
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Crosscutting concerns in J2EE applications

A. Mesbah, A. van Deursen

REPORT SEN-R0513 SEPTEMBER 2005

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Crosscutting concerns in J2EE applications

ABSTRACT
We explore the evolution benefits of adopting aspects in a J2EE setting by studying crosscutting
concerns in a typical J2EE application. To identify these concerns, we take a top-down as well
as a bottom-up approach. In the top-down view we focus on typical concerns that are known to
be crosscutting (e.g., persistence), the way they are currently implemented and the possible
gains and benefits if solved by aspects. In the bottom-up approach we take a look at the
application's source code, and apply aspect mining techniques in order to find cross cutting
concerns. We discuss how such concerns can be represented in an aspect-oriented language
(viz. AspectJ), and reflect on the results in terms of maintainability and evolvability of the
affected system.

2000 Mathematics Subject Classification: 2000
1998 ACM Computing Classification System: D.2.10; D.2.7; D.2.3
Keywords and Phrases: cross cutting concerns; web application evolution; aspect-oriented
Note: This work was carried out under project SEN1 - Single Page Computer Interaction

Crosscutting Concerns in J2EE Applications

Ali Mesbah, Arie van Deursen∗

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
{Ali.Mesbah,Arie.van.Deursen}@cwi.nl

Abstract

We explore the evolution benefits of adopting aspects in a
J2EE setting by studying crosscutting concerns in a typi-
cal J2EE application. To identify these concerns, we take
a top-down as well as a bottom-up approach. In the top-
down view we focus on typical concerns that are known to
be crosscutting (e.g., persistence), the way they are currently
implemented and the possible gains and benefits if solved by
aspects. In the bottom-up approach we take a look at the ap-
plication’s source code, and apply aspect mining techniques
in order to find crosscutting concerns. We discuss how such
concerns can be represented in an aspect-oriented language
(viz. AspectJ), and reflect on the results in terms of maintain-
ability and evolvability of the affected system.

1. Introduction

From its inception, Java 2, Enterprise Edition (J2EE)1 has
established a new model for developing distributed appli-
cations. It is based on well-defined components to provide
server-side and client-side support for developing multi-tier
applications. The J2EE architecture defines a client tier, a
middle tier and a back-end tier, as depicted in Figure 1.
The client tier provides support for a variety of client types
(e.g. HTML pages generated by JavaServer Pages (JSP),
Java applets, Java Web Start-enabled clients). The middle
tier supports client services through Web containers (e.g.
Servlets, JSP) and supports business logic component ser-
vices through Enterprise JavaBeans (EJB) containers. The
middle tier is often subdivided into the Web tier and EJB tier.
On the back-end tier , the enterprise information systems are
accessible by the way of standard APIs (e.g. JDBC).

Aspect-oriented software development (AOSD) [12] aims
at improving the modularity of software systems, by captur-
ing inherently scattered functionality, often called crosscut-
ting concerns, in a well-modularized way, making the evo-

∗Also affiliated at Delft University of Technology, Faculty of Electrical
Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands.

1http://java.sun.com/j2ee/

lution of such systems easier and manageable. In order to
achieve this, aspect-oriented programming languages add an
extra abstraction mechanism, called an aspect, on top of ex-
isting modularization mechanisms such as functions, classes
and methods. Aspects allow developers to tackle the prob-
lems of scattering and tangling by reducing the spread of
code belonging to a certain concern over different compo-
nents.

J2EE already provides a transparent component-based
framework in which many crosscutting concerns such as se-
curity and authentication are dealt with in the container with-
out requiring the developer to know the corresponding imple-
mentation. However, introducing AOSD into J2EE applica-
tion development could provide us with more flexible, mod-
ularized applications thus empowering the long-term evolu-
tion of applications developed in the framework.

The goal of this paper is to explore the evolution benefits
of adopting aspects in a J2EE setting. To that end, we study
crosscutting concerns in a typical J2EE application, Sun’s
Pet Store demonstration. To identify these concerns, we take
a top-down as well as a bottom-up approach. In the top-
down view we focus on typical concerns that are known to
be crosscutting (e.g., persistence), the way they are currently
implemented and the possible gains and benefits if solved by
aspects. In the bottom-up approach we will take a look at
the application’s source code, and apply aspect mining tech-
niques in order to find crosscutting concerns. We discuss
how such concerns can be represented in an aspect-oriented
language (viz. AspectJ), and reflect on the results in terms of
maintainability and evolvability of the affected system.

This paper is laid out as follows. Section 2 discusses re-
lated work. In section 3 a short overview of the Pet Store web
application is outlined which is the case study used in this pa-
per. Section 4 discusses the top-down concerns and the ways
they could be implemented by aspects. The bottom-up ap-
proach is presented in section 5. In section 6 we discuss the
achieved results. Finally, Section 7 presents our conclusions
and future work.

We assume the reader has basic knowledge of both J2EE
and AspectJ. The reader is referred to [21] and [15, 8] re-

1

Figure 1. J2EE Environment [22]

spectively for more information on these topics.

2. Related Work

There are a number of publications reporting the possible
applications of aspects to J2EE applications.

Soares et al. [24] discuss their experiences in applying
the paradigm to a web-based information system’s distribu-
tion, persistence and transaction concerns. Kerston et al.
[11] share their experiences with a web-based educational
system, separating network context concerns in a distributed
environment. In [19], a component-based web-crawling sys-
tem was developed with and without aspects to be able to
evaluate the differences of both approaches. The results fa-
vor the aspect-oriented paradigm. Zhang and Jacobsen [26]
apply aspect-oriented programming to middleware (Object
Request Broker) demonstrating a reduction of the complex-
ity of the architecture.

Kim and Clark [13] present a case study in which they
show that using the EJB framework modularizes and mini-
mizes crosscutting concerns such as security, persistence and
transaction management. On the other hand, Choi [2] dis-
cusses the deficiencies of the EJB’s architecture and tries to
present an aspect-based server implementation.

A comparison of J2EE container managed and aspect-
oriented security is presented in [23]. Fabry [5] discusses the
shortcomings of declarative transaction management in EJB
with respect to a clean separation of concerns and proposes
an aspect solution which can detect the need for transactional
methods and integrate all transactional handling in one unit.

Han and Hofmeister [9] concentrate on navigation con-
cerns of J2EE web applications and present an aspect-
oriented approach to separate these concerns.

An analysis of the crosscutting nature of the J2EE patterns
is illustrated by [18].

Finally, Cohen and Gil [3] propose a promising new
language, AspectJ2EE, geared towards the implementation
of J2EE application servers and applications. They use a
deploy-time mechanism to bind services to user applications
in the application server. This would enable the EJB devel-
opers to extend, enhance and replace the standard services
provided by the container.

None of these works however, cover how aspects influ-
ence evolution in J2EE environments, a gap we try to bridge
in the present paper. Our work differs from these approaches
in that

1. we adopt two different aspect mining techniques to
identify candidate aspects;

2. we provide full details of the resulting aspect-oriented
code, in order to provide a clear picture of the advan-
tages and disadvantages; and

3. we explicitly evaluate the evolution benefits in terms of
change scenarios.

3. Pet Store

Pet Store2 is an example of a J2EE web application devel-
oped by Sun in order to illustrate all sorts of J2EE features.
The main function of the application is to allow customers
to search and purchase pets through a web browser. The
application provides the customers with an interface (Web
site) to search through catalogs of products and order items.
The Admin client has an interface to view sales statistics and
manually accept or reject orders.

There are a number of reasons why we have chosen Pet
Store as our case study. First of all, Pet Store is a well-
designed web application using the latest J2EE specifica-
tions. There are numerous design patterns used in its archi-
tecture such as MVC, ServiceLocator, Data Access Object,
etc. It is a well-known open-source application. Further,
even though the functionality of the system seems simple,
the actual implementation is quite complex. The complexity
is mainly due to the fact that it is a demo presenting the best
and newest practices of J2EE application development. The
complexity is also a price to pay for maintainability, porta-
bility and scalability of the application.

Finally, keeping all this in mind, our reasoning is based
on the assumption that if we are able to identify crosscutting
concerns and show benefits of aspectizing those concerns in
such a well-designed system, then it should also be possible
to find crosscutting concerns in real life J2EE applications,
many of which are in practice not half as well-designed.

2http://java.sun.com/blueprints/, Java Pet Store Demo 1.3.2

2

4. Top-down concerns

In this section we will consider a number of concerns that
are know to be crosscutting such as Persistence, Transaction
management and Security, from a top-down perspective. We
will look at how each is implemented in J2EE environments,
and whether the implementation can be improved if aspects
are applied.

4.1. Persistence

Persistence is defined as the storage and retrieval of appli-
cation data from secondary storage media (e.g databases)
which can be considered a crosscutting concern [20] by the
assumption that the application should remain oblivious of
the concern during the development process.

There is a range of persistence architecture options avail-
able to J2EE developers. At one end there is the low-level
Java Database Connectivity (JDBC). At the other end there
is the high-level abstraction and integration with the EJB
Container Managed Persistence (CMP) implementation. The
most commonly used solutions include:

• Plain Old Java Objects (POJO) Persistence

• EJB Bean Managed Persistence (BMP)

• EJB Container Managed Persistence (CMP)

POJO is merely a fancy name given to normal traditional
JavaBeans. It offers an alternative for those who need per-
sistence capabilities but do not want the associated costs of
CMP and BMP beans. The persistence is managed program-
matically by the developers or it is handled by third party
solutions such as Hibernate.

BMP developers create entity beans that are managed by
the J2EE container, but the persistence of these beans is man-
aged programmatically by the bean developer. Although this
puts the responsibility back on the developer, it does offer
an EJB entity bean solution that enables portability across
multiple application server vendors.

With CMP, the bean provider relies on the container to
manage the access to the persistent state of the bean. Un-
like the first two solutions, the bean provider does not have
to write any programming code but uses the declarative de-
scriptor to request persistence on the bean.

Pet Store uses CMP as well as BMP to manage persis-
tence. All modules requiring persistence (e.g. Customer,
Profile, Address) are implemented as CMP entity beans ex-
cept for the Catalog module. Very little code is necessary
to create these entity beans and no code is needed for per-
sistence. As such, the crosscutting nature of persistence has
been resolved by J2EE’s CMP container mechanism.

Catalog module needs more attention as it is using BMP
and therefore could be a possible aspect candidate. It is

used to retrieve information about catalog entries (categories,
products, and items), either individually or page-by-page.
Because the catalog module is the most highly-used com-
ponent in the application, it is more efficient to access it re-
lationally instead of using entity beans which may incur a
performance penalty while providing little or no additional
value. This is the reason why Pet Store uses a bean-managed
persistence approach for this module – a fairly common sit-
uation for handling persistence in many real life J2EE appli-
cations.

Catalog is implemented as a stateless session bean, us-
ing a Data Access Object (DAO) interface to encapsulate ac-
cess to persistent data. The persistence data are modeled as
POJO’s. The DAO interface is implemented depending on
the specific type of database used. This approach encap-
sulates the persistence concern in one implementing class
of the DAO interface, thus diminishing the scattering of the
concern in the system.

There is however one aspect which is required by the per-
sistence concern even in this well designed approach. It is
required from each individual item to have a unique identi-
fier. This unique identifier is used to retrieve the item from
the underlying storage media. This could be seen as a cross-
cutting concern as the persistence aspect is not transparent
anymore because of this requirement.

To be able to achieve total obliviousness, we have
aspectized the identifier of the data classes using an
Identifiable interface and making all the data classes im-
plement this interface using aspects as explained in 5.2.

4.2. Transaction management

Transaction management is one of the important concerns of
distributed systems. It ensures that the system remains in a
consistent state before and after its execution calls. Atomic-
ity is a property of a transaction which makes sure that either
all the operations succeed within an execution call as a sin-
gle unit or if one of the operations fails, the system abandons
the whole operation and rolls back to its initial state. Trans-
action management can be a crosscutting concern, spanning
over multiple modules.

In J2EE applications, transaction management is handled
in either a declarative or programmatic form.

EJB provides an elegant system for handling transaction
management by enabling the developers to declare the trans-
actional functionality in the EJB’s deployment descriptor. It
is then the container that has to take care of the actual im-
plementation. This approach separates the transaction man-
agement from the core business logic of the application. As
Fabry [5] discusses, one could manage to produce tangling
and scattering code even when using the declarative possibil-
ities of EJB if the functionality provided by the container is
not satisfactory.

Transaction management is also used in other parts of the

3

private void insertTemplate(HttpServletRequest request ,
HttpServletResponse response , String templateName)
throws IOException , ServletException {
try {

UserTransaction ut = null;
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)

ic.lookup("java:comp/UserTransaction ");
ut.begin();
context.getRequestDispatcher(templateName)
.forward(request , response);

ut.commit ();
}
...

}

Figure 2. Method using Transaction management

J2EE platform (e.g. Servlets) where no EJB is present. J2EE
does not provide any support for non-EJB parts regarding the
declarative transactional management.

We analyzed the Pet Store application code looking for
possible crosscutting transactional concerns. The application
makes exclusive use of the declarative transaction control in
the EJB tier without producing any tangling code. The EJB
deployment descriptor defines any call to methods that need
transactional support by setting the transaction attribute to
Required.

In the Web tier a programmatic approach is used in two
classes to manage transaction. The TemplateServlet be-
gins a UserTransaction before it forwards a request to
the template JSP and ends the transaction after the forward
has accomplished. See Figure 2. The doPost method of
the RcvrRequestProcessor Servlet uses the same transac-
tional code to update supplier inventories. In order to be
able to aspectize the transactional code, the doPost method
had first to be refactored because it was used in a nested
if statement. We moved the transactional handling into a
new method called updateAndSend. This refactored method
used the transactional code in a similar way as in Figure 2.

We decided to aspectize the transactional management in
the following way [15]. First we defined an abstract aspect,
which has an around advice while keeping the pointcut
abstract . See Figure 3. Then we created a concrete transac-
tion aspect which inherits from the abstract aspect, providing
concrete definitions for the abstract pointcut. See Figure 4.

With this aspectized approach, the transactional control
code is modularized and is reusable. Further, the classes us-
ing the functionality are now oblivious of the transactional
code.

4.3. Security

Security can be seen as the most important concern in J2EE
applications. The system can usually be accessed by users
from all around the globe and that makes authentication and
authorization an essential part of the application. Security

public abstract aspect AbstractTransAspect {
abstract pointcut transactionOperations ();
void around () : transactionOperations () {

try {
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)

ic.lookup ("java:comp/UserTransaction ");
ut.begin();
proceed();
ut.commit ();

}
...

}

Figure 3. Abstract Transaction Aspect

public aspect PetStoreTransactionAspect
extends AbstractTransAspect {
pointcut transactionOperations () :

execution (* com.. TemplateServlet.insertTemplate (..)
throws IOException , ServletException) ||

execution (*
com..RcvrRequestProcessor .updateAndSend (..)

throws IOException , ServletException);
}

Figure 4. Pet Store Transaction Aspect

becomes a crosscutting concern because conventional pro-
gramming techniques require us to modify modules individ-
ually to equip them with security code.

J2EE handles security in a much more modular way e.g.
separating the security properties in the deployment descrip-
tor.

Pet Store, however, does not use any of the security mech-
anisms specified by the J2EE platform. Instead, all requests
to pages are first to go through a filter which checks whether
the page requested is a protected one. If so, it checks to see
if the user is signed-on. If that is not the case, the user is
forwarded to the sign-on page. Upon receiving a sign-on re-
quest, the filter checks the username/password combination
and creates and maintains a user entity bean.

In Pet Store, all the functionality needed for security is
implemented in the signon module, leaving the system with
no crosscutting security concern in other parts of the system.
This is possible because security is only applied on a page
request level.

For situations where crosscutting security concerns can be
found in the system we refer to [23].

4.4. Other top-down concerns

There are also other relevant top-down concerns such as Tier-
cutting concerns (e.g. compression, encryption [3]), Logging
and Exception Handling which are left out of this paper be-
cause of space limitations. The crosscutting nature of some
of the J2EE patterns can also be examined from a top-down
perspective as discussed in [18].

4

5. Bottom-up concerns

Aspect mining is the quest for identifying candidate aspects
in existing object-oriented systems and isolating them into
aspects, improving the comprehensibility of the system, and
thereby improving it’s maintainability and evolvability [4].

Aspect mining techniques can take a bottom-up approach
in which they try to examine the current implementation of
a software system, looking for patterns of tangling and scat-
tering code which would make good aspect candidates. This
bottom-up approach could also be applied to J2EE applica-
tions to find and extract crosscutting concerns.

In this section we will look at two aspect mining tech-
niques and see how each technique could be used in J2EE en-
vironments discussing the possible benefits of applying each
approach.

5.1. Fan-In Analysis

Fan-in analysis [17] takes a bottom-up approach, analyzing
the code for certain crosscutting symptoms. This technique
defines the number of distinct method calls to a given method
as the fan-in number. Methods having a high fan-in value are
likely to be crosscutting methods and should be further ex-
amined to see whether they could be considered as candidate
aspects.

The Pet Store application code was analyzed by [17],
identifying a number of candidate aspects for methods with
a fan-in of 8 and above.

Next we will present an aspect-oriented implementation
of the identified candidate aspects in order to discuss the ef-
fects the refactoring would have on the maintainability and
evolvability of the application.

5.1.1. Exception Wrapping

Exception wrapping is a crosscutting concern that affects
a number of classes in Pet Store. The ServiceLocator
classes for instance catch the NamingException and re-
throw ServiceLocatorException. This is a typical in-
stance of the Business Delegate J2EE pattern [1]. Every
method in these classes catches exceptions thrown by the
underlying implementation and re-throws an application-
specific exception requiring a try/catch block in each
method. Normal refactoring of these identical try/catch
blocks is not possible in object-oriented languages. This
logic duplication is a result of a language limitation. As-
pects can however be used to refactor this pattern of scatter-
ing code [16, 14].

To refactor the exception wrapping logic, we implement
an aspect in which the checked-exceptions are declared soft.
This way the exception will be wrapped in an unchecked-
exception (SoftException) when thrown. An after throw-
ing advice is then used to catch any SoftException thrown

public EJBLocalHome getLocalHome(String jndiHomeName)
throws ServiceLocatorException {

EJBLocalHome home = null;
try {

if (cache.containsKey(jndiHomeName)) {
home = (EJBLocalHome) cache.get(jndiHomeName);

}
else {

home = (EJBLocalHome) ic.lookup(jndiHomeName);
cache.put(jndiHomeName , home);

}
} catch (NamingException ne) {

throw new ServiceLocatorException (ne);
}

return home;
}

Figure 5. Exception wrapping in Pet Store

public aspect ExceptionWrappingAspect {
declare soft : NamingException : call (* *.*(..)

throws NamingException)
|| call (*.new(..) throws NamingException)
&& within (*. ServiceLocator);

after() throwing (SoftException ex) throws
ServiceLocatorException
: execution (* *.*(..) throws

ServiceLocatorException)
&& within (*. ServiceLocator) {
throw new ServiceLocatorException (

ex.getWrappedThrowable ());
}

}

Figure 6. Exception wrapping in AspectJ

and throw a new ServiceLocatorException wrapping the
original exception obtained.

Figure 5 shows one of the web ServiceLocatormethods
in its original form. Applying the aspect presented in Figure
6 would allow us to refactor the method (and all the other
methods in the class). Figure 7 shows the refactored method.

As can be seen, the refactoring of the exception wrap-
ping concern results in a simple aspect defining the wrap-
ping strategy, and cleaner business logic that is not tangled
with wrapping anymore. This not only leads to a reduction
in code size of up to 20% in the refactored classes, it also im-
proves evolvability of both the business logic and the wrap-
ping strategy.

5.1.2. ServiceLocator & Singleton

A ServiceLocator J2EE pattern [1] acts as a central point for
obtaining and caching a service. This pattern implemented
in classes ServiceLocator was also identified as a candi-
date aspect in Pet Store. There are two ServiceLocator
classes in Pet Store one of which (JMS) is implemented as a
Singleton and the other one (EJB) is (mistakenly) not.

5

public EJBLocalHome getLocalHome(String jndiHomeName)
throws ServiceLocatorException {
EJBLocalHome home = null;
if (cache.containsKey(jndiHomeName)) {

home = (EJBLocalHome) cache.get(jndiHomeName);
}
else {

home = (EJBLocalHome) ic.lookup(jndiHomeName);
cache.put(jndiHomeName , home);

}

return home;
}

Figure 7. Aspectized by ExceptionWrappingAspect

The ServiceLocator can be approached in two ways. One
could argue that because the getInstance method has a
high fan-in, the methods calling the method should be refac-
tored in a way that no explicit calling is needed. There
are techniques which make this approach possible. For in-
stance, Spring’s3 inversion of control allows us to pass the
ServiceLocator instance reference to our classes in a sub-
tle manner. However, because of the non-systematic na-
ture of the methods, it is not possible to create a unified
aspect which would allow us to refactor all the calls to the
getInstance method.

The second approach, presented by [10, 18], tries to refac-
tor the Singleton nature of the ServiceLocator class it-
self. This means removing the private constructor and the
getInstance of the class and instead providing a public
constructor which is implemented as an around advice, ini-
tializing the instance on the first call and returning it on all
constructor calls.

The Singleton class was refactored using the aspect shown
in Figure 8. As can be seen, the aspect captures all calls to
the constructor using the around advice. The advice then
creates the static instance if not already created and initial-
izes the object; otherwise the instance is returned without
manipulation.

Now the question is what the consequences are of this
refactoring step. Hiding the Singleton nature of the class
could confuse J2EE developers. This could also lead to
violations of the singleton nature, if, for example, a sub-
class provides cloning functionality. [18] and [10] mention a
workaround for this possible problem.

On the other hand one could argue that hiding the Single-
ton nature of the class makes the application oblivious in the
sense that the clients using the ServiceLocator class do not
and should not care about the implementation details of the
service.

3http://www.springframework.org/

privileged public aspect LocatorAspect {
private static ServiceLocator service;
pointcut serviceLocator ():

call (*. ServiceLocator.new())
&& !within(LocatorAspect);

Object around()
throws ServiceLocatorException : serviceLocator() {
synchronized (service) {

if (service == null) {
service = new ServiceLocator ();
try {

service.ic = new InitialContext ();
service.cache =

Collections.synchronizedMap(new HashMap ());
} catch (NamingException e) {

service = null;
throw new ServiceLocatorException (e);

}
}

}

return service ;
}

}

Figure 8. Locator aspect

5.1.3. Precondition Checking

Precondition checking often requires duplicated code if the
conditions are common to many methods. In Pet Store many
EJB classes implementing EntityBean use a Plain Old Java
Object (POJO) of their own to hold the actual data. All these
classes have a static fromDOM method which expects a DOM
node as input parameter and returns an instance of the corre-
sponding class made from the node. The node has to have a
certain structure for the method to be able to parse it to the
right class. The main precondition states that the name of
the first element of the DOM has to coincide with the value
of a static variable defined in the class. The Address class,
for instance, has a static variable called XML ADDRESS which
has a string value of ”Address”. This means the first element
of the DOM has to be called ”Address”, otherwise the check
will through an XMLDocumentException.

The parameter checks occur at the beginning of the meth-
ods and are similar to:

public static $OBJECT$ fromDOM(Node node)
throws XMLDocumentException {
if (node.getNodeType() == Node.ELEMENT_NODE
&& ((Element) node).getTagName().equals($PARAMETER$)) {
//OK proceed
...

}
else {
throw new XMLDocumentException($PARAMETER$

+ " element expected.");
}

}

where $OBJECT$ is the corresponding class type (e.g. Ad-
dress) and $PARAMETER$ is the name of the static variable
holding the expected name of the first element.

6

public aspect XMLPreCheck {
pointcut fromDOM (Node node) :

call(* com.sun.j2ee.blueprints.*.ejb.*.fromDOM(Node)
throws XMLDocumentException)

&& args(node);

before(Node node) throws XMLDocumentException :
fromDOM(node) {

if (! isPreChecked(node , thisJoinPointStaticPart)) {
throw new XMLDocumentException (

getParameterValue (thisJoinPointStaticPart)
+ " element expected .");

}
}

private boolean isPreChecked(Node node ,
JoinPoint .StaticPart joinPoint) {

return (node.getNodeType() == Node.ELEMENT_NODE
&& ((Element) node).getTagName().equals(

getParameterValue (joinPoint)));
}

private String getParameterValue (
JoinPoint .StaticPart joinPoint) {

String className =
joinPoint .getSignature (). getDeclaringType ().getName ();

return className .substring (
(className .lastIndexOf(’.’) + 1);

}
}

Figure 9. Precondition Check Aspect

Conventional implementations of this precondition re-
quire adding identical code conditional checks into many
methods. With aspect-oriented techniques, we can refac-
tor such contract checks into a separate aspect. Figure 9
shows the aspect which handles the precondition checks.
We define the pointcut as calls to the fromDOM methods
and use a before advice to check the precondition. The
tricky part in this advice is to find the value of the ex-
pected variable on which the check has to be carried out.
The thisJoinPointStaticPart gives us the correspond-
ing class information and using reflection on the class, we
can find the required parameter. By analyzing the code, a
pattern can be seen in the value of the required variable; i.e.,
the value of the static variable is the same as the class-name.
This means we can use the class-name to check our precon-
dition and that is exactly what we have done. This, however,
implicitly defines a contract by which all future classes of the
same type have to abide.

Using this precondition aspect we are able to refactor out
the precondition checks from nine classes in Pet Store.

5.2. Interface Concerns

Interfaces and their implementations can be crosscutting.
When the implementation of an interface is distributed across
many classes in a system, aspect-oriented programming en-
ables us to extract and locate it in an aspect, increasing the
modularity of the system. In order to investigate the behav-

public interface Event {
public void setEJBActionClassName (

String ejbActionClassName);
public String getEJBActionClassName ();
...
static abstract aspect EventAspect {

private String Event.ejbActionClassName = null;

public String Event.getEJBActionClassName () {
return ejbActionClassName ;

}

public void Event.setEJBActionClassName (
String _ejbActionClassName) {

ejbActionClassName = _ejbActionClassName ;
}
...

}
}

Figure 10. Aspectized Event interface

ior of this crosscutting concern in J2EE applications, we an-
alyzed the Pet Store application, looking for possible aspect
candidates. The results are discussed here.

Extracting Interface Implementations

The first concern that was identified as a possible as-
pect candidate was found because four interfaces (Event,
EJBAction, HTMLAction and EventResponse) had a de-
fault implementation (EventSupport, EJBActionSupport,
HTMLActionSupport and EventResponseSupport). Other
classes then extended these support classes instead of imple-
menting the interfaces. While Pet Store avoids duplicated
code using this technique, this approach fails for the classes
that are already extending another class or for classes that
need to extend another class.

Using the refactoring technique suggested by [14], we are
able to make use of the inter-type declaration mechanism
to write aspects which introduce the default implementation
into the identified interfaces.

Figure 10 shows the aspectized Event interface. The in-
ner aspect functions as an implementation of the interface.
This way the EventSupport class becomes obsolete. The
main advantage of this refactoring is that all the classes
which extended the EventSupport class can now implement
the Event interface without the need to implement the de-
clared methods in the interface (if they are satisfied with the
default implementation of course) and more importantly, the
classes can now extend another class if needed.

Interface Migrating

Interface migration tries to mine interface implementations
which can be regarded as crosscutting concerns and refactor
them to aspects. Tonnela et al. [25] represent a mining tech-
nique based on external package identification, string match-

7

Concern Crosscutting Aspectizable Code Reduction Obliviousness Reliability Modularity Evolvability
Persistence X X X

Transaction X X X X X X X

Security
Exception Wrapping X X X X X X X

ServiceLocator X X X X

Precondition Checking X X X X X X X

Interface Extraction X X X X

Interface Migration X X X X X

Table 1. Studied concerns in Pet Store

ing for interfaces names, clustering and unpluggability of the
methods.

Further analysis of the application code, while keeping
these indicators in mind, reveals that there are many class-
es/interfaces which implement/extend the Serializable in-
terface. This is a common character of J2EE applications
because of their distributed nature. From a logical point of
view, this character does not really belong to the principal
decomposition of the application [25] and therefore it could
be treated as an aspect. An aspect capturing the serializable
concern is the following:

declare parents : ProfileInfo implements Serializable;
declare parents : HTMLAction extends Serializable;
...

where ProfileInfo is a class and HTMLAction is an inter-
face. In Pet Store the purpose of using Serializable is sim-
ply to identify classes whose objects are serializable. This
means the private writeObject and readObject methods
are not customized and no field is marked as transient.
Private methods cannot be introduced into target classes in
AspectJ which means we would not be able to fully aspec-
tize the serialization if Pet Store did customize the mentioned
methods or used transient fields.

A total of 29 classes and 6 interfaces were declared to im-
plement/extend the Serializable interface within this as-
pect. The explicit implements and extends declarations in
the classes and interfaces were removed afterwards.

Further, EJB rules demand the extension of
EJBLocalObject for the component interface and
EJBLocalHome for the home interface. Pet Store has
13 component interfaces with a name ending in Local.
There are also 13 home interfaces with a name ending
in LocalHome. We have aspectized these two interface
concerns as follows:

declare parents : com.sun.j2ee.blueprints.*.ejb.*.*Local
implements javax.ejb.EJBLocalObject;

declare parents : com.sun.j2ee.blueprints.*.ejb.*.*LocalHome
implements javax.ejb.EJBLocalHome

In this aspectized version, the two local EJB interfaces
are modularized in a single aspect. The serialization concern
is also handled in a single separate unit, resulting in an in-
creased degree of modularization. This enables developers

to get a better overall view of the classes implementing these
interfaces.

6. Discussion

This section reflects on the results we obtained by studying
the crosscutting nature of the top-down and bottom-up con-
cerns. Table 1 shows an overview of the studied concerns in
Pet Store. Each concern is examined against a set of proper-
ties:

Crosscutting Has the concern a crosscutting nature in the
application? As it can be seen all the concerns are cross-
cutting in some way except for Security because of its well-
designed modular implementation.

Aspectizable From the crosscutting concerns, which ones
are aspectizable? A concern is aspectizable when its cross-
cutting nature can be resolved by applying aspect-oriented
refactoring. It is interesting to see that all the crosscut-
ting concerns are aspectizable which shows that the aspect-
oriented paradigm is suited for tackling crosscutting prob-
lems.

Code Reduction Logic duplication is one of the manifes-
tations of crosscutting concerns and aspect-oriented tech-
niques are experts in minimizing that. Aspectizing the Ex-
ception Wrapping concern resulted in a 20% code reduction
in the affected classes. Aspectizing the Precondition Check-
ing concern allowed us to completely remove the check code
from 9 classes, each class having one affected method. It
is worth noting that only three of the aspectized concerns
showed a reduction in code size. This implies that aspect-
oriented programming has a much broader purpose than only
code reduction.

Obliviousness Obliviousness states that neither the existence
nor the execution of the aspect code is apparent by examin-
ing the body of the base code. Obliviousness is desirable
because it allows greater separation of concerns in the appli-
cation development process [7, 6]. Six of the aspectized con-
cerns resulted in obliviousness. Persistence, however, shows
only obliviousness but no solid evolvability improvement is
evident in the Pet Store case.

8

Reliability In certain cases, the use of an aspect makes it
harder to make a particular kind of mistake. For example,
the generic pointcut for the Exception Wrapping aspect en-
sures that new methods automatically have the naming ex-
ception wrapped into a ServiceLocator exception. For the
same reason, faults are less likely for the Transaction and
Precondition Checking concerns.

Modularity Aspectized modularity enables us to reduce tan-
gling, multiple concerns intermixed, and scattering, spread
of code for a concern, which in turn simplifies maintenance
and evolution. Modularity obtained in four of the concerns
in this case study has resulted in code that is more local-
ized, less coupled, and has better cohesion. Transaction,
for instance, was aspectized into a new module, enabling
the removal of corresponding code from classes that were
merely using Transaction, i.e., transaction management was
not their primary function. Interface Migration is another ex-
ample of achieving better modularity. The serialization con-
cern was moved to an aspect, enabling us to remove the scat-
tering code in all classes that need to be serializable. It has
made the interface implementation transparent to the classes
that were using it explicitly before the aspectization process.
This allows us to add the serialization concern to new classes
easily and also gives us a clear overview of all the classes
using this particular concern, increasing design and code un-
derstandability.

Evolvability Software evolution is a process that either in-
troduces new requirements into an existing system, or mod-
ifies the system if the requirements change or were not cor-
rectly implemented. We consider evolvability improvements
by presenting possible change scenarios in the life-cycle of
the application:

Transaction: Imagine we decide to use a different trans-
action management API. In the conventional implementation
all classes using the transaction code had to be modified. In
the new aspectized version, however, the change will take
place in only one aspect. Further adding the functionality
to a new class is a matter of expanding the pointcut in the
transactional aspect.

Persistence: In case of the Persistence concern, it is ques-
tionable whether the Identifiable aspect (with the intention to
achieve total obliviousness) provides us with any real evolv-
ability benefits. This could imply that obliviousness alone is
not enough to achieve better evolvability.

Exception Wrapping: Being able to modularize the Ex-
ception Wrapping concern allows us to have a uniform way
of dealing with all the affected methods; i.e., there will be no
inconsistencies in the type of wrapped exception thrown or
the way exceptions are logged. The base code is separated
from the aspect code which enables us to alter one indepen-
dent of the other.

Precondition Checking: Precondition checking is one of
those concerns with a volatile requirement that can easily

change over time. If the requirement change states that, for
instance, the check has to be extended on more parameters,
it is now much easier to adapt the implementation.

ServiceLocator: A possible scenario is that we decide
to refactor our ServiceLocator class not to be a Single-
ton anymore because Singleton makes it very hard to write
unit tests, i.e, Singleton makes it very difficult to follow the
testing independence rule. Because the application is now
oblivious of the Singleton nature, this change will not affect
the clients using the ServiceLocator class.

Interface Concern: We have a central module defining
all the classes that implement a certain interface using as-
pects. We can also have a default implementation of the
corresponding interface through aspects. Imagine we write
a new class that needs to implement the interface. We then
simply add the name of the new class to the list of the de-
clared classes that implement the interface in the aspect. In-
terface Extraction has also given us the ability to make use
of multiple inheritance if needed in the future.

Costs Utilizing aspect-oriented programming is not without
costs. While aspects improve modularity, they can increase
a system’s complexity. For instance, the transaction con-
cern is aspectized using an abstract aspect and a concrete
aspect. Generally speaking, this is more complex to compre-
hend than the original simple implementation. Understand-
ability is also at stake when aspects do not achieve full obliv-
iousness. For example, a pointcut may rely on a particular
naming pattern, which the developer, not aware of the aspect
code, may break by applying a method renaming.

7. Concluding Remarks

Evaluation The key lessons learned from our experiments
are the following. First, many concerns that are by nature
crosscutting are well addressed by J2EE’s container mecha-
nism. Second, in those cases where the container mechanism
is not sufficiently powerful or cannot be utilized, such as for
the transaction mechanism adopted, an aspect-oriented im-
plementation of these concerns does offer benefits. Third,
crosscutting concerns in J2EE systems include generic ones
as well, such as logging (not discussed), or precondition
checking and interface extraction. Fourth, while adopting
aspects in J2EE applications does have clear benefits, these
are relatively small (as suggested by our example concerns
and scenarios) and certainly not of an order of magnitude.
Extrapolating some of the numbers we found, we suspect
that there are approximately 25 reasonable aspect opportu-
nities in Pet Store, on a total of 283 classes. We do expect,
however, that in real life J2EE applications the need to cir-
cumvent J2EE’s container mechanism will be much stronger
(for example due to performance limitations), leading to sig-
nificant benefits from the use of aspect-orientation in such
cases.

9

Contributions This paper has presented the results we
have obtained by aspectizing a number of top-down and
bottom-up crosscutting concerns in a J2EE case study. We
have provided the full details of the resulting aspect-oriented
code in order to outline a clear view of the advantages and
disadvantages. The results show that even though proper use
of design patterns and container-managed services helps en-
capsulation in many situations, we still find the repetition and
concern-mixing phenomena even in well-designed J2EE sys-
tems. We have shown how aspect-oriented techniques pro-
vide a framework in which these crosscutting concerns can
easily be modularized, allowing greater separation of con-
cerns which in turn increases the evolvability of the system.

Future Work Our future work will focus on studying the
crosscuttingness of concerns in a number of real world J2EE
applications. We will try to apply a wider range of as-
pect mining techniques in order to identify aspect candi-
dates. Our research will also examine the convenience of
using other aspect-oriented tools (besides AspectJ) such as
AspectWerkz4 in J2EE environments. We will also provide
access to APetStore, an aspect-oriented refactoring of the Pet
Store application, through our Web site, which will be further
used to experiment with aspects.

Acknowledgements

We would like to thank Marius Marin and Magiel Bruntink
for their reviews, advice and feedback. This paper received
partial support from SenterNovem, project Single Page Com-
puter Interaction (SPCI).

References
[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Sun Microsystems, Inc.,

USA, 2003.

[2] Jung Pil Choi. Aspect-Oriented Programming with Enterprise JavaBeans. In
EDOC ’00: Proceedings of the 4th International conference on Enterprise Dis-
tributed Object Computing, page 252. IEEE Computer Society, 2000.

[3] Tal Cohen and Joseph (Yossi) Gil. AspectJ2EE = AOP + J2EE: Towards an As-
pect Based, Programmable and Extensible Middleware Framework. In ECOOP
- Object-Oriented Programming, LNCS 3086, pages 219–243. Springer-Verlag,
2004.

[4] A. van Deursen, M. Marin, and L. Moonen. Aspect mining and refactoring.
In L. Thavildari and K. Kontogiannis, editors, Proceedings of the WCRE Work-
shop on REFactoring: Achievements, Challenges, Effects (REFACE03)., Water-
loo, Canada, 2003. University of Waterloo.

[5] J. Fabry. Transaction management in EJBs: Better separation of concerns with
AOP. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS), Victo-
ria, Canada, 2004. University of Victoria.

[6] Robert E. Filman. What Is Aspect-Oriented Programming, Revisited. Technical
report, 2001.

[7] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. Technical report, 2000.

4http://aspectwerkz.codehaus.org/

[8] J. D. Gradecki and N. Lesiecki. Mastering AspectJ - Aspect Oriented Program-
mingin Java. Wiley Publishing, Inc., Indianapolis, Indiana, 2003.

[9] Minmin Han and Christine Hofmeister. Separation of Navigation Routing Code
in J2EE Web Applications. In ICWE, pages 221–231, 2005.

[10] J. Hannemann and G. Kiczales. Design pattern implementation in Java and As-
pectJ. In Proceedings of the 17th Annual ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 161–
173, Boston, MA, 2002. ACM Press.

[11] Mik Kersten and Gail C. Murphy. Atlas: a case study in building a web-based
learning environment using aspect-oriented programming. In OOPSLA ’99: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 340–352. ACM Press, 1999.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In 11th Europeen Conf. Object-Oriented
Programming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[13] H. Kim and S. Clarke. The relevance of AOP to an applications programmer
in an EJB environment. In First International Conference on Aspect-Oriented
Software Development (AOSD) Workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACP4IS), 2002.

[14] R. Laddad. Aspect-oriented refactoring. www.theserverside.com, December
2003.

[15] R. Laddad. AspectJ in Action - Practical Aspect Oriented Programming. Man-
ning Publications Co., Greenwich, CT, 2003.

[16] M. Lippert and C.V. Lopes. A study on exception detection and handling using
aspect-oriented programming. In Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE), pages 418–427, Boston, MA, 2000. ACM
Press.

[17] M. Marin, A. van Deursen, and L. Moonen. Identifying aspects using fan-in
analysis. In Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE2004)., pages 132–141. IEEE Computer Society, 2004.

[18] T. Murali, R. Pawlak, and H. Younessi. Applying aspect orientation to J2EE
business tier patterns. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), Victoria, Canada, 2004. University of Victoria.

[19] Odysseas Papapetrou and George A. Papadopoulos. Aspect oriented program-
ming for a component-based real life application: a case study. In SAC ’04:
Proceedings of the 2004 ACM Symposium on Applied Computing, pages 1554–
1558. ACM Press, 2004.

[20] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In AOSD ’03:
Proceedings of the 2nd international conference on Aspect-oriented software de-
velopment, pages 120–129. ACM Press, 2003.

[21] Bill Shannon, Mark Hapner, Vlada Matena, James Davidson, James Davidson,
and Larry Cable, editors. Java 2 Platform, Enterprise Edition: Platform and
Component Specifications. Pearson Education, 2000.

[22] Inderjeet Singh, Beth Stearns, and Mark Johnson. Designing Enterprise Appli-
cations with the J2EE Platform, Second Edition. Java BluePrints Guidelines.
java.sun.com/blueprints/guidelines.

[23] P. Slowikowski and K. Zielinski. Comparison study of aspect-oriented and con-
tainer managed security. In AAOS2003: Analysis of Aspect Oriented Software.
Workshop held in conjunction with ECOOP, 2003.

[24] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribu-
tion and persistence aspects with AspectJ. In OOPSLA ’02: Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 174–190. ACM Press, 2002.

[25] Paolo Tonella and Mariano Ceccato. Migrating interface implementation to as-
pects. In Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 220–229. IEEE Computer Society, 2004.

[26] C. Zhang and H-A. Jacobsen. Quantifying aspects in middleware platforms. In
Proc. 2nd Int. Conf. on Aspect-Oriented Software Development (AOSD-2003),
pages 130–139. ACM Press, March 2003.

10

