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1. INTRODUCTION
In this paper we discuss the numerical solution of diffusion-reaction problems

uy = L(u) + f (1.1)

with a singular reaction source term f. Singular means here that within the domain Q C R¢
of L the source f is defined by a Dirac delta function expression on a lower dimensional
surface I' C Q rather than on the whole of 2. A consequence is that the solution u is not a
solution on 2 in the classical sense because across I' the solution u will be continuous, but
not continuously differentiable. This lack of smoothness and the lower dimension of I" forms
an obstacle for numerical discretization. With any numerical method one has the obvious
question how to represent I' and how to discretize f on a common grid. For finite-difference
methods this question is studied in detail in [12] using regularization ideas. Regularization
in the sense that the Dirac delta function expression is approximated by a source giving
a small but regular support allowing standard finite difference schemes for L. In a close
vicinity of ' the lack of smoothness of u will still be felt with regularization, in the sense
that in general the convergence order in the maximum norm is at best equal to one [12].
Our main application field for the current research is in developmental biology where mass
conservation is important. In this paper we therefore follow the finite volume approach based
on the integral form of (1.1). We consider this approach also more natural than the finite



difference one directly based on the differential form, since for the integral form the treatment
of the Dirac delta function expression is mathematically clear. However, also with the finite
volume approach the problem of lack of smoothness remains, causing order reduction from
two to one for the standard second-order spatial discretization scheme. In spite of this order
reduction the schemes we discuss do perform well for our application.

The paper is organized as follows. In Section 2 we start with linear 1D and 2D test
models, simple and yet significant enough to reveal the essence of a singular source. In this
section the emphasis lies on boundary value problems. In Section 3 we turn to test models
having a nonlinear source and here the emphasis lies on initial-boundary value problems.
In both these sections we illustrate our findings numerically. Section 4 is devoted to the
test problem from biochemistry describing a simple developmental regulatory network. The
paper is concluded with a summary of our findings in Section 5.

2. LINEAR TEST MODELS
2.1 Boundary value problems
We begin with the boundary value problem for the 1D equation

—Ugy = P(2), 0<z<l1, (2.1)

provided with the homogeneous Dirichlet conditions «(0) = 0,u(1) = 0. This simple 1D
problem acts as a nice test model. In spite of its simplicity it already reveals essential
numerical properties for the Dirac delta function source ¢(z) = §(z — z), Z € (0,1). For
this ¢ the solution u of (2.1) is no longer a classical solution in the sense that it can be
explicitly substituted in the differential equation. It can be determined however by the
Green’s function expression [2]

1
ue) = [ Glomstian, G ={ THTY IETEY (22)

Using the delta function property fol f(z)é(x — z) = f(Z) insertion of ¢(z) = d(z — T) gives

z(l—z), 0<z<z,
u(w):{ a‘cgl—xg, z<z<l1. (2:3)

Note that u is continuous but not continuously differentiable over [0, 1].

The finite volume approach  In this section we will analyze the standard cell-centered
discretization scheme for (2.1) obtained through the finite volume approach. For u smooth
(sufficiently differentiable) this scheme converges with second order in the maximum norm.
However, for the solution defined by the Dirac delta function the scheme becomes locally
inconsistent near T resulting in a maximum norm order reduction from two to one for the
global error. For the sake of insight we will analyze this reduction phenomenon from two
points of view, viz. by introducing modified equations as in backward error analysis and by
examining the local truncation error as in common forward error analysis.

Let h = 1/m where m is the number of uniform grid cells Q; = [(i—1)h,ih] fori=1,...,m
covering [0,1]. Let z; = (¢ — 1/2)h denote the cell center of €2;. The finite volume approach
for (2.1) amounts to first integrating (2.1) over 2; and dividing by the cell volume,

fQi —Ugy (z)dT B fQ é(z)dz
fQi du B sz dr

1=1,...,m,
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followed by applying the divergence (Gauss) theorem,

_Uz($i+1/2) uw(wifl/Z) - fQ ¢(z)dx
fﬂi dz fQ de fQ de

followed by choosing a difference approximation for u, and computing the integrals, either
exact or by a quadrature rule. After incorporating the boundary conditions this procedure
then results in the aimed discretization scheme.

Correct application of the divergence theorem generally impedes existence and integra-
bility of ug, which does not hold with a Dirac delta function for ¢.!) To circumvent this
problem we will assume, for the sake of analysis only, that we are solving a modified equation
defined by a modified source term associated to é(x — Z). More specifically, we will associate
d(z — ) with a class of source functions ¢(z) leading to twice continuously differentiable
solutions u and which are equivalent with é(z — Z) in the sense that

i=1,...,m, (2.4)

/Qiqﬁ(;c)d:v:/ﬂié(:v—;i)dw, i=1,....m. (2.5)

The divergence theorem is then applicable for these twice continuously differentiable so-
lutions and, furthermore, assuming exact integration or a proper quadrature rule, the ¢-
integrals in (2.4) are computed as if the source is the Dirac delta function. Hence the
resulting difference scheme remains unaltered.

In addition to (2.5) we will further assume that any ¢ considered converges to the Dirac
delta function with O(h) in the sense that

/0 G, y) (By) — 6y — 2))dy = O(h). (2.6)

Due to (2.2) this requirement immediately leads to first-order convergence of the exact
modified solution u to the sought exact solution. This in turn implies first-order convergence
of the numerical solution to the sought solution if we have first-order h-convergence of the
numerical solution to the assumed modified solution. Below we will illustrate this line of
thinking which is reminiscent of backward error analysis as used in numerical linear algebra
or numerical differential equations, see e.g. [4].

To set up the difference scheme let us assume that Z € (z;_1/2,2j41/2) for a certain
j = j(h) at a distance ch of the cell center z;, i.e., T = x; + ch with —1/2 < ¢ < 1/2. Then
due to (2.5), (2.4) becomes

U (Tiy1/2)  Ug(Tio1j2)  6ij .
h + h h ) Z ) 7m7 ( 7)

where J;; is the Kronecker delta symbol. Next, let w;,i = 1,...,m, denote the numerical
solution for u(z;) resulting from approximating u,(z;11/2) in (2.7) by (w(zit1) — u(w;))/h,
etc. The Dirichlet boundary values are accounted for by extrapolation to auxiliary values
wp = 2u(0) — w1y, Wmy1 = 2u(1) — w,, and by insertion of wy and wy, 11 for i =1 and i = m,
respectively. If we then assemble the w; in the grid function w = (wy,...,w,)T, we get as

1) Solution (2.3) forms an exception. For this solution the divergence theorem appears to hold over the
cell ©; containing Z.



numerical scheme the m x m symmetric linear system 2)

-3 1 0
1 -2 1 .
1 -2 1 )
1 -3 0

where b has zero entries except at entry j. The inverse of the difference matrix is bounded
uniformly in h = 1/m, defining w = A~ uniquely as the aimed numerical solution.

Let up, = (u(z1),...,u(zm))? denote the restriction of u(z) to the grid. As discussed
above, the numerical solution w can be interpreted as an approximation to uy for a twice
differentiable modified solution u defined by an appropriate source function ¢ satisfying
(2.5). Likewise, once constructed, w may also be directly compared to the actually sought
solution lying at a maximum norm distance O(h) to any appropriate modified solution.

Error analysis through modified solutions  Associating a uniquely determined numerical
solution with different exact modified solutions for the sake of analysis is the central idea
of backward error analysis. This line of thinking may enhance insight in the numerical
discretization procedure or, as in our case, even justify the discretization procedure. Here
we are in the special situation of being able to find the numerical solution and exact modified
solutions in closed form. One can easily check that

z,(l—z;), 1=1,...,7,
w; = (L= 2;) T d (2.9)
zj(l—z;), i=j+1,...,m,
solves (2.8). This numerical solution differs from solution (2.3) only in that Z is replaced by
x;, revealing a small shift in the peak and an error at all grid points. In terms of Z and ch,
with —1/2 < ¢ < 1/2, we have
zi(1—Z)4+cx;h, 1=1,...,7,
wi— ] W1 d (2.10)
z(1—z;) —c(l—z))h, i=j+1,...,m,

immediately showing O(h) maximum norm convergence. For ¢ = 0, i.e., with the singular
point T located in the center of cell €2;, the scheme returns the sought solution exactly.
Next consider by way of example the continuous source function

0, 0<z<uz;—h/2,
m(zj—z+h/2), z;<z<z;+h/2,

S >

£Uj+h/2§$§1,

2) The values -3 at the corner entries are due to the fact that we have chosen a cell-centered grid and
have Dirichlet boundary values. With a vertex-centered grid (boundary points as cell centers) the common
stencil would result with -2 at the corner entries. See Section I.5.3 in [5] for accuracy aspects.
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which satisfies (2.5) and results in the twice continuously differentiable modified solution
z(l —z;), 0<z<uz;—h/2,
m(lfzj)f#(mij—%h/Q)a, zj —h/2<z <z,
zj(l—a)— g (z;— 2+ h/2)°, z;<z<z;+h/2,
zj(l -z, z;+h/2<z<1.

u(z) = (2.12)

On the grid this modified solution is closer to the numerical solution (2.9) than the sought
one as it should be. The u;, and w coincide at all grid points except at =; where the difference
is h/12. Observe that (2.11) can be interpreted as a regularized form of the singular Dirac
delta function as discussed in [12]. Contrary to the approach followed here, in [12] such
regularized forms are explicitly used and implemented in the used difference schemes.

Error analysis through the truncation error  Following the common approach of forward
error analysis we will next examine the convergence of (2.8) to the sought solution u by
analyzing the local truncation error o and global error e defined by

oc=—Aup — b, e=up—w.

There holds —Ae = o so that |le]loc < |47} |lo]|co- Hence if ||o||cc = O(h?) we im-
mediately have second-order convergence in view of the uniform boundedness of [|A™!||.
However, for the current solution (2.3) we find

—¢ ¢ T
a_(o,...,o, h,h,o,...,o) , (2.13)
with nonzero entries for cell j and j + 1, respectively. Here it is assumed that Z lies at the
right of z; so that 0 < ¢ < 1/2. With Z at the left the nonzero entries shift to cells j — 1, j.
For ¢ = 0, i.e., with the singular point located in the center of cell €;, a zero truncation
error results and hence in this special case the scheme returns the exact solution (2.3). In
all other cases ||o||ooc = O(h™!) so that convergence cannot be concluded when the standard
argument sketched above is followed.

Through a more subtle local truncation error analysis the correct maximum norm O(h)
convergence can be proven however, gaining two powers of h. A similar situation generally
occurs with Dirichlet boundary conditions due to the cell-centered location of x; and z,,
half a distance h away from the boundary. For a general smooth solution we then would
have o1 = O(1), 04, = O(1). In [5], Section 1.5.3, it is shown that we then still can expect
second-order convergence (with a sufficiently smooth source) due to a favourable local error
cancellation and we adopt here the method of proof of [5] to show first-order convergence with
o given by (2.13) using the following ansatz: the local truncation error can be decomposed
as 0 = —Ar + £ such that the grid functions r,¢ are componentwise O(h). This would
immediately prove first-order convergence since the global error then satisfies e = r — A~ ¢,
The ansatz is verified as follows. Put £ = 0 and r = ha. We then have to verify that such a
grid function « exists and satisfies & = O(1) componentwise. The result is

1-2i . .
c, 1=1,...,7,
ai:{ 2m (2.14)

2m—2i+1 L
=|:Se, i=j+1,..00,m,

which completes the proof. Observe that since £ = 0 we have e = ha connecting this
expression with (2.9) through w = up, — ha.



Example 2.1 As a second illustration of the O(h) convergence of the cell-centered scheme
we consider a slight extension of the 1D test model (2.1), viz.,

—Ugy +u=6(x —F), 0<z<1, (2.15)

again with homogeneous Dirichlet boundary conditions. This problem does have as solution

sinh (1—Z) sinh () _
u(z) = —smh) > 0ST=S7T,
- sinh (1—z) sinh (Z) <<l

sinh (1) )

Figure 2.1 shows u (left plot, solid line) for Z = 0.3 along with the cell-centered solution
for h = 1/20 (o-marks). The plot at the right nicely reveals the anticipated first-order
convergence (|lup — wl||e versus m in log-log scale).

0.2 10
(@]
0.15 5 =
9 10
(@)
O
0.1 N
107
0.05
4
0 10
0 0.5 1 10' 10° 10°

Figure 2.1: Numerical illustration for problem (2.15) with Z = 0.3.

Example 2.2 An interesting 2D test model used in [12] is the Poisson equation
—Au=46(T,z,y). (2.16)

Here the source denotes the Dirac delta function along a curve I' defined by

(T, z,y) dedy = / dy, (2.17)
R2 r

with co-ordinate v on I'. As in the 1D test model, solution u is continuous but not contin-
uously differentiable across I' so that the divergence theorem cannot be correctly applied.
However, by arguing with assumptions similar to (2.5), (2.6), the divergence theorem is cor-
rectly applied for twice differentiable modified solutions and the resulting 2D cell-centered
scheme (the 2D counterpart of (2.8)) will again result in first-order convergence to the sought
solution u.

Using a uniform m x m grid the 2D counterpart of (2.8) reads

—(AQI+1I®Aw=0», (2.18)
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where ® is the direct matrix (Kronecker) product. The entries by, of the vector b € R™*™
are associated to grid cells €2;; with values emanating from the boundary conditions and the
source §(T', z,y). Considering the source contribution, let I';; = I'N€;; and |T';;| the length
of T';;. Then, assuming exact integration of the integral along I', from (2.17) and the finite
volume approach follows that either

b, = |Ti;]/R? (2.19)

or by, = 0 (considering only the source term contribution). Because upon intersection |I';;]
is proportional to h, by is then proportional to 1/h or equal to zero, similar as in the 1D
case.

For the circle I' = {(z,y) : 2% + y? = r?} problem (2.16) has the radial symmetric
solution [12]

ur, 372 + y2 S 7‘2 )
,y) = 2.20
u(@,y) ur — rlog (r’l\/zxz—%-yz)) . :v2+y2 Zrz, ( )

where ur is a given constant value on I'. For ur = 1,7 = 1/2 we have applied scheme
(2.18) on the square —1 < z,y < 1 with Dirichlet boundary values prescribed from (2.20).
Figure 2.2 shows the corresponding u and nicely illustrates the first-order convergence of
(2.18). The right figure plots ||up — w||eo versus m in log-log scale. We have used (nearly)
exact integration along I' (for the circle this is straightforward).

10° 10' 10° 10°

Figure 2.2: Numerical illustration for problem (2.16)-(2.20).

Remark 2.3 No finite solution exists when using the two-dimensional Dirac delta function
at a point. To see this, consider (now) on the unit square, —Au = §(z — 1/2,y — 1/2) with
homogeneous Dirichlet boundary values. Introduce the uniform vertex-centered (cell centers
at the boundary) m x m grid with grid size h = 1/(m + 1) and assume m odd. Applying
as above the finite volume approach over all internal A x h grid cells then leads to a linear
system Aw = b of type (2.18) where A is defined as in (2.8), except that at the corner points
—3 is replaced by —2 (the standard stencil for homogeneous Dirichlet boundary values).
Further, vector b has all its components equal to zero, except at entry k = (m? + 1)/2



associated to the center point (1/2,1/2). Here b, = 1/h? due to
/ Sz —1/2,y—1/2) =1.
R2

Since A is symmetric, its inverse satisfies A7! = XD 'XT with eigenvector matrix X
and eigenvalue matrix D. Consequently, wy, = (7 - D~!r¥’)/h? where 7y, is the k-th row of
X. Using the known expressions for the eigenvectors and eigenvalues [5], Section I11.6.2, we
then find the expression

. o/ . o (Tih . o/ Tjh 1
we= Y VYpy, iy =h(sin® () +sin® (57)), h=—r
oddi,j=1

for the numerical solution at the center point (1/2,1/2). Figure 2.3 plots the numerical
solution on the 39 x 39 grid (left plot) and wy, as a function of increasing m-values (right plot;
m=10-2"—1,1=0,1,...,10). Even on fine grids wy, is of moderate size, but it is obvious
that wy — oo for m — oco. Since the wg-sequence is defined by a convergent scheme we
conclude that no finite solution exists. It can be shown analytically that wy, ~ (27) =1 log(m)
for m — oo confirming the growth shown in the figure.

2

15

0.5

10° 10°

Figure 2.3: Numerical illustration for the ill-posed 2D problem from Remark 2.3.

Remark 2.4 On any fixed grid no matter how fine, the strength of the I'-source will vanish
upon shrinking I' due to (2.17). The strength is kept by scaling (dividing) the source by |T'|,
the length of I'. Such scaling will replace (2.19) by bx = (|I';;|/|I'|)/h? and hence if T" lies in
one or only a few grid cells we have, respectively, by, = 1/h? as if we have a point source, or
bx ~ 1/h?. This situation will lead to irregular peak behavior upon grid refinement when
initially T" lies in one cell. First, as long as I' lies in this same one cell, the peak height will
increase, cf. Remark 2.3. Then, when I" becomes distributed over a few cells, the height will
decrease till it eventually settles down when there are enough intersections. Needless to say
that this type of irregular behavior may also occur with unscaled sources, but then with a
factor h smaller. Small scaled sources simply require finer grids to achieve the same level of
absolute errors. Scaling is often wanted, see Section 4 where it is also used in our biological
application.

2.2 Time dependent problems
The step from boundary value problems to time-dependent problems with singular source
terms is not large. Consider in a spatial domain Q € R? the general, constant coefficient,
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second order, linear test model
uy = Lu + ¢(z), t>0, ze€Q, (2.21)

provided with an initial function u(z,0) at time zero, appropriate boundary conditions for
t > 0, and a singular source term ¢. The spatial discretization and source treatment through
the finite volume approach goes essentially the same as in the boundary value case.

For any volume or grid box V € R? it starts from the integral form

0 Jyudz _ [, Ludz [, ¢(z)dz
ot [ydz [, dz i Jydz

For the u;-integral term we will suppose the midpoint quadrature rule approximating the

left-hand side by a value wi,(t) say where ' denotes d/dt. As in the boundary value case

we will interpret ¢ to be a source function giving rise to a twice continuously differentiable

solution u(z, t) so that we may apply the divergence theorem for Lu. This ¢ is then supposed

to satisfy a counterpart of (2.5) for the singular source under consideration, so that we end

up with a semi-discrete central difference scheme identical to that for the singular source.
The scheme takes the generic form of a linear, constant coefficient ODE system

w'(t) = Aw(t) + b, t>0, w(0)=wp, (2.22)
the solution of which can be expressed as
w(t) = e*w(0) + (e — 1) A™'b. (2.23)

If the exponential operator satisfies exp(At) — 0 for ¢ — oo, this solution results in the
steady state w = — A~1b for t — oo. The spatial error analysis for finite ¢ is almost identical
to the analysis for the stationary case. The local truncation error o and global error e are
now defined by

o(t) = uy(t) — Aup(t) — b, e(t) = up(t) —w(t),

and come together in the global error equation
e'(t) = Ae(t) + o(t), t>0, e(0)=up(0)—w(0).

Assuming bounds on the exponential matrix, e(t) then can be expressed in bounds on o ().
Hereby one should use a refined error analysis similar as shown above to cater for local order
reduction coming from a singular source. Such a refined error analysis can be found in [5],
Section 1.5.3, for a similar reduction coming from the boundary. These results carry over to
reduction caused by singular sources.

The final assumption is that a counterpart of (2.6) is satisfied so that the modified solution
lies at a maximum norm distance O(h) of the solution u generated by the singular source.
First-order maximum norm convergence of w(t) for the modified solution then results au-
tomatically in first-order maximum norm convergence to u. What then remains is to turn
the continuous time solution w(t) in a fully discrete solution by numerical time integration
(method of lines). There exists a great deal of choices of integrators, depending on issues
like stiffness, stability, consistency and efficiency [5]. In the next section we will pick one in
a numerical illustration for a time-dependent problem with a nonlinear source.



10

3. NONLINEAR TEST MODELS

We will next consider a nonlinear extension of the linear test models discussed in the previous
section. Our aim is to include singular nonlinear reaction terms, singular in the sense that
the chemical reactions are confined to a lower dimensional surface I' in the space domain
Q C R?, similar as in the previous section. The nonlinear test model has the time-dependent
form

ug = Lu+ 6(T, z) R(z, t,u), zeQ, t>0. (3.1)

The definition of L is here of secondary importance. For simplicity of presentation we assume
that Lu is the linear elliptic form Lu = V - (DVu) with D € R?*?¢ diagonal and dependent
on z only. The source term is supposed to satisfy the Dirac delta function relation [12]

[ s tudz = [ Rial).bwd, (3.2
with co-ordinate vy on I'. The dependent variable u(z,t) is supposed to represent s concen-
trations, hence u is a vector u = (uy,...,us) and accordingly the nonlinear vector function
R(z,t,u) has also s components. Providing (3.1) with appropriate initial and boundary
conditions yields the initial-boundary value problem we wish to solve.

The focus of our investigation lies in the singular source term treatment and for this
purpose we again take d = 2 with @ = (—1,1)? and assume for space discretization the
finite volume approach with centered finite differences on a uniform m x m-grid with grid
size h = 2/m, completely similar to the linear case presented in Example 2.2. This space
discretization leads to the following nonlinear counterpart of system (2.22),

w'(t) = Aw(t) + b(t, w(?)), t>0, w(0)=wp. (3.3)

With a smooth source term defined on the whole of 2 we would have second-order con-
sistency. However, the singular source term will lead to first-order consistency and what
remains to show is how this term enters the nonlinear vector function b(¢,w). Consider a
grid cell Q;; and recall the derivation of Example 2.2. If ' N Q;; = 0, the corresponding
contributions to b are zero. If I' N Q;; # 0, these contributions are unequal zero and are
obtained from the first-order approximation

umR@Mm@ﬂ»gLR@wmwm.
ij

Associating the index pair (7,j) with an index k for b, we thus get
b, = |Tij| R(zg, t, wr) /A*. (3.4)

The computation of b thus goes essentially the same as in the linear case with regard to
the singular source term treatment, the only difference being that by is nonlinear in the
cell-center value wy. This might complicate the numerical integration in time, but should
form otherwise no obstacle for obtaining a fully discrete numerical solution.

Remark 3.1 Two invariants for u are positivity (componentwise non-negativity) and mass
conservation. We distinguish molecular and spatial mass conservation. The first emanates
from the mass action law of chemical kinetics [5] and amounts to the existence of constant,
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nonnegative weight vectors v = (v1,...,vs)T, such that for any solution of the ODE system
u' = R(z,t,u) the inner product vTu(z,t) is constant in time (the molecular mass defined
by v). Trivially, this holds iff v/ R(z,t,w) = 0 for any w € R*. The spatial conservation
depends on the boundary conditions, as usual. Combining these two properties will reveal
conservation of the total mass

M(t) = / vTu(z, t)dz
Q
associated to a given v. To see this, we compute
M'(t) = / v” (V - (DVu)+4(T, z) R(z,t, u))d&,
Q

and due to (3.2), molecular mass conservation, and the divergence theorem, we have

M'(t)= [ vT(V-(DVu) d@zi (DVu;) -ndz
Q i—1 700

and get as usual that the fluxes over the boundary determine conservation of the total mass.

Since we use the finite volume approach for spatial discretization this argument applies
to any grid box and the standard result will then be that for the semi-discrete solution
w(t), M(t) will be approximated over the space grid (to at least first-order in space) by a
linear functional M}, (t) = QTw(t) which mimics the time evolution of M(t). In particular,
My, (t) will be constant in time if this holds for M(¢) and any Runge-Kutta or linear multi-
step method will mimic this in the time integration because these methods conserve linear
invariants, see [4], Section IV.1.5.

Positivity of (3.1) under discretization depends on the spatial discretization and the time
integration. The central scheme we favor here for approximating (3.1) by (3.3) is positive [5],
Section 1.7. To guarantee unconditional positivity in time, that is, for any step size 7 > 0,
we are bound to the first-order implicit Euler method [5]. We prefer however to sacrifice this
guarantee in favor of more time accuracy and will instead use a second-order IMEX version
of the second-order BDF method.

Example 3.2 We will solve (3.1)-(3.4) for the reaction system

— kujus + ku% k
R(u) = 2 =
) { — ku + kujus ( 2] ] + [U2])

The corresponding ODE system «' = R(u) has the exact solution

so 1 — a+ 2 e S0kt

w (t) = 2 1—a+ae skt ’

UQ(t) = S0 — ul(t),

where a = (2u1(0) — s9)/so and sp = uq(t) + uz(t) which is constant in time (linear in-
variant). For ¢ — oo the ODE solution (u1,us) approaches the steady state (so9/2,50/2)
exponentially fast. Here we take k£ = 1 and a finite time interval since we are interested in
transient behavior. For the PDE system we choose for the diffusion part the Laplace opera-
tor, u1(z,y,0) = 0 and ua(z,y,0) = sp = 1 for initial functions, and homogeneous Neumann
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(no flux) for boundary conditions. Due to the no-flux condition, u;(z,y,t) +us(z,y,t) = so.
For T' we define two circles (z — x9)? + (y — yo)? = r? with respectively the center points
(.5,—.5),(—.5,.5) and radii .05,.25. As in Example 2.2 the |I';;| are computed (nearly)
exactly.

For reasonable grid sizes h the parabolic linear part Aw in (3.3) will readily be stiff. The
reaction constant k¥ = 1 does not introduce stiffness for the nonlinear term b(¢,w), but due
to its singular nature this term has entries proportional to |I';;|/h? ~ 1/h which causes it
to be mildly stiff. For time integration we can therefore use the following implicit-explicit
(IMEX) version of the BDF2 scheme [5], Section IV .4,

Wpy1 = éwn — 1wn_l + g7'Awn_~_1 + g7'(21)(75,1,1071) — b(tn-1, wn_l)) . (3.5)
3 3 3 3
This IMEX scheme treats the linear part implicitly and the nonlinear part explicitly and
thus avoids nonlinear equation solutions. It does retain the second-order of consistency of
BDF2 and if we take 7 proportional to h it can deal with the modest stiffness introduced
by the singular source. For the first integration step, the similar IMEX form of implicit
Euler [5] is used to provide the additional starting value ws.

For h = 2/199 and 7 = 1/200 Figure 3.1 shows the computed u;-field at ¢ = 0.025 (left),
0.05 (middle), 0.1 (right). Recall that at time ¢ = 0 the u;-field is zero and note the difference
in vertical scaling to see that on the current time interval both sources survive diffusion.
The growth along the larger circle is larger due to the greater source strength.

0.2

A A A

Figure 3.1: Numerical illustration for the problem from Example 3.2.

4. A TEST MODEL FROM DEVELOPMENTAL BIOLOGY

Our aimed application field for these reaction-diffusion models with singular source terms
lies in developmental biology, or more precisely in the simulation of body-plan formation. A
small number of genes is responsible for the developmental process from a fertilized eggcell
to an individual. These genes, or the gene products, interact via a regulatory network and
diffuse through the organism. The idea is that the different types of body segmentation
during the development can be explained by ‘rewiring’ the regulatory network.

We have developed a model [1] for simulating regulatory networks that is capable of quan-
titatively reproducing spatial and temporal expression patterns in developmental processes.
The model is a generalization of the standard connectionist model (see, e.g., [3, 6, 7, 8, 9])
used for modelling genetic interactions. It distinguishes between the genetic regulation
which takes place inside the cells (species g) and the diffusion of the signalling pathway
components (species ¢) through the organism. Mathematically speaking this amounts to
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a continuum-discrete hybrid model where discrete objects exchange species with the sur-
rounding environment modelled as a continuum. Inside the cells one has genetic regulation
and decay (biochemical reactions). In [1] and in this paper we assume that the concentra-
tion inside these cells is homogeneous (no diffusion). Outside the cells species only diffuse
and decay. The exchange of the signalling pathway components between the cells and the
extracellular matrix is described by a secretion/absorption function. This function mod-
els membrane processes giving rise to reaction source terms modelled with the Dirac delta
function (3.2) defined on the surface of the cells.

In this section we numerically solve a model from [1] inspired by the blastoderm stage of
development of Drosophila (fruit-fly, see, e.g. [6]). Since in the initial phase of Drosophila
the cells are in a syncytium (no cell membrane), secretion/absorption between intracellular
and extracellular is instantaneous, which in our model is reflected by a large value for the
constant coefficient a.

The (discrete) equations describing the intracellular processes read [1]

N
dgit(t) _ N prab by oy o fBV —c*(2(5),1))dS
dt - Ra(}(;W gl) Aagi |8V;| (41)

The variable ¢ stands for the concentration of gene product a within biological cell ¢,
with ¢ = 1,..., N, (being the number of biological cells). N, is the number of different
gene products. So, we have N. x N, equations (4.1). W = (W) is a matrix of genetic
regulatory coefficients whose elements characterize the influence of gene b on gene a. R,
is the maximum rate of synthesis from gene a, A\, is the decay rate of gene a, and @ is a
sigmoid function with range [0,1] (0: no production, 1: saturation) for which we use the Hill
curve with coeflicient two:

22

®(z) = W,

z = max(0, x). (4.2)

The last term in (4.1) models the contribution of the secretion/absorption process integrated
over the surface 9V of cell i. Note that the interaction between the gene products g in all cells
is induced by the same regulatory matrix. External influences, like the secretion/absorption
process, govern the level of the concentrations g§ for the different cells.

The diffusion-reaction model for the species in the extracellular matrix is modelled by the
following N, equations

Oc*(z,t)
ot

= V.(D, Ve (z,t) — Nac®(z, 1) +ZV ﬁ;{j’f) (92(t) — c*(z,t)), (4.3)

where V; is the volume of the biological cell j, D, is the diffusion parameter of gene a and
¢ stands for the extracellular concentration of gene product a. Note that here the Dirac
delta function §(0V;,z) is present in the same setting as in (3.2). Since in the Drosophila
embryo the level of expression of genes is, approximately, a function only of position along
the anterior-posterior (A-P) axis, equations (4.3) can be reduced to a system of (pseudo)
one-dimensional equations (the biological cells are still 3D) with the spatial dependency in
z2-direction, where z € [0, Z] [1].
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4.1 Numerical approximation

For the spatial discretization of the (pseudo) one-dimensional analog of equations (4.3)
we use cell-centered second-order finite volume discretization similar as in Section 2.1.1
and Section 2.2. Assume that the biological cells are uniformly distributed, equally sized
spherical cells. Let z; be the location of the center of bio-cell ¢ and 7. its radius. Let
h = Z/N, be the mesh size, where N, is the number of grid cells. Then for all grid cells
[21 —h/2, z;+ /2] we have to compute the contribution of the secretion/absorption operator
restricted to that grid cell. A lengthy calculation gives

- 1 " Osr 2 a —a
Z Tnr? (2/0 /ajl r-sinty df d"(/}) a(gj - ),

Jj=1

. . . — 2+2
where ¢} is the average concentration value given by ¢} = % fle_ %2 c(z,t)dz, r. = NQ, / 3—:,

c

with v being the ratio between the intracellular volume and the total volume and

0; 0; h
0;, = arccos -2+, 0; =arccos 2=, [9},,0;.] = [~Teyre) N[21 — 25 — =21 — 25 + =]
Te Te 2 2
(arccos mapping [—1,1] onto [—7,0]). The discretized version for the I-th grid cell then
reads

dcf l)aCﬁlic21 _I)a#ic?ﬁ1 a w. e 0; — 80, a a
= h h X\ +a7724h7r (g —cf), (4.4)
j=1

dt h

where ¢f = ¢ + O(h?) is the pointwise approximation to c¢®(z,t) at (z;,¢) and w, = ']YVZ.

Note that the integral in (4.1) is just the sum over all grid cells overlapping bio-cell i.
The system of N, x N, ODEs (4.4) coupled with the N. x N, ODEs for the biochemical
reactions in the bio-cells (4.1) is solved with the IMEX-BDF?2 time integrator (3.5). Only the
diffusion operator in (4.4) is treated implicitly, which effectively decouples the two systems
in each timestep. Note that the weight factor w. ensures that the secretion/absorption term
is handled in a mass conservative way. The spatial and temporal discretization preserve
mass as well (see Remark 3.1).

4.2 Simulation results

We will demonstrate the behaviour of the hybrid model with a simple artificial regulatory
network. It is given by three genes with the following mechanism: gene 1 activates gene 2,
and gene 2 inhibits gene 3. The latter two also have auto-activation. This leads to the
following regulatory matrix

0 0 O
W=1[4 1 0
0 —4 10

The other model parameters are given by R = (1,1,1), A = (5,0.25,0.2), and D =
(0.15,0.001,0.0001). The domain length is given by Z = 1 and we take 10 uniformly
distributed bio-cells that occupy 10% of the total volume (y = 0.1, w, = 0.01). Finally, the
secretion/absorption factor oo = 1000.
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Figure 4.1: Simulations for various numbers of grid cells, left: 10, middle: 13, right: 159. The upper
part of the pictures shows the position and size of the bio-cells (o) and the grid cells. The solid lines
in the plots show the concentration values of the extracellular species ¢ (boundary values for species 1,
2, and 3 are approximately 0.85, 0.3, and 0.0, respectively), the stars the concentrations of g inside the
bio-cells.

The boundary conditions for ¢ are homogeneous Neumann, except for gene product 1
where a concentration of 0.85 is prescribed on both sides. The concentration values of both
c and g are initially 0.05.

In Figure 4.1 the simulation results are shown for three different spatial meshes for time ¢ =
25 (steady-state), obtained with a highly accurate time integration so that the spatial errors
dominate. We used the constant step size 7 = 10~ satisfying the explicit stability constraint
at < 1. In the first experiment each bio-cell lies in a grid cell. Results with this configuration
can essentially also be obtained with the standard connectionist model (cf. [1]), since the
concentration values inside (g¢) and outside (c¢*) the bio-cells are approximately the same
(o = 1000). The plot on the right however shows that the hybrid model predicts also the
difference in intensity between the bio-cells and the concentration in the extracellular matrix
which is of course dependent on the ratio between the diffusion and reaction coefficients.
Finally, the middle plot shows that the relative placement of the grid nodes and the bio-cells
can have a large influence on the solution for a coarse mesh. Note, however, that all three
experiments give globally the same information if one is only interested in which region
which gene product dominates.

Finally, to study the numerical convergence when h — 0, we have solved (4.1), (4.4) on
a very fine mesh and have used the resulting numerical solution as the reference solution to
study the spatial convergence behaviour. In Figure 4.2 we plot the Ly norm of the difference
between the reference solution and the numerical solutions on the meshes with different grid
sizes ranging from 10! to 0.24 x 10~ for the extracellular concentration c for the three
different genes. We observe a convergence order slightly larger than one instead of two. The
order reduction, due to the presence of the delta function in (4.3), does confirm our findings
in the previous sections.

5. CONCLUDING REMARKS

In this paper we studied reaction-diffusion problems with singular reaction source terms.
Such sources do contain or are defined by a Dirac delta function living on a lower dimensional
surface. The finite volume approach was examined for linear and nonlinear test models.
These models do have continuous solutions, but solutions are not continuously differentiable.
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Figure 4.2: Convergence behaviour for the different genes.

This lack of smoothness causes order reduction from two to one for the standard second-order
spatial discretization procedure. As an application we considered a model for simulating
regulatory networks and numerically verified that it is capable of quantitatively reproducing
spatial and temporal expression patterns in developmental processes.

In the model considered in Section 4 we utilized the specific features of the test case
(Drosophila). Since at the early developmental stage of the Drosophila cells are not yet
formed (no membrane), we defined equations (4.3) in the whole domain (diffusion through
the cells). The specific geometry of the Drosophila embryo allowed us to reduce the three-
dimensional model to a (pseudo) one-dimensional model. However, in other developmental
processes (sponges, corals) cells are formed right away and possibly move through the body.
It is also quite common that only some of the gene products diffuse through the organism.
In that case equations (4.3) should be defined only in the extracellular space resulting in a
very complex and possibly time-dependent domain but then the singular source terms are
replaced by boundary conditions. It might also be necessary to consider two-dimensional
or even three-dimensional models. Adding these features to the model and the numerical
implementation is a big challenge.

Another aim of future work is to design numerical methods with a convergence order
higher than one for the diffusion-reaction problems with singular source terms.

Acknowledgement We acknowledge support from the Dutch BSIK/BRICKS project and
from NWO’s ’Computational Life Science’ program, projectnr. 635.100.010.
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APPENDIX
The ezxact solution of the problem of Example (2.2). In 2D an interesting test model used
in [12] is the Poisson equation

—Au=46(T,z,y). (5.1)

The source §(T'; z,y) denotes the Dirac delta function along a curve I' defined by

5(Ts,)dady = [ dy. (5.2)
R2 r

with co-ordinate v on I'. If T is a circle, ' := {(x,y) € R? : |(z,y)| < 7o}, the solution of
(5.1) is radial symmetric and equivalent with the solution of

10,0
;5(7'8—1;) =0, for r > rg (5.3)

and
/FAU = */FJ(F,r,y) (5.4)

or, using Gauss’ theorem and (5.2)

Oou
271'7‘5 = —27ry. (5.5)

Integration of the latter gives

u= —rglnr+ A, (5.6)

where the constant A can be determined using the continuity of the solution at I', so A =
u(rg) — 7o In %, resulting in

u(r) = u(rg) —roln :—0. (5.7)

The logarithmic growth discussed in Remark 2.3.  Consider again the expression

= _9/ . wih . wih 1
wk:oddz" = Hsin® () Hsin® (7)), k=
1,j=

for the numerical solution at the center point. To explain the logarithmic growth of wy
with m we denote m’ = (m + 1)/2 and let here O(1) represent appropriately encountered
constants independent of m’. From the inequality

4/7* <sin®(z)/2* <1, 0<=z<7/2,
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follows i% + j2 < pi; < (% + j%)(n?/4) or (4/m?)(i* +5%) 7" < (iz) ™ < (® +4%)7". Let us
suppose that the lower bound determines the growth such that

’

4 - 1 1 & 1
oddi,j=1 i,j=1

To estimate the sum we denote f(z) = f(,j) = 1/(z* + j*) and use Euler’s summation
formula with remainder Ry [10, 11],

/f ) dz + ()+f( )-f-Ro::]L,arctan(n,Ll)—}-ll 11

=+ ———=+R,.
j 2j2+2m/2+j2+0

Next we sum over j. Then the arctan-term dominates and the other terms can be shown to
be O(1), giving

’ ’

o1 = 1 m’
2
T w, = E — arctan + 0(1 E - arctan (- +O0(1).

Using again Euler’s summation formula,

’

™1 m’
2
= t d o@1
7wy /0 arc an(w+1) z+ O0(1),

1+

which leads us to the logarithmic behavior. With partial integration we can rewrite the
integral as

m’ m’ log(1 + z)
log(m' + 1) arctan (m’ n 1) + m//0 Gr1ime dr + O(1).

Substituting z + 1 = m't in the integral term yields

m' . (m'+1)/m’ log(m't)
m, + ]. l/ml t2 + ].

72wy, = log(m' 4 1) arctan ( dt + O(1),

so that, using arctan(1) = fol e dt =1, I log(®) 44 — —log(2), we get for m — oo

1 1
i = Tlog(m') +log(m') [ ar+ [ 25D dr+001) = Tog(m) + 0.
0

0 241

The derived slope (27) ! coincides with the computed slope in Figure 2.3, right plot.



