ ¥ at position i € {1,...,n+1} of ¥ = (y1,--.,¥yn). Here s;(¥, (xz,m)) =
(y1,---,¥i-1,(z,m),Yi,...,yn). The overall conditional probability of a finding a marked
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point at du = du X pp(u) in any position in the vector given that the remainder of the
sequence equals ¥ is given by

n+1

Z Ai(dul¥).

The expression should be compared to its classic counterpart (1.4). As for Markov chains,
we are mostly interested in A,y1(-|¥), but all A;(-|-) are needed for the reversibility of the
dynamic representation to be considered in Section 4.

Note that provided f(-) is hereditary in the sense that f(¥) > 0 implies f(Z) > 0 for all
subsequences Z of ¥, then

n
F@, - syn) ol [T M (wi | §<2) (22)
i=1
where ¥<; = (y1,...,¥i—1). This observation implies an alternative way of defining a sequen-

tial spatial process: by its conditional intensity. Some care has to be taken to make sure
that the resulting density (2.2) is integrable with respect to v(-). A sufficient condition is
that A; (vi | ¥<i) < B/i for all choices of ¢, y;, and ¥;. It is important to note, though, that
such an assumption does not imply that f(s;(¥,u))/f(¥) is uniformly bounded in v and ¥
for j # n(y). The latter stronger assumption, which may be referred to as local stability in
analogy with classic marked point processes, will be required in Section 4.

In order to generalise the concept of Ripley—Kelly Markovianity [26, 18] to random se-
quences, suppose a reflexive relation ~ on D X M is given with the purpose of formalising
the local interactions. In contrast to the point process context, we do not require ~ to be
symmetric. If y ~ z, the marked point z is said to be a directed neighbour of y.

Definition 1. A sequential spatial process Y on a bounded Borel set D C R? with marks
in M defined by its density f(-) with respect to v(-) is said to be Markov with respect to the
relation ~ on D x M if

o f(¥) > 0 implies f(Z) > 0 for all subsequences Z of §;

o for all sequences ¥ for which f(¥) > 0, the ratio f((¥,v))/f(¥) depends only on u and
its directed neighbours {y; € ¥ : u ~ y;} in ¥.

In particular, A,(g)41(:|¥) is invariant under permutations of ¥. In the sequel, we shall
sometimes abuse notation somewhat and write A, y)11(:|y), where y = {y; € ¥}, and n(y)
is the cardinality of the set y.

Due to the lack of symmetry, sequential spatial point processes are particularly useful for
modelling inhomogeneous space-time processes. For instance, to obtain a complete packing
of non-intersecting particles [28], a typical algorithm keeps adding particles randomly until
this becomes impossible due to violation of the condition of no overlap, see e.g. the recent
review papers [6, 27]. A related soft-core model for landslides was proposed by Fiksel and
Stoyan [9].



Example 1. Simple Sequential Inhibition Let 7(-) be a probability density with respect
to Lebesgue measure on a bounded planar Borel set D of strictly positive area. Suppose a
population of animals arrives in the region D to set up nests, and would like to pick locations
according to m(-), that is those subregions with high 7-mass are deemed the most suitable.
However, as each animal needs its space, a newly arriving animal may not build its nest closer
than some 7 > 0 to an existing nest location [4, 5|. Thus, if we write d(z,X) = min{||z — || :
x € X} for the minimal distance between z € D and the components of X,

B w(x2) 1 {d(x2,z1) > r} (xn) 1{d(zp,X<n) > 1}
Po(@1,-- s Tn) = (1) Jpm(2)1{d(z,21) > r} dz fD )1{d(z,X<n) > r} dz (23)

for z; € D,i=1,...,n. Some care has to be taken about division by zero. If n is larger than
the packing number for balls of radius r in D, or ¢,, = 0 for some other reason, p,(-,...,-) may
be any probability density on D™. For smaller n, or if g, > 0, set p,(z1,...,z,) = 0 whenever
some term in the denominator of (2.3) is zero. The total number of animals in D is either
fixed — as in the formulation by [4] — or random according to some probability mass function
dn, n < np, the packing number. For example, for Random Sequential Adsorption[6, 27|, qn
equals the probability that a jump process, starting from an empty vector, with transition
rate b(z,x) = mw(z)1{d(z,X) > r} for a birth jump from X to (X, z) has exactly n jumps
within a pre-fixed time horizon 7' > 0 (which can be expressed explicitly in terms of the
convolution of exponential distributions with rates B(X) = [}, b(z,X) dz). Because of the fact
that given the current state is X and a birth occurs, the new point is distributed according
to b(z,X)/B(X), the jump process interpretation described above leads to the conditional n-
points density (2.3). Moreover, for large T', realisations tend to be concentrated on complete
packings of D. Clearly generalisations are possible by considering other forms of b(z,X), see
e.g. [6].

If n is fixed, that is g, = 1 {n = ng} for some ny € Ny, f(X) is not hereditary, therefore not
Markovian in the sense of Definition 1. If g, > 0 for n < n,, and ZZio gn = 1, the density
is hereditary. In that case, provided f(z1,...,zn) > 0,

Gnt1_ m(u)1{d(u,X) > r}
An1(u ] (21, ..., 20)) = n [pm(z)1{d(z,%) > r} dz’

The likelihood ratio is invariant under permutations of the components of X. However, it may
depend on the sequence length through gn1/¢n, and, moreover, [, 7(2)1{d(z,%X) > r} dz
may depend on the geometry of X, i.e. on the whole sequence. Hence in general, f(-) is
Markovian only with respect to the trivial relation in which each pair of points is related.

Example 2. Sequential Soft Core Further to example 1, suppose the animals have no
locational preferences, but claim territory within a certain radius. The radius can depend
deterministically on the location [14] (in fertile regions, less space is needed than in poorer
ones), be random and captured by a mark, or a combination of both !. To be specific, suppose

! Assume the mark space (0,00), for concreteness, is equipped with a density g(-). By the transforma-
tion A(cy,cp)(z,m) = (c1z,com) for ci,c2 > 0, the Lebesgue intensity measure yu(-) is scaled by c;? on
c1D, the new mark density is c;'g(m/cz). Let c(-,-) be a scaling function such that 0 < ¢ < c(u,m) <
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an animal settling at © € D claims the region within a radius m of x for itself that newcomers
are persuaded to avoid. An appropriate density with respect to v(-) could be

n(¥)
F(F) oc ) T AZs<s Hllwiaillsmsd
=1

¥ 3 yi = (x5, m;) € D x (0,00). Here 8 > 0 is an intensity parameter, and 0 <~y < 1 reflects
the strength of persuasion, the smaller 7, the stronger the inhibition. Indeed, for v = 0, no
new arrival is allowed to enter the territory of well-settled animals. Alternatively, if invaders
demand space according to their own mark, replace m; by m; in the exponent of +.

Note that the ratio

(n(F) + 1) M(z, m)|§) = Byt Hlla—a;li<m;}

depends only on those y; = (z;, m;) for which ||z — ;|| < m;. Hence f(-) is Markov with
respect to the relation (z,7) ~ (y,s) < ||z —y|| < s.

3. HAMMERSLEY—CLIFFORD FACTORISATION
The goal of this section is to formulate and prove a factorisation theorem for sequential spatial
processes in analogy with (1.2) and (1.5).

To do so, we need the notion of a directed clique interaction function. Indeed, for a marked
point z € D x M, define the sequence ¥ to be a z-clique with respect to a reflexive relation
~ on D x M if ¥ either has length zero or all its components y € ¥ satisfy z ~ y. The
definition is z-directed but otherwise permutation invariant, so we may identify ¥ with the
set y € N, the family of unordered finite marked point configurations, obtained by ignoring
the permutation.

Our main theorem is the following.

Theorem 1. A sequential spatial process with density f(-) is Markov with respect to ~ if and
only if it can be factorised as

Fn--um) = fO ] T @ 2) (3.1)

i=12Cy<;

for some non-negative, jointly measurable interaction function ¢ : (D x M) x Nf — [0, 00)
that vanishes except on cliques (i.e. p(u,z) =1 if z is no u-clique with respect to ~). Here

Y<i = {y17 ce 7y'i71}'

€ < oo uniformly. Let Y be a template marked point process with hereditary density f(-), and de-
fine a sequential conditional intensity with respect to duc(z,m) = ci(u,m)™%ca(u, m)" " g(m/cz2(u,m)) by
Av.(u,m | y) = A <Wu7n)7 ) | hc_(t,m)(y)) /(n(y) + 1). For example, the marked hard core density
f(y) o< IT1{l[zi — z;[| > mi +m;} is transformed in fy,(¥) o< [], ;1 {||:b, —z;|| > %(mz +mj)}.

Intuitively, the resulting process Y. looks like a scaling of Y at (u, m) by c(u,m). Indeed, if Y is Markov with
respect to ~, then Y, is Markov with respect to (u,r) ~¢ (v,s) & (ﬁ, #) ~ (L +T)) and

u,T) c1(u,r)? ca
the ~c-neighbourhood Oc(u,m) = he(u,m) (6(hc_(i m)(u,m))) inherits from &(-) geometric properties such as
convexity that are invariant under rescaling.



Proof: To show that any density of the given form is Markovian, suppose f(¥) > 0 but
f(Z) = 0 for some subsequence Z of y¥. Then, with the notation n(Z) for the length of Z,

n(Z)

f(0) H H o(zi,x) = 0.

=1 xCz;

Hence some term ¢(z;,x) = 0, but as it features in the factorisation (3.1) of f(¥) too, f(¥)
must be 0 as well in contradiction with the assumption.

Assume that f(¥) > 0. Now, f((¥,v))/f(¥) = [lscy ¢(u,z) depends only on u and its
directed neighbours in y, as ¢(u,z) = 1 except if z is an u-clique.

Reversely, set p(y1,0) := f(y1)/f(0) = A1 (y1]0), and define putative interaction functions
©(,-) recursively as follows. If {y1,...,yn} is no ypti-clique, ©(yn+1,{y1,--.,yn}) = 1; else

(n+1) Any1(Ynr1l{y1,- -, Yn})
[1, ¢(¥n+1,2)

@(Ynt1,{y1, .- yn}) = (32)
where the product ranges over all strict subsets {y1,...,yn} # 2 C {y1,-..,yn}- To deal with
any zeroes, we set 0/0 = 0.

We first show that ¢(-, -) is a well-defined interaction function. By the Markov assumption,
(n 4+ D)Ant1(Yn+1l{y1,..-,yn}) is invariant under permutations of yi,...,yn, so a simple
induction argument yields the permutation invariance of ¢(yn+1,{¥1,--.,Yn}) in its second
argument. By definition, ¢(-,-) vanishes except on cliques, hence it is an interaction function.
To show that if the denominator of (3.2) is zero, so is the numerator, note that if f(0) = 0, by
the assumption that the process is hereditary, necessarily f = 0 which contradicts the fact that
f(-) is a probability density. Therefore f(0) > 0 and ¢(y1, 0) is well-defined. Suppose ¢(-,-) is
well-defined for sets of cardinality at most n—1 > 0 as its second argument. Let {y1,...,yn}
be an y,1-clique and assume ¢(yn+1,2) = 0 for some strict subset z C {y1,...,yn}. By the
induction assumption, Ay (z)11(Yn+1|2) = 0. Hence f((Z,yn+1)) = 0, with the remark that if
f(Z) = 0 the Markov assumption that the process is hereditary implies f((Z,yn+1)) = 0. A
similar observation allows us to conclude that f(yi,...,¥n+1) = 0 = Ant1(Un+1l{v1,-- -, Un}),
hence (3.2) is well-defined by induction.

It remains to show that ¢ satisfies the desired factorisation. To do so, we again proceed
by induction. By definition, f(y1) = f(0) ¢(y1,0) for any y1 € D x M, so the factorisation
holds for sequences of length at most 1. Suppose (3.1) holds for all sequences that are
at most » > 1 long, and consider any sequence ¥ = (y1,-..,Yn+1) with components in
D x M. If f(y1,...,yn) = 0, by the assumption on hereditariness, f(y1,...,Yn+1) = 0.
By the induction hypothesis, f(y1,...,yn) = f(0) I[;21 [Iocy., ¥(¥i,2) = 0 which implies

FO I [locy., ¢(¥i:2) = 0 = f(y1,...,Yn+1). Hence without loss of generality we may
assume that f(yi1,...,yn) is strictly positive. Then

f(y17' "ayn+1)
f(yl; - ,yn) f(ylv'

= 4+ 1) A1 Wnerl{yn - w ) FO) I T] ¢ wir2) (3:3)

i=12Cy;

fyt, - s Yns1) oy Yn)
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because of the induction hypothesis. We shall distinguish several cases.
Firstly, suppose that {y1,...,yn} is an y,1-clique and recall that if the denominator in the
right hand side of (3.2) is zero, then so are ©(yn+1,{y1,- .-, Yn}) and A1 (Ynt1/{y1, .-, Un})-

Hence, in this case, formula (3.3) yields f(y1,...,Yn+1) = 0, so the desired factorisation
holds. If, on the other hand, the denominator is strictly positive,
1
il == I elmi2)
2C{y1,.yn}

and (3.1) holds by substitution in (3.3).

Secondly, assume {y1,...,Yn} is N0 ynti-clique. Then, yp+1 # y; for some y;, i =1,...,n.
Now, if f(y1,-..,%i-1,Yi+1,---,Yn) > 0, by the Markov assumption
(m+ 1) Anpr(ynt1il{ys, - um}) = (0 + D) Anp1Wnral{ys, - %1, %41, - Un})

f(y17 s Yi—1,Yit 1, - - 7yn—|—1)
f(yl? e Yi-1,Yid 1, - - ,yn)

= 11 oni,2) =[] e(vnt1,2)

2C{Y1, s Yim1,Yi415m0Yn 2C{y1,yn}
where the last line is obtained by the induction hypothesis and the fact that ¢(yn+1,2) =1
whenever z contains y;. Finally, if f(y1,...,%i-1,Yi+1,---,Yn) = 0, by the induction hypoth-
esis, ¢(yg,z) = 0 for some ¢ # k <nand z C {y1,...,Yk—1} \ {yi}- Since by assumption f(-)

is Markov, f(y1,-..,Ynt+1) = 0 as well, the factorisation follows, and the proof is complete.
O

The factorisation (3.1) is similar to that of the finite distributions of a Markov chain,
cf. (1.2). Indeed, the product of transition probabilities p(x;_1,z;) from state z;_1 to z; is
replaced by a product of interaction functions Hzgyﬂ- ©(yi, z) over cliques of ‘past’ neighbours
of y; similar to (1.5).

Theorem 1 provides a third way of defining a sequential point process: by specifying its
clique interaction functions. Of course one must verify integrability for each choice.

Example 1. (ctd) Recall that we need to assume g, > 0 for n < n, and ¢, = 0 for
n > nyp in order to be sure the simple sequential inhibition model (2.3) is hereditary. Then,
the interaction functions can be computed iteratively by (3.2). Set 7, := ng,/g,—1 for
n =1,2,...,np, 0 otherwise, and I(x) := [, 7(z) 1{d(2z,%x) > r} dz for any finite set x of
points in D, with I(@) = 1. Then

d(z,0) = rin(z);

1(z)

for non-empty configurations y. The expression can be verified by a computation of the
likelihood ratios. Indeed for X = (z1,...,2,), n > 1,

¢(z,y) = 1{d(z,y)>r}exp [Z(—l)"“’\z) log <r"”“)}

zCy

f(8n+1(f7$n+1)): - _1)n¥\2) (Tn(y)-H) :Tn+17f($n+1)
& rim(@n+1) exp mgjcﬂcz_;( D™ log { iy 1(x)



10

provided d(zp4+1,{z1,...,2n}) > 7, which implies d(z,+1,y) > 7 for any subset y of x =
{z1,...,2n}, and zero otherwise. The last identity is a consequence of Newton’s binomium.

Example 2. (ctd) For the sequential soft core model,
e(y,0) = B

p((z1,m1), (z2,m2)) = AHllerelismal

and 1 otherwise 2.

Example 3. Pairwise interaction models of the form

n

F0) IT e, 0) T ewirvs)

i=1 j<i

are particularly convenient. Note that the sequential soft core model discussed in the previous
example exhibits pairwise interactions only. It has a constant penalty term «y € [0, 1) for each
pair y; ~ y;. It may be more natural to let the interaction vary with distance, for example
quadratically as in

o((z,7), (y,8)) =1~ (1= |z - yII/RZ,)?

for ||z —y|| < R, s. Here the range of interaction, R, ; may depend on the marks. A sufficient
condition for the model to be integrable is that ¢(y;,y;) is bounded by 1. Thus, pairwise
interaction models are particularly suitable for modelling repulsion between marked points.

4. DYNAMIC REPRESENTATION
Markov sequential spatial processes arise naturally as the limit distribution of a jump process
[7] with transitions that add or remove one component of the sequence at a time. From a
statistical point of view, it is then possible to obtain samples from some sequential spatial
model of interest by running the pure jump process into equilibrium. Standard Markov chain
Monte Carlo ideas [10] can than be applied to estimate model parameters by the maximum
likelihood principle, to perform likelihood ratio tests to assess the goodness-of-fit of the model,
to compute confidence regions, profile likelihoods and so on. Moreover, at least in principle, it
is possible to determine exactly when equilibrium is reached, by applying the coupling ideas
of Propp and Wilson [24] along the lines proposed in [8, 16, 19] and the references therein.
Below, we first propose a birth-and-death jump process, then develop a discrete time
Metropolis—Hastings style sampler.

4.1 Spatial birth-and-death processes
A spatial birth-and-death process is a continuous time Markov process with state space NT.
Its only transitions are the insertion of a marked point in the current sequence (a birth), or

’The density of the scaled process Y. of Example 2 <can be factorised as
fr.(0) H'.L(Y) Hzgy<iw(h&;i)(z)u{(ﬁ;i—),;%)}) if ¢(-) denotes the interaction function of a tem-

=1
plate Markov marked point process Y.
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the deletion of a component (a death). Suppose the current state is ¥, and write b;(¥, u) du x
wn(u) for the birth rate of a new marked point in du, u € D x M, to be inserted at position
i of ¥, and d;(§) for the death rate of the reverse transition. Then the detailed balance
equations are given by

e—H(D) e—H(D)
T Fb,u) = 1) f(5i(¥, u)) di(si (¥, u)-

If we take unit death rate for each marked point,

f(si(¥,u))
(n+1) £(¥)

again with the convention 0/0 = 0. Note that if the jump process starts in the set {§ € N* :
f(¥) > 0}, it will almost surely never leave it. Clearly, for this choice of birth and death
rates, f(-) is an invariant probability density.

Since our process evolves in continuous time, some care has to be taken to avoid explosion,
that is, infinitely many transitions in finite time. Set

bi(¥,u) = = Ai(uly), (4.1)

n+1
B, := sup Z/ bi(¥,u) du x par(u)

for the upper bound on the total birth rate from sequences of length n > 0, and note that
n
ép = inf d;(¥) = n.
" n@)=n ; @)

By [23, Prop. 5.1, Thm. 7.1], sufficient conditions for the existence of a unique jump process
with birth rates (4.1) and unit death rates with a unique invariant probability measure to
which it converges in distribution regardless of the initial state are that §, > 0 for all n > 1
and one of the following holds:

e 3, = 0 for all sufficiently large n > ng > 0;

e B,>0foralln>1and

O D IE e

For densities f(-) that satisfy

fsi(¥,u)) <BF(T) (4.2)

for some 8 > 0 and all § € Nf, w € D x M , i = 1,...,n(¥) + 1, the total birth rate
is bounded by S u(D), and it is easily verified that the Preston conditions hold. From a
practical point of view, the jump process may be implemented by thinning the transitions of
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a process with unit death rate and constant birth rate b;(¥,-) = 8/(n(¥) + 1), which avoids
having to compute explicitly the parameter

n(¥)+1

D2 [ b ) £ 0(3)

of the exponentially distributed waiting times in between jumps. The retention probability
of a transition from ¥ to s;(¥,u) is given by

f(sz y, n(¥)
3 ,BHMZ)H I ewizu{u}).

zCy<i j=1 z2Cy<;

The first term depends on the directed neighbours y; of u (u ~ y;) in y<;. The interaction
functions in the last product reduce to 1 if y; # u.

4.2 A Metropolis—Hastings sampler

A popular, flexible and generally applicable technique for generating samples from a com-
plex or high-dimensional probability density is the Metropolis—Hastings method, see e.g. [10].
Briefly, the method works by proposing an update according to a distribution that is conve-
nient to sample from, and then to accept or reject this proposal with a probability that is
chosen so as to make sure the detailed balance equations are satisfied.

In the context of this paper, two types of proposals are considered: births and deaths.
More precisely, given the current state is ¥, with probability 1/2 propose a birth, otherwise a
death. In the first case, select a position ¢ to insert and a new marked point u uniformly on
1,...,n(¥) + 1 respectively D x M (w.r.t. u X ppr), and accept the new state s;(¥,u) with
probability

o(F, 5:(§, 1)) = min {1’ f(si(¥,u) M(D)} .

f(¥) (n(y) +1)

In case a death is proposed, if ¥ is the empty sequence, do nothing; otherwise, select the
position of the marked point to be removed uniformly, say i, and accept the transition with
probability

(=) n(¥) }
f(¥) w(D)

where ¥_;) denotes the subsequence of ¥ obtained by removing the it component. It is
easily seen that f(-) is an invariant density. If we start the chain in a sequence y for which

(Sr') > 0, the chain will never leave the set. Thus, we shall restrict the Markov chain to

H:={y € Nf: f(§) > 0} from now on.

In order to show that the Metropolis—Hastings chain Y, n € Ny, converges to f(-) in
total variation from any initial state in H, we need to establish aperiodicity and Harris
recurrence, that is Harris ergodicity [21]. Aperiodicity immediately follows from the fact
that self-transitions occur. A sufficient condition for Harris recurrence (in fact for the even

a(}—", S”(,Z)) = min {]—7
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stronger property of geometric ergodicity) is that there exist a function V : Nt — [1,00),
constants b < co and v < 1, and a measurable small set C C N such that

PV (¥) = E[V(Xn1)|Xn =¥] <V(¥) + 01 {y € C}. (4.3)

Recall that a set C is small if there exists a non-zero measure ¢(-) and an integer n such that
the probability that the Metropolis-Hastings chain reaches any measurable subset B of Nt
from y € C is at least as large as v(B). See [21] for further details.

From now on, assume that (4.2) holds. Then, the drift condition (4.3) can be verified by
an adaptation of the proof of [12, Prop.3.3] with V(§) = A™®) for some A > 1. Indeed,
note that the acceptance probability for inserting v € D X M at position ¢ in ¥ is bounded
by Bu(D)/(n(¥) + 1), which does not exceed a prefixed constant € > 0 if n(¥) is sufficiently
large. Similarly, the acceptance probability for removing a component from the sequence y
reduces to 1 if ¥ is long enough. Now,

n(¥)+1

) = v A1 a(y, si(y,u u
P = VO X [ [ ey o s e < )

1 W41
+ v e T ) + V). 44
5 (Y); ) a(¥, ¥—iy) + V(F) (4.4)

Since for sufficiently long sequences of marked points, say n(y) > N, deaths are always
accepted, a(¥, s;(¥,u) < € uniformly in its arguments, and A > 1, (4.4) is less than or equal
to [3(A—1)e+ 3 (A7 —1)+1] V(§). This and the uniform lower bound 1/(8 u(D)) on
the acceptance probability for deaths yield the desired result by the same arguments in the
proof of Propositions 3.2-3.3 in [12] with C = UYe (D x M)™.

4.8 Reversible jump Markov chains

The Metropolis—Hastings algorithm of the previous subsection is a special case of a so-called
reversible jump Markov chain [13]. This is a proposal-acceptance/rejection scheme for moves
between subspaces of different dimension. Suppose a target equilibrium distribution and a
proposal probability for each move type are given. The aim is to define acceptance probabil-
ities in such a way that the resulting Markov chain is well-defined and the detailed balance
equations hold.In order to avoid singularities due to the different dimensions, for each move
type, a symmetric dominating measure (-, -) on the product of the state space with itself is
needed. It turns out [13] that acceptance probabilities that are ratios of the joint density of
the target and proposal distributions with respect to £(-,-) evaluated at the proposed and
current state do the trick.

In the context of section 4.2, define, for measurable subsets A and B of Nf,

n(¥)+1
§AXB) = /Nfl{ye“‘}m > /Dle{si(y,zoeB} dps % e () dv(§)

n(¥)

b [ 1Fen Y15 e B) v

=1
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The measure is symmetric by the form of the reference measure v(-).

The joint bi-variate density of the product of the distribution to sample from and the
birth proposal distribution with respect to £(-,-) is given by f(¥, s:(¥,w)) = f(¥)/(2 u(D)).
Similarly for death proposals we have f(¥,¥_;) = f(¥)/(2n(¥)). Hence, the acceptance
probabilities for births and deaths, as given in the previous section, follow as ratios of joint
bi-variate densities truncated at 1. Note that there is no need to worry about division by
zero, as we had restricted the Metropolis—Hastings chain to the family of sequences having
strictly positive density.
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