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1. INTRODUCTION

Packing problems occur in many physical and biological processes. Hard ‘particles’ such
as cars, monomers, or proteins, arrive in some bounded Euclidean window according to a
constant rate Poisson process, and select a position for themselves according to some fixed
distribution. If there would be no overlap with an established particle, the new one attaches
itself to the selected location, otherwise it leaves the system. The process continues either
for a given time, until a given number of particles have been adsorbed, or until there is no
room for another particle to establish itself without intersecting existing ones.

Complete random packings are those in which the birth process continues until saturation,
that is, until no room is left in the window to accommodate another particle. On the line, a
rigorous analysis dates back to [14]. Typical results concern the asymptotic coverage fraction
of unit length segments in an interval of increasing length, or equivalently the relative vacancy,
that is, the length fraction not covered by particles, and central limit theorems for the number
of adsorbed particles [6]. The problem is sometimes known as the car parking problem, with
the segments representing cars, the interval the kerb. In higher dimensions, analysis is rather
harder. Simulation results on the coverage fraction are widespread. For example, simulated
complete random packings of discs in two dimensions can be found in [12, 18]. Efficient
simulation in d > 2 dimensions is studied in [5]. From a theoretical point of view, a law of
large numbers for the coverage fraction is proved in [13].

Other authors have considered runs of the process over a finite time horizon, or those



that terminate when a certain packing density (i.e. number of adsorbed particles) has been
achieved. Alternatively, the number of adsorbed particles could be stochastic, and follow some
probability mass function. Such models were dubbed simple sequential inhibition processes
in the spatial statistics literature [4], and are known as random sequential adsorption (RSA)
amongst physicists [7] to describe the deposition of colloidal particles onto a substrate. For
finite time horizons, interest focusses on the evolution of summary statistics, for example
mean and variance of the number of particles, the pair correlation function, or the empty
space distribution, and especially on the behaviour of the coverage fraction as a function of
time, the so-called kinetic law (cf. the Feder conjecture [8]), mostly using series expansions
and Monte Carlo techniques.

The reader is referred to [10, Ch. 1.10], to the review papers [7, 16, 17] or the textbooks
[1, 3, 19] for overviews and pointers to the literature. For a flavour of current work in
statistical physics, we refer to the special issue of Colloids and Surfaces (number 165, 2000).

To date, most attention has focussed on probabilistic work rather than inference. In this
paper, we take the statistical viewpoint. We place the RSA model in the context of Markov
sequential processes [11], derive its Radon—Nikodym derivative, and consider maximum like-
lihood estimation of its parameters. Note that maximum likelihood is especially convenient
in exponential family models, but that RSA exhibits a highly non-linear dependence [11].

The plan of this paper is as follows. In Section 2, we fix notation. In Section 3, some facts
from the theory of convolution of exponential distributions are recalled. The next section
presents the main results. Section 5 demonstrates the estimation procedure in practice, and
the paper concludes with a brief summary.

2. DEFINITIONS AND NOTATION
The random sequential adsorption model [7], also known as simple sequential inhibition [3, 4]
in some bounded domain of R? may be defined as follows. A unit rate stream of particles
arrives in the domain. If the arrival location is within a distance r > 0 of some existing
particle, the particle leaves, otherwise it is adsorbed. The process continues for some fixed
time 6 > 0. Note that in the limit (§ — oo), the adsorption process is saturated (jammed),
that is, particles are adsorbed until there are no open spaces left with radius at least r.

In a recent paper, we showed that a simple sequential inhibition model can be placed in
the context of finite sequential spatial processes [11]. Realisations of such a process consist
of a finite sequence

X=(z1,.--,%n), n €Ny

of points in some bounded open subset D of the R? with non-empty interior. The family of
all such configurations is denoted by Nf. The notation n(X) shall be used for the length of
X, and X.; for the subsequence (z1,...,z;_1), ¢ = 1,...n + 1. Note that for i = 1, X; has
length 0.

Suppose that D is equipped with a metric p(-,-). The metric defines a topology and a
Borel o-algebra, denoted by B. Write p(z, A) := inf{p(z,a) : a € A} for the distance between
z € D and A € B. The space N is equipped with the o-algebra generated by the Borel
product o-algebras. The notation p(A) is used for the Lebesgue measure of A.
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Definition 1. The random sequential adsorption model is a jump process, starting from an
empty vector, with transition rate

b(z,X) = 1{p(2,X) > r} du(z)

for a birth jump from X to (X,z). Here r > 0 is the hard core distance, 6 > 0 the time
horizon.

A variation that allows for spatial heterogeneity is to set
b(z,X) = w(2)1{p(2,X) >r} dz

where 7(+) is a strictly positive probability density on D. Thus, regions with high m-mass
are favoured over those with smaller mass. Realisations tend to have particles with a low
index concentrated in high density regions, whereas latecomers have to contend themselves
with locations with smaller m-mass. In the classic case of Definition 1, such a competition
advantage is not present.

Interaction structures other than hard core repulsion can be modelled by suitable choices
of b(z,X), see e.g. [7]. Such models are known as cooperative sequential adsorption, and can
allow for both attraction and repulsion of particles by previously arrived ones.

Example 1. Consider the special case r = 0. Then particles arrive according to a unit rate
Poisson process, that is, b(-,-) = 1 a.e. with respect to Lebesgue measure. The number of
particles adsorbed in D up to time 6 is Poisson distributed with parameter 6 (D). In other
words, the probability of exactly n transitions in [0, 0] is given by

(Ou(D))"

for n =20,1,2,..., and, given n particles arrived up to time 6, their joint probability distri-
bution has density p, = 1/u(D)™ with respect to u™. Since p, does not depend on 6, the
maximum likelihood estimator is readily derived from

dn = n!

n

0
—logg, = —p(D) + 0

06
which is 0 if and only if § = n/u(D). A little closer examination reveals § is indeed the
unique optimiser.

In order to be able to study maximum likelihood estimation when the hard core distance
is unknown, some results on the convolution of exponential distributions are required, as
outlined in the next section.

3. CONVOLUTION OF EXPONENTIAL DISTRIBUTIONS

Recall [9] that if X and Y are two independent random variables with values in R™, absolutely
continuous with densities fx(-) and fy(-) respectively, for ¢ > 0, a density fxiy(-) of the
sum X +Y is given by

fx+v(t) = /Ot fx(s) fy(t — s)ds.



Similarly, the cumulative distribution function satisfies

Fxoy(t) = /0 " fe(s) Fy(t — 5) ds.

Higher order convolutions can be obtained analogously.

Lemma 1. Let, for n > 1, X1,...,X, be independent exponentially distributed random
vartables with distinct rates A1, ..., A,. Then the sum X1 + - - - + X,, has probability density

1)n+1 {]:[1)\1} ZH )\ _)\ n-HZ —)\,tH)\ _)\ . t>0.

]7’51 JjF#i
The result is presented as an exercise in [9]. Here we give a proof for the sakes of com-
pleteness and correction of a misprint in formula (*) of [9, p.40, 1.13].

Proof: Proceed by induction. It is readily verified that the formula holds for fx,..+x, (t)

if n =1 or 2. Suppose then Lemma 1 is true up to some n > 2 and consider X7 +- - -+ X, +1.
By the convolution formula, a density is given by

[y [

,)\is )\n+1€)\"+1(ts)-| ds =

L i —)\ Aie

=1 n>j#t

n+1z H N _)\ //\ie_)‘is)\nﬂe_)‘"“(t_s)ds
i=1 |n>j#i

Use the convolution formula for n = 2 inside the sum to obtain

S| I et ¢
— n>ﬁéz,\ —,\ Ai — Ant1 Ant1 — A

1)n+2§": et 1 )\iij)\j !
=1

n+1>j#1

n+1 n
—1
+(—1 n+2e—)\n+1t )\z
(=1) IS DN, avewnovw

Jj=1

By a symmetry argument (interchange X; and X, 1), the sum in the last term after e An+1¢
is equal to ], 4n +1(Ang1 — Ax) !, and the proof is completed. O
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4. MAXIMUM LIKELIHOOD ESTIMATION

The random sequential adsorption model has two parameters: r and . The purpose of this
section is to study maximum likelihood estimation. In order to do so, we derive a Radon—
Nikodym derivative (Theorem 1) with respect to the distribution of a sequence of Poisson
length (mean p(D)) with independently, py-uniformly distributed components, thus placing
RSA into the framework of Markov sequential spatial processes [11]. We proceed to establish
existence and uniqueness of

(f,é) := argsup {f(X;r,0):7,6 >0}

cf. Proposition 1 and Theorem 2.
Note that the Radon-Nikodym derivative f(-;-,-) can be expressed as

F(&7,0) = Pl n(R)! 4 (X;0)

where jn(+;7,6) du™ is a Janossy density [2, 11] that may be interpreted as the probability of
a sequence of exactly n points, successively at infinitesimal regions centered at x1 up to x,.
Clearly, j,(-;r,0) is sufficient for (r,0). The next theorem gives an explicit expression of this
Janossy density in terms of the birth rates.

Theorem 1. Consider the model of Definition 1, and write
B(X) = BEr) = / b(z, %) dp(2)
D

for the total birth rate, suppressing the dependence of b(-,-) on r for notational convenience.
The sufficient statistic j,(X;6) is zero if B(X<p) =0. If B(X) > 0, it can be written as

ey Gni1(T1, .., T 0) mb(z, X )
In(%0) = B(z1,...,%p) H ;

for n > 1. Here gny1(x1,...,Tn;-) is the probability density (Lemma 1) of the sum of
n + 1 independent random wvariables that are exponentially distributed with rate B(X<;),
i=1,...,n+ 1. If B(X<,) > 0= B(X),

JPN “ b(z;, i
in(X;0) = Gp(z1,...,Tn-1;0 H (B(i‘ <)),
i=1 <2

where Gp(z1,...,Zn_1;-) s the cumulative probability distribution function of the sum of
n independent random variables that are exponentially distributed with rate B(X<;), ¢ =
1,...,n. Forn=0,

jo(0;0) = exp [-B(0) 6] .

Proof: Note that the total birth rates B(X.;) are strictly decreasing in ¢ = 1,...,n under
the assumption that B(X<,) > 0. Hence, under the latter assumption, all B(X«;), i < n, are
strictly positive, and the ratios in the posed Janossy densities well defined.



Since jo(0;6) = qo(6), the probability that no transition occurs up to time 6, the formula
for n = 0 holds true.

From now on, let n > 1. If B(X<,) = 0, since D \ Ui<n{z : p(2,2;) < r} is open, the set
is either empty or contains an open ball of positive radius. The latter cannot be the case, as
then B(X.,) would exceed the area of the open ball and hence be strictly positive. In the
first case, p(xn,X<n) < 7, so that the configuration X almost surely will not occur and one
may set its Janossy density to zero.

Hence assume B(X.,) > 0 and consider the probability of exactly n transitions in [0, 6],
the first jump to the infinitesimal region du(z1) around zi, the second to du(x2), up to the
last jump involving du(zy). Then the first exponentially distributed waiting time (with rate
B(0)) has to be less than 6, the first point has to be selected at z1, all subsequent cumulative
waiting times must fall before 8 until the last point x,, is selected, and no further transition
may take place within the time horizon 6. Integration with respect to the waiting times yields

0=a1 Z2,T
/ B()e —s1B(0 (xzﬁ;o) (‘Ul)/o B(ml)e—szB(wl)d82b(BZl:l)l)du(wQ) X .-

0—(s1+-+sn—1) (x % )
. X B(R_,)e snB&E<wn) Zom 2<n)  —(0-3 01 ) BR<n) ds duu(z,) =
/ (%<n) ey (zn) =

n

o b(x, X< =51 0-377 i —siBRei) |~ (0=, 5:)B(R<n)
HBx<z)// / ll_I x<)e <} N

=1 =1

dsi...dspdp(z1)...du(zy,) =
6 pb—s; -7 s m n
o) [ [ I1 o (s5) (1 — Fpz,)(6 - Zsi))
0 JO 0 i=1 =1
dsi...dspdp(zr)...du(z,)  (4.1)

with the notation f)(-) for the density of an exponential distribution of rate A, Fy(-) for the
corresponding cumulative distribution function, and

n

H b(Bza x<z

=1 X<z)

First consider the case that B(X) > 0. To prove that the inner integrand in (4.1) is equal
to gnt+1(z1, ..., 2n;0)/B(z1, ..., T,), use induction. For n =1

(1- FB(:c)( - 8)) gs — ©2(@:9)

as an exponential distribution has constant hazard rate equal to its rate. Next, suppose (4.1)
holds for n and consider n + 1. Then

7} 0—s1 6—s1-3" .5 (Tt n+l
/0 fB@)(s1) ds1 /0 T /0 H FB)(80) 1- FB(iSnH)(e 51T Z i)
1=2

=2

0 0
/0 F50)(5)(1 — Fra(6—5)) ds = /0 F500)(5) 500 (0~ 5)
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dsy...dsp+1 =

/6 Foo(s )gn+1(x2,...,xn+1;9—sl)d _ gn+2(Z1, ..., Tnt1;0)
o TEO B(X<nt1) ' B(%n11)
by the induction assumption.
To conclude the proof, note that if B(X) = 0, the inner integral of (4.1) is equal to
Grn(x1,...,Tn—1;0) as the survival probability 1 — Fy(¢) =1 for 0 < ¢ < oo. O

Next, turn to statistical inference.

Example 2. Upon observation of the empty set,

f(0;7,6) = exp[(1 — 0) u(D)]

is strictly decreasing in 6 and does not depend on r. Hence, we cannot carry out inference
on the interaction distance, whereas the maximum likelihood estimator of the time horizon
is 6(0) = 0.

As for the classic hard core point process, r may be estimated by the minimum inter-point
distance [15].

Proposition 1. Suppose the pattern X = (z1,...,2,), n > 1, is observed. Then #(X) =
Tmin(X) 1= min;<; p(xs, ;) is a mazimum likelihood estimator for the hard core distance for
any value of 0 > 0.

The argsup is not attained (i.e. it is not an argmax), as indicated by the proof.

Proof: Note that j,(X;7,60) = 0 unless p(z;,X<;) > r for all i« = 1,...,n (which implies
B(X<pn;7) > 0). Therefore, 7#(X) < rpin(X).

If 1 < 79 < Tmin(X), then b(z;, X<i;71) = b(x;, X<j572), while B(x<i;71) > B(X<j;72) for
alli=1,...,n+ 1. Hence the function

I(s1,...,8n,0;7) :=exp [—ZsiB(i'Q-;r) — (9 — Zsz> B(x;r)
i=1 i=1

that is the crucial ingredient of the proof of Theorem 1 is increasing for 7 < rmin(X), hence
I(s1,...,8n,0;71) < I(s1,-..,8n,0;r2) which in turn implies the maximum likelihood esti-
mator is as stated. [l

It remains to estimate the time horizon 6.

Example 3. As we saw in Example 2, for n = 0 and fixed r, 6 = 0. For n > 1, con-
sider the case where for given r a sequence X of length n is observed such that j,(X;6)
is strictly positive, but B(X) = 0. To optimise j,(X;6) over 6, by Theorem 1, one has
to optimise Gp(z1,...,Zn—1;6), which, being a cumulative distribution function, is mono-
tonically increasing in 6. Furthermore, by the convolution formula, it is easily seen that
Gn(21,...,2n_1;t) < 1 for any finite ¢ > 0. Hence, f(X) = cc.



Lemma 2. For fized v, suppose a pattern X = (x1,...,Zn), n > 1, is observed for which
B(X) > 0. Then the score function for 6 is given by
0

%gn—}—l(l‘la <oy Tn; 0) = B(xh s 7$n) [gn(iL'l, B -aaf'n—1§0) - gn—|—1(5L'1, .- -a$n§0)] .

Proof: Write f,(t) = Ae™ for t > 0. By the convolution formula (Section 3)

6
In+1(Z1, ..., Tp;0) :/ In (21, - - Tn-1;8) fB(x.,) (0 — 5) ds.
0 <

The function (e — 1)/h is uniformly bounded in absolute value by A. Moreover, fj(-) and

9n(Z1,...,Tp_1;) are uniformly bounded, and continuously differentiable, so by dominated
convergence
1 6
l}grol 7 ; gn(Z1,. .., Tn_1;9) [fB(,-gS")(g +h—3s)— fB(gSn)(e — 3)] ds =

0
/ gn(xh---,l'n_l;s) f]lg(i'<n)(9—8) ds.
0 <

Furthermore, the continuity of fy(-) and the fundamental theorem of analysis imply

1 6+h
l}i%ﬁ/o gn(wl,...,:vn_l;s)fB(gSn)(O—l—h—s)ds:

gn(iEl, cecy xanQ 0) fB(ign) (0)'

Hence the derivative of g,,11(z1, ..., Z,;0) can be written as

0
—B(ign)/ In(Z1, -, Tn-1;8) [B(x.,) (0 — 8)ds + B(X<p) gn(21, - - - Tp150) =
) <

B(iﬁn) [gn(wla R 7$n—1;0) - gn+1(£L'1, ceey Tmy 0)] .

A similar argument for the limit A 1 0 completes the proof. O

Upon observation of (z1,...,y), consider the only non-trivial optimisation problem, that
is for n > 1 and B(«x1,...,2,) > 0. We have to find out whether

0 =0(z1,...,%,) = argsup g>q gn+1(T1,---,Zn;0)
exists and is unique.

Theorem 2. Letn > 1, \; > A2 > --- > Ayy1 > 0. Then the function

n+1 n+1 s
= (—1 n+2 i -t J
f(t) = (-1 Z Aie H.—Ai_&
i=1 1=j#1

is unimodal with a unique mazimum and no local extrema (including flats).
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Note that \; = B(X<;), is a strictly decreasing sequence, and for this choice the function
f(t) in the above theorem is the likelihood function for the time horizon (cf. Lemma 1 and
Theorem 1).

Proof: By the convolution formula of Section 3, a minimum f(0) = 0 is attained at ¢t = 0.
Also the limit for ¢ — oo is zero. As f(t) is a probability density that integrates to unity,
there is a tg such that f(¢p) > 0. Hence, a toc > 0 can be found such that for ¢ > ¢,
f(t) < f(to). Clearly, f(-) is continuous as a sum of continuous functions, so on the compact
interval [0,¢], f(-) attains its maximum too.

It remains to establish uniqueness of maximum and minimum. For n = 1,

A1 A2 =gt —A1t
t) = [e T—_e ] .
The constant in front is positive and can be ignored. The derivative of the term in brackets
is

)\16_)‘1t _ )\26—)\275 — e—)\lt |:>\1 _ )\26()\1—)\2)t:|

which has a unique zero at t* = (A — A2) "}(log A\; — log A2) with positive values for smaller
t, negative ones for ¢ > t*. We conclude that for n = 1, the function f(-) increases from a
boundary minimum f(0) = 0 at ¢ = 0 to a unique maximum, then decreases to an asymptote
level 0 (cf. Figure 1). In particular, there are no local extrema (zeroes of the derivative).

Figure 1: Graph of f(t) for A = 10, Ay = 5 (solid line) and A3 = 3 (dotted line).

For n > 2, the boundary minimum at 0 corresponds, in contrast to the case n = 1, to a
zero score (Lemma 2).

Next, proceed by induction. Suppose that f(-) is unimodal for Ay > --- > A1 with
no local extrema, and consider the convolution with another exponential distribution with
parameter 0 < A\,12 < Apt1. To distinguish between them, write f,,11(-) respectively fr1a(-).
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Suppose the maximum is attained at two points 67 # 62, without loss of generality 61 < 65.
Then

fn+2(01) = fn+2(02) 2> fn+2(t) for allt >0

and, since f,2(-) is differentiable everywhere and the maximum cannot be at the boundary
t = 0, the derivative in both points is zero, that is

fn+1(91) - fn+2(91) =0= fn—i—l(e?) - fn+2(02)

by Lemma 2. Hence f1+1(01) = fnt1(62), so the induction hypothesis implies that 6; and 6
must lie on either side of the top of fn4+1. In particular, fr11(t) > fny1(61) for all t € (61,02).
For such ¢,

fn+1(t) - fn+2(t) > fn—i—l(el) - fn+2(t) > fn+1(01) - fn+2(01) =0.

Consequently, f,12(t) is increasing on (61, 62), so the endpoints cannot be global maxima.
Hence, there is a unique maximum, which will be denoted by 6.

To complete the proof, we show that f,2(t) is strictly increasing for 0 < ¢ < 6, strictly
decreasing for ¢ > 6. First, suppose fn12(t) = c is flat for t € (6p,6;). Then the derivative
is zero at these ¢, hence f,41(t) is flat on (g, 6;) as well, a contradiction with the induction
hypothesis.

Next, focus on (0,6), and suppose f,+2(-) has a strict local maximum, say 6y < 6. Then
the derivative in 6q is zero, hence

fn+1(00) = fn+2(00) < fn+2(0) = fn+1(0)- (4-2)

By the induction hypothesis on the shape of f,41(+), it follows that f,,11(¢) increases for ¢ in
a neighbourhood of 6. By the assumption that 6y is locally maximal, f,,42(t) decreases in
an interval to the right of §y. Hence,

fn+1(t) - fn+2(t) > fn+1(00) - fn+2(00) =0

which implies that f,,2(-) is increasing for ¢ in a right-neighbourhood of 6, a contradiction.
The existence of a strict local minimum for f,,;2(-) at some 6y < 6 implies the existence of
a local maximum (or flat) at some smaller ¢ (as f(0) = 0), for which one may apply the
arguments above to derive a contradiction.

For ¢t > 6, suppose there is a strict local minimum, say 6y > 6. Then (4.2) holds. By
the induction hypothesis, f,+1(-) decreases near 6y, whereas f,12(-) first decreases, then
increases. Hence, for ¢ in a right-neighbourhood of 6y,

Jrnt1(t) = far2(t) < fat1(60) — frni2(6o) =0,

that is, fn42(-) is decreasing for ¢ in a right-neighbourhood of 6y, a contradiction. Finally,
note that the existence of a strict local maximum for f, () at some 6y > 6 implies the
existence of a local minimum or plateau in (6, 6y), which both lead to a contradiction as seen
above, an observation that completes the proof. O
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5. EXAMPLES

We evaluated the behaviour of the maximum likelihood approach for the classic random
sequential adsorption model of Definition 1 by means of the data given in Figure 2 (sampled
with true values r = 0.050 and # = 100.0). The minimum inter-point distance is # = 0.052,
the estimated time horizon § = 99.9. The convolution densities were computed (with the aid
of the R-software available at www.cran.r-project.org) by kernel estimation using sample
size 10,000, areas by the Monte Carlo method based on the same sample size.

] ®
.
O @® ; @
®
s @
. @@@
H @ © @
0@ 00 0°®
1 5@ ® ®
ONCRONO!
s ®

Figure 2: Sequence of 70 points in the planar unit square.

Heterogeneous adsorption

As an example of a spatially heterogeneous model with competition advantage, consider the
metric p(z,y) = max{|z; — y1], |r2 — yo|} for = = (x1,22), ¥y = (y1,¥2) in the plane R?, so
that the p-ball of radius r centered at x is a square with side length 27 and midpoint =, and
let

A2 1 1
(21, 22) = 7 oXP [—)\ (|zl - §| + |22 — §|>} (5.1)

be the joint density of two independent Laplacian distributed components, if necessary re-
stricted to the unit square D. A realisation of the model with 63 points and a time horizon
of 1,000.0, a hard core distance r = 0.030 and A = 25.0 is given in Figure 3 (left). The hard
squares have side r, their colours indicate the position in the sequence: dark indicates an
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Figure 3: Sample from a sequential adsorption process with Laplacian location selection with
dispersion parameter A = 25.0, time horizon 1,000.0, and hard core distance » = 0.030 in
both coordinates.

early arrival or low position index, light corresponds to a late arrival. Note that dark discs
dominate the centre of the picture, where (5.1) is high, and that light discs are relatively
often found on the outskirts of the point cloud.

A straightforward computation yields

by . %64\/2 (eAb _ e)\a) ifb< %
/ = exp [‘Mz - 5@ dz=q ge?(e M —et) ifa>;
a 1— %G—A/Qe)\a _ %GA/Qe—)\b ifa < % and b > %

for any 0< a < b < 1, so that the birth rates are easily evaluated. The convolution densities
were computed by kernel estimates using sample size 10,000 as before. We obtained the
estimates 7 = 0.030 and # = 1003.9 for the hard core distance and time horizon.

Nuisance parameters

The location distribution (5.1) contains a nuisance parameter A. In practice, A may be known
or estimated separately, e.g. from observable covariates. In the absence of such information,
A can be estimated using the profile likelihood

~

L(XA;X) = fa(X;7a(X), 01(X)).

Thus, discretise A in a grid, for each value, find the maximum likelihood estimators 7y (X)
and 6, (X), and optimise the profile likelihood over A to obtain A*, which gives final estimates
A*) 7y (X), and [ (X). The result is given in Figure 4 which plots log L(A;X) up to terms
that do not depend on M\ for a grid mesh 0.1. The optimal value is found at (5\,7*, é) =
(26.2,0.030, 1136.1).
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6. SUMMARY

In this paper, we proved that the maximum likelihood method can be applied to estimate
the parameters in random sequential adsorption models, and showed that the idea works in
practice. It is important to note that the method is not restricted to RSA, but can be applied
in principle to estimate the time horizon in other cooperative sequential inhibition processes
[7]. In particular, the sequential spatial process framework applies so that densities can be
derived as in Theorem 1, provided proper care is taken of any zero rates that might arise.
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Figure 4: Graph of log L(\; X), up to terms that do not depend on ), versus A for a sequential
adsorption model with locations chosen according to a Laplacian distribution with dispersion
parameter \. The sequence X is as depicted in Figure 3, a grid mesh 0.1 was used.
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