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The Fortran 90 program IRKC is intended for the time integration of partial differential equations
(PDEs) of diffusion-reaction type for which the reaction Jacobian has real (negative)
eigenvalues. It is based on a family of implicit-explicit Runge-Kutta-Chebyshev formulas which
are unconditionally stable for reaction terms and which provide a stability bound for the diffusion
terms that is quadratic in the number of stages. Special properties of the family make it possible
for the program to select at each step the most efficient stable formula as well as the most
efficient step size. Moreover, they make it possible to evaluate the formulas in just a few vectors
of storage. These characteristics of the program make it especially attractive for problems in
several spatial variables. IRKC is a successor to the RKC code of [5] that solves similar
problems without stiff reaction terms.
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Abstract

The Fortran 90 program IRKC is intended for the time integration of partial differential equa-
tions (PDEs) of diffusion-reaction type for which the reaction Jacobian has real (negative)
eigenvalues. It is based on a family of implicit-explicit Runge-Kutta—Chebyshev formulas
which are unconditionally stable for reaction terms and which provide a stability bound for
the diffusion terms that is quadratic in the number of stages. Special properties of the family
make it possible for the program to select at each step the most efficient stable formula as
well as the most efficient step size. Moreover, they make it possible to evaluate the formulas
in just a few vectors of storage. These characteristics of the program make it especially
attractive for problems in several spatial variables. TRKC is a successor to the RKC code
of [5] that solves similar problems without stiff reaction terms.

2000 Mathematics Subject Classification: Primary: 65M20, 65105, 65Y99.

1998 ACM Computing Classification System: G.1.7, G.1.8 and G4.

Keywords and Phrases: Numerical software, diffusion-reaction PDEs, time integration.
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1 Introduction

The RKC code of [5] solves a system of NEQN first order ordinary differential equations (ODEs)
of the form

y'(t) = Fe(t,y) - (1)
It is intended for problems arising in the semi-discretization of parabolic partial differential
equations (PDEs) in one or more space variables, but it accepts problems of relatively general
form. Basic to this solver is the assumption that the eigenvalues of the Jacobian of Fg are
on, or close to, the negative real axis. The solver implements a family of explicit, second-order
Runge—Kutta—Chebyshev methods. At each step it selects a method that is both stable and
efficient. The approach is attractive when the problem is at most moderately stiff and NEQN
is relatively large. The paper [6] considers how to solve equations of the form

yl(t) = FE(tv y) + FI(ta y) ’ (2)
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when the reactions described by the Fr term cause the ODEs to be very stiff and the reaction
Jacobian FJ possesses a real spectrum. In the IRKC code that we present here, the term Fg
is handled by a variant of the explicit methods of RKC and the term F7 is handled implicitly.
Such schemes are known as IMEX methods. Implicit treatment of large systems of ODEs has
serious implications for storage, so we make assumptions about the coding of F; that allow us
to solve a useful class of problems with minimal storage. We have in mind systems of ODEs
that arise from semi-discretization of diffusion-reaction PDEs. We make no assumption about
how the discretization is done, but we do assume that the implicit terms at one grid point are
not coupled to those at other grid points. This kind of decoupling arises naturally with finite
differences, finite volumes, and discontinuous Galerkin discretizations. To take advantage of
the great reductions in storage possible because of this assumption and the numerical method
employed, the user must present the problem to the solver in an appropriate way. If there are
NPDES partial differential equations, each call to the subroutine that evaluates F7 is made
with a vector y of NPDES components that correspond to a single grid point. On demand the
subroutine is also to evaluate the Jacobian of Ff, a matrix that is only NPDES by NPDES.

The papers [5, 6] lay the foundation for the IMEX formulas studied here, but there are
some differences between those formulas and the ones implemented in IRKC. We derive here
and implement in IRKC a measure of error that is different from that of the papers cited. The
software we present could be described as an extension of the Fortran 77 code RKC of [5], but
it is a considerable extension because we have redesigned the interface and exploited features of
Fortran 90 to make it easier to use and at the same time solve problems that are more general.

In Section 2 we review briefly the IMEX formulas of [6] and derive the error assessment used
in selecting the step size. Section 3 is devoted to software issues and their resolution in Fortran
90. Section 4 contains numerical examples of the use of IRKC.

2 The IMEX RKC Family of Formulas

Let Yn, Yn+1 denote approximations to y(tn),y(tn+1), respectively, with step size 7, = tn 1 — tn.
For s > 2 stages, the IMEX family of formulas of [6] is defined by

Yo = yn,
Y = Yo+ umnFEo + 1™ F11,
Vi = (L =nj —v) Yo+ p¥j-1+vjYja + jTuFp,j-1 +3TnFpo + (3)
[V — (1= pj —v;) )t Fro — vifamaFrj—2 + fnma Frj,
Ynt1 = Ys,

where j =2,...,sand Fgj = Fg(tn +¢jTa,Y}), F1; = Fr(tn +¢;Tn, Y;). All the coefficients are
available in analytical form:

[Ll = b1w1 and for j:2,...,8,

2b.:wo b %iwy ) (4)
wi= g V= By = i A = —(1=bi )T a(wo) iy
j—1 j—2 j—1
where
bo=1/(4wp), b1=1/wy, b; = Tj(wo)/(Tj(wo))?, J=2,...,s, (5)



with wo = 1+ ¢/s2, w1 = T!(wo) /T (wo). Here T}, is the Chebyshev polynomial of the first kind
and degree k. For arguments wg > 1, it has the form
Ty, (wo) = cosh(k arccosh(wp)) = cosh(k In(wo + 1/wg — 1)).

Crucial to the good performance of the method is that it has been developed from the Chebyshev
recursion

To(z) =1, Ta(2) = 2, Tj(2) = 22Tj-1(2) — Ty-a(2), 2<5<s, (6)
which holds for any z € C. The increments c; are

co = 0, ¢ =wi/wy, andfor j=2,...,s,

¢j = Ty(wo)Tj (wo)/(Ty (wo)Tj(wo)) = pjcj—1 + vicj—2 + fij + ;.

The parameter € > 0 is free and we use it to create damping. As in RKC [5] we set ¢ = 2/13.
The real stability boundary Sg(s) corresponding to the part of the ODEs treated explicitly, i.e.,
the boundary when Fy is not present, is given by (see [6])

(wo + 1T (wo)
Ty (wo)

The number of stages s in the scheme is determined on the basis of a stable treatment of the
Fr term. Given a step size 7,, (chosen as in Section 2.4) and (an upper bound on) the spectral
radius p of the Jacobian Fj, the number of stages is set to the smallest value of s that satisfies
the linear stability condition

Be(s) = R % (s> —1)(1 - 12—56) ~ 0.653 (s> —1). (7)

Tn p(Fg) < Br(s) ~0.653 (s> —1).

Remark. In many applications described by diffusion-reaction PDEs, scientists are interested in
transient behavior and equilibria or steady-state solutions y for autonomous problems, Fg(y) +
Fr(y) = 0. Standard Runge-Kutta and linear multistep methods preserve steady states. This
property is shared by all the stages of (3) and the result of the step itself. In contrast, when
operator splitting decouples the integration of the subsystems y' = Fr(y) and ¢/ = Fy(y) within
time steps (time splitting), equilibria are not preserved. For nonlinear problems with strongly
competing subsystems Fr and FT, preservation of equilibria is of obvious importance.

2.1 Solving the Implicit Relations

As in RKC, the diffusion operator Fr in the IMEX scheme is treated explicitly, exploiting the
underlying three-term Chebyshev recursion (6) for stabilization. The difference now is that (3) is
implicit in the stiff reaction term Fj, requiring at each stage the solution of a system of nonlinear
algebraic equations

Yj — nmn Fi(tn + ¢jn, Y;) = Vj (8)

with V; given and Y; an unknown vector of dimension NEQN. Because F7 has no underlying
spatial grid connectivity, this system consists of a large number (the number of grid points) of
uncoupled systems with dimension NPDES, the number of PDEs. As is customary when inte-
grating stiff ODEs, we solve these systems by a modified Newton method. For each subsystem,
i.e., for each stage and each grid point, the Jacobian of F; and an LU decomposition of an
iteration matrix are formed. This is expensive, but it allows a dramatic reduction in storage.
A modified Newton process is used, meaning that for each subsystem, one iteration matrix is
decomposed and this decomposition is used for all the iterations needed to solve the subsystem.



2.2 Local Truncation Error

Following standard practice for ODE solvers [4], the adjustment of step size is based on a study
of the local truncation error. For this purpose we consider first the stability function obtained
by applying (3) to the scalar test equation

= (A + Ay, (9)

where Ag and A\ represent diffusion and reaction eigenvalues, respectively. The stability function
is given in [6] as
RS(ZE,ZI) =1 —bsTs(wo) —i—bsTs(wo +w1§), (10)

where
z

1—funzr

ZE = TnAE, 21 =TpAI, Z2=2E+21, [p1=wi/wy, Z=
It is shown in [6] that |Rs(zg, z1)| < 1 for all pairs (zg, z5) satisfying
—0.653 (s2 — 1)~ —Pe(s) <zp <0 and 2z <0.

The stability function is an approximation to exp(Z) and exp(z). Expanding it for small z, we
have

2
z 1 2
s(2m, 21) +1—ﬁ1ZI+2<1—ﬁIZI) o)

= 142+ %z2 + finzzr + O(23, 222, 22
Comparing this expansion to that of the exponential, we see that the consistency order of 2
of the explicit method is reduced to 1 because of the reaction term that is treated implicitly.
However, the coefficient fi; is proportional to 1/ s?. The number of stages can be quite large, in
which case we see that the method behaves rather like the second order explicit method.

Now we consider the general nonlinear system in autonomous form. Let y(¢) be a smooth
solution of ¥’ = F(y) = Fg(y) + Fi(y) and let y, = y(t,). For 7, — 0 we find as counterpart of
(11) the expansion

zr) - (11)

Yn+1 = Y(tn) + Ty (tn) + %Tﬁ Y (tn) + fr7s Fr(y(ta)) F (y(tn)) + O(73). (12)

Here F7 is the Jacobian of the reaction term. It is readily verified that the expansion for the
general non-autonomous system y' = F(t,y) = Fr(t,y) + Fi(t,y) extends to

Ynt1 = Y(tn) + 7y (tn) + 57, T2 () + T2 F (b y(tn) F (b, (1) + (13)

172 0 1, (1)) + O(r3).

We assess the size of the local truncation error with the 72 terms in this expansion,

Bstuiy = 5724 (tn) + fr? Ftn, y(tn)) Fltn, y(tn)) + v 5 (noy(ta) . (19

Controlling the size of the last term in a Taylor series that is taken into account by the formula
goes back to the influential solvers of Zonneveld [7]. This approach to controlling error is



different from that of RKC, which estimates the leading term of the local truncation error.
Some discussion of the distinction is found in [4, p. 342] and references cited therein. In this
approach a distinction is made between adaptation of the step size and controlling the error. A
reasonable way to select the step size is to control the size of this term. The actual error made
in the step is not known, but it is of higher order than the term estimated, so it is expected to
be rather smaller. Indeed, if all is going well, it is considerably smaller and the control is rather
conservative. This is reminiscent of local extrapolation. Because we took an approach to error
control different from that found in RKC, it would be misleading to compare directly results
computed by the two codes when they are both applicable.

2.3 Error Estimate

There are a number of points of interest in the implementation of (14). The terms are approxi-
mated independently by

1
Y/(t) & = [Fltnt, hns1) = Fltn,tn)]
n

F}(tm Y(tn)) F(tn, y(tn)) + %(tnvy(tn)) ~ % [Fr(tns1,Yn+1) — Fr(tn, yn)] -

We filter [3] the error estimate with the matrix (I —v7,4) ! so that it has the correct qualitative
behavior for the stiff reaction components. The matrix A here is an approximation to the
Jacobian F} that was computed during the evaluation of the implicit formula by a modified
Newton iteration. In IRKC we take this matrix to be the Jacobian F} at (t,,y,) rather than at
(tn+1,Yn+1) because we have accepted the approximation y, and are trying to decide whether
to accept yp41-

The coefficient v is at our disposal. It would be natural to choose it so that the matrix
I — y7, F}(tn,yn) is the same as the iteration matrix in order to reuse an LU decomposition.
However, to reduce greatly the storage required by the solver, we do not save the decomposed
iteration matrices. This means that we must repeat the calculations, but in partial recompense,
we are then free to choose a good value for 7. Besides, we shall see that using an iteration
matrix is not satisfactory in the present application.

To select a value for -y, we examine the behavior of Est,41 for the scalar test equation (9),

1 zp + (1 +2f1)2r
2 1—yzr

Estniq = (Ynt1 = Yn) -

As z; — —oo the stability function Rs(zg, zr) remains bounded and is even of moderate size,
1
Rs(zp,—0) = 1 — bsTs(wp) + bsTs(0) = 1 — g(Ts(wo) —Ts(0)).

We choose 7 so that the same is true of the error estimate. Now

1142

1142
Estpi1 = 9 ~ K

b (Ts(wo) _ Ts(0)>yn ~

<Ts(w0) - TS(O))yn .

If we were to reuse iteration matrices, we would take v = fi;. With this choice Est,i1 ~ %y,
for large s because ji; ~ 1/s2. This is clearly a bad choice in a code which may resort to s-values
that are quite large. We simply take v = 1. It leads to a bounded Est, 1 of moderate size and
suits our purpose of filtering stiff components in the error estimate.



Summarizing, the error estimator Est, 1 used by the new IRKC code is evaluated by solving
the linear system

(I- TnF}(tn, Yn)) Estni1 = %Tn(F(tfH-la Ynt1) — F(tn, Yn)) + Tafit (Fr(tnt1, Ynt1) — Fr(tn, yn)) -

(15)
The special form of the ODEs results in a block diagonal matrix F}(ty,yn), making evaluation
of this estimate efficient, especially as regards storage.

2.4 Step Size Selection

Each step size 7, is chosen so that the user-specified tolerance is met by the estimated local
error. The strategy implemented in IRKC is quite similar to the one used in RKC. The user
specifies scalar relative (rtol) and absolute (atol) error tolerances. Because the solver is based
on a first-order method, these tolerances should not be very small. With this in mind, we have
set the default values to rtol = 10~2 and atol = 103.

The norm of the error estimate is computed in blocks. For k running over all NG =
NEQN/NPDES grid points, we let y,; denote the NPDES elements of y, corresponding to
the k—th grid point, and similarly for other quantities. For each grid point k& the Euclidean
norm of the weighted error vector is the square root of

. 2
NPDES (@)
. EStr:—H,k
errv =3 @ 1@
i1 atol + rtol max(|y, |, [¥,4q 40)

Once all blocks are processed, the weighted RMS norm of the error is formed as

1 NG
||E$tn+1” = m ;errk .

If |Estnt1]| < 1, the current step is accepted and the next step size is predicted using
information gathered in the current and preceding step. If |Est,1|| > 1, the step is rejected
and retried with a smaller step size 7,. In either case the new step size is taken to be a fraction
of the largest possible value so as to reduce the number of rejected steps. Specifically, the new
step size is

Tnew = min (10, max (0.1, fac)) 7y,

fac = 0.8( ||E5tn||1/2 Tn ) 1

1Estn |2 Ta1 ) || Estnia]'/?

where

If the step is rejected, and also after the first successful step, the factor in parentheses is omitted.
If the modified Newton iteration fails to converge, the step size is simply halved.

IRKC automatically determines an initial step size in almost the same way as RKC. The
scheme begins by setting the absolute value of the initial step size, ABSH, to the maximum
step size HMAX. Using a bound SPCRAD on p(F}), it then reduces ABSH as necessary so
that SPCRAD*ABSH is no bigger than one. This step size is small enough to resolve an
initial transient due to Fg, but IRKC must account for F; as well. It is easy to compute
JACNRM = ||F}||cc because we have an analytical expression for this block diagonal matrix.
In IRKC we further reduce ABSH as necessary so that JACNRM*ABSH is no bigger than one.
The rest of the scheme for estimating an initial step size is identical to that of RKC.



3 Software Issues

We have redesigned the user interface of RKC and exploited the capabilities of Fortran 90 to
make solving ODEs easier despite solving a larger class of problems. We begin here with an
outline of the suite and then provide some details. Fortran 90 makes it possible to encapsulate
all information about the solution as a single structure of a derived type. This approach and the
dynamic storage facilities of Fortran 90 make it possible to relieve the user of tedious details of
allocating storage. The solution structure can be called anything, but let us suppose that it is
called SOL. It must be declared as type IRKC_SOL. This structure and the computation itself
are initialized by a call to a function IRKC_SET. Among other things, the user must specify the
initial point and a final point in this call. We exploit the possibility in Fortran 90 of optional
arguments so that the most common options can be set by default. The integration is done
by the function IRKC. The default in IRKC_SET is for the integration to proceed a step at a
time, but optionally the solver can return just the solution at the final point. After each step
an auxiliary function IRKC_VAL can be used to approximate the solution anywhere in the span
of the step. Statistics are available directly in fields of the solution structure, but they can all
be displayed conveniently by calling the auxiliary function IRKC_STATS.

3.1 Form of the Solution

The solution structure SOL is initialized by IRKC_SET. It is then an input argument of the
solver IRKC. If the integration is being done a step at a time (the default), the SOL returned
at one step is input to IRKC for the next step. The solution structure has a good many fields.
The most interesting fields are the current value of the independent variable, SOL%T, and the
current approximate solution, SOL%Y, a vector of NEQN components. The logical quantity
SOL%DONE is monitored to learn when the integration is complete.

The methods of IRKC provide a solution between mesh points that is evaluated in an auxil-
iary function. An approximate solution YOUT at a point TOUT in the span of the last step is
obtained by YOUT = IRKC_VAL(SOL,TOUT). Some of the data held in fields of SOL for this
purpose might be of direct interest, viz., the current approximation to the first derivative of the
solution, SOL%YP, and the size of the last step taken, SOL%HLAST.

A convenient way to see all the statistics is to CALL IRKC_STATS(SOL). Individual statis-
tics are available as the integer fields

SOL%NFE number of evaluations of Fg

SOL%NFI number of evaluations of Fy

SOL%NSTEPS number of steps

SOL%NACCPT number of accepted steps

SOL%NREJCT number of rejected steps

SOL%NFESIG  number of function evaluations used in estimating p(FJ,)
SOL%MAXM maximum number of stages used

3.2 Specification of the Task

Only a few quantities are required to specify the task and initialize the integration. This is done
with a call

SOL = IRKC_SET(TO,YO,TEND)



This says that the integration is to start at T0 with a vector YO of NEQN components as initial
value and go to TEND. It also says that the solution structure is to be called SOL. These
arguments must appear, and in the order shown, but the remaining, optional arguments can
follow in any order because they are specified using keywords.

The solver must be told how many PDEs there are. This is 1 by default and any other value
must be supplied with the keyword NPDES. For example, if there are 3 PDEs, the call above is
changed to

SOL = IRKC_SET(TO,YO,TEND,NPDES=3)

The most commonly used options are the error tolerances. RKC provides for a scalar relative
error tolerance and a vector of absolute error tolerances. To leading order the storage required
is a multiple of NEQN. A guiding principle of RKC, and especially IRKC, is minimize this
multiple. Quite often users have scaled the variables so that a scalar absolute error tolerance
is appropriate. If not, they can always rescale the variables so as to do away with the need
for an array of NEQN absolute error tolerances. Accordingly, we have chosen to implement
only a scalar absolute error tolerance in IRKC. This decision makes the solver easier to use and
simplifies the program. The default relative error tolerance is 1072 and the default absolute
error tolerance is 1073, The call just illustrated causes the solver to use these default values.
Other values are imposed with the keywords RE and AE. For example, to use a relative error
tolerance of 1072 and the default absolute error tolerance, the call is changed to

SOL = IRKC_SET(TO,YO,TEND,NPDES=3,RE=1D-3)

By default IRKC takes one step at a time, but it can be instructed to return only after reaching
TEND by giving the keyword ONE_STEP the value .FALSE. The methods for handling the
explicit term Ff involve an approximate bound on the spectral radius of the Jacobian F. This
can be supplied with a function in a manner described below, but the default is to have the
solver compute a bound. The cost of doing this can be reduced substantially when the Jacobian
is constant by giving the keyword CONSTANT _J the value .TRUE. Sometimes it is useful to
impose a maximum step size. This is done with the keyword HMAX. As described in Section
2.4, IRKC selects an initial step size automatically, but a value can be supplied with the keyword
Ho.

It is sometimes useful to reset quantities and continue integrating. This is done by replacing
the initial data T0,YO in the call list of IRKC_SET with the solution structure SOL. If the
required argument TEND or any of the optional arguments are changed, the new values replace
those stored in SOL and SOL%DONE is changed to .FALSE. Of course, NPDES cannot be
changed. For example, we can instruct the solver to quit returning at every step with

SOL = IRKC_SET(SOL,TEND,ONE_STEP=.FALSE.)

and then call the solver again to continue on to TEND.

Unless instructed to the contrary, the solver will print a message and stop when a fa-
tal error occurs. This response to a fatal error can be changed with the optional argument
STOP_ON_ERROR. Setting it to .FALSE. will cause the solver to return with a positive value
of the integer SOL%ERR_FLAG that indicates the nature of the error. In this way a user can
prevent an unwelcome termination of the run. Of course, if this report of a fatal error is ignored
and the solver is called again with a positive value of SOL%ERR_FLAG, it will print a message
and stop.



3.3 Defining the Equations

The differential equations are supplied as subroutines to IRKC. A typical invocation of IRKC
looks like

CALL IRKC(SOL,F_E,F_I)

All three arguments in this call are required. The solution structure SOL is used for both
input and output. F_E is the name of a subroutine for evaluating the explicit part of (2). It is
supplied just as for RKC, i.e., there is a subroutine of the form F_E(NEQN,T,Y,DY) that accepts
a vector Y of length NEQN, evaluates F(¢,y), and returns it as a vector DY of length NEQN.
As explained previously, the term to be handled implicitly must be defined in a particular way
that we now discuss more fully.

Let NPDES be the number of PDEs. The ODEs must be coded in blocks that corre-
spond to grid points. Specifically, for I = 1, ..., the equations with indices I.I+NPDES-1
must correspond to a single grid point. Accordingly there is to be a subroutine of the form
F I(GRID_POINT,NPDES, T,YG,DYG,WANT_JAC,JAC). For an index I = GRID_POINT, it
evaluates F7(T,YG) for YG = Y(I:I+NPDES-1). This value is returned as a vector DYG of
NPDES components. The solver also requires the Jacobian of this function, a matrix JAC of
NPDES by NPDES entries. It is convenient to have this computation in the subroutine where
F7 is evaluated, but it does not have to be done every time that F7 is evaluated. The logical
variable WANT JAC is used to inform the subroutine when JAC is to be formed along with
DYG.

By default the solver approximates the spectral radius p(F;) using a nonlinear power method.
This is convenient and often works well, but it can fail. When it is not too much trouble to
supply a function that returns an upper bound for p(F}) of roughly the correct size, this should
be done because the integration is then faster, more reliable, and uses less storage. This function
must have the form SR(NEQN,T,Y). Its name is supplied to the solver as an optional fourth
argument, but in the circumstances there is no point to using a keyword, so the call has the
form

CALL IRKC(SOL,F_E,F_I,SR)

4 Numerical Examples

In this section the use of IRKC is illustrated by means of two test problems. The Fortran 90 code
for IRKC as well as for the accompanying examples can be obtained by anonymous ftp from the
address ftp://ftp.cwi.nl/pub/bsom/irkc. IRKC can also be downloaded from netlib@ornl.gov
(send irke.f90 from ode). To keep the codes for the test examples as transparent as possible,
we choose problems in one spatial dimension. This by no means implies that IRKC encounters
difficulties in solving problems in more spatial dimensions. To the contrary, the advantages
of IRKC compared with an implicit solver are more pronounced in more dimensions. This is
because the stiffness in the explicit part increases slowly with the number of spatial dimensions
whereas the stiffness of the part handled implicitly is confined to individual grid points and so
is independent of the number of dimensions.

Example 1. We begin with the solution of a system of ODEs that arises from semidis-
cretization of the reaction-diffusion equation

U = Ugg + (1 —w)u? for 0<t<10, 0<z<10 (16)



with initial and Dirichlet boundary values
u(z,0) = 10(10 — z), u(0,t) =100, «(10,t) =0.

The term u,, is approximated by second-order central differences on a mesh {z,,} with equal
spacing of h to get Fg(t,y) and the other term is evaluated at mesh points to get Fr(¢,y). If
Ym(t) = u(zm,t), a typical component of Fg is (y;_1(t) — 2y;(t) + yi+1(t)) /h? and a typical
component of Fy is (1 —y;(t))y?(t). Evidently Fj is a constant, tridiagonal matrix and Fy
is a diagonal matrix with typical entry (2 — 3y;(¢)) yi(t). Using either Gershgorin’s theorem or
| F; || oo, We obtain easily the bound 4/h? for p(Ff). For this simple example there is an analytical
expression for the eigenvalues which shows that the upper bound is very close to p(Ff). In the
example program there are 50 ODEs (h = 10/51) and the bound is about 104. On a time interval
of length 10, we see that the diffusion part causes only moderate stiffness. When the solver itself
estimates a bound on the spectral radius, it computes values that range from 123 to 124. The
solver computes a bound by estimating the spectral radius and, for safety reasons, increasing the
estimate by 20%. For this example the solver has evidently computed a good estimate of p(Fp;).
Because of the Dirichlet boundary condition «(0,t) = 100, there is always an entry in F7}, hence
an eigenvalue of this diagonal matrix, that is approximately —3 10%*. We see that on a time
interval of length 10, the reaction part of the PDE causes the ODEs to be stiff. Accordingly,
the example program computes solution profiles at times 0,107°,1074,1073,1072,1071,1,10 to
show the initial transient as well as illustrate how to obtain output at specific points. The
(exact ODE) solutions at these output points are shown in Figure 1. Here, the facility offered
by IRKC_VAL(SOL,TOUT) has been used to obtain solution values at the intermediate output
points. The solution structure SOL was initialized as

SOL = IRKC_SET(0DO,Y,10D0,RE=TOL,AE=TOL)

i.e., we took both the absolute and relative error tolerance equal to a parameter tol. For several
values of tol, the integration results are collected in Table 1. These results are obtained by

CALL IRKC(SOL,F_E,F_I,SR)

where the function SR provides the solver with the estimate 4/h? for the spectral radius of F,.
As we can see from this table, this rather simple problem has been integrated by IRKC without
difficulties. Because the subroutine F_I is called for each grid point, the total number of calls
reported in Table 1 has been scaled by the number of grid points (NEQN/NPDES). The ratio
of the number of calls to F; and Fg is an indication of the average number of modified Newton
iterations. This number is seen to be slightly larger than 2.5. Because the stopping criterion
in the modified Newton process is related to the tolerance for the error control, the number of
iterations does not necessarily decrease when the tolerance is reduced. Notice that the global
error in ¢t = 10, measured in the Lo-norm, refers to the time integration error only. For an
accurate solution of the PDE (16), the spatial resolution needs refinement as well.

Example 2. Our second example is a more substantial problem. It originates in radiation-
diffusion theory and is a 1D version of a 2D problem described in [2]. Here we remark that
the original 2D problem has been discussed in our algorithm paper [6], where we have used a
preliminary version of the IMEX code to solve this problem (see also [1] where the 2D problem has
been solved with RKC). Again, the reduction to 1D is motivated only by illustrative arguments;
the characteristic difficulties in this problem are maintained in the 1D version.
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Exact ODE sol. att=0 Exact ODE sol. att = 1e-05

100 100
50 1 50
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Exact ODE sol. at t = 0.0001 Exact ODE sol. at t = 0.001
100 100
50 1 50
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Exact ODE sol. att = 0.01 Exact ODE sol. att = 0.1
100 100
50 \\ 1 50 L
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Exact ODE sol. att =1 Exact ODE sol. att= 10
100 100
50 L 1 50 L
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 1: Example 1: Reference solution at several points in time.

Table 1: Example 1: Results obtained at t = 10 with grid spacing h=10/51.

Quantity tol =102 tol =10"3 tol =10"*
Number of successful steps 99 328 1062
Number of rejected steps 2 2 2
Evaluations of Fg 413 1139 3374
Evaluations of F; / (NEQN/NPDES) 1035 2970 8936
Maximum number of stages used 20 16 11
Global error (discrete Lo-norm) 1.03107% 1.4910* 4.0710°°

This test problem consists of two strongly nonlinear diffusion equations with a highly stiff
reaction term (an idealization of non-equilibrium radiation diffusion in a material). The depen-
dent variables E and T represent radiation energy and material temperature, respectively. One
source of such problems is laser fusion. The equations are defined on the unit interval in space
for t > 0,

E; = (D1 Ep)y + o(T* - E),
(17)
T, = (D2 Ty)y — o(T* - E),
with
VA 1
—_= — , Dl = — ;
T3 30 + |Eg|/E

Here Z = Z(xz) represents the atomic mass number which may vary in the spatial interval to

Dy = kT2,

(&
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Figure 2: Example 2: Reference solution at ¢ = 3 with grid spacing h=1/100: radiation energy
E (solid line) and temperature T' (dashed line).

reflect inhomogeneities in the material. We suppose that the temperature diffusion coefficient
k = 0.005 and Z(z) varies as

Z(z) =

Zy iflz—3| <3
1 otherwise .

Here we take Zy = 10. The initial values are constant in space,
E(z,0) = 107°,  T(z,0) = E(z,0)"* ~ 5.621072,

and the boundary conditions are

IE-4&E, =1 atz=0,
IE+ £E, =0 atz=1,
T, =0 atx=0,1.

The solution of this problem has a steep temperature front moving to the right. For Zy > 1, as
it is here, the movement is hampered at the interior of the interval. The radiation energy F is
almost equal to T* except near the front where it is slightly smaller.

We discretized the PDEs in space using a uniform cell-centered grid with grid size h = 1/100
by means of a second-order central conservative scheme; details can be found in [1, Chapter V].
In principle this is straightforward, but the program is somewhat complicated because of special
cases and having to approximate the derivative in the diffusion coefficient Dy. The resulting
system of ODEs is of dimension 2/h, so NEQN = 200. Integrating these ODEs accurately in
time to t = 3 gives the reference solution displayed in Figure 2. Though we have chosen a grid
spacing that gives an adequate resolution of the solution of the PDEs, it should be understood
that it is the solution of the system of 200 ODEs that was computed accurately for the purpose
of illustrating the code, not the solution of the PDEs.

The nonlinear power method used by default to calculate a bound on the spectral radius
p(Ff;) fails to converge for this strongly nonlinear problem. However, following heuristic argu-
ments, it is possible to derive an upper bound for p(Fg). To that end we apply Fourier—von
Neumann analysis with the diffusion coefficients Dy and Ds frozen at their maximal value.
Here we use some information about the solution. Observing that the temperature T is ap-
proximately in the range [0.056,1.35] (see Figure 2), we arrive at the following bounds for the
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diffusion coefficients

1 783 1

Dy < — = <1, Dy=kT"?«1.
30

_ < _
323 " Z3 —
Choosing D1 = Dy = 1 in the Fourier—-von Neumann analysis, we conclude that p(F};) is bounded
by 4/h? = 40, 000.

It is illuminating to estimate the stiffness caused by the reaction terms. It is easily verified
that

a -0 T4

The eigenvalues of F} are 0 and —(a+f3). Since E ~ T*, a+ 3 is dominated by the term Z3/T3.
Again using information about the solution, we see that p(F}) is roughly 6000 Z3 = 6 10°. This
is quite large compared to the length of the interval of integration, so the problem is stiff and
an explicit treatment of the reaction terms is impractical.

We integrated the system of the two semi-discretized PDEs from time 0 to 3 and asked for
output only at ¢t = 3. Again, we took both relative and absolute error tolerances to be equal to
a parameter tol. The solver is told of all this with

_ 3
Ff(EyT)=( @ b ), with a:%, 5:23(1+g)_

SOL = IRKC_SET(0DO,Y,3D0,RE=TOL,AE=TOL,NPDES=2,0NE_STEP=.FALSE.)

We coded the evaluation of the explicit and implicit terms as subroutines called F_E and F_I,
respectively, and the upper bound on the spectral radius as a function called SR. The solver is
then invoked with

CALL IRKC(SOL,F_E,F_I,SR)

The results of the integration are presented in Table 2 for several values of tol. For this example,
we see that the ratio of the number of calls to F; and Ff is slightly larger than 2.

Table 2: Results obtained at ¢ = 3 for test problem (17).

Quantity tol =102 tol =103 tol =101
Number of successful steps 72 220 675
Number of rejected steps 20 34 3
Evaluations of Fg 4133 7020 10840
Evaluations of F; / (NEQN/NPDES) 8369 14576 24305
Maximum number of stages used 135 82 44

Global error in E (discrete Ly-norm)  7.24107%  2.0310~* 1.7510~*
Global error in T (discrete Lg-norm) 2.15107% 2.1410°% 1.7910°*
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